1
|
Auld SC, Staitieh BS. HIV and the tuberculosis "set point": how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease. Retrovirology 2020; 17:32. [PMID: 32967690 PMCID: PMC7509826 DOI: 10.1186/s12977-020-00540-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
As HIV has fueled a global resurgence of tuberculosis over the last several decades, there is a growing awareness that HIV-mediated impairments in both innate and adaptive immunity contribute to the heightened risk of tuberculosis in people with HIV. Since early immune responses to Mycobacterium tuberculosis (Mtb) set the stage for subsequent control or progression to active tuberculosis disease, early host-pathogen interactions following Mtb infection can be thought of as establishing a mycobacterial "set point," which we define as the mycobacterial burden at the point of adaptive immune activation. This early immune response is impaired in the context of HIV coinfection, allowing for a higher mycobacterial set point and greater likelihood of progression to active disease with greater bacterial burden. Alveolar macrophages, as the first cells to encounter Mtb in the lungs, play a critical role in containing Mtb growth and establishing the mycobacterial set point. However, a number of key macrophage functions, ranging from pathogen recognition and uptake to phagocytosis and microbial killing, are blunted in HIV coinfection. To date, research evaluating the effects of HIV on the alveolar macrophage response to Mtb has been relatively limited, particularly with regard to the critical early events that help to dictate the mycobacterial set point. A greater understanding of alveolar macrophage functions impacted by HIV coinfection will improve our understanding of protective immunity to Mtb and may reveal novel pathways amenable to intervention to improve both early immune control of Mtb and clinical outcomes for the millions of people worldwide infected with HIV.
Collapse
Affiliation(s)
- Sara C Auld
- Emory University School of Medicine, Atlanta, GA, USA.
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
2
|
Judge M, Parker E, Naniche D, Le Souëf P. Gene Expression: the Key to Understanding HIV-1 Infection? Microbiol Mol Biol Rev 2020; 84:e00080-19. [PMID: 32404327 PMCID: PMC7233484 DOI: 10.1128/mmbr.00080-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Gene expression profiling of the host response to HIV infection has promised to fill the gaps in our knowledge and provide new insights toward vaccine and cure. However, despite 20 years of research, the biggest questions remained unanswered. A literature review identified 62 studies examining gene expression dysregulation in samples from individuals living with HIV. Changes in gene expression were dependent on cell/tissue type, stage of infection, viremia, and treatment status. Some cell types, notably CD4+ T cells, exhibit upregulation of cell cycle, interferon-related, and apoptosis genes consistent with depletion. Others, including CD8+ T cells and natural killer cells, exhibit perturbed function in the absence of direct infection with HIV. Dysregulation is greatest during acute infection. Differences in study design and data reporting limit comparability of existing research and do not as yet provide a coherent overview of gene expression in HIV. This review outlines the extraordinarily complex host response to HIV and offers recommendations to realize the full potential of HIV host transcriptomics.
Collapse
Affiliation(s)
- Melinda Judge
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Erica Parker
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| | - Denise Naniche
- Barcelona Institute for Global Health (ISGlobal), Barcelona, Spain
- Centro de Investigação de Saúde de Manhiça (CISM), Manhiça, Mozambique
| | - Peter Le Souëf
- Faculty of Health and Medical Sciences, University of Western Australia, Perth, Australia
| |
Collapse
|
3
|
Collini PJ, Bewley MA, Mohasin M, Marriott HM, Miller RF, Geretti AM, Beloukas A, Papadimitropoulos A, Read RC, Noursadeghi M, Dockrell DH. HIV gp120 in the Lungs of Antiretroviral Therapy-treated Individuals Impairs Alveolar Macrophage Responses to Pneumococci. Am J Respir Crit Care Med 2019; 197:1604-1615. [PMID: 29365279 DOI: 10.1164/rccm.201708-1755oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
RATIONALE People living with HIV are at significantly increased risk of invasive pneumococcal disease, despite long-term antiretroviral therapy (ART). The mechanism explaining this observation remains undefined. OBJECTIVES To determine if apoptosis-associated microbicidal mechanisms, required to clear intracellular pneumococci that survive initial phagolysosomal killing, are perturbed. METHODS Alveolar macrophages (AM) were obtained by BAL from healthy donors or HIV-1-seropositive donors on long-term ART with undetectable plasma viral load. Monocyte-derived macrophages (MDM) were obtained from healthy donors and infected with HIV-1BaL or treated with gp120. Macrophages were challenged with opsonized serotype 2 Streptococcus pneumoniae and assessed for apoptosis, bactericidal activity, protein expression, and mitochondrial reactive oxygen species (mROS). AM phenotyping, ultrasensitive HIV-1 RNA quantification, and gp120 measurement were also performed in BAL. MEASUREMENTS AND MAIN RESULTS HIV-1BaL infection impaired apoptosis, induction of mROS, and pneumococcal killing by MDM. Apoptosis-associated pneumococcal killing was also reduced in AM from ART-treated HIV-1-seropositive donors. BAL fluid from these individuals demonstrated persistent lung CD8+ T lymphocytosis, and gp120 or HIV-1 RNA was also detected. Despite this, transcriptional activity in AM freshly isolated from people living with HIV was broadly similar to healthy volunteers. Instead, gp120 phenocopied the defect in pneumococcal killing in healthy MDM through post-translational modification of Mcl-1, preventing apoptosis induction, caspase activation, and increased mROS generation. Moreover, gp120 also inhibited mROS-dependent pneumococcal killing in MDM. CONCLUSIONS Despite ART, HIV-1, via gp120, drives persisting innate immune defects in AM microbicidal mechanisms, enhancing susceptibility to pneumococcal disease.
