1
|
Chuaychu SB, Sirisereewan C, Techakriengkrai N, Tummaruk P, Thanawongnuwech R, Nedumpun T. Enhancement of systemic virus-specific T lymphocyte responses in pigs supplemented with algae-derived β-glucan. Vet J 2024; 306:106182. [PMID: 38897378 DOI: 10.1016/j.tvjl.2024.106182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
Algae-derived β-glucan has been widely used as a feed additive in the swine industry. The supplementation of β-glucan aims to improve growth performance and modulate the immunity of pigs. However, the potential effects of supplementing β-glucan from algae on immune responses in pigs-specifically antigen-specific immunity-must be determined. In this study, the effects of algae-derived β-glucan supplementation on growth performance, virus neutralising antibody and virus-specific T lymphocytes responses were investigated in pigs. Piglets (n=112 per treatment) were assigned to three treatments including non-supplemented group (control), β-glucan 100 g/ton supplemented group (BG100), and β-glucan 200 g/ton supplemented group (BG200). In this study, production performance of pigs was not found to be different between the experimental groups. Pigs supplemented with β-glucan exhibited high levels of classical swine fever virus (CSFV)-specific producing T lymphocytes and neutralising antibody titer, compared to the control group. Interestingly, supplementation of β-glucan significantly enhanced porcine reproductive and respiratory syndrome virus (PRRSV)-specific interferon-gamma (IFN-γ) producing T lymphocytes, including CD4+, CD8+, and CD4+CD8+ T lymphocyte subpopulations. Moreover, PRRS modified live vaccine (MLV) viremia was reduced in earlier for β-glucan-supplemented pigs compared to the control group. The findings indicate that the algae-derived β-glucan possesses biological potential as an immunomodulatory substance to enhance antiviral immunity, which may contribute to disease resistance in pigs.
Collapse
Affiliation(s)
- Sh B Chuaychu
- International Graduate Program of Veterinary Science and Technology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - C Sirisereewan
- Graduate Program in Veterinary Pathobiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand; Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - N Techakriengkrai
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - P Tummaruk
- Department of Obstetrics Gynaecology and Reproduction, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - R Thanawongnuwech
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand
| | - T Nedumpun
- Department of Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Pathumwan, Bangkok 10330, Thailand.
| |
Collapse
|
2
|
Kamboj A, Dumka S, Saxena MK, Singh Y, Kaur BP, da Silva SJR, Kumar S. A Comprehensive Review of Our Understanding and Challenges of Viral Vaccines against Swine Pathogens. Viruses 2024; 16:833. [PMID: 38932126 PMCID: PMC11209531 DOI: 10.3390/v16060833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/28/2024] Open
Abstract
Pig farming has become a strategically significant and economically important industry across the globe. It is also a potentially vulnerable sector due to challenges posed by transboundary diseases in which viral infections are at the forefront. Among the porcine viral diseases, African swine fever, classical swine fever, foot and mouth disease, porcine reproductive and respiratory syndrome, pseudorabies, swine influenza, and transmissible gastroenteritis are some of the diseases that cause substantial economic losses in the pig industry. It is a well-established fact that vaccination is undoubtedly the most effective strategy to control viral infections in animals. From the period of Jenner and Pasteur to the recent new-generation technology era, the development of vaccines has contributed significantly to reducing the burden of viral infections on animals and humans. Inactivated and modified live viral vaccines provide partial protection against key pathogens. However, there is a need to improve these vaccines to address emerging infections more comprehensively and ensure their safety. The recent reports on new-generation vaccines against swine viruses like DNA, viral-vector-based replicon, chimeric, peptide, plant-made, virus-like particle, and nanoparticle-based vaccines are very encouraging. The current review gathers comprehensive information on the available vaccines and the future perspectives on porcine viral vaccines.
Collapse
Affiliation(s)
- Aman Kamboj
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Shaurya Dumka
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | - Mumtesh Kumar Saxena
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Yashpal Singh
- College of Veterinary and Animal Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar 263145, Uttarakhand, India; (A.K.); (M.K.S.); (Y.S.)
| | - Bani Preet Kaur
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| | | | - Sachin Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Guwahati 781039, Assam, India; (S.D.); (B.P.K.)
| |
Collapse
|
3
|
D’Annunzio G, Ostanello F, Muscatello LV, Orioles M, Jacumin N, Tommasini N, Leotti G, Luppi A, Mandrioli L, Sarli G. Porcine circovirus type 2 and porcine reproductive and respiratory syndrome virus alone or associated are frequent intralesional detected viruses in porcine respiratory disease complex cases in Northern Italy. Front Vet Sci 2023; 10:1234779. [PMID: 37720469 PMCID: PMC10500834 DOI: 10.3389/fvets.2023.1234779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
Methods This study aimed to examine the pathological impact of Porcine Circovirus type 2 (PCV2) and Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) through histological and immunohistochemical analysis of 79 cases of Porcine Respiratory Disease Complex (PRDC) collected from 22 farms in Northern Italy. Lung tissue and several lymphoid organ samples were deployed to associate PCV2-positive stain with Circovirus-associated Diseases (PCVD). Results The most common lung lesion observed was interstitial pneumonia, alone or combined with bronchopneumonia. By immunohistochemistry, 44 lungs (55.7%) tested positive for PCV2, 34 (43.0%) for PRRSV, 16 (20.3%) for both viruses and in 17 cases (21.5%) neither virus was detected. Twenty-eight out of 44 (63.6%) PCV2-positive cases had lymphoid depletion or granulomatous inflammation in at least one of the lymphoid tissues examined; thus, they were classified as PCV2 Systemic Diseases (PCV2-SD). In the remaining 16 out of 44 cases (36.4%), PCV2-positive lung lesions were associated with hyperplastic or normal lymphoid tissues, which showed PCV2-positive centrofollicular dendritic cells in at least one of the lymphoid tissues examined. Therefore, these cases were classified as PRDC/PCV2-positive. In the PCV2-positive animals, 42.9% of the PCV2-SD cases (12/28) showed immunohistochemistry (IHC) positivity for PRRSV in the lung tissue, while 25.0% of PRDC/PCV2-positive cases (4/16) showed double positivity for PCV2 and PRRSV. Discussion In light of the caseload presented in this study, characterized by the high proportion of PCV2-SD cases alongside the overall respiratory symptomatology, it is imperative to emphasize the crucial role of a comprehensive sampling protocol. This is critical to avoid underestimating the harm caused by PCV2 in farms, particularly with respect to the systemic form of the disease. PCV2 and PRRSV remain the primary infections associated with PRDC in Italy that can significantly impact farm health and co-infections in the field can worsen the pathology, thus the selection of appropriate preventive measures is critical.
