1
|
Khalid K, Poh CL. The development of DNA vaccines against SARS-CoV-2. Adv Med Sci 2023; 68:213-226. [PMID: 37364379 PMCID: PMC10290423 DOI: 10.1016/j.advms.2023.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/07/2023] [Accepted: 05/31/2023] [Indexed: 06/28/2023]
Abstract
BACKGROUND The COVID-19 pandemic exerted significant impacts on public health and global economy. Research efforts to develop vaccines at warp speed against SARS-CoV-2 led to novel mRNA, viral vectored, and inactivated vaccines being administered. The current COVID-19 vaccines incorporate the full S protein of the SARS-CoV-2 Wuhan strain but rapidly emerging variants of concern (VOCs) have led to significant reductions in protective efficacies. There is an urgent need to develop next-generation vaccines which could effectively prevent COVID-19. METHODS PubMed and Google Scholar were systematically reviewed for peer-reviewed papers up to January 2023. RESULTS A promising solution to the problem of emerging variants is a DNA vaccine platform since it can be easily modified. Besides expressing whole protein antigens, DNA vaccines can also be constructed to include specific nucleotide genes encoding highly conserved and immunogenic epitopes from the S protein as well as from other structural/non-structural proteins to develop effective vaccines against VOCs. DNA vaccines are associated with low transfection efficiencies which could be enhanced by chemical, genetic, and molecular adjuvants as well as delivery systems. CONCLUSIONS The DNA vaccine platform offers a promising solution to the design of effective vaccines. The challenge of limited immunogenicity in humans might be solved through the use of genetic modifications such as the addition of nuclear localization signal (NLS) peptide gene, strong promoters, MARs, introns, TLR agonists, CD40L, and the development of appropriate delivery systems utilizing nanoparticles to increase uptake by APCs in enhancing the induction of potent immune responses.
Collapse
Affiliation(s)
- Kanwal Khalid
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Chit Laa Poh
- Centre for Virus and Vaccine Research, School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia.
| |
Collapse
|
2
|
Lin WHW, Moran E, Adams RJ, Sievers RE, Hauer D, Godin S, Griffin DE. A durable protective immune response to wild-type measles virus infection of macaques is due to viral replication and spread in lymphoid tissues. Sci Transl Med 2021; 12:12/537/eaax7799. [PMID: 32238577 DOI: 10.1126/scitranslmed.aax7799] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 08/15/2019] [Accepted: 12/02/2019] [Indexed: 12/21/2022]
Abstract
Infection with wild-type (WT) measles virus (MeV) is an important cause of childhood mortality that leads to lifelong protective immunity in survivors. WT MeV and the live-attenuated MeV used in the measles vaccine (LAMV) are antigenically similar, but the determinants of attenuation are unknown, and protective immunity induced by LAMV is less robust than that induced by WT MeV. To identify factors that contribute to these differences, we compared virologic and immunologic responses after respiratory infection of rhesus macaques with WT MeV or LAMV. In infected macaques, WT MeV replicated efficiently in B and T lymphocytes with spreading throughout lymphoid tissues resulting in prolonged persistence of viral RNA. In contrast, LAMV replicated efficiently in the respiratory tract but displayed limited spread to lymphoid tissue or peripheral blood mononuclear cells. In vitro, WT MeV and LAMV replicated similarly in macaque primary respiratory epithelial cells and human lymphocytes, but LAMV-infected lymphocytes produced little virus. Plasma concentrations of interleukin-1β (IL-1β), IL-12, interferon-γ (IFN-γ), CCL2, CCL11, CXCL9, and CXCL11 increased in macaques after WT MeV but not LAMV infection. WT MeV infection induced more protective neutralizing, hemagglutinin-specific antibodies and bone marrow plasma cells than did LAMV infection, although numbers of MeV-specific IFN-γ- and IL-4-producing T cells were comparable. Therefore, MeV attenuation may involve altered viral replication in lymphoid tissue that limited spread and decreased the host antibody response, suggesting a link between lifelong protective immunity and the ability of WT MeV, but not LAMV, to spread in lymphocytes.
