1
|
Stevens CS, Carmichael J, Watkinson R, Kowdle S, Reis RA, Hamane K, Jang J, Park A, Pernet O, Khamaikawin W, Hong P, Thibault P, Gowlikar A, An DS, Lee B. A temperature-sensitive and interferon-silent Sendai virus vector for CRISPR-Cas9 delivery and gene editing in primary human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.03.592383. [PMID: 38746439 PMCID: PMC11092779 DOI: 10.1101/2024.05.03.592383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
The transformative potential of gene editing technologies hinges on the development of safe and effective delivery methods. In this study, we developed a temperature-sensitive and interferon-silent Sendai virus (ts SeV) as a novel delivery vector for CRISPR-Cas9 and for efficient gene editing in sensitive human cell types without inducing IFN responses. ts SeV demonstrates unprecedented transduction efficiency in human CD34+ hematopoietic stem and progenitor cells (HSPCs) including transduction of the CD34+/CD38-/CD45RA-/CD90+(Thy1+)/CD49fhigh stem cell enriched subpopulation. The frequency of CCR5 editing exceeded 90% and bi-allelic CCR5 editing exceeded 70% resulting in significant inhibition of HIV-1 infection in primary human CD14+ monocytes. These results demonstrate the potential of the ts SeV platform as a safe, efficient, and flexible addition to the current gene-editing tool delivery methods, which may help to further expand the possibilities in personalized medicine and the treatment of genetic disorders.
Collapse
Affiliation(s)
- Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Jillian Carmichael
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Ruth Watkinson
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Shreyas Kowdle
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Rebecca A Reis
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Kory Hamane
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Jason Jang
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Arnold Park
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Olivier Pernet
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Wannisa Khamaikawin
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Patrick Hong
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Patricia Thibault
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Aditya Gowlikar
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| | - Dong Sung An
- UCLA School of Nursing, Los Angeles, California, 90095
- UCLA AIDS Institute, Los Angeles, California, 90095
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029
| |
Collapse
|
2
|
Grygoryev D, Ekstrom T, Manalo E, Link JM, Alshaikh A, Keith D, Allen-Petersen BL, Sheppard B, Morgan T, Soufi A, Sears RC, Kim J. Sendai virus is robust and consistent in delivering genes into human pancreatic cancer cells. Heliyon 2024; 10:e27221. [PMID: 38463758 PMCID: PMC10923719 DOI: 10.1016/j.heliyon.2024.e27221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDAC) is a highly intratumorally heterogeneous disease that includes several subtypes and is highly plastic. Effective gene delivery to all PDAC cells is essential for modulating gene expression and identifying potential gene-based therapeutic targets in PDAC. Most current gene delivery systems for pancreatic cells are optimized for islet or acinar cells. Lentiviral vectors are the current main gene delivery vectors for PDAC, but their transduction efficiencies vary depending on pancreatic cell type, and are especially poor for the classical subtype of PDAC cells from both primary tumors and cell lines. Methods We systemically compare transduction efficiencies of glycoprotein G of vesicular stomatitis virus (VSV-G)-pseudotyped lentiviral and Sendai viral vectors in human normal pancreatic ductal and PDAC cells. Results We find that the Sendai viral vector gives the most robust gene delivery efficiency regardless of PDAC cell type. Therefore, we propose using Sendai viral vectors to transduce ectopic genes into PDAC cells.
Collapse
Affiliation(s)
- Dmytro Grygoryev
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Taelor Ekstrom
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Elise Manalo
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
| | - Jason M. Link
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Amani Alshaikh
- The University of Edinburgh, Centre for Regenerative Medicine, Institute of Regeneration and Repair, Institute of Stem Cell Research, Edinburgh, UK
- King Abdulaziz City for Science and Technology, Health Sector (KACST), Riyadh, Saudi Arabia
| | - Dove Keith
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Brittany L. Allen-Petersen
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
| | - Brett Sheppard
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
- Department of Surgery, Oregon Health & Science University School of Medicine, USA
| | - Terry Morgan
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
- Department of Pathology, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| | - Abdenour Soufi
- The University of Edinburgh, Centre for Regenerative Medicine, Institute of Regeneration and Repair, Institute of Stem Cell Research, Edinburgh, UK
| | - Rosalie C. Sears
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| | - Jungsun Kim
- Cancer Early Detection Advanced Research Center at Knight Cancer Institute, Oregon Health & Science University School of Medicine, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University School of Medicine, USA
- Cancer Biology Research Program, Knight Cancer Institute, Oregon Health & Science University School of Medicine, Portland, OR, 97201, USA
| |
Collapse
|
3
|
Ren X, Su W, Li S, Zhao T, Huang Q, Wang Y, Wang X, Zhang X, Wei J. Immunogenicity and Therapeutic Efficacy of a Sendai-Virus-Vectored HSV-2 Vaccine in Mouse and Guinea Pig Models. Vaccines (Basel) 2023; 11:1752. [PMID: 38140157 PMCID: PMC10747028 DOI: 10.3390/vaccines11121752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND To date, there is no licensed vaccine for preventing herpes simplex virus type 2 (HSV-2). The current treatment to address the infection and prevent its transmission is not always satisfactory. METHODS We constructed two recombinant vectors, one encoding HSV-2 glycoprotein D (gD, SeV-dF/HSV-2-gD) and one encoding HSV-2-infected cell protein 27 (ICP27, SeV-dF/HSV-2-ICP27), based on a replication-defective Sendai virus through reverse genetics, collectively comprising a combinatorial HSV-2 therapeutic vaccine candidate. The immunogenicity and proper immunization procedure for this vaccine were explored in a murine model. The therapeutic effect that helps prevent recurrent HSV-2 disease was evaluated in HSV-2-infected guinea pigs. RESULTS Both a robust humoral immune response and a cellular immune response, characterized by the neutralizing antibody titer and the IFN-γ level, respectively, were elicited in BALB/c mice. A further study of cellular immunogenicity in mice revealed that T lymphocytes were successfully enhanced with the desirable secretion of several cytokines. In HSV-2-seropositive guinea pigs, vaccination could reduce the severity of HSV-2 in terms of recurrent lesions, duration of recurrent outbreak, and frequency of recurrence by 58.66%, 45.34%, and 45.09%, respectively, while viral shedding was also significantly inhibited in the vaccine-treated group compared to the group treated with phosphate-buffered saline. CONCLUSIONS The replication-defective recombinant Sendai viruses conveying HSV-2-gD and ICP27 proteins showed great immunogenicity and potential for preventing recurrent HSV-2 disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jiangbo Wei
- Weijiangbo Laboratory, National Vaccine and Serum Institute, Beijing 101111, China; (X.R.); (W.S.); (S.L.); (T.Z.); (Q.H.); (Y.W.); (X.W.); (X.Z.)