Collapse
Affiliation(s)
- Giulia D’Annunzio
- Isituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia – Romagna “Bruno Ubertini”, Brescia, Italy
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| | - Fabio Ostanello
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| | | | - Massimo Orioles
- Dipartimento di Scienze agroalimentari, ambientali e animali, Università di Udine, Udine, Italy
| | - Niccolò Jacumin
- Boehringer Ingelheim Animal Health Italia SpA, Milano, Italy
| | | | - Giorgio Leotti
- Boehringer Ingelheim Animal Health Italia SpA, Milano, Italy
| | - Andrea Luppi
- Isituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia – Romagna “Bruno Ubertini”, Brescia, Italy
| | - Luciana Mandrioli
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| | - Giuseppe Sarli
- Dipartimento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Maity HK, Samanta K, Deb R, Gupta VK. Revisiting Porcine Circovirus Infection: Recent Insights and Its Significance in the Piggery Sector. Vaccines (Basel) 2023; 11:1308. [PMID: 37631876 PMCID: PMC10457769 DOI: 10.3390/vaccines11081308] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/29/2023] [Accepted: 07/29/2023] [Indexed: 08/27/2023] Open
Abstract
Porcine circovirus (PCV), a member of the Circoviridae family within the genus Circovirus, poses a significant economic risk to the global swine industry. PCV2, which has nine identified genotypes (a-i), has emerged as the predominant genotype worldwide, particularly PCV2d. PCV2 has been commonly found in both domestic pigs and wild boars, and sporadically in non-porcine animals. The virus spreads among swine populations through horizontal and vertical transmission routes. Despite the availability of commercial vaccines for controlling porcine circovirus infections and associated diseases, the continuous genotypic shifts from a to b, and subsequently from b to d, have maintained PCV2 as a significant pathogen with substantial economic implications. This review aims to provide an updated understanding of the biology, genetic variation, distribution, and preventive strategies concerning porcine circoviruses and their associated diseases in swine.
Collapse
Affiliation(s)
- Hemanta Kumar Maity
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Kartik Samanta
- Department of Avian Science, Faculty of Veterinary & Animal Science, West Bengal University of Animal & Fishery Sciences, Kolkata 700037, West Bengal, India
| | - Rajib Deb
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| | - Vivek Kumar Gupta
- ICAR-National Research Center on Pig, Rani, Guwahati 781131, Assam, India
| |
Collapse
|
5
|
Cui Z, Zhou L, Hu X, Zhao S, Xu P, Li W, Chen J, Zhang Y, Xia P. Immune Molecules' mRNA Expression in Porcine Alveolar Macrophages Co-Infected with Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2. Viruses 2023; 15:v15030777. [PMID: 36992486 PMCID: PMC10058123 DOI: 10.3390/v15030777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/31/2023] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus 2 (PCV2) are economically important pathogens in swine, and pigs with dual infections of PCV2 and PRRSV consistently have more severe clinical symptoms and interstitial pneumonia. However, the synergistic pathogenesis mechanism induced by PRRSV and PCV2 co-infection has not yet been illuminated. Therefore, the aim of this study was to characterize the kinetic changes of immune regulatory molecules, inflammatory factors and immune checkpoint molecules in porcine alveolar macrophages (PAMs) in individuals infected or co-infected with PRRSV and/or PCV2. The experiment was divided into six groups: a negative control group (mock, no infected virus), a group infected with PCV2 alone (PCV2), a group infected with PRRSV alone (PRRSV), a PCV2-PRRSV co-infected group (PCV2-PRRSV inoculated with PCV2, followed by PRRSV 12 h later), a PRRSV-PCV2 co-infected group (PRRSV-PCV2 inoculated with PRRSV, followed by PCV2 12 h later) and a PCV2 + PRRSV co-infected group (PCV2 + PRRSV, inoculated with PCV2 and PRRSV at the same time). Then, PAM samples from the different infection groups and the mock group were collected at 6, 12, 24, 36 and 48 h post-infection (hpi) to detect the viral loads of PCV2 and PRRSV and the relative quantification of immune regulatory molecules, inflammatory factors and immune checkpoint molecules. The results indicated that PCV2 and PRRSV co-infection, regardless of the order of infection, had no effect on promoting PCV2 replication, while PRRSV and PCV2 co-infection was able to promote PRRSV replication. The immune regulatory molecules (IFN-α and IFN-γ) were significantly down-regulated, while inflammatory factors (TNF-α, IL-1β, IL-10 and TGF-β) and immune checkpoint molecules (PD-1, LAG-3, CTLA-4 and TIM-3) were significantly up-regulated in the PRRSV and PCV2 co-infection groups, especially in PAMs with PCV2 inoculation first followed by PRRSV. The dynamic changes in the aforementioned immune molecules were associated with a high viral load, immunosuppression and cell exhaustion, which may explain, at least partially, the underlying mechanism of the enhanced pulmonary lesions by dual infection with PCV2 and PRRSV in PAMs.
Collapse
Affiliation(s)
- Zhiying Cui
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Likun Zhou
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Xingxing Hu
- Zhongnong Huada (Wuhan) Testing Technology Co., Ltd., Luoshi South Road#519, Hongshan District, Wuhan 430070, China
| | - Shijie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pengli Xu
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Wen Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Jing Chen
- College of Life Science, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Yina Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| | - Pingan Xia
- College of Veterinary Medicine, Henan Agricultural University, Zhengdong New District Longzi Lake 15#, Zhengzhou 450046, China
| |
Collapse
|
6
|
Madapong A, Saeng-chuto K, Tantituvanont A, Nilubol D. Using a concurrent challenge with porcine circovirus 2 and porcine reproductive and respiratory syndrome virus to compare swine vaccination programs. Sci Rep 2022; 12:15524. [PMID: 36109529 PMCID: PMC9477171 DOI: 10.1038/s41598-022-19529-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The objectives of the present study were to evaluate the immune response of six commercial vaccines against PRRSV-2 and PCV2, administered as monovalent or combined products via intramuscular (IM) or intradermal (ID) routes. Seventy-two, 3-week-old pigs were randomly allocated into 8 treatments with 9 pigs each: IMPP0/PCVMH7, IDPP0/PCVMH7, IMING0/PCVMH7, IMPP0/PCVMH0, IDPP0/PCVMH0, IMTRF0, NV/CH, and NV/NC. IMPP0/PCVMH0 and IMPP0/PCVMH7 groups were IM vaccinated once with Prime Pac PRRS (MSD Animal Health, The Netherlands) at 0 days post-vaccination (DPV), followed by single IM vaccination with Porcilis PCV M Hyo (MSD Animal Health, The Netherlands) either at 0 or 7 DPV, respectively. IDPP0/PCVMH0 and IDPP0/PCVMH7 groups were ID vaccinated once with Prime Pac PRRS (MSD Animal Health, The Netherlands) at 0 DPV, followed by a single concurrent ID injection of Porcilis PCV ID (MSD Animal Health, The Netherlands) and Porcilis M Hyo ID ONCE (MSD Animal Health, The Netherlands) either at 0 or 7 DPV, respectively. The IMING0/PCVMH7 group was IM vaccinated once with Ingelvac PRRS MLV (Boehringer Ingelheim, Germany) at 0 DPV, and subsequently IM vaccinated with Ingelvac CircoFLEX (Boehringer Ingelheim, Germany) and Ingelvac MycoFLEX (Boehringer Ingelheim, Germany) at 7 DPV. The IMTRF0 group was IM vaccinated once with combined products of Ingelvac PRRS MLV (Boehringer Ingelheim, Germany), Ingelvac CircoFLEX (Boehringer Ingelheim, Germany), and Ingelvac MycoFLEX (Boehringer Ingelheim, Germany) at 0 DPV. The NV/CH and NV/NC groups were left unvaccinated. At 28 DPV (0 days post-challenge, DPC), pigs were intranasally inoculated with a 4 ml of mixed cell culture inoculum containing HP-PRRSV-2 (105.6 TCID50/ml) and PCV2d (105.0 TCID50/ml). Antibody response, IFN-γ-secreting cells (SC), and IL-10 secretion in supernatants of stimulated PBMC were monitored. Sera were collected and quantified for the PRRSV RNA and PCV2 DNA using qPCR. Three pigs from each group were necropsied at 7 DPC, lung lesions were evaluated. Tissues were collected and performed immunohistochemistry (IHC). Our study demonstrated that concurrent vaccination via the ID or the IM route did not introduce additional reactogenicity. We found no interference with the induction of immune response between vaccination timing. In terms of an immune response, ID vaccination resulted in significantly lower IL-10 levels and higher IFN-γ-SC values compared to the IM-vaccinated groups. In terms of clinical outcomes, only one IM-vaccinated group showed significantly better efficacy when antigens were injected separately compared with concurrently. While the vaccines were ID delivered, these effects disappeared. Our findings confirm that concurrent vaccination of PRRSV-2 MLV and PCV2 via either the IM or the ID routes could be a viable immunization strategy to assist with the control of PRDC. In situations where maximal efficacy is required, over all other factors, concurrent vaccination is possible with the ID route but might not be an ideal strategy if using the IM route.