Collapse
Affiliation(s)
- Wen-Hsuan W Lin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Eileen Moran
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Robert J Adams
- Department of Molecular and Comparative Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21218, USA
| | - Robert E Sievers
- Department of Chemistry, University of Colorado, Boulder, CO 80309, USA
| | - Debra Hauer
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | - Diane E Griffin
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
| |
Collapse
|
3
|
Abstract
My great-grandparents were immigrants from Sweden and settled as farmers in Iowa and Illinois. My father, the oldest of six children, was the first in his family to go to college and had careers as a petroleum geologist and an academic. My mother, the youngest of four children, had older siblings in education, and she focused on early childhood education. My childhood in Oklahoma with two younger sisters was happy and comfortable, and public school prepared me well. My career trajectory into virology did not involve much if any advance planning but was characterized by recognizing the fascinating puzzles of virus diseases, being in good places at the right time, taking advantage of opportunities as they presented themselves, and being surrounded by great mentors, colleagues, trainees, and family. Most of my career was spent studying two diseases caused by RNA viruses, alphavirus encephalomyelitis and measles, and was enriched with several leadership opportunities.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA;
| |
Collapse
|
4
|
Abstract
Measles remains an important cause of child morbidity and mortality worldwide despite the availability of a safe and efficacious vaccine. The current measles virus (MeV) vaccine was developed empirically by attenuation of wild-type (WT) MeV by in vitro passage in human and chicken cells and licensed in 1963. Additional passages led to further attenuation and the successful vaccine strains in widespread use today. Attenuation is associated with decreased replication in lymphoid tissue, but the molecular basis for this restriction has not been identified. The immune response is age dependent, inhibited by maternal antibody (Ab) and involves induction of both Ab and T cell responses that resemble the responses to WT MeV infection, but are lower in magnitude. Protective immunity is correlated with levels of neutralizing Ab, but the actual immunologic determinants of protection are not known. Because measles is highly transmissible, control requires high levels of population immunity. Delivery of the two doses of vaccine needed to achieve >90% immunity is accomplished by routine immunization of infants at 9-15 months of age followed by a second dose delivered before school entry or by periodic mass vaccination campaigns. Because delivery by injection creates hurdles to sustained high coverage, there are efforts to deliver MeV vaccine by inhalation. In addition, the safety record for the vaccine combined with advances in reverse genetics for negative strand viruses has expanded proposed uses for recombinant versions of measles vaccine as vectors for immunization against other infections and as oncolytic agents for a variety of tumors.
Collapse
Affiliation(s)
- Diane E Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health , Baltimore, Maryland
| |
Collapse
|
5
|
Generation of a More Immunogenic Measles Vaccine by Increasing Its Hemagglutinin Expression. J Virol 2016; 90:5270-5279. [PMID: 26984727 DOI: 10.1128/jvi.00348-16] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/11/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Imported measles virus (MV) outbreaks are maintained by poor vaccine responders and unvaccinated people. A convenient but more immunogenic vaccination strategy would enhance vaccine performance, contributing to measles eradication efforts. We report here the generation of alternative pediatric vaccines against MV with increased expression of the H protein in the background of the current MV vaccine strain. We generated two recombinants: MVvac2-H2, with increased full-length H expression resulting in a 3-fold increase in H incorporation into virions, and MVvac2-Hsol, vectoring a truncated, soluble form of the H protein that is secreted into the supernatants of infected cells. Replication fitness was conserved despite the duplication of the H cistron for both vectors. The modification to the envelope of MVvac2-H2 conferred upon this virus a measurable level of resistance to in vitro neutralization by MV polyclonal immune sera without altering its thermostability. Most interestingly, both recombinant MVs with enhanced H expression were significantly more immunogenic than their parental strain in outbred mice, while MVvac2-H2 additionally proved more immunogenic after a single, human-range dose in genetically modified MV-susceptible mice. IMPORTANCE Measles incidence was reduced drastically following the introduction of attenuated vaccines, but progress toward the eradication of this virus has stalled, and MV still threatens unvaccinated populations. Due to the contributions of primary vaccine failures and too-young-to-be-vaccinated infants to this problem, more immunogenic measles vaccines are highly desirable. We generated two experimental MV vaccines based on a current vaccine's genome but with enriched production of the H protein, the main MV antigen in provoking immunity. One vaccine incorporated H at higher rates in the viral envelope, and the other secreted a soluble H protein from infected cells. The increased expression of H by these vectors improved neutralizing responses induced in two small-animal models of MV immunogenicity. The enhanced immunogenicity of these vectors, mainly from the MV that incorporates additional H, suggests their value as potential alternative pediatric MV vaccines.
Collapse
|
6
|
Hu HM, Chen HW, Hsiao YJ, Wu SH, Chung HH, Hsieh CH, Chong P, Leng CH, Pan CH. The successful induction of T-cell and antibody responses by a recombinant measles virus-vectored tetravalent dengue vaccine provides partial protection against dengue-2 infection. Hum Vaccin Immunother 2016; 12:1678-89. [PMID: 26901482 DOI: 10.1080/21645515.2016.1143576] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Dengue has a major impact on global public health, and the use of dengue vaccine is very limited. In this study, we evaluated the immunogenicity and protective efficacy of a dengue vaccine made from a recombinant measles virus (MV) that expresses envelope protein domain III (ED3) of dengue-1 to 4. Following immunization with the MV-vectored dengue vaccine, mice developed specific interferon-gamma and antibody responses against dengue virus and MV. Neutralizing antibodies against MV and dengue viruses were also induced, and protective levels of FRNT50 ≥ 10 to 4 serotypes of dengue viruses were detected in the MV-vectored dengue vaccine-immunized mice. In addition, specific interferon-gamma and antibody responses to dengue viruses were still induced by the MV-vectored dengue vaccine in mice that were pre-infected with MV. This finding suggests that the pre-existing immunity to MV did not block the initiation of immune responses. By contrast, mice that were pre-infected with dengue-3 exhibited no effect in terms of their antibody responses to MV and dengue viruses, but a dominant dengue-3-specific T-cell response was observed. After injection with dengue-2, a detectable but significantly lower viremia and a higher titer of anti-dengue-2 neutralizing antibodies were observed in MV-vectored dengue vaccine-immunized mice versus the vector control, suggesting that an anamnestic antibody response that provided partial protection against dengue-2 was elicited. Our results with regard to T-cell responses and the effect of pre-immunity to MV or dengue viruses provide clues for the future applications of an MV-vectored dengue vaccine.