Collapse
Affiliation(s)
- Paul J Collini
- 1 The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom.,2 Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Martin A Bewley
- 1 The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Mohamed Mohasin
- 1 The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Helen M Marriott
- 1 The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom
| | - Robert F Miller
- 3 Research Department of Infection and Population Health, Institute of Epidemiology & Health Care, Faculty of Population Health Sciences, and
| | - Anna-Maria Geretti
- 4 Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Apostolos Beloukas
- 4 Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Athanasios Papadimitropoulos
- 4 Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
| | - Robert C Read
- 5 Academic Unit of Clinical and Experimental Sciences, University of Southampton and National Institute for Health Research Southampton Biomedical Research Centre, Southampton, United Kingdom; and
| | - Mahdad Noursadeghi
- 6 Division of Infection & Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
| | - David H Dockrell
- 1 The Florey Institute for Host-Pathogen Interactions and Department of Infection, Immunity & Cardiovascular Disease, University of Sheffield Medical School, Sheffield, United Kingdom.,2 Academic Directorate of Communicable Diseases and Specialised Medicine, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom.,7 MRC/UoE Centre for Inflammation Research, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
4
|
Hunegnaw R, Mushtaq Z, Enyindah-Asonye G, Hoang T, Robert-Guroff M. Alveolar Macrophage Dysfunction and Increased PD-1 Expression During Chronic SIV Infection of Rhesus Macaques. Front Immunol 2019; 10:1537. [PMID: 31333668 PMCID: PMC6618664 DOI: 10.3389/fimmu.2019.01537] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 06/19/2019] [Indexed: 01/04/2023] Open
Abstract
HIV infected individuals have been shown to be pre-disposed to pulmonary infections even while receiving anti-retroviral therapy. Alveolar macrophages (AMs) play a critical role in lung innate immunity, but contradictory results have been reported regarding their functionality following HIV infection. Here, using the SIV rhesus macaque model, we document the effect of SIV infection on the phenotypic and functional properties of AMs. Following infection with SIVmac251, AMs in bronchoalveolar lavage (BAL) sampled over 2- to 20-weeks post-infection (wpi) were compared to those in BAL samples from naïve macaques. AM expression of proinflammatory cytokines TNF-α, IL-6, IL-1β, and chemokine RANTES drastically increased 2-wpi compared to AMs of naïve macaques (p < 0.0001 for all), but dropped significantly with progression to chronic infection. Phagocytic activity of AMs 2-and 4-wpi was elevated compared to AMs of naive animals (p = 0.0005, p = 0.0004, respectively) but significantly decreased by 12-wpi (p = 0.0022, p = 0.0019, respectively). By 20-wpi the ability of AMs from chronically infected animals to perform SIV-specific antibody-dependent phagocytosis (ADP) was also diminished (p = 0.028). Acute SIV infection was associated with increased FcγRIII expression which subsequently declined with disease progression. Frequency of FcγRIII+ AMs showed a strong trend toward correlation with SIV-specific ADP, and at 2-wpi FcγRIII expression negatively correlated with viral load (r = -0.6819; p = 0.0013), suggesting a contribution to viremia control. Importantly, PD-1 was found to be expressed on AMs and showed a strong trend toward correlation with plasma viral load (r = 0.8266; p = 0.058), indicating that similar to over-expression on T-cells, PD-1 expression on AMs may also be associated with disease progression. Further, AMs predominantly expressed PD-L2, which remained consistent over the course of infection. PD-1 blockade enhanced SIV-specific ADP by AMs from chronic infection indicating that the PD-1/PD-L2 pathway may modulate functional activity of AMs at that stage. These findings provide new insight into the dynamics of SIV infection leading to AM dysfunction and alteration of pulmonary innate immunity. Our results suggest new pathways to exploit in developing therapies targeting pulmonary disease susceptibility in HIV-infected individuals.