Collapse
|
7
|
Rowland RRR, Doerksen T, Lu A, Sheahan M, Lunney J, Dekkers J, Palinski RM. Effect of the host genotype at a Porcine Reproductive and Respiratory Syndrome (PRRS) resistance marker on evolution of the modified-live PRRS vaccine virus in pigs. Virus Res 2022; 316:198809. [PMID: 35568091 DOI: 10.1016/j.virusres.2022.198809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 05/09/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
Abstract
Porcine Reproductive and Respiratory Syndrome, Porcine Reproductive and Respiratory Syndrome Virus, PRRS, Whole genome sequencing, quasispecies, WUR allele.
Collapse
Affiliation(s)
- Raymond R R Rowland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois, Champaign-Urbana, IL
| | - Tyler Doerksen
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Andrea Lu
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Maureen Sheahan
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS
| | - Joan Lunney
- USDA, ARS, BARC, Animal Parasitic Diseases Laboratory, Beltsville, MD
| | - Jack Dekkers
- Department of Animal Science, Iowa State University, Ames, IA
| | - Rachel M Palinski
- Veterinary Diagnostic Laboratory, College of Veterinary Medicine, Kansas State University, Manhattan, KS; Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS.
| |
Collapse
|
8
|
Papatsiros VG, Papakonstantinou G, Meletis E, Tsekouras N, Maragkakis G, Bitchava D, Kostoulas P. Occurrence and Associated Risk Factors of Porcine Reproductive and Respiratory Syndrome Virus and Porcine Circovirus Type 2 Infections in Greece. Viral Immunol 2022; 35:200-211. [PMID: 35138937 DOI: 10.1089/vim.2021.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The objective of the present study was to identify factors associated with the probability of being polymerase chain reaction (PCR) positive and the level of porcine reproductive and respiratory syndrome virus (PRRSV), porcine circovirus type 2 (PCV2) occurrence in Greek farms. The study included 56 pig farms, with a total population of 22.500 sows, which represent about 40% of the entire capacity of the Greek swine production. A total of 896 blood samples (224 pools*4 samples/pool = 896 samples) from breeding stock, weaners, growers, and finishers were collected from each farm and organized in pools of 4 samples size. Further, data regarding herd health management protocols were collected. The sera were tested for PRRSV and PCV2, using real-time PCR (RT-PCR). The results indicated that both viruses remain a major challenge for the Greek swine industry. Main risk factors involved in the infection process by these viruses were identified. In particular, vaccination programs such as the mass PRRSV vaccination with modified-live virus (MLV) in breeding stock during the last stages of gestation or with killed-virus (KV) during the middle of gestation are more likely to be associated with PRRSV PCR-positivity. Farms with low biosecurity level are associated with higher PRRSV circulation. It has also been revealed that breeding stock is more likely to be associated with PCV2 circulation compared to weaners and growers. In conclusion, our results could be the basis of the development of surveillance protocols for a national monitoring system for PRRSV and PCV2, which could prevent future infection of Greek farms.
Collapse
Affiliation(s)
- Vasileios G Papatsiros
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Georgios Papakonstantinou
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Eletherios Meletis
- Faculty of Public and Integrated (One) Health, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Nikolaos Tsekouras
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | - Giorgos Maragkakis
- Clinic of Medicine, Faculty of Veterinary Medicine, School of Health Sciences, University of Thessaly, Karditsa, Greece
| | | | - Polychronis Kostoulas
- Faculty of Public and Integrated (One) Health, School of Health Sciences, University of Thessaly, Karditsa, Greece
| |
Collapse
|
9
|
Dong Q, Dunkelberger J, Lim KS, Lunney JK, Tuggle CK, Rowland RRR, Dekkers JCM. Associations of natural variation in the CD163 and other candidate genes on host response of nursery pigs to porcine reproductive and respiratory syndrome virus infection. J Anim Sci 2021; 99:6376573. [PMID: 34570877 PMCID: PMC8557627 DOI: 10.1093/jas/skab274] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/24/2021] [Indexed: 11/17/2022] Open
Abstract
Pigs with complete resistance to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) have been produced by genetically knocking out the CD163 gene that encodes a receptor of the PRRSV for entry into macrophages. The objectives of this study were to evaluate associations of naturally occurring single nucleotide polymorphisms (SNPs) in the CD163 gene and in three other candidate genes (CD169, RGS16, and TRAF1) with host response to PRRSV-only infection and to PRRS vaccination and PRRSV/porcine circovirus 2b (PCV2b) coinfection. SNPs in the CD163 gene were not included on SNP genotyping panels that were used for previous genome-wide association analyses of these data. An additional objective was to identify the potential genetic interaction of variants at these four candidate genes with a mutation in the GBP5 gene that was previously identified to be associated with host response to PRRSV infection. Finally, the association of SNPs with expression level of the nearby gene was tested. Several SNPs in the CD163, CD169, and RGS16 genes were significantly associated with host response under PRRSV-only and/or PRRSV/PCV2b coinfection. The effects of all SNPs that were significant in the PRRSV-only infection trials depend on genetic background. The effects of some SNPs in the CD163, CD169, and RGS16 genes depend on genotype at the putative causative mutation in the GBP5 gene, which indicates a potential biological interaction of these genes with GBP5. In addition, genome-wide association results for the PRRSV-only infection trials revealed that SNPs located in the CDK5RAP2 or MEGF9 genes, near the TRAF1 gene, had suggestive effects on PRRS viral load, which indicates that these SNPs might contribute to PRRSV neuropathogenesis. In conclusion, natural genetic variants in the CD163, CD169, and RGS16 genes are associated with resistance to PRRSV and/or PCV2b infection and appear to interact with the resistance quantitative trait locus in the GBP5 gene. The identified SNPs can be used to select for increased natural resistance to PRRSV and/or PRRSV-PCV2b coinfection.