Collapse
Affiliation(s)
- Hui-Mei Hu
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| | - Hsin-Wei Chen
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan.,b Graduate Institute of Immunology, China Medical University , Taichung , Taiwan
| | - Yu-Ju Hsiao
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| | - Szu-Hsien Wu
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| | - Han-Hsuan Chung
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| | - Chun-Hsiang Hsieh
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan
| | - Pele Chong
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan.,b Graduate Institute of Immunology, China Medical University , Taichung , Taiwan
| | - Chih-Hsiang Leng
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan.,b Graduate Institute of Immunology, China Medical University , Taichung , Taiwan
| | - Chien-Hsiung Pan
- a National Institute of Infectious Disease and Vaccinology, National Health Research Institutes , Zhunan Town , Taiwan.,b Graduate Institute of Immunology, China Medical University , Taichung , Taiwan
| |
Collapse
|
7
|
Canine distemper virus DNA vaccination of mink can overcome interference by maternal antibodies. Vaccine 2015; 33:1375-81. [PMID: 25637861 DOI: 10.1016/j.vaccine.2015.01.029] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 11/22/2014] [Accepted: 01/09/2015] [Indexed: 11/24/2022]
Abstract
Canine distemper virus (CDV) is highly contagious and can cause severe disease against which conventional live vaccines are ineffective in the presence of maternal antibodies. Vaccination in the presences of maternal antibodies was challenged by vaccination of 5 days old and 3 weeks old mink kits with CDV DNA vaccines. Virus neutralising (VN) antibody responses were induced in mink kits vaccinated with a plasmid encoding the haemaglutinin protein (H) of CDV (n=5, pCDV-H) or a combination of the H, fusion (F) and nucleoprotein (N) of CDV (n=5, pCDV-HFN). These DNA vaccinated kits were protected against virulent experimental infection with field strains of CDV. The pCDV-H was more efficient in inducing protective immunity in the presence of maternal antibodies compared to the pCDV-HFN. The results show that DNA vaccination with the pCDV-H or pCDV-HFN (n=4) only given once at 5 days of age induces virus specific immune response in neonatal mink and protection against virulent CDV exposure later in life.
Collapse
|
8
|
Wang FX, Zhang SQ, Zhu HW, Yang Y, Sun N, Tan B, Li ZG, Cheng SP, Fu ZF, Wen YJ. Recombinant rabies virus expressing the H protein of canine distemper virus protects dogs from the lethal distemper challenge. Vet Microbiol 2014; 174:362-371. [DOI: 10.1016/j.vetmic.2014.10.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 10/15/2014] [Accepted: 10/27/2014] [Indexed: 11/16/2022]
|
9
|
Song Y, Zhou Y, van Drunen Littel-van den Hurk S, Chen L. Cellulose-based polyelectrolyte complex nanoparticles for DNA vaccine delivery. Biomater Sci 2014; 2:1440-1449. [DOI: 10.1039/c4bm00202d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Electrochemical impedimetric immunosensor for the detection of measles-specific IgG antibodies after measles infections. Biosens Bioelectron 2013; 49:32-8. [DOI: 10.1016/j.bios.2013.04.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 03/28/2013] [Accepted: 04/15/2013] [Indexed: 10/26/2022]
|
11
|
Mashazi P, Vilakazi S, Nyokong T. Design and evaluation of an electrochemical immunosensor for measles serodiagnosis using measles-specific Immunoglobulin G antibodies. Talanta 2013; 115:694-701. [PMID: 24054649 DOI: 10.1016/j.talanta.2013.06.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/19/2013] [Accepted: 06/21/2013] [Indexed: 01/05/2023]
Abstract
The design of electrochemical immunosensors for the detection of measles-specific antibodies is reported. The measles-antigen modified surface was used as an antibody capture surface. The detection of measles-specific IgG antibodies was accomplished using the voltammetric method and horse-radish peroxidase (HRP) labeled secondary antibody (anti-IgG) as a detecting antibody. The potential applications of the designed immunosensor were evaluated in buffer and serum solutions. The immunosensor exhibited good linearity at concentrations less than 100 ng mL(-1) with R(2)=0.997 and the limit of detection of 6.60 ng mL(-1) at 3σ. The potential application of the immunosensor was evaluated in the deliberately infected human and newborn calf serum samples with measles-IgG antibody mimicking real-life samples. The designed electrochemical immunosensor could differentiate between infected and un-infected serum samples as higher catalytic currents were obtained for infected serum samples.