| |
Collapse
|
4
|
Zainutdinov SS, Sivolobova GF, Loktev VB, Kochneva GV. [Mucosal immunity and vaccines against viral infections]. Vopr Virusol 2022; 66:399-408. [PMID: 35019246 DOI: 10.36233/0507-4088-82] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 01/08/2022] [Indexed: 11/05/2022]
Abstract
Mucosal immunity is realized through a structural and functional system called mucose-associated lymphoid tissue (MALT). MALT is subdivided into parts (clusters) depending on their anatomical location, but they all have a similar structure: mucus layer, epithelial tissue, lamina propria and lymphoid follicles. Plasma cells of MALT produce a unique type of immunoglobulins, IgA, which have the ability to polymerize. In mucosal immunization, the predominant form of IgA is a secretory dimer, sIgA, which is concentrated in large quantities in the mucosa. Mucosal IgA acts as a first line of defense and neutralizes viruses efficiently at the portal of entry, preventing infection of epithelial cells and generalization of infection. To date, several mucosal antiviral vaccines have been licensed, which include attenuated strains of the corresponding viruses: poliomyelitis, influenza, and rotavirus. Despite the tremendous success of these vaccines, in particular, in the eradication of poliomyelitis, significant disadvantages of using attenuated viral strains in their composition are the risk of reactogenicity and the possibility of reversion to a virulent strain during vaccination. Nevertheless, it is mucosal vaccination, which mimics a natural infection, is able to induce a fast and effective immune response and thus help prevent and possibly stop outbreaks of many viral infections. Currently, a number of intranasal vaccines based on a new vector approach are successfully undergoing clinical trials. In these vaccines, the safe viral vectors are used to deliver protectively significant immunogens of pathogenic viruses. The most tested vector for intranasal vaccines is adenovirus, and the most significant immunogen is SARSCoV-2 S protein. Mucosal vector vaccines against human respiratory syncytial virus and human immunodeficiency virus type 1 based on Sendai virus, which is able to replicate asymptomatically in cells of bronchial epithelium, are also being investigated.
Collapse
Affiliation(s)
- S S Zainutdinov
- FSBI State Scientific Center of Virology and Biotechnology «Vector» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - G F Sivolobova
- FSBI State Scientific Center of Virology and Biotechnology «Vector» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - V B Loktev
- FSBI State Scientific Center of Virology and Biotechnology «Vector» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| | - G V Kochneva
- FSBI State Scientific Center of Virology and Biotechnology «Vector» of the Federal Service for Surveillance of Consumer Rights Protection and Human Welfare (Rospotrebnadzor)
| |
Collapse
|
5
|
Dittmar T, Weiler J, Luo T, Hass R. Cell-Cell Fusion Mediated by Viruses and HERV-Derived Fusogens in Cancer Initiation and Progression. Cancers (Basel) 2021; 13:5363. [PMID: 34771528 PMCID: PMC8582398 DOI: 10.3390/cancers13215363] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Cell fusion is a well-known, but still scarcely understood biological phenomenon, which might play a role in cancer initiation, progression and formation of metastases. Although the merging of two (cancer) cells appears simple, the entire process is highly complex, energy-dependent and tightly regulated. Among cell fusion-inducing and -regulating factors, so-called fusogens have been identified as a specific type of proteins that are indispensable for overcoming fusion-associated energetic barriers and final merging of plasma membranes. About 8% of the human genome is of retroviral origin and some well-known fusogens, such as syncytin-1, are expressed by human (cancer) cells. Likewise, enveloped viruses can enable and facilitate cell fusion due to evolutionarily optimized fusogens, and are also capable to induce bi- and multinucleation underlining their fusion capacity. Moreover, multinucleated giant cancer cells have been found in tumors derived from oncogenic viruses. Accordingly, a potential correlation between viruses and fusogens of human endogenous retroviral origin in cancer cell fusion will be summarized in this review.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Julian Weiler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany;
| | - Tianjiao Luo
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynecology, Hannover Medical School, 30625 Hannover, Germany;
| |
Collapse
|
6
|
Ohira M, Kikuchi E, Mizuta S, Yoshida N, Onodera M, Nakanishi M, Okuyama T, Mashima R. Production of therapeutic iduronate-2-sulfatase enzyme with a novel single-stranded RNA virus vector. Genes Cells 2021; 26:891-904. [PMID: 34480399 DOI: 10.1111/gtc.12894] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 08/04/2021] [Accepted: 08/20/2021] [Indexed: 11/28/2022]
Abstract
The Sendai virus vector has received a lot of attention due to its broad tropism for mammalian cells. As a result of efforts for genetic studies based on a mutant virus, we can now express more than 10 genes of up to 13.5 kilo nucleotides in a single vector with high protein expression efficiency. To prove this benefit, we examined the efficacy of the novel ribonucleic acid (RNA) virus vector harboring the human iduronate-2-sulfatase (IDS) gene with 1,653 base pairs, a causative gene for mucopolysaccharidosis type II, also known as a disorder of lysosomal storage disorders. As expected, this novel RNA vector with the human IDS gene exhibited its marked expression as determined by the expression of enhanced green fluorescent protein and IDS enzyme activity. While these cells exhibited a normal growth rate, the BHK-21 transformant cells stably expressing the human IDS gene persistently generated an active human IDS enzyme extracellularly. The human IDS protein produced failed to be incorporated into the lysosome when cells were pretreated with mannose-6-phosphate, demonstrating that this human IDS enzyme has potential for therapeutic use by cross-correction. These results suggest that our novel RNA vector may be applicable for further clinical settings.