Collapse
Affiliation(s)
- Qian Dong
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Department of Epidemiology and Cancer Control, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jenelle Dunkelberger
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA.,Topigs Norsvin USA, Burnsville, MN 55337, USA
| | - Kyu-Sang Lim
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| | | | | | - Raymond R R Rowland
- College of Veterinary Medicine, University of Illinois, Urbana, IL 61802, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA
| |
Collapse
|
10
|
Gut microbiome associations with outcome following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) in pigs immunized with a PRRS modified live virus vaccine. Vet Microbiol 2021; 254:109018. [PMID: 33639341 DOI: 10.1016/j.vetmic.2021.109018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 02/14/2021] [Indexed: 12/18/2022]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most significant pathogens affecting swine. Co-infections are common and result in respiratory disease and reduced weight gain in growing pigs. Although PRRS modified live virus (MLV) vaccines are widely used to decrease PRRS-associated losses, they are generally considered inadequate for disease control. The gut microbiome provides an alternative strategy to enhance vaccine efficacy and improve PRRS control. The objective of this study was to identify gut microbiome characteristics associated with improved outcome in pigs immunized with a PRRS MLV and co-challenged with PRRSV and PCV2b. Twenty-eight days after vaccination and prior to co-challenge, fecal samples were collected from an experimental population of 50 nursery pigs. At 42 days post-challenge, 20 pigs were retrospectively identified as having high or low growth outcomes during the post-challenge period. Gut microbiomes of the two outcome groups were compared using the Lawrence Livermore Microbial Detection Array (LLMDA) and 16S rDNA sequencing. High growth outcomes were associated with several gut microbiome characteristics, such as increased bacterial diversity, increased Bacteroides pectinophilus, decreased Mycoplasmataceae species diversity, higher Firmicutes:Bacteroidetes ratios, increased relative abundance of the phylum Spirochaetes, reduced relative abundance of the family Lachnospiraceae, and increased Lachnospiraceae species C6A11 and P6B14. Overall, this study identifies gut microbiomes associated with improved outcomes in PRRS vaccinated pigs following a polymicrobial respiratory challenge and provides evidence towards the gut microbiome playing a role in PRRS vaccine efficacy.
Collapse
|
11
|
Sun N, Zhang H, Sun P, Khan A, Guo J, Zheng X, Sun Y, Fan K, Yin W, Li H. Matrine exhibits antiviral activity in a PRRSV/PCV2 co-infected mouse model. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 77:153289. [PMID: 32771536 DOI: 10.1016/j.phymed.2020.153289] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/19/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND PRRSV and PCV2 co-infection is very common in swine industry which results in huge economic losses worldwide. Although vaccination is used to prevent viral diseases, immunosuppression induced by PRRSV and PCV2 leads to vaccine failure. PURPOSE Our previous results have demonstrated that Matrine possess antiviral activities against PRRSV/PCV2 co-infection in vitro. This study aims to establish a PRRSV/PCV2 co-infected KM mouse model and evaluate the antiviral activities of Matrine against PRRSV/PCV2 co-infection. STUDY DESIGN A total of 144 KM mice were randomly divided into six groups with 24 mice in each group, named as: normal control, PRRSV/PCV2 co-infected group (PRRSV/PCV2 group), Ribavirin treatment positive control (Ribavirin control) and Matrine treatment groups (Matrine 40 mg/kg, Matrine 20 mg/kg and Matrine 10 mg/kg). METHODS Except normal control group, all mice in other five groups were inoculated with PRRSV, followed by PCV2 at 2 h later. At 7 days post-infection (dpi), mice in the treatment groups were intraperitoneally administered with various doses of Matrine and Ribavirin, twice a day for 5 consecutive days. RESULTS PRRSV N and PCV2 CAP genes were detected by PCR in multiple tissues including heart, liver, spleen, lungs, kidneys, thymus and inguinal lymph nodes. The viral load of PCV2 was the highest in liver followed by thymus and spleen. Although PRRSV were detected in most of tissues, but the replication of PRRSV was not significantly increased, as shown by qPCR analysis. Comparing with PCV2 infection alone, PRRSV infection significantly elevated PCV2 replication and exacerbated PCV2 induced interstitial pneumonia. qPCR analysis demonstrated 40 mg/kg Matrine significantly attenuated PCV2 replication in liver and alleviated virus induced interstitial pneumonia, suggesting Matrine could directly inhibit virus replication. In addition, Matrine treatment enhanced peritoneal macrophages phagocytosis at 13 and 16 dpi, and 40 mg/kg of Matrine increased the proliferation activity of lymphocytes. Body weight gain was continuously promoted by administrating Matrine at 10 mg/kg. CONCLUSION Matrine possessed antiviral activities via inhibiting virus replication and regulating immune functions in mice co-infected by PRRSV/PCV2. These data provide new insight into controlling PRRSV and PCV2 infection and support further research for developing Matrine as a new possible veterinary medicine.
Collapse
Affiliation(s)
- Na Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hua Zhang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Panpan Sun
- Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Ajab Khan
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Jianhua Guo
- Department of Veterinary Pathobiology, Schubot Exotic Bird Health Center, Texas A&M University, College Station, Texas, TX 77843, USA
| | - Xiaozhong Zheng
- Medical Research Council (MRC) Centre for Inflammation Research, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Yaogui Sun
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Kuohai Fan
- Laboratory Animal Center, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Wei Yin
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China
| | - Hongquan Li
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, Shanxi, China.