Collapse
Affiliation(s)
- Philani Mashazi
- Nanotechnology Innovation Centre, Advanced Materials Division, Mintek, Private Bag X3015, Randburg 2125, South Africa; Nanotechnology Innovation Centre, Sensors, Chemistry Department, Rhodes University, P.O. Box 94, Grahamstown 6140, South Africa.
| | | | | |
Collapse
|
12
|
Vaxfectin adjuvant improves antibody responses of juvenile rhesus macaques to a DNA vaccine encoding the measles virus hemagglutinin and fusion proteins. J Virol 2013; 87:6560-8. [PMID: 23552419 DOI: 10.1128/jvi.00635-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
DNA vaccines formulated with the cationic lipid-based adjuvant Vaxfectin induce protective immunity in macaques after intradermal (i.d.) or intramuscular (i.m.) delivery of 0.5 to 1 mg of codon-optimized DNA encoding the hemagglutinin (H) and fusion (F) proteins of measles virus (MeV). To characterize the effect of Vaxfectin at lower doses of H+F DNA, rhesus macaques were vaccinated twice with 20 μg of DNA plus Vaxfectin i.d., 100 μg of DNA plus Vaxfectin i.d., 100 μg of DNA plus Vaxfectin i.m. or 100 μg of DNA plus phosphate-buffered saline (PBS) i.m. using a needleless Biojector device. The levels of neutralizing (P = 0.036) and binding (P = 0.0001) antibodies were higher after 20 or 100 μg of DNA plus Vaxfectin than after 100 μg of DNA plus PBS. Gamma interferon (IFN-γ)-producing T cells were induced more rapidly than antibody, but were not improved with Vaxfectin. At 18 months after vaccination, monkeys were challenged with wild-type MeV. None developed rash or viremia, but all showed evidence of infection. Antibody levels increased, and IFN-γ- and interleukin-17-producing T cells, including cells specific for the nucleoprotein absent from the vaccine, were induced. At 3 months after challenge, MeV RNA was detected in the leukocytes of two monkeys. The levels of antibody peaked 2 to 4 weeks after challenge and then declined in vaccinated animals reflecting low numbers of bone marrow-resident plasma cells. Therefore, Vaxfectin was dose sparing and substantially improved the antibody response to the H+F DNA vaccine. This immune response led to protection from disease (rash/viremia) but not from infection. Antibody responses after challenge were more transient in vaccinated animals than in an unvaccinated animal.
Collapse
|
13
|
Poor immune responses of newborn rhesus macaques to measles virus DNA vaccines expressing the hemagglutinin and fusion glycoproteins. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 20:205-10. [PMID: 23239799 DOI: 10.1128/cvi.00394-12] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A vaccine that would protect young infants against measles could facilitate elimination efforts and decrease morbidity and mortality in developing countries. However, immaturity of the immune system is an important obstacle to the development of such a vaccine. In this study, DNA vaccines expressing the measles virus (MeV) hemagglutinin (H) protein or H and fusion (F) proteins, previously shown to protect juvenile macaques, were used to immunize groups of 4 newborn rhesus macaques. Monkeys were inoculated intradermally with 200 μg of each DNA at birth and at 10 months of age. As controls, 2 newborn macaques were similarly vaccinated with DNA encoding the influenza virus H5, and 4 received one dose of the current live attenuated MeV vaccine (LAV) intramuscularly. All monkeys were monitored for development of MeV-specific neutralizing and binding IgG antibody and cytotoxic T lymphocyte (CTL) responses. These responses were poor compared to the responses induced by LAV. At 18 months of age, all monkeys were challenged intratracheally with a wild-type strain of MeV. Monkeys that received the DNA vaccine encoding H and F, but not H alone, were primed for an MeV-specific CD8(+) CTL response but not for production of antibody. LAV-vaccinated monkeys were protected from rash and viremia, while DNA-vaccinated monkeys developed rashes, similar to control monkeys, but had 10-fold lower levels of viremia. We conclude that vaccination of infant macaques with DNA encoding MeV H and F provided only partial protection from MeV infection.
Collapse
|
14
|
Korsholm KS, Andersen PL, Christensen D. Cationic liposomal vaccine adjuvants in animal challenge models: overview and current clinical status. Expert Rev Vaccines 2012; 11:561-77. [PMID: 22827242 DOI: 10.1586/erv.12.22] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Cationic liposome formulations can function as efficient vaccine adjuvants. However, due to the highly diverse nature of lipids, cationic liposomes have different physical-chemical characteristics that influence their adjuvant mechanisms and their relevance for use in different vaccines. These characteristics can be further manipulated by incorporation of additional lipids or stabilizers, and inclusion of carefully selected immunostimulators is a feasible strategy when tailoring cationic liposomal adjuvants for specific disease targets. Thus, cationic liposomes present a plasticity, which makes them promising adjuvants for future vaccines. This versatility has also led to a vast amount of literature on different experimental liposomal formulations in combination with a wide range of immunostimulators. Here, we have compiled information about the animal challenge models and administration routes that have been used to study vaccine adjuvants based on cationic liposomes and provide an overview of the applicability, progress and clinical status of cationic liposomal vaccine adjuvants.