Collapse
Affiliation(s)
- Mari Ohira
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Emika Kikuchi
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | | | | | - Masafumi Onodera
- Department of Human Genetics, National Research Institute for Child Health and Development, Tokyo, Japan
| | | | - Torayuki Okuyama
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Ryuichi Mashima
- Department of Clinical Laboratory Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
7
|
Wang X, Li Y, Deloria-Knoll M, Madhi SA, Cohen C, Arguelles VL, Basnet S, Bassat Q, Brooks WA, Echavarria M, Fasce RA, Gentile A, Goswami D, Homaira N, Howie SRC, Kotloff KL, Khuri-Bulos N, Krishnan A, Lucero MG, Lupisan S, Mathisen M, McLean KA, Mira-Iglesias A, Moraleda C, Okamoto M, Oshitani H, O'Brien KL, Owor BE, Rasmussen ZA, Rath BA, Salimi V, Sawatwong P, Scott JAG, Simões EAF, Sotomayor V, Thea DM, Treurnicht FK, Yoshida LM, Zar HJ, Campbell H, Nair H. Global burden of acute lower respiratory infection associated with human parainfluenza virus in children younger than 5 years for 2018: a systematic review and meta-analysis. Lancet Glob Health 2021; 9:e1077-e1087. [PMID: 34166626 PMCID: PMC8298256 DOI: 10.1016/s2214-109x(21)00218-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND Human parainfluenza virus (hPIV) is a common virus in childhood acute lower respiratory infections (ALRI). However, no estimates have been made to quantify the global burden of hPIV in childhood ALRI. We aimed to estimate the global and regional hPIV-associated and hPIV-attributable ALRI incidence, hospital admissions, and mortality for children younger than 5 years and stratified by 0-5 months, 6-11 months, and 12-59 months of age. METHODS We did a systematic review of hPIV-associated ALRI burden studies published between Jan 1, 1995, and Dec 31, 2020, found in MEDLINE, Embase, Global Health, Cumulative Index to Nursing and Allied Health Literature, Web of Science, Global Health Library, three Chinese databases, and Google search, and also identified a further 41 high-quality unpublished studies through an international research network. We included studies reporting community incidence of ALRI with laboratory-confirmed hPIV; hospital admission rates of ALRI or ALRI with hypoxaemia in children with laboratory-confirmed hPIV; proportions of patients with ALRI admitted to hospital with laboratory-confirmed hPIV; or in-hospital case-fatality ratios (hCFRs) of ALRI with laboratory-confirmed hPIV. We used a modified Newcastle-Ottawa Scale to assess risk of bias. We analysed incidence, hospital admission rates, and hCFRs of hPIV-associated ALRI using a generalised linear mixed model. Adjustment was made to account for the non-detection of hPIV-4. We estimated hPIV-associated ALRI cases, hospital admissions, and in-hospital deaths using adjusted incidence, hospital admission rates, and hCFRs. We estimated the overall hPIV-associated ALRI mortality (both in-hospital and out-hospital mortality) on the basis of the number of in-hospital deaths and care-seeking for child pneumonia. We estimated hPIV-attributable ALRI burden by accounting for attributable fractions for hPIV in laboratory-confirmed hPIV cases and deaths. Sensitivity analyses were done to validate the estimates of overall hPIV-associated ALRI mortality and hPIV-attributable ALRI mortality. The systematic review protocol was registered on PROSPERO (CRD42019148570). FINDINGS 203 studies were identified, including 162 hPIV-associated ALRI burden studies and a further 41 high-quality unpublished studies. Globally in 2018, an estimated 18·8 million (uncertainty range 12·8-28·9) ALRI cases, 725 000 (433 000-1 260 000) ALRI hospital admissions, and 34 400 (16 400-73 800) ALRI deaths were attributable to hPIVs among children younger than 5 years. The age-stratified and region-stratified analyses suggested that about 61% (35% for infants aged 0-5 months and 26% for 6-11 months) of the hospital admissions and 66% (42% for infants aged 0-5 months and 24% for 6-11 months) of the in-hospital deaths were in infants, and 70% of the in-hospital deaths were in low-income and lower-middle-income countries. Between 73% and 100% (varying by outcome) of the data had a low risk in study design; the proportion was 46-65% for the adjustment for health-care use, 59-77% for patient groups excluded, 54-93% for case definition, 42-93% for sampling strategy, and 67-77% for test methods. Heterogeneity in estimates was found between studies for each outcome. INTERPRETATION We report the first global burden estimates of hPIV-associated and hPIV-attributable ALRI in young children. Globally, approximately 13% of ALRI cases, 4-14% of ALRI hospital admissions, and 4% of childhood ALRI mortality were attributable to hPIV. These numbers indicate a potentially notable burden of hPIV in ALRI morbidity and mortality in young children. These estimates should encourage and inform investment to accelerate the development of targeted interventions. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Xin Wang
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - You Li
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Maria Deloria-Knoll
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Shabir A Madhi
- South African Medical Research Council, Vaccines and Infectious Diseases Analytical Research Unit, Soweto, South Africa; Department of Science and Technology, National Research Foundation, Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Cheryl Cohen
- Centre for Respiratory Disease and Meningitis, National Institute for Communicable Diseases, Johannesburg, South Africa; School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Vina Lea Arguelles
- Research Institute for Tropical Medicine, Muntinlupa, Metro Manila, Philippines
| | - Sudha Basnet
- Department of Child Health, Tribhuvan University, Katmandu, Nepal; the Centre for International Health, University of Bergen, Bergen, Norway
| | - Quique Bassat