| |
Collapse
|
12
|
Eclercy J, Larcher T, Andraud M, Renson P, Bernard C, Bigault L, Ledevin M, Paboeuf F, Grasland B, Rose N, Bourry O. PCV2 co-infection does not impact PRRSV MLV1 safety but enhances virulence of a PRRSV MLV1-like strain in infected SPF pigs. Vet Microbiol 2020; 244:108656. [PMID: 32402344 DOI: 10.1016/j.vetmic.2020.108656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/05/2020] [Accepted: 03/18/2020] [Indexed: 02/06/2023]
Abstract
Co-infection by a type 1 modified live vaccine-like strain (MLV1-like) of porcine reproductive and respiratory syndrome virus (PRRSV) and a type 2 porcine circovirus (PCV2) was identified on a French pig farm with post-weaning multisystemic wasting syndrome (PMWS). An in vivo experiment was set up to characterize the virulence level of the MLV1-like strain compared with the parental MLV1 strain, and to assess the impact of PCV2 co-infection on the pathogenicity of both PRRSV strains. Six groups of six pigs each were inoculated only with either one of the two PRRSV strains or with PCV2, or co-inoculated with PCV2 and MLV1 or PCV2 and MLV1-like strains. Six contact pigs were added to each inoculated group to assess viral transmission. The animals were monitored daily for 35 days post-inoculation for clinical symptoms. Blood and nasal swabs were sampled twice a week, and tissue samples were collected during necropsy for viral quantification. Compared to MLV1-infected pigs, animals infected with the MLV1-like strain had increased PRRSV viremia and nasal shedding, a higher viral load in the tonsils, and lymph node hypertrophy at microscopic level. PCV2 co-infection did not influence clinical, virologic or transmission parameters for MLV1, but co-infected MLV1-like/PCV2 pigs had the most severe lung lesions, the highest viremia in contact animals and the highest transmission rate. Our study demonstrated that the MLV1 strain tested was safe when co-inoculated with PCV2 in piglets. However, co-infection by the MLV1-like strain and PCV2 resulted in increased virulence compared with that due to a single infection.
Collapse
Affiliation(s)
- Julie Eclercy
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Thibaut Larcher
- Institut National de Recherche Agronomique (INRA), APEX, La Chantrerie, CS 40706, 44307 Nantes Cedex 3, France; Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes Atlantique (Oniris), CS 40706, 44307 Nantes Cedex 3, France
| | - Mathieu Andraud
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Patricia Renson
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Cécilia Bernard
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Lionel Bigault
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Mireille Ledevin
- Institut National de Recherche Agronomique (INRA), APEX, La Chantrerie, CS 40706, 44307 Nantes Cedex 3, France; Ecole Nationale Vétérinaire, Agroalimentaire et de l'Alimentation Nantes Atlantique (Oniris), CS 40706, 44307 Nantes Cedex 3, France
| | - Frédéric Paboeuf
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Béatrice Grasland
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Nicolas Rose
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France
| | - Olivier Bourry
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail (Anses), Laboratoire de Ploufragan-Plouzané-Niort, BP 53, 22440 Ploufragan, France.
| |
Collapse
|
13
|
Butler JE, Sinkora M, Wang G, Stepanova K, Li Y, Cai X. Perturbation of Thymocyte Development Underlies the PRRS Pandemic: A Testable Hypothesis. Front Immunol 2019; 10:1077. [PMID: 31156633 PMCID: PMC6529568 DOI: 10.3389/fimmu.2019.01077] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 04/26/2019] [Indexed: 11/13/2022] Open
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) causes immune dysregulation during the Critical Window of Immunological Development. We hypothesize that thymocyte development is altered by infected thymic antigen presenting cells (TAPCs) in the fetal/neonatal thymus that interact with double-positive thymocytes causing an acute deficiency of T cells that produces "holes" in the T cell repertoire allowing for poor recognition of PRRSV and other neonatal pathogens. The deficiency may be the result of random elimination of PRRSV-specific T cells or the generation of T cells that accept PRRSV epitopes as self-antigens. Loss of helper T cells for virus neutralizing (VN) epitopes can result in the failure of selection for B cells in lymph node germinal centers capable of producing high affinity VN antibodies. Generation of cytotoxic and regulatory T cells may also be impaired. Similar to infections with LDV, LCMV, MCMV, HIV-1 and trypanosomes, the host responds to the deficiency of pathogen-specific T cells and perhaps regulatory T cells, by "last ditch" polyclonal B cell activation. In colostrum-deprived PRRSV-infected isolator piglets, this results in hypergammaglobulinemia, which we believe to be a "red herring" that detracts attention from the thymic atrophy story, but leads to our second independent hypothesis. Since hypergammaglobulinemia has not been reported in PRRSV-infected conventionally-reared piglets, we hypothesize that this is due to the down-regulatory effect of passive maternal IgG and cytokines in porcine colostrum, especially TGFβ which stimulates development of regulatory T cells (Tregs).
Collapse
Affiliation(s)
- John E. Butler
- Carver College of Medicine, University of Iowa, Iowa, IA, United States
| | - Marek Sinkora
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Gang Wang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Katerina Stepanova
- Laboratory of Gnotobiology, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czechia
| | - Yuming Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xuehui Cai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
14
|
Ouyang T, Zhang X, Liu X, Ren L. Co-Infection of Swine with Porcine Circovirus Type 2 and Other Swine Viruses. Viruses 2019; 11:v11020185. [PMID: 30795620 PMCID: PMC6410029 DOI: 10.3390/v11020185] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine circovirus 2 (PCV2) is the etiological agent that causes porcine circovirus diseases and porcine circovirus-associated diseases (PCVD/PCVAD), which are present in every major swine-producing country in the world. PCV2 infections may downregulate the host immune system and enhance the infection and replication of other pathogens. However, the exact mechanisms of PCVD/PCVAD are currently unknown. To date, many studies have reported that several cofactors, such as other swine viruses or bacteria, vaccination failure, and stress or crowding, in combination with PCV2, lead to PCVD/PCVAD. Among these cofactors, co-infection of PCV2 with other viruses, such as porcine reproductive and respiratory syndrome virus, porcine parvovirus, swine influenza virus and classical swine fever virus have been widely studied for decades. In this review, we focus on the current state of knowledge regarding swine co-infection with different PCV2 genotypes or strains, as well as with PCV2 and other swine viruses.
Collapse
Affiliation(s)
- Ting Ouyang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Xinwei Zhang
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Xiaohua Liu
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
| | - Linzhu Ren
- Jilin Provincial Key Laboratory of Animal Embryo Engineering, College of Animal Sciences, Jilin University, 5333 Xi'an Road, Changchun 130062, China.