Collapse
Affiliation(s)
- Karen Smith Korsholm
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, DK-2300 Copenhagen, Denmark.
| | | | | |
Collapse
|
15
|
Nielsen L, Jensen TH, Kristensen B, Jensen TD, Karlskov-Mortensen P, Lund M, Aasted B, Blixenkrone-Møller M. DNA vaccines encoding proteins from wild-type and attenuated canine distemper virus protect equally well against wild-type virus challenge. Arch Virol 2012; 157:1887-96. [PMID: 22714870 DOI: 10.1007/s00705-012-1375-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2012] [Accepted: 05/07/2012] [Indexed: 10/28/2022]
Abstract
Immunity induced by DNA vaccines containing the hemagglutinin (H) and nucleoprotein (N) genes of wild-type and attenuated canine distemper virus (CDV) was investigated in mink (Mustela vison), a highly susceptible natural host of CDV. All DNA-immunized mink seroconverted, and significant levels of virus-neutralizing (VN) antibodies were present on the day of challenge with wild-type CDV. The DNA vaccines also primed the cell-mediated memory responses, as indicated by an early increase in the number of interferon-gamma (IFN-γ)-producing lymphocytes after challenge. Importantly, the wild-type and attenuated CDV DNA vaccines had a long-term protective effect against wild-type CDV challenge. The vaccine-induced immunity induced by the H and N genes from wild-type CDV and those from attenuated CDV was comparable. Because these two DNA vaccines were shown to protect equally well against wild-type virus challenge, it is suggested that the genetic/antigenic heterogeneity between vaccine strains and contemporary wild-type strains are unlikely to cause vaccine failure.
Collapse
Affiliation(s)
- Line Nielsen
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Stigbøjlen 7, 1870 Frederiksberg C, Copenhagen, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Shlapobersky M, Marshak JO, Dong L, Huang ML, Wei Q, Chu A, Rolland A, Sullivan S, Koelle DM. Vaxfectin-adjuvanted plasmid DNA vaccine improves protection and immunogenicity in a murine model of genital herpes infection. J Gen Virol 2012; 93:1305-1315. [PMID: 22398318 DOI: 10.1099/vir.0.040055-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The herpes simplex type 2 (HSV-2) envelope glycoprotein (gD2) was evaluated as a potential antigen candidate for a plasmid DNA (pDNA)-based HSV-2 vaccine. The pDNA was formulated with Vaxfectin, a cationic lipid-based adjuvant, and tested in a murine HSV-2 lethal challenge model. gD2 was expressed as full-length (FL) and secreted (S) gD2 forms. A 0.1 µg pDNA dose was tested to distinguish treatment conditions for survival and a 100 µg pDNA dose was tested to distinguish treatment conditions for reduction in vaginal and latent HSV-2 copies. Vaxfectin-formulated gD2 pDNA significantly increased serum IgG titres and survival for both FL gD2 and S gD2 compared with gD2 pDNA alone. Mice immunized with FL gD2 formulated with Vaxfectin showed reduction in vaginal and dorsal root ganglia (DRG) HSV-2 copies. The stringency of this protection was further evaluated by testing Vaxfectin-formulated FL gD2 pDNA at a high 500 LD(50) inoculum. At this high viral challenge, the 0.1 µg dose of FL gD2 Vaxfectin-formulated pDNA yielded 80 % survival compared with no survival for FL gD2 pDNA alone. Vaxfectin-formulated FL gD2 pDNA, administered at a 100 µg pDNA dose, significantly reduced HSV-2 DNA copy number, compared with FL gD2 DNA alone. In addition, 40 % of mice vaccinated with adjuvanted FL pDNA had no detectable HSV-2 viral genomes in the DRG, whereas all mice vaccinated with gD2 pDNA alone were positive for HSV-2 viral genomes. These results show the potential contribution of Vaxfectin-gD2 pDNA to a future multivalent HSV-2 vaccine.