- Barcelona Global Health Institute, Hospital Clínic-University of Barcelona, Barcelona, Spain; Centro de Investigação em Saúde de Manhiça, Maputo, Mozambique; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain; Paediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu, University of Barcelona, Barcelona, Spain; Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública, Madrid, Spain
| | - W Abdullah Brooks
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Marcela Echavarria
- Clinical Virology Unit, Centro de Educación Médica e Investigaciones Clínicas, Argentina
| | - Rodrigo A Fasce
- Public Health Institute of Chile, Región Metropolitana, Chile
| | - Angela Gentile
- Ricardo Gutierrez Children Hospital, Buenos Aires, Argentina
| | - Doli Goswami
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Nusrat Homaira
- International Centre for Diarrhoeal Disease Research, Bangladesh, Dhaka, Bangladesh; Discipline of Paediatrics, School of Women's and Children's Health, The University of New South Wales, Sydney, NSW, Australia
| | - Stephen R C Howie
- Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, London, UK; Department of Paediatrics, Child & Youth Health, University of Auckland, Auckland, New Zealand
| | - Karen L Kotloff
- Department of Pediatrics and Department of Medicine, Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Najwa Khuri-Bulos
- Department of Pediatrics, University of Jordan, School of Medicine, Amman, Jordan
| | - Anand Krishnan
- Centre for Community Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - Marilla G Lucero
- Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Socorro Lupisan
- Research Institute for Tropical Medicine, Muntinlupa, Philippines
| | - Maria Mathisen
- Department of Medical Microbiology, Vestre Viken Hospital Trust, Drammen, Norway
| | - Kenneth A McLean
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Ainara Mira-Iglesias
- Área de Investigación en Vacunas, Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana, Salud Pública, Valencia, Spain
| | - Cinta Moraleda
- Barcelona Global Health Institute, Hospital Clínic-University of Barcelona, Barcelona, Spain; Infectious Pediatric Diseases Section, Hospital Universitario de Octubre, Universidad Complutense, Research Institute Hospital de Octubre, Madrid, Spain
| | - Michiko Okamoto
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Histoshi Oshitani
- Department of Virology, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Katherine L O'Brien
- Department of International Health, International Vaccine Access Center, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Betty E Owor
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Zeba A Rasmussen
- Fogarty International Center, National Institutes of Health, Bethesda, MD, USA
| | - Barbara A Rath
- Vienna Vaccine Safety Initiative, Berlin, Germany; Université Bourgogne-Franche Comté, Besançon, France
| | - Vahid Salimi
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Pongpun Sawatwong
- Division of Global Health Protection, Thailand Ministry of Public Health and US Centers for Disease Control and Prevention Collaboration, Nonthaburi, Thailand
| | - J Anthony G Scott
- KEMRI-Wellcome Trust Research Programme, Centre for Geographic Medicine Research, Kilifi, Kenya; Nuffield Department of Tropical Medicine, Oxford University, Oxford, UK; Department of Infectious Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, UK
| | - Eric A F Simões
- Department of Pediatrics, Section of Infectious Diseases, University of Colorado, School of Medicine, Aurora, CO, USA; Department of Epidemiology and Center for Global Health, Colorado School of Public Health, Aurora, CO, USA
| | | | - Donald M Thea
- Department of Global Health and Development, Boston University School of Public Health, Boston, MA, USA
| | - Florette K Treurnicht
- Department of Medical Virology, National Health Laboratory Service and School of Pathology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Lay-Myint Yoshida
- Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Heather J Zar
- Department of Paediatrics & Child Health, Medical Research Council Unit on Child & Adolescent Health, University of Cape Town, Cape Town, South Africa
| | - Harry Campbell
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK
| | - Harish Nair
- Centre for Global Health, Usher Institute, Edinburgh Medical School, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
8
|
Sendai Virus-Vectored Vaccines That Express Envelope Glycoproteins of Respiratory Viruses. Viruses 2021; 13:v13061023. [PMID: 34072332 PMCID: PMC8230104 DOI: 10.3390/v13061023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 01/01/2023] Open
Abstract
Human respiratory syncytial virus (HRSV), human metapneumovirus (HMPV), and human parainfluenza viruses (HPIVs) are leading causes of respiratory disease in young children, the elderly, and individuals of all ages with immunosuppression. Vaccination strategies against these pneumoviruses and paramyxoviruses are vast in number, yet no licensed vaccines are available. Here, we review development of Sendai virus (SeV), a versatile pediatric vaccine that can (a) serve as a Jennerian vaccine against HPIV1, (b) serve as a recombinant vaccine against HRSV, HPIV2, HPIV3, and HMPV, (c) accommodate foreign genes for viral glycoproteins in multiple intergenic positions, (d) induce durable, mucosal, B-cell, and T-cell immune responses without enhanced immunopathology, (e) protect cotton rats, African green monkeys, and chimpanzees from infection, and (f) be formulated into a vaccine cocktail. Clinical phase I safety trials of SeV have been completed in adults and 3–6-year-old children. Clinical testing of SeVRSV, an HRSV fusion (F) glycoprotein gene recombinant, has also been completed in adults. Positive results from these studies, and collaborative efforts with the National Institutes of Health and the Serum Institute of India assist advanced development of SeV-based vaccines. Prospects are now good for vaccine successes in infants and consequent protection against serious viral disease.