- College of Life Sciences, Shandong Normal University, Jinan 250014, China.
| |
Collapse
|
15
|
Canelli E, Catella A, Borghetti P, Ferrari L, Ogno G, De Angelis E, Bonilauri P, Guazzetti S, Nardini R, Martelli P. Efficacy of a modified-live virus vaccine in pigs experimentally infected with a highly pathogenic porcine reproductive and respiratory syndrome virus type 1 (HP-PRRSV-1). Vet Microbiol 2018; 226:89-96. [PMID: 30389048 DOI: 10.1016/j.vetmic.2018.10.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 09/21/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023]
Abstract
PRRS is one of the main viral diseases in pig production, causing huge economic losses to the swine industry worldwide. The virus shows an intrinsic genomic instability and is able to change continuously, with the emergence of new strains, with different pathogenicity patterns. Commercially available vaccines only partially prevent or counteract the disease and the correlated losses. Moreover, the emergence of highly virulent and pathogenetic isolates represents a particular concern for PRRS control and diagnosis. The purpose of this study was to evaluate the efficacy of a modified-live virus (MLV) PRRSV-1 commercial vaccine in reducing the severity of the disease and minimizing losses upon challenge with a highly pathogenic PRRSV-1.1 Italian isolate (PRRSV-1_PR40/2014). Four different groups were compared: C (unvaccinated-uninfected), VAC-C (vaccinated-uninfected), PR40 (unvaccinated-infected) and VAC-PR40 (vaccinated-infected). The tested vaccine provided partial, but statistically significant clinical, virological and pathological protection after challenge under experimental conditions. In particular, vaccinated animals showed reduced viremia in terms of duration and magnitude, reduced respiratory signs and pathological lesions. Vaccination was able to trigger adaptive immunity able to respond efficiently also against the HP PR40 isolate. Vaccinated animals showed higher average daily weight gain, even during the viremic period, compared to non-vaccinated challenged pigs.
Collapse
Affiliation(s)
- Elena Canelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy.
| | - Alessia Catella
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Borghetti
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Luca Ferrari
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Giulia Ogno
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Elena De Angelis
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| | - Paolo Bonilauri
- IZSLER, Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna "B. Ubertini", Unit of Reggio Emilia, Via Pitagora 2, 42100, Reggio Emilia, Italy
| | - Stefano Guazzetti
- AUSL Reggio Emilia, Via Giovanni Amendola 2, 42122, Reggio Emilia, Italy
| | - Roberto Nardini
- IZSLT, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana "M. Aleandri", Via Appia Nuova, 1411, 00178 Rome, Italy
| | - Paolo Martelli
- Department of Veterinary Science, University of Parma, Strada del Taglio 10, 43126, Parma, Italy
| |
Collapse
|
16
|
Niederwerder MC, Constance LA, Rowland RRR, Abbas W, Fernando SC, Potter ML, Sheahan MA, Burkey TE, Hesse RA, Cino-Ozuna AG. Fecal Microbiota Transplantation Is Associated With Reduced Morbidity and Mortality in Porcine Circovirus Associated Disease. Front Microbiol 2018; 9:1631. [PMID: 30083142 PMCID: PMC6064930 DOI: 10.3389/fmicb.2018.01631] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 06/29/2018] [Indexed: 12/12/2022] Open
Abstract
Porcine circovirus associated disease (PCVAD) is a term used to describe the multi-factorial disease syndromes caused by porcine circovirus type 2 (PCV-2), which can be reproduced in an experimental setting through the co-infection of pigs with PCV-2 and porcine reproductive and respiratory syndrome virus (PRRSV). The resulting PCVAD-affected pigs represent a subpopulation within the co-infected group. In co-infection studies, the presence of increased microbiome diversity is linked to a reduction in clinical signs. In this study, fecal microbiota transplantation (FMT) was investigated as a means to prevent PCVAD in pigs co-infected with PRRSV and PCV-2d. The sources of the FMT material were high-parity sows with a documented history of high health status and robust litter characteristics. The analysis of the donated FMT material showed the absence of common pathogens along with the presence of diverse microbial phyla and families. One group of pigs (n = 10) was administered the FMT while a control group (n = 10) was administered a sterile mock-transplant. Over the 42-day post-infection period, the FMT group showed fewer PCVAD-affected pigs, as evidenced by a significant reduction in morbidity and mortality in transplanted pigs, along with increased antibody levels. Overall, this study provides evidence that FMT decreases the severity of clinical signs following co-infection with PRRSV and PCV-2 by reducing the prevalence of PCVAD.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Laura A Constance
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Waseem Abbas
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Samodha C Fernando
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | | | - Maureen A Sheahan
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Thomas E Burkey
- Department of Animal Science, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Richard A Hesse
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States.,Kansas State Veterinary Diagnostic Laboratory, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
17
|
Senthilkumar D, Rajukumar K, Sen A, Kumar M, Shrivastava D, Kalaiyarasu S, Gautam S, Singh F, Kulkarni DD, Singh VP. Pathogenic characterization of porcine reproductive and respiratory syndrome virus of Indian origin in experimentally infected piglets. Transbound Emerg Dis 2018; 65:1522-1536. [PMID: 29790662 DOI: 10.1111/tbed.12893] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 03/28/2018] [Accepted: 04/09/2018] [Indexed: 12/15/2022]
Abstract
Porcine reproductive and respiratory syndrome (PRRS) is an economically important transboundary viral disease of pigs confronting the swine industry worldwide. This study was aimed to assess the pathogenic potential of PRRS virus belonging to genotype 2 that emerged in India in 2013. Nine 6-week-old piglets were inoculated intranasally with 2 × 105.75 TCID50 /ml of PRRSV (Ind-297221/2013). Three piglets were kept as uninfected controls. Blood and nasal swabs were collected daily up to 7 days post-infection (dpi) and on alternate days subsequently. Piglets were necropsied for tissue sample collection either on death or after euthanasia on 7, 14 or 21 dpi (one uninfected control and three PRRSV-infected piglets per interval). The virus caused high fever, typical blue ear, weight loss, respiratory distress, diarrhoea and leucopenia between 2 and 8 dpi. Two infected piglets died (on 3 and 17 dpi) during the course of study. The presence of virus in serum and nasal secretion was observed up to 19 and 17 dpi, respectively, with the maximum load between 4 and 7 dpi. Seroconversion started 6 dpi and the mean PRRSV antibody titre reached up to 640 by 21 dpi. Virus load was highest in tonsils at all the intervals, whereas in spleen and lymph nodes load was higher in later intervals. Major microscopic lesions in PRRSV-infected piglets included moderate to severe interstitial pneumonia, lymphoid depletion in tonsils and lymph nodes (cystic), thymic atrophy, reactive hyperplasia followed by lymphoid depletion in spleen. PRRSV antigen was consistently demonstrated by immunoperoxidase test in the lungs, spleen, tonsils and lymph nodes. Antigen distribution was more widespread on 7 and 14 dpi than on 21 dpi. The findings establish that the Indian PRRSV is highly pathogenic to piglets.