Collapse
Affiliation(s)
- Mark Shlapobersky
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Joshua O Marshak
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Lichun Dong
- Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Meei-Li Huang
- Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| | - Qun Wei
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Alice Chu
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Alain Rolland
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - Sean Sullivan
- Vical Incorporated, 10390 Pacific Center Ct, San Diego, CA 92121, USA
| | - David M Koelle
- Department of Global Health, University of Washington, Seattle, WA 98195, USA.,Department of Medicine, University of Washington, Seattle, WA 98195, USA.,Vaccine and Infectious Diseases Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.,Benaroya Research Institute, Seattle, WA 98101, USA.,Department of Laboratory Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
17
|
Abstract
Despite many years of research, human DNA vaccines have yet to fulfill their early promise. Over the past 15 years, multiple generations of DNA vaccines have been developed and tested in preclinical models for prophylactic and therapeutic applications in the areas of infectious disease and cancer, but have failed in the clinic. Thus, while DNA vaccines have achieved successful licensure for veterinary applications, their poor immunogenicity in humans when compared with traditional protein-based vaccines has hindered their progress. Many strategies have been attempted to improve DNA vaccine potency including use of more efficient promoters and codon optimization, addition of traditional or genetic adjuvants, electroporation, intradermal delivery and various prime-boost strategies. This review summarizes these advances in DNA vaccine technologies and attempts to answer the question of when DNA vaccines might eventually be licensed for human use.
Collapse
Affiliation(s)
- Fadi Saade
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, Bedford Park, Adelaide 5042, Australia
- Department of Diabetes and Endocrinology, Flinders Medical Centre/Flinders University, Adelaide 5042, Australia
| |
Collapse
|
18
|
Nonclinical biodistribution, integration, and toxicology evaluations of an H5N1 pandemic influenza plasmid DNA vaccine formulated with Vaxfectin®. Vaccine 2011; 29:5443-52. [DOI: 10.1016/j.vaccine.2011.05.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2010] [Revised: 04/20/2011] [Accepted: 05/19/2011] [Indexed: 11/19/2022]
|
19
|
Sullivan SM, Doukas J, Hartikka J, Smith L, Rolland A. Vaxfectin: a versatile adjuvant for plasmid DNA- and protein-based vaccines. Expert Opin Drug Deliv 2011; 7:1433-46. [PMID: 21118032 DOI: 10.1517/17425247.2010.538047] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
IMPORTANCE OF THE FIELD Many vaccines require the use of an adjuvant to achieve immunity. So far, few adjuvants have advanced successfully through clinical trials to become part of licensed vaccines. Vaxfectin® (Vical, CA, USA) represents a next-generation adjuvant with promise as a platform technology, showing utility with both plasmid DNA (pDNA) and protein-based vaccines. AREAS COVERED IN THIS REVIEW This review describes the chemical, physical, preclinical and clinical development of Vaxfectin for pDNA-based vaccines. Also included is the preclinical development of Vaxfectin-adjuvanted protein- and peptide-based vaccines. WHAT THE READER WILL GAIN The reader will gain knowledge of vaccine adjuvant development from bench to bedside. TAKE HOME MESSAGE Vaxfectin has effectively boosted the immune response against a range of pDNA-expressed pathogenic antigens in preclinical models extending from rodents to non-human primates. In the clinic, Vaxfectin-adjuvanted pDNA-based H5N1 influenza vaccines have been shown to be well tolerated and to result in durable immune responses within the predicted protective range reported for protein-based vaccines.
Collapse
Affiliation(s)
- Sean M Sullivan
- Vical, Inc., Pharmaceutical Sciences, 10390 Pacific Center Court, San Diego, CA 92121, USA.
| | | | | | | | | |
Collapse
|
20
|
Lobanova LM, Baig TT, Tikoo SK, Zakhartchouk AN. Mucosal adenovirus-vectored vaccine for measles. Vaccine 2010; 28:7613-9. [DOI: 10.1016/j.vaccine.2010.09.055] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Revised: 09/07/2010] [Accepted: 09/14/2010] [Indexed: 10/19/2022]
|
21
|
Ongkudon CM, Ho J, Danquah MK. Mitigating the looming vaccine crisis: production and delivery of plasmid-based vaccines. Crit Rev Biotechnol 2010; 31:32-52. [DOI: 10.3109/07388551.2010.483460] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
22
|
Bergen MJ, Pan CH, Greer CE, Legg HS, Polo JM, Griffin DE. Comparison of the immune responses induced by chimeric alphavirus-vectored and formalin-inactivated alum-precipitated measles vaccines in mice. PLoS One 2010; 5:e10297. [PMID: 20421972 PMCID: PMC2858653 DOI: 10.1371/journal.pone.0010297] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2009] [Accepted: 03/25/2010] [Indexed: 02/07/2023] Open
Abstract
A variety of vaccine platforms are under study for development of new vaccines for measles. Problems with past measles vaccines are incompletely understood and underscore the need to understand the types of immune responses induced by different types of vaccines. Detailed immune response evaluation is most easily performed in mice. Although mice are not susceptible to infection with wild type or vaccine strains of measles virus, they can be used for comparative evaluation of the immune responses to measles vaccines of other types. In this study we compared the immune responses in mice to a new protective alphavirus replicon particle vaccine expressing the measles virus hemagglutinin (VEE/SIN-H) with a non-protective formalin-inactivated, alum-precipitated measles vaccine (FI-MV). MV-specific IgG levels were similar, but VEE/SIN-H antibody was high avidity IgG2a with neutralizing activity while FI-MV antibody was low-avidity IgG1 without neutralizing activity. FI-MV antibody was primarily against the nucleoprotein with no priming to H. Germinal centers appeared, peaked and resolved later for FI-MV. Lymph node MV antibody-secreting cells were more numerous after FI-MV than VEE/SIN-H, but were similar in the bone marrow. VEE/SIN-H-induced T cells produced IFN-gamma and IL-4 both spontaneously ex vivo and after stimulation, while FI-MV-induced T cells produced IL-4 only after stimulation. In summary, VEE/SIN-H induced a balanced T cell response and high avidity neutralizing IgG2a while FI-MV induced a type 2 T cell response, abundant plasmablasts, late germinal centers and low avidity non-neutralizing IgG1 against the nucleoprotein.