Collapse
|
9
|
Imamura K, Sakurai Y, Enami T, Shibukawa R, Nishi Y, Ohta A, Shu T, Kawaguchi J, Okada S, Hoenen T, Yasuda J, Inoue H. iPSC screening for drug repurposing identifies anti-RNA virus agents modulating host cell susceptibility. FEBS Open Bio 2021; 11:1452-1464. [PMID: 33822489 PMCID: PMC8091584 DOI: 10.1002/2211-5463.13153] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 03/15/2021] [Accepted: 03/19/2021] [Indexed: 12/12/2022] Open
Abstract
Human pathogenic RNA viruses are threats to public health because they are prone to escaping the human immune system through mutations of genomic RNA, thereby causing local outbreaks and global pandemics of emerging or re-emerging viral diseases. While specific therapeutics and vaccines are being developed, a broad-spectrum therapeutic agent for RNA viruses would be beneficial for targeting newly emerging and mutated RNA viruses. In this study, we conducted a screen of repurposed drugs using Sendai virus (an RNA virus of the family Paramyxoviridae), with human-induced pluripotent stem cells (iPSCs) to explore existing drugs that may present anti-RNA viral activity. Selected hit compounds were evaluated for their efficacy against two important human pathogens: Ebola virus (EBOV) using Huh7 cells and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) using Vero E6 cells. Selective estrogen receptor modulators (SERMs), including raloxifene, exhibited antiviral activities against EBOV and SARS-CoV-2. Pioglitazone, a PPARγ agonist, also exhibited antiviral activities against SARS-CoV-2, and both raloxifene and pioglitazone presented a synergistic antiviral effect. Finally, we demonstrated that SERMs blocked entry steps of SARS-CoV-2 into host cells. These findings suggest that the identified FDA-approved drugs can modulate host cell susceptibility against RNA viruses.
Collapse
Affiliation(s)
- Keiko Imamura
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Yasuteru Sakurai
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Japan
| | - Takako Enami
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| | - Ran Shibukawa
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Yohei Nishi
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan
| | - Akira Ohta
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan
| | | | | | - Sayaka Okada
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan
| | - Thomas Hoenen
- Institute of Molecular Virology and Cell Biology, Friedrich-Loeffler-Institut, Greifswald - Insel Riems, Germany
| | - Jiro Yasuda
- Department of Emerging Infectious Diseases, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Japan.,National Research Center for the Control and Prevention of Infectious Diseases (CCPID), Nagasaki University, Japan
| | - Haruhisa Inoue
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Japan.,iPSC-Based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.,Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
| |
Collapse
|
10
|
Scaggs Huang F, Bernstein DI, Slobod KS, Portner A, Takimoto T, Russell CJ, Meagher M, Jones BG, Sealy RE, Coleclough C, Branum K, Dickey M, Buschle K, McNeal M, Makowski M, Nakamura A, Hurwitz JL. Safety and immunogenicity of an intranasal sendai virus-based vaccine for human parainfluenza virus type I and respiratory syncytial virus (SeVRSV) in adults. Hum Vaccin Immunother 2021; 17:554-559. [PMID: 32750273 PMCID: PMC7899675 DOI: 10.1080/21645515.2020.1779517] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 05/19/2020] [Accepted: 06/04/2020] [Indexed: 01/29/2023] Open
Abstract
SeVRSV is a replication-competent Sendai virus (SeV)-based vaccine carrying the respiratory syncytial virus (RSV) fusion protein (F) gene. Unmanipulated, non-recombinant SeV is a murine parainfluenza virus type 1 (PIV-1) and serves as a Jennerian vaccine for human PIV-1 (hPIV-1). SeV protects African green monkeys (AGM) from infection after hPIV-1 challenge. The recombinant SeVRSV additionally targets RSV and protects AGM from lower respiratory infections after RSV challenge. The present study is the first to report on the safety, viral genome detection, and immunogenicity following SeVRSV vaccination of healthy adults. Seventeen and four healthy adults received intranasal SeVRSV and PBS, respectively, followed by six months of safety monitoring. Virus genome (in nasal wash) and vaccine-specific antibodies (in sera) were monitored for two and four weeks, respectively, post-vaccination. The vaccine was well-tolerated with only mild to moderate reactions that were also present in the placebo group. No severe reactions occurred. As expected, due to preexisting immunity toward hPIV-1 and RSV in adults, vaccine genome detection was transient. There were minimal antibody responses to SeV and negligible responses to RSV F. Results encourage further studies of SeVRSV with progression toward a clinical trial in seronegative children. Abbreviations: AE-adverse event; SAE-serious adverse event; SeV-Sendai virus; RSV-respiratory syncytial virus; PIV-1-parainfluenza virus-type 1; hPIV-1-human parainfluenza virus-type 1; F-RSV fusion protein; SeVRSV-recombinant SeV carrying the RSV F gene; Ab-antibody; MSW-medically significant wheezing; NOCMC-new onset chronic medical condition, mITT-modified Intent to Treat; ALRI-acute lower respiratory tract infection.