Collapse
Affiliation(s)
- D Senthilkumar
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - K Rajukumar
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - A Sen
- ICAR Research Complex for North East Hill Region, Barapani, Meghalaya, India
| | - M Kumar
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - D Shrivastava
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - S Kalaiyarasu
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - S Gautam
- ICAR-Indian Veterinary Research Institute, Izatnagar, Uttar Pradesh, India
| | - F Singh
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - D D Kulkarni
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| | - V P Singh
- ICAR-National Institute of High Security Animal Diseases, Bhopal, Madhya Pradesh, India
| |
Collapse
|
18
|
Porcine MKRN1 Modulates the Replication and Pathogenesis of Porcine Circovirus Type 2 by Inducing Capsid Protein Ubiquitination and Degradation. J Virol 2018. [PMID: 29514908 DOI: 10.1128/jvi.00100-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Porcine circovirus type 2 (PCV2) capsid protein (Cap) is a unique structure protein that plays pivotal roles in the process of viral replication and pathogenesis. Herein, we characterized a putative porcine Makorin RING finger protein 1 (pMKRN1) variant, an N-terminal-truncated variant of putative full-size porcine MKRN1 which has a unique expression pattern resulting from the porcine mkrn1 gene and which interacts with PCV2 Cap. A domain mapping assay showed that the C terminus of pMKRN1 and fragments (amino acids 108 to 198) of Cap are required for this interaction. PCV2 transiently upregulated pMKRN1 in PK-15 cells, but persistent viral infection downregulated pMKRN1 in major pathological tissues of PCV2-infected piglets. Overexpression of pMKRN1 significantly inhibited the generation of progeny PCV2 via ubiquitination and degradation of Cap, whereas knockout of pMKRN1 blocked Cap degradation and promoted progeny virus replication. pMKRN1 specifically targeted PCV2 Cap lysine residues 164, 179, and 191 to induce polyubiquitination and subsequent degradation. Mutation of either of the three lysine residues in the Cap protein or mutation of the histidine at residue 243 within the RING finger domain of pMKRN1 abrogated the E3 ligase activity of pMKRN1, rendering cells incapable of inducing Cap ubiquitination and degradation. Consistent with this finding, a Cap ubiquitination-deficient PCV2 strain showed enhanced virus replication and produced severe histological lesions in the lung and lymph node tissues compared with wild-type PCV2. Taken together, the results presented here suggest that PCV2 downregulates the pMKRN1 variant to avoid pMKRN1-mediated Cap ubiquitination and degradation, thus promoting viral replication and pathogenesis in its targeted tissues.IMPORTANCE Porcine circovirus type 2 is the pathogen to which pigs are the most susceptible, causing immense economic losses in the global swine industry, but whether host cells have developed some strategies to prevent viral replication is still unclear. Here, we found that porcine MKRN1 (pMKRN1) was upregulated in the early stage of PCV2 infection and mediated the polyubiquitination and degradation of Cap protein to block PCV2 replication, yet persistent PCV2 infection downregulated pMKRN1 levels to avoid degradation, promoting viral replication and pathogenesis in its targeted tissues. These data present new insight into the molecular mechanisms underlying the antiviral effects of pMKRN1 E3 ligase during PCV2 infection and also suggest potential new control measures for PCV2 outbreaks.
Collapse
|
19
|
Dunkelberger JR, Serão NVL, Weng Z, Waide EH, Niederwerder MC, Kerrigan MA, Lunney JK, Rowland RRR, Dekkers JCM. Genomic regions associated with host response to porcine reproductive and respiratory syndrome vaccination and co-infection in nursery pigs. BMC Genomics 2017; 18:865. [PMID: 29132293 PMCID: PMC5682865 DOI: 10.1186/s12864-017-4182-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 10/05/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The WUR1000125 (WUR) single nucleotide polymorphism (SNP) can be used as a genetic marker for host response to porcine reproductive and respiratory syndrome (PRRS), PRRS vaccination, and co-infection with porcine circovirus type 2b (PCV2b). Objectives of this study were to identify genomic regions other than WUR associated with host response to PRRS vaccination and PRRSV/PCV2b co-infection and regions with a different effect on host response to co-infection, depending on previous vaccination for PRRS. METHODS Commercial crossbred nursery pigs were pre-selected for WUR genotype (n = 171 AA and 198 AB pigs) where B is the dominant and favorable allele. Half of the pigs were vaccinated for PRRS and 4 weeks later, all pigs were co-infected with PRRS virus and PCV2b. Average daily gain (ADG) and viral load (VL) were quantified post vaccination (Post Vx) and post co-infection (Post Co-X). Single-SNP genome-wide association analyses were then conducted to identify genomic regions associated with response to vaccination and co-infection. RESULTS Multiple SNPs near the major histocompatibility complex were significantly associated with PCV2b VL (-log 10 P ≥ 5.5), regardless of prior vaccination for PRRS. Several SNPs were also significantly associated with ADG Post Vx and Post Co-X. SNPs with a different effect on ADG, depending on prior vaccination for PRRS, were identified Post Vx (-log 10 P = 5.6) and Post Co-X (-log 10 P = 5.5). No SNPs were significantly associated with vaccination VL (-log10 P ≤ 4.7) or PRRS VL (-log10 P ≤ 4.3). Genes near SNPs associated with vaccination VL, PRRS VL, and PCV2b VL were enriched (P ≤ 0.01) for immune-related pathways and genes near SNPs associated with ADG were enriched for metabolism pathways (P ≤ 0.04). SNPs associated with vaccination VL, PRRS VL, and PCV2b VL showed overrepresentation of health QTL identified in previous studies and SNPs associated with ADG Post Vx of Non-Vx pigs showed overrepresentation of growth QTL. CONCLUSIONS Multiple genomic regions were associated with PCV2b VL and ADG Post Vx and Post Co-X. Different SNPs were associated with ADG, depending on previous vaccination for PRRS. Results of functional annotation analyses and novel approaches of using previously-reported QTL support the identified regions.
Collapse
Affiliation(s)
- Jenelle R Dunkelberger
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,Topigs Norsvin USA, Burnsville, MN, 55337, USA
| | - Nick V L Serão
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA
| | - Ziqing Weng
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,ABS Global Inc., DeForest, WI, 53532, USA
| | - Emily H Waide
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.,The Seeing Eye Inc., Morristown, NJ, 07960, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Maureen A Kerrigan
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | | | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, 66506, USA
| | - Jack C M Dekkers
- Department of Animal Science, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
20
|
Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs. Vet Microbiol 2017; 209:107-113. [DOI: 10.1016/j.vetmic.2017.03.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/13/2017] [Accepted: 03/20/2017] [Indexed: 11/19/2022]
|
21
|
Ober RA, Thissen JB, Jaing CJ, Cino-Ozuna AG, Rowland RRR, Niederwerder MC. Increased microbiome diversity at the time of infection is associated with improved growth rates of pigs after co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). Vet Microbiol 2017; 208:203-211. [PMID: 28888639 DOI: 10.1016/j.vetmic.2017.06.023] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/20/2017] [Accepted: 06/20/2017] [Indexed: 01/30/2023]
Abstract
Porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are two of the most important pathogens affecting the swine industry worldwide. Co-infections are common on a global scale, resulting in pork production losses through reducing weight gain and causing respiratory disease in growing pigs. Our initial work demonstrated that the fecal microbiome was associated with clinical outcome of pigs 70days post-infection (dpi) with PRRSV and PCV2. However, it remained uncertain if microbiome characteristics could predispose response to viral infection. The purpose of this study was to determine if microbiome characteristics present at the time of virus exposure were associated with outcome after co-infection. Using the Lawrence Livermore Microbial Detection Array, we profiled the microbiome in feces prior to infection from pigs identified retrospectively as having high or low growth rates after co-infection. High growth rate pigs had less severe interstitial pneumonia, reduced virus replication, and a significant increase in average daily weight gain throughout the study. At the level of the fecal microbiome, high growth rate pigs had increased microbial diversity on both a family and species level. Shifts in the microbiome composition of high growth rate pigs included reduced Methanobacteriaceae species, increased Ruminococcaceae species, and increased Streptococcaceae species when compared to low growth rate pigs. The results indicate that both microbiome diversity and composition at the time of virus exposure may play a role in the subsequent response of pigs to PRRSV/PCV2 co-infection.