Collapse
Affiliation(s)
- M. Jeff Bergen
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Chien-Hsiung Pan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Catherine E. Greer
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Harold S. Legg
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - John M. Polo
- Novartis Vaccines and Diagnostics, Cambridge, Massachusetts, United States of America
| | - Diane E. Griffin
- Graduate Program in Immunology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States of America
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
23
|
Pan CH, Greer CE, Hauer D, Legg HS, Lee EY, Bergen MJ, Lau B, Adams RJ, Polo JM, Griffin DE. A chimeric alphavirus replicon particle vaccine expressing the hemagglutinin and fusion proteins protects juvenile and infant rhesus macaques from measles. J Virol 2010; 84:3798-807. [PMID: 20130066 PMCID: PMC2849488 DOI: 10.1128/jvi.01566-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 12/21/2009] [Indexed: 11/20/2022] Open
Abstract
Measles remains a major cause of child mortality, in part due to an inability to vaccinate young infants with the current live attenuated virus vaccine (LAV). To explore new approaches to infant vaccination, chimeric Venezuelan equine encephalitis/Sindbis virus (VEE/SIN) replicon particles were used to express the hemagglutinin (H) and fusion (F) proteins of measles virus (MV). Juvenile rhesus macaques vaccinated intradermally with a single dose of VEE/SIN expressing H or H and F proteins (VEE/SIN-H or VEE/SIN-H+F, respectively) developed high titers of MV-specific neutralizing antibody and gamma-interferon (IFN-gamma)-producing T cells. Infant macaques vaccinated with two doses of VEE/SIN-H+F also developed neutralizing antibody and IFN-gamma-producing T cells. Control animals were vaccinated with LAV or with a formalin-inactivated measles vaccine (FIMV). Neutralizing antibody remained above the protective level for more than 1 year after vaccination with VEE/SIN-H, VEE/SIN-H+F, or LAV. When challenged with wild-type MV 12 to 17 months after vaccination, all vaccinated juvenile and infant monkeys vaccinated with VEE/SIN-H, VEE/SIN-H+F, and LAV were protected from rash and viremia, while FIMV-vaccinated monkeys were not. Antibody was boosted by challenge in all groups. T-cell responses to challenge were biphasic, with peaks at 7 to 25 days and at 90 to 110 days in all groups, except for the LAV group. Recrudescent T-cell activity coincided with the presence of MV RNA in peripheral blood mononuclear cells. We conclude that VEE/SIN expressing H or H and F induces durable immune responses that protect from measles and offers a promising new approach for measles vaccination. The viral and immunological factors associated with long-term control of MV replication require further investigation.
Collapse
Affiliation(s)
- Chien-Hsiung Pan
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Catherine E. Greer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Debra Hauer
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Harold S. Legg
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Eun-Young Lee
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - M. Jeff Bergen
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Brandyn Lau
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Robert J. Adams
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - John M. Polo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| | - Diane E. Griffin
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland 21205, Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21218, Novartis Vaccines and Diagnostics, Cambridge, Massachusetts 02139
| |
Collapse
|
24
|
Sedegah M, Rogers WO, Belmonte M, Belmonte A, Banania G, Patterson NB, Rusalov D, Ferrari M, Richie TL, Doolan DL. Vaxfectin® enhances both antibody and in vitro T cell responses to each component of a 5-gene Plasmodium falciparum plasmid DNA vaccine mixture administered at low doses. Vaccine 2010; 28:3055-65. [DOI: 10.1016/j.vaccine.2009.10.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 10/08/2009] [Accepted: 10/12/2009] [Indexed: 10/20/2022]
|
25
|
Vilalta A, Shlapobersky M, Wei Q, Planchon R, Rolland A, Sullivan S. Analysis of biomarkers after intramuscular injection of Vaxfectin®-formulated hCMV gB plasmid DNA. Vaccine 2009; 27:7409-17. [DOI: 10.1016/j.vaccine.2009.08.075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2009] [Revised: 08/10/2009] [Accepted: 08/21/2009] [Indexed: 11/26/2022]
|
26
|
YE MING, WEI QUN, CARNER KRISTINR, DOUKAS JOHN, SULLIVAN SEAN, ROLLAND ALAIN, SMITH LARRYR, WLOCH MARYK. RAPID DEVELOPMENT OF A VAXFECTIN®-ADJUVANTED DNA VACCINE ENCODING PANDEMIC SWINE-ORIGIN INFLUENZA A VIRUS (H1N1) HEMAGGLUTININ. ACTA ACUST UNITED AC 2009. [DOI: 10.1142/s1568558609000084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
27
|
Hartikka J, Bozoukova V, Yang CK, Ye M, Rusalov D, Shlapobersky M, Vilalta A, Wei Q, Rolland A, Smith LR. Vaxfectin®, a cationic lipid-based adjuvant for protein-based influenza vaccines. Vaccine 2009; 27:6399-403. [DOI: 10.1016/j.vaccine.2009.06.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Abstract
Vaccine development, which began with Edward Jenner's observations in the late 18th century, has entered its 4th century. From its beginnings, with the use of whole organisms that had been weakened or inactivated, to the modern-day use of genetic engineering, it has taken advantage of the tools discovered in other branches of microbiology. Numerous successful vaccines are in use, but the list of diseases for which vaccines do not exist is long. However, the multiplicity of strategies now available, discussed in this article, portends even more successful development of vaccines.