Collapse
Affiliation(s)
- Ruth Hunegnaw
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Zuena Mushtaq
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Gospel Enyindah-Asonye
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tanya Hoang
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Marjorie Robert-Guroff
- Immune Biology of Retroviral Infection Section, Vaccine Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
5
|
Staitieh BS, Egea EE, Guidot DM. Pulmonary Innate Immune Dysfunction in Human Immunodeficiency Virus. Am J Respir Cell Mol Biol 2017; 56:563-567. [PMID: 27911588 PMCID: PMC5449488 DOI: 10.1165/rcmb.2016-0213tr] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 11/30/2016] [Indexed: 12/18/2022] Open
Abstract
The advent of antiretroviral therapy has transformed infection by the type 1 human immunodeficiency virus (HIV) from a rapidly fatal disease to a chronic illness with excellent long-term survival rates. Although HIV primarily targets the adaptive arm of host immunity, it simultaneously impacts the innate immune system, and has profound implications for lung health, even when viral suppression is achieved with antiretroviral therapy. The lung has evolved a unique array of innate immune defenses, and the pathophysiological interactions between HIV and the pulmonary innate immune system deserve particular attention. In this review, we discuss work that elucidates how the components of innate immunity both respond to and are perturbed by infection with HIV.
Collapse
Affiliation(s)
- Bashar S. Staitieh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - Eduardo E. Egea
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
| | - David M. Guidot
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Emory University School of Medicine, Atlanta, Georgia; and
- the Atlanta Veterans Administration Medical Center, Decatur, Georgia
| |
Collapse
|
6
|
Burel JG, Apte SH, Doolan DL. Systems Approaches towards Molecular Profiling of Human Immunity. Trends Immunol 2016; 37:53-67. [DOI: 10.1016/j.it.2015.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 11/14/2015] [Accepted: 11/15/2015] [Indexed: 12/12/2022]
|
7
|
Gnoni M, Otero D, Friedstrom S, Blatt S, Ramirez J. Possible role of tetracyclines on decreasing the accelerated aging process of well-controlled HIV patients on antiretroviral therapy. HIV & AIDS REVIEW 2015. [DOI: 10.1016/j.hivar.2015.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
8
|
Cribbs SK, Lennox J, Caliendo AM, Brown LA, Guidot DM. Healthy HIV-1-infected individuals on highly active antiretroviral therapy harbor HIV-1 in their alveolar macrophages. AIDS Res Hum Retroviruses 2015; 31:64-70. [PMID: 25134819 DOI: 10.1089/aid.2014.0133] [Citation(s) in RCA: 129] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In a prospective cross-sectional study we quantified HIV viral load within the alveolar macrophage in a cohort of healthy HIV-infected subjects who did not have medical comorbidities or smoke cigarettes to determine if alveolar macrophage proviral DNA was associated with alveolar macrophage phagocytic immune dysfunction. We enrolled 23 subjects who underwent bronchoscopy and bronchoalveolar lavage. Alveolar macrophages were isolated and HIV-1 RNA was quantified in the cells using the Abbott RealTime HIV-1 Assay. Proviral DNA was qualitatively measured using a modified version of the HIV-1 RNA assay. Phagocytosis measured by incubating alveolar macrophages with FITC-labeled Staphylococcus aureus and determining fluorescence with a Zeiss inverted microscope. Phagocytic index was calculated as (% positive cells × mean channel fluorescence)/100. Sixteen subjects had (+) proviral DNA and seven had (-) proviral DNA in their alveolar macrophages. Of all subjects 100% in both groups were on highly active antiretroviral therapy (HAART). The median plasma viral load was 0 in both groups. HIV-1-infected subjects with (+) proviral DNA in their alveolar macrophages had a significantly lower median alveolar macrophage phagocytic index compared to those with (-) proviral DNA in their alveolar macrophages [11.8 (IQR 4.8-39.0) vs. 64.9 (IQR 14.0-166.0), p = 0.05]. Alveolar macrophages harbor HIV even in otherwise healthy subjects with undetectable plasma viral loads, representing a potential reservoir for the virus. In addition, HIV viral replication within the macrophage may impair phagocytosis and other immune functions in the lung, leading to an increased risk for lung infection.