Collapse
Affiliation(s)
- Felicia Scaggs Huang
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - David I. Bernstein
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Karen S. Slobod
- Department of Infectious Diseases, Jude Children’s Research Hospital, Memphis, TN, USA
| | - Allen Portner
- Department of Infectious Diseases, Jude Children’s Research Hospital, Memphis, TN, USA
| | - Toru Takimoto
- Department of Infectious Diseases, Jude Children’s Research Hospital, Memphis, TN, USA
| | - Charles J. Russell
- Department of Infectious Diseases, Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | | | - Bart G. Jones
- Department of Infectious Diseases, Jude Children’s Research Hospital, Memphis, TN, USA
| | - Robert E. Sealy
- Department of Infectious Diseases, Jude Children’s Research Hospital, Memphis, TN, USA
| | | | - Kristen Branum
- Department of Infectious Diseases, Jude Children’s Research Hospital, Memphis, TN, USA
| | - Michelle Dickey
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Kristen Buschle
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Monica McNeal
- Department of Pediatrics, University of Cincinnati College of Medicine, Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | | | | | - Julia L. Hurwitz
- Department of Infectious Diseases, Jude Children’s Research Hospital, Memphis, TN, USA
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| |
Collapse
|
11
|
Matveeva OV, Shabalina SA. Prospects for Using Expression Patterns of Paramyxovirus Receptors as Biomarkers for Oncolytic Virotherapy. Cancers (Basel) 2020; 12:cancers12123659. [PMID: 33291506 PMCID: PMC7762160 DOI: 10.3390/cancers12123659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Some non-pathogenic viruses that do not cause serious illness in humans can efficiently target and kill cancer cells and may be considered candidates for cancer treatment with virotherapy. However, many cancer cells are protected from viruses. An important goal of personalized cancer treatment is to identify viruses that can kill a certain type of cancer cells. To this end, researchers investigate expression patterns of cell entry receptors, which viruses use to bind to and enter host cells. We summarized and analyzed the receptor expression patterns of two paramyxoviruses: The non-pathogenic measles and the Sendai viruses. The receptors for these viruses are different and can be proteins or lipids with attached carbohydrates. This review discusses the prospects for using these paramyxovirus receptors as biomarkers for successful personalized virotherapy for certain types of cancer. Abstract The effectiveness of oncolytic virotherapy in cancer treatment depends on several factors, including successful virus delivery to the tumor, ability of the virus to enter the target malignant cell, virus replication, and the release of progeny virions from infected cells. The multi-stage process is influenced by the efficiency with which the virus enters host cells via specific receptors. This review describes natural and artificial receptors for two oncolytic paramyxoviruses, nonpathogenic measles, and Sendai viruses. Cell entry receptors are proteins for measles virus (MV) and sialylated glycans (sialylated glycoproteins or glycolipids/gangliosides) for Sendai virus (SeV). Accumulated published data reviewed here show different levels of expression of cell surface receptors for both viruses in different malignancies. Patients whose tumor cells have low or no expression of receptors for a specific oncolytic virus cannot be successfully treated with the virus. Recent published studies have revealed that an expression signature for immune genes is another important factor that determines the vulnerability of tumor cells to viral infection. In the future, a combination of expression signatures of immune and receptor genes could be used to find a set of oncolytic viruses that are more effective for specific malignancies.
Collapse
Affiliation(s)
- Olga V. Matveeva
- Sendai Viralytics LLC, 23 Nylander Way, Acton, MA 01720, USA
- Correspondence: (O.V.M.); (S.A.S.)
| | - Svetlana A. Shabalina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
- Correspondence: (O.V.M.); (S.A.S.)
| |
Collapse
|
12
|
Zaichuk TA, Nechipurenko YD, Adzhubey AA, Onikienko SB, Chereshnev VA, Zainutdinov SS, Kochneva GV, Netesov SV, Matveeva OV. The Challenges of Vaccine Development against Betacoronaviruses: Antibody Dependent Enhancement and Sendai Virus as a Possible Vaccine Vector. Mol Biol 2020; 54:812-826. [PMID: 32921819 PMCID: PMC7473411 DOI: 10.1134/s0026893320060151] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/21/2022]
Abstract
To design an effective and safe vaccine against betacoronaviruses, it is necessary to use their evolutionarily conservative antigenic determinants that will elicit the combination of strong humoral and cell-mediated immune responses. Targeting such determinants minimizes the risk of antibody-dependent enhancement of viral infection. This phenomenon was observed in animal trials of experimental vaccines against SARS-CoV-1 and MERS-CoV that were developed based on inactivated coronavirus or vector constructs expressing the spike protein (S) of the virion. The substitution and glycosylation of certain amino acids in the antigenic determinants of the S-protein, as well as its conformational changes, can lead to the same effect in a new experimental vaccine against SARS-CoV-2. Using more conservative structural and accessory viral proteins for the vaccine antigenic determinants will help to avoid this problem. This review outlines approaches for developing vaccines against the new SARS-CoV-2 coronavirus that are based on non-pathogenic viral vectors. For efficient prevention of infections caused by respiratory pathogens the ability of the vaccine to stimulate mucosal immunity in the respiratory tract is important. Such a vaccine can be developed using non-pathogenic Sendai virus vector, since it can be administered intranasally and induce a mucosal immune response that strengthens the antiviral barrier in the respiratory tract and provides reliable protection against infection.