Collapse
|
29
|
Moss RB. Prospects for control of emerging infectious diseases with plasmid DNA vaccines. JOURNAL OF IMMUNE BASED THERAPIES AND VACCINES 2009; 7:3. [PMID: 19735569 PMCID: PMC2746192 DOI: 10.1186/1476-8518-7-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2009] [Accepted: 09/07/2009] [Indexed: 11/21/2022]
Abstract
Experiments almost 20 years ago demonstrated that injections of a sequence of DNA encoding part of a pathogen could stimulate immunity. It was soon realized that "DNA vaccination" had numerous potential advantages over conventional vaccine approaches including inherent safety and a more rapid production time. These and other attributes make DNA vaccines ideal for development against emerging pathogens. Recent advances in optimizing various aspects of DNA vaccination have accelerated this approach from concept to reality in contemporary human trials. Although not yet licensed for human use, several DNA vaccines have now been approved for animal health indications. The rapid manufacturing capabilities of DNA vaccines may be particularly important for emerging infectious diseases including the current novel H1N1 Influenza A pandemic, where pre-existing immunity is limited. Because of recent advances in DNA vaccination, this approach has the potential to be a powerful new weapon in protecting against emerging and potentially pandemic human pathogens.
Collapse
|
30
|
Early life DNA vaccination with the H gene of Canine distemper virus induces robust protection against distemper. Vaccine 2009; 27:5178-83. [DOI: 10.1016/j.vaccine.2009.06.077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2009] [Revised: 06/09/2009] [Accepted: 06/22/2009] [Indexed: 11/18/2022]
|
31
|
Nielsen L, Søgaard M, Karlskov-Mortensen P, Jensen TH, Jensen TD, Aasted B, Blixenkrone-Møller M. Humoral and cell-mediated immune responses in DNA immunized mink challenged with wild-type canine distemper virus. Vaccine 2009; 27:4791-7. [DOI: 10.1016/j.vaccine.2009.05.090] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 05/29/2009] [Accepted: 05/31/2009] [Indexed: 11/28/2022]
|
32
|
Bower DM, Prather KLJ. Engineering of bacterial strains and vectors for the production of plasmid DNA. Appl Microbiol Biotechnol 2009; 82:805-13. [DOI: 10.1007/s00253-009-1889-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2008] [Revised: 01/21/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
|
33
|
de Vries RD, Stittelaar KJ, Osterhaus ADME, de Swart RL. Measles vaccination: new strategies and formulations. Expert Rev Vaccines 2008; 7:1215-23. [PMID: 18844595 DOI: 10.1586/14760584.7.8.1215] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measles is a highly contagious viral disease. With 1 million deaths reported in 1996, measles was the leading cause of vaccine-preventable deaths. However, in recent years, significant progress has been made in measles control, reducing deaths attributed to measles to 454,000 in 2004 and 242,000 in 2006. The main strategy behind this reduction has been the improvement of vaccination coverage and implementation of a second opportunity for immunization with the live-attenuated measles vaccine. The Measles Initiative, a partnership between the American Red Cross, CDC, UNICEF, WHO and UN Foundation, has had a significant role in this achievement. Here, we provide an overview of old and new vaccination strategies, and discuss changes in the route of administration of the existing live-attenuated vaccine, the development of new-generation nonreplicating measles virus vaccine candidates and attempts to use recombinant measles virus as a vector for vaccination against other pathogens.
Collapse
Affiliation(s)
- Rory D de Vries
- Department of Virology, Erasmus MC, PO Box 2040, 3000 CA, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|