Collapse
Affiliation(s)
- Rebecca A Ober
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA
| | - James B Thissen
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory,7000 East Avenue, Livermore, CA 94550, USA
| | - Crystal J Jaing
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory,7000 East Avenue, Livermore, CA 94550, USA
| | - Ada G Cino-Ozuna
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University,1800 Denison Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
22
|
Dunkelberger JR, Serão NVL, Niederwerder MC, Kerrigan MA, Lunney JK, Rowland RRR, Dekkers JCM. Effect of a major quantitative trait locus for porcine reproductive and respiratory syndrome (PRRS) resistance on response to coinfection with PRRS virus and porcine circovirus type 2b (PCV2b) in commercial pigs, with or without prior vaccination for PRRS. J Anim Sci 2017; 95:584-598. [PMID: 28380604 DOI: 10.2527/jas.2016.1071] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A major QTL for host response to porcine reproductive and respiratory syndrome (PRRS) virus (PRRSV) infection was identified in a previous study. Single nucleotide polymorphism WUR10000125 (WUR), which is in complete linkage disequilibrium with the putative causative mutation, can be used as a tag SNP for the QTL. However, the effect of WUR following PRRS vaccination and/or coinfection with other pathogens is not known. Therefore, objectives of this study were to estimate the effect of WUR on host response following PRRS vaccination and coinfection of PRRSV with porcine circovirus type 2b (PCV2b), to estimate genetic parameters for host response to vaccination and coinfection, and to estimate the effect of previously identified candidate SNP under PRRSV-only or PCV2b-only infection on host response to coinfection. Data from 2 trials, comprising a total of 396 commercial crossbred nursery pigs from a single genetic source, were used for all analyses. Pigs were preselected based on WUR genotype: approximately half AA and half AB, where B is the favorable and dominant allele. At weaning, pigs were shipped to Kansas State University, where half of the pigs were vaccinated with a PRRS modified live virus vaccine. Four weeks later, all pigs were coinfected with field strains of PRRSV and PCV2b and followed for 42 d. Body weight and serum viremia measurements were collected following vaccination and coinfection to calculate ADG and viral load (VL), respectively. Average heritability estimates for PRRS VL, PCV2b VL, and ADG were 0.29, 0.09, and 0.40, respectively. After vaccination, AB pigs had lower vaccination VL ( = 0.03) and faster gain ( = 0.004) than AA pigs, as expected. After coinfection, AB pigs had lower PRRSV VL ( < 0.001) but did not significantly differ from AA pigs in growth rate ( = 0.86). For PCV2b VL, suggestive evidence of an interaction between vaccination and WUR genotype ( = 0.11) was detected, where AB pigs had significantly lower PCV2b VL when vaccinated ( = 0.007) but not when they were not vaccinated ( = 0.87). In addition to WUR, several PRRS-associated SNP and a PCV2b-associated SNP had significant effects on host response to coinfection. In conclusion, marker-assisted selection based on WUR genotype alone, or along with other candidate SNP for PRRSV and PCV2b infection, is a promising strategy to select for improved host response to not just PRRS but also coinfection of PRRSV with PCV2b and perhaps other pathogens.
Collapse
|
23
|
Niederwerder MC. Role of the microbiome in swine respiratory disease. Vet Microbiol 2017; 209:97-106. [PMID: 28318782 DOI: 10.1016/j.vetmic.2017.02.017] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/20/2016] [Accepted: 02/27/2017] [Indexed: 02/06/2023]
Abstract
Microbiome is a term used to describe the community of microorganisms that live on the skin and mucosal surfaces of animals. The gastrointestinal microbiome is essential for proper nutrition and immunity. How the gastrointestinal microbiome impacts primary respiratory or systemic infections is an emerging area of study. Porcine reproductive and respiratory syndrome (PRRS) is caused by a systemic virus infection with primary lung pathology and continues to be the most costly disease of swine worldwide. Recent studies have demonstrated that improved outcome after experimental infection with PRRS virus and porcine circovirus type 2 (PCV2) is associated with increased fecal microbiome diversity and the presence of non-pathogenic Escherichia coli. In this review, we will discuss the factors that influence microbiome development in swine, associations of the microbiome with growth and immunity during infection with respiratory pathogens, and the role of the microbiome in PRRS. Taken together, modulation of the microbiome may be an alternative tool in the control of PRRS due to its intricate role in digestion of nutrients, systemic immunity, and response to pulmonary infections.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
24
|
Niederwerder MC, Jaing CJ, Thissen JB, Cino-Ozuna AG, McLoughlin KS, Rowland RRR. Microbiome associations in pigs with the best and worst clinical outcomes following co-infection with porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2). Vet Microbiol 2016; 188:1-11. [PMID: 27139023 DOI: 10.1016/j.vetmic.2016.03.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 01/17/2023]
Abstract
On a world-wide basis, co-infections involving porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus type 2 (PCV2) are common and contribute to a range of polymicrobial disease syndromes in swine. Both viruses compromise host defenses, resulting in increased susceptibility to infections by primary and secondary pathogens that can affect growth performance as well as increased morbidity and mortality. An experimental population of 95 pigs was co-infected with PRRSV and PCV2. At 70days post-infection (dpi), 20 representative pigs were selected as having the best or worst clinical outcome based on average daily gain (ADG) and the presence of clinical disease. Worst clinical outcome pigs had prolonged and greater levels of viremia as measured by qPCR. Serum, lung and fecal samples collected at 70 dpi were analyzed using a comprehensive DNA microarray technology, the Lawrence Livermore Microbial Detection Array, to detect over 8000 microbes. Bacterial species, such as Bacillus cereus, were detected at a higher rate in the serum of worst performing pigs. At the level of the fecal microbiome, the overall microbial diversity was lower in the worst clinical outcome group. The results reinforce the importance of pathogen load in determining clinical outcome and suggest an important role of microbial diversity as a contributing factor in disease.
Collapse
Affiliation(s)
- Megan C Niederwerder
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA.
| | - Crystal J Jaing
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - James B Thissen
- Physical & Life Sciences Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Ada Giselle Cino-Ozuna
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA; Kansas State Veterinary Diagnostic Laboratory, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| | - Kevin S McLoughlin
- Computations Directorate, Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA
| | - Raymond R R Rowland
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, 1800 Denison Avenue, Manhattan, KS 66506, USA
| |
Collapse
|