Collapse
Affiliation(s)
| | - Y D Nechipurenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - A A Adzhubey
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia.,George Washington University, 20052 Washington, DC USA
| | - S B Onikienko
- Department of Military Field Therapy, Kirov Military Medical Academy, 194044 St. Petersburg, Russia
| | - V A Chereshnev
- Institute of Immunology and Physiology, 620049 Yekaterinburg, Russia
| | - S S Zainutdinov
- State Research Center of Virology and Biotechnology "Vector,", 630559 Koltsovo, Russia
| | - G V Kochneva
- State Research Center of Virology and Biotechnology "Vector,", 630559 Koltsovo, Russia
| | - S V Netesov
- Department of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - O V Matveeva
- Sendai Viralytics, 117261 Acton, MA USA.,Biopolymer Design, 117281 Acton, MA USA
| |
Collapse
|
13
|
Nasal vaccine delivery attenuates brain pathology and cognitive impairment in tauopathy model mice. NPJ Vaccines 2020; 5:28. [PMID: 32219000 PMCID: PMC7096417 DOI: 10.1038/s41541-020-0172-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 02/20/2020] [Indexed: 01/23/2023] Open
Abstract
Pathological aggregates of tau proteins accumulate in the brains of neurodegenerative tauopathies including Alzheimer’s disease and frontotemporal lobar degeneration (FTLD-tau). Although immunotherapies of these disorders against tau are emerging, it is unknown whether nasal delivery, which offers many benefits over traditional approaches to vaccine administration, is effective or not for tauopathy. Here, we developed vaccination against a secreted form of pathological tau linked to FTLD-tau using a Sendai virus (SeV) vector infectious to host nasal mucosa, a key part of the immune system. Tau vaccines given as nasal drops induced tissue tau-immunoreactive antibody production and ameliorated cognitive impairment in FTLD-tau model mice. In vivo imaging and postmortem neuropathological assays demonstrated the suppression of phosphorylated tau accumulation, neurotoxic gliosis, and neuronal loss in the hippocampus of immunized mice. These findings suggest that nasal vaccine delivery may provide a therapeutic opportunity for a broad range of populations with human tauopathy.
Collapse
|
14
|
Ogonczyk Makowska D, Hamelin MÈ, Boivin G. Engineering of Live Chimeric Vaccines against Human Metapneumovirus. Pathogens 2020; 9:E135. [PMID: 32093057 PMCID: PMC7168645 DOI: 10.3390/pathogens9020135] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 02/07/2023] Open
Abstract
Human metapneumovirus (HMPV) is an important human pathogen that, along with respiratory syncytial virus (RSV), is a major cause of respiratory tract infections in young infants. Development of an effective vaccine against Pneumoviruses has proven to be particularly difficult; despite over 50 years of research in this field, no vaccine against HMPV or RSV is currently available. Recombinant chimeric viruses expressing antigens of other viruses can be generated by reverse genetics and used for simultaneous immunization against more than one pathogen. This approach can result in the development of promising vaccine candidates against HMPV, and several studies have indeed validated viral vectors expressing HMPV antigens. In this review, we summarize current efforts in generating recombinant chimeric vaccines against HMPV, and we discuss their potential optimization based on the correspondence with RSV studies.
Collapse
Affiliation(s)
| | | | - Guy Boivin
- Centre de Recherche en Infectiologie of the Centre Hospitalier Universitaire de Québec and Université Laval, Québec, QC G1V 4G2, Canada; (D.O.M.); (M.-È.H.)
| |
Collapse
|
15
|
Rossey I, Saelens X. Vaccines against human respiratory syncytial virus in clinical trials, where are we now? Expert Rev Vaccines 2019; 18:1053-1067. [DOI: 10.1080/14760584.2019.1675520] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Iebe Rossey
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Xavier Saelens
- VIB-UGent Center for Medical Biotechnology, VIB, Ghent, Belgium
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| |
Collapse
|
16
|
Zainutdinov SS, Kochneva GV, Netesov SV, Chumakov PM, Matveeva OV. Directed evolution as a tool for the selection of oncolytic RNA viruses with desired phenotypes. Oncolytic Virother 2019; 8:9-26. [PMID: 31372363 PMCID: PMC6636189 DOI: 10.2147/ov.s176523] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Accepted: 06/07/2019] [Indexed: 12/23/2022] Open
Abstract
Viruses have some characteristics in common with cell-based life. They can evolve and adapt to environmental conditions. Directed evolution can be used by researchers to produce viral strains with desirable phenotypes. Through bioselection, improved strains of oncolytic viruses can be obtained that have better safety profiles, increased specificity for malignant cells, and more efficient spread among tumor cells. It is also possible to select strains capable of killing a broader spectrum of cancer cell variants, so as to achieve a higher frequency of therapeutic responses. This review describes and analyses virus adaptation studies performed with members of four RNA virus families that are used for viral oncolysis: reoviruses, paramyxoviruses, enteroviruses, and rhabdoviruses.