Collapse
Affiliation(s)
- Sushma K. Cribbs
- Pulmonary Medicine, Department of Veterans Affairs Medical Center, Atlanta, Georgia
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, Georgia
| | - Jeffrey Lennox
- Department of Medicine, Division of Infectious Disease, Emory University, Atlanta, Georgia
| | - Angela M. Caliendo
- Department of Medicine, Warren Alpert Medical School of Brown University, Providence, Rhode Island
| | - Lou Ann Brown
- Department of Pediatrics, Division of Neonatal-Perinatal Medicine, Emory University, Atlanta, Georgia
| | - David M. Guidot
- Pulmonary Medicine, Department of Veterans Affairs Medical Center, Atlanta, Georgia
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, Emory University, Atlanta, Georgia
| |
Collapse
|
9
|
Huson MAM, Grobusch MP, van der Poll T. The effect of HIV infection on the host response to bacterial sepsis. THE LANCET. INFECTIOUS DISEASES 2014; 15:95-108. [PMID: 25459220 DOI: 10.1016/s1473-3099(14)70917-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Bacterial sepsis is an important cause of morbidity and mortality in patients with HIV. HIV causes increased susceptibility to invasive infections and affects sepsis pathogenesis caused by pre-existing activation and exhaustion of the immune system. We review the effect of HIV on different components of immune responses implicated in bacterial sepsis, and possible mechanisms underlying the increased risk of invasive bacterial infections. We focus on pattern recognition receptors and innate cellular responses, cytokines, lymphocytes, coagulation, and the complement system. A combination of factors causes increased susceptibility to infection and can contribute to a disturbed immune response during a septic event in patients with HIV. HIV-induced perturbations of the immune system depend on stage of infection and are only in part restored by combination antiretroviral therapy. Immunomodulatory treatments currently under development for sepsis might be particularly beneficial to patients with HIV co-infection because many pathogenic mechanisms in HIV and sepsis overlap.
Collapse
Affiliation(s)
- Michaëla A M Huson
- Division of Infectious Diseases, Centre of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands.
| | - Martin P Grobusch
- Division of Infectious Diseases, Centre of Tropical Medicine and Travel Medicine, Academic Medical Centre, University of Amsterdam, Amsterdam, Netherlands
| | - Tom van der Poll
- Division of Infectious Diseases, Centre of Experimental and Molecular Medicine, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
10
|
Almodovar S. The complexity of HIV persistence and pathogenesis in the lung under antiretroviral therapy: challenges beyond AIDS. Viral Immunol 2014; 27:186-99. [PMID: 24797368 DOI: 10.1089/vim.2013.0130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Antiretroviral therapy (ART) represents a significant milestone in the battle against AIDS. However, we continue learning about HIV and confronting challenges 30 years after its discovery. HIV has cleverly tricked both the host immune system and ART. First, the many HIV subtypes and recombinant forms have different susceptibilities to antiretroviral drugs, which may represent an issue in countries where ART is just being introduced. Second, even under the suppressive pressures of ART, HIV still increases inflammatory mediators, deregulates apoptosis and proliferation, and induces oxidative stress in the host. Third, the preference of HIV for CXCR4 as a co-receptor may also have noxious outcomes, including potential malignancies. Furthermore, HIV still replicates cryptically in anatomical reservoirs, including the lung. HIV impairs bronchoalveolar T-lymphocyte and macrophage immune responses, rendering the lung susceptible to comorbidities. In addition, HIV-infected individuals are significantly more susceptible to long-term HIV-associated complications. This review focuses on chronic obstructive pulmonary disease (COPD), pulmonary arterial hypertension, and lung cancer. Almost two decades after the advent of highly active ART, we now know that HIV-infected individuals on ART live as long as the uninfected population. Fortunately, its availability is rapidly increasing in low- and middle-income countries. Nevertheless, ART is not risk-free: the developed world is facing issues with antiretroviral drug toxicity, resistance, and drug-drug interactions, while developing countries are confronting issues with immune reconstitution inflammatory syndrome. Several aspects of the complexity of HIV persistence and challenges with ART are discussed, as well as suggestions for new avenues of research.
Collapse
Affiliation(s)
- Sharilyn Almodovar
- Pulmonary Sciences and Critical Care Medicine, University of Colorado Denver Anschutz Medical Campus , Aurora, Colorado
| |
Collapse
|