Collapse
Affiliation(s)
- Sergei S Zainutdinov
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Galina V Kochneva
- State Research Center of Virology and Biotechnology “Vector”
, Koltsovo630559, Russia
| | - Sergei V Netesov
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk630090, Russia
| | - Peter M Chumakov
- Engelhardt Institute of Molecular Biology
, Moscow119991, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products
, Moscow108819, Russia
| | | |
Collapse
|
17
|
Hijano DR, Vu LD, Kauvar LM, Tripp RA, Polack FP, Cormier SA. Role of Type I Interferon (IFN) in the Respiratory Syncytial Virus (RSV) Immune Response and Disease Severity. Front Immunol 2019; 10:566. [PMID: 30972063 PMCID: PMC6443902 DOI: 10.3389/fimmu.2019.00566] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 03/04/2019] [Indexed: 12/22/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the most common cause of lower respiratory tract disease in children <2 years of age. Increased morbidity and mortality have been reported in high-risk patients, such as premature infants, patients with cardiac disease, and severely immune compromised patients. Severe disease is associated with the virulence of the virus as well as host factors specifically including the innate immune response. The role of type I interferons (IFNs) in the response to RSV infection is important in regulating the rate of virus clearance and in directing the character of the immune response, which is normally associated with protection and less severe disease. Two RSV non-structural proteins, NS1 and NS2, as well as the envelope G glycoprotein are known to suppress type I IFN production and a robust type I IFN response to RSV does not occur in human infants or neonatal mouse models of RSV infection. Additionally, presence of type I IFNs are associated with mild symptoms in infants and administration of IFN-α prior to infection of neonatal mice with RSV reduces immunopathology. This evidence has driven RSV prophylaxis and therapeutic efforts to consider strategies for enhancing type I IFN production.
Collapse
Affiliation(s)
- Diego R Hijano
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Luan D Vu
- Department of Biological Sciences, Louisiana State University and School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| | | | - Ralph A Tripp
- Department of Infectious Disease, University of Georgia, Athens, GA, United States
| | | | - Stephania A Cormier
- Department of Biological Sciences, Louisiana State University and School of Veterinary Medicine, Baton Rouge, LA, United States.,Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Baton Rouge, LA, United States
| |
Collapse
|
18
|
Wei W, Kong W. Identification of key genes and signaling pathways during Sendai virus infection in vitro. Braz J Microbiol 2019; 50:13-22. [PMID: 30637656 DOI: 10.1007/s42770-018-0021-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 05/18/2018] [Indexed: 11/30/2022] Open
Abstract
Sendai virus (SeV) has been used as a model strain to reveal molecular features of paramyxovirus biology. In this study, we comprehensively analyzed the gene profiling of murine macrophages and airway epithelial cells in response to SeV using gene expression data. The significantly differentially expressed genes (DEGs) were screened by GEO2R. Gene ontology (GO) and pathway enrichment analyses were performed by DAVID. The protein-protein interaction (PPI) map of DEGs was constructed by STRING. The modules of PPI network are produced by molecular complex detection (MCODE) plug-in of Cytoscape. In total, 241 up- and 83 downregulated DEGs were identified in airway epithelial cells while 130 up- and 148 downregulated in macrophage. Particularly, Tmem119 and Colla2 are significantly downregulated in airway epithelial cells and macrophages, respectively. Functional enrichment analysis showed that upregulated DEGs are clustered in innate immunity and inflammatory response in both cell types, whereas downregulated DEGs are involved in host metabolic pathway in airway epithelial cells. PI3K-AKT signaling pathway is downregulated in macrophages. PPI network analysis indicated that some high degree of nodes exist in both cell types, such as Stat1, Tnf, and Cxcl10. In conclusion, SeV infection can induce different host cell responses in airway epithelial cells and macrophages.
Collapse
Affiliation(s)
- Wenqiang Wei
- School of Basic Medical Sciences, Henan University, Kaifeng, 475004, China. .,Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore.
| | - Wanting Kong
- Department of Physiology and Immunology Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117456, Singapore
| |
Collapse
|
19
|
Monette A, Mouland AJ. T Lymphocytes as Measurable Targets of Protection and Vaccination Against Viral Disorders. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2019; 342:175-263. [PMID: 30635091 PMCID: PMC7104940 DOI: 10.1016/bs.ircmb.2018.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Continuous epidemiological surveillance of existing and emerging viruses and their associated disorders is gaining importance in light of their abilities to cause unpredictable outbreaks as a result of increased travel and vaccination choices by steadily growing and aging populations. Close surveillance of outbreaks and herd immunity are also at the forefront, even in industrialized countries, where previously eradicated viruses are now at risk of re-emergence due to instances of strain recombination, contractions in viral vector geographies, and from their potential use as agents of bioterrorism. There is a great need for the rational design of current and future vaccines targeting viruses, with a strong focus on vaccine targeting of adaptive immune effector memory T cells as the gold standard of immunity conferring long-lived protection against a wide variety of pathogens and malignancies. Here, we review viruses that have historically caused large outbreaks and severe lethal disorders, including respiratory, gastric, skin, hepatic, neurologic, and hemorrhagic fevers. To observe trends in vaccinology against these viral disorders, we describe viral genetic, replication, transmission, and tropism, host-immune evasion strategies, and the epidemiology and health risks of their associated syndromes. We focus on immunity generated against both natural infection and vaccination, where a steady shift in conferred vaccination immunogenicity is observed from quantifying activated and proliferating, long-lived effector memory T cell subsets, as the prominent biomarkers of long-term immunity against viruses and their associated disorders causing high morbidity and mortality rates.
Collapse
|
20
|
Kozlowski PA, Aldovini A. Mucosal Vaccine Approaches for Prevention of HIV and SIV Transmission. CURRENT IMMUNOLOGY REVIEWS 2019; 15:102-122. [PMID: 31452652 PMCID: PMC6709706 DOI: 10.2174/1573395514666180605092054] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 04/19/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023]
Abstract
Optimal protective immunity to HIV will likely require that plasma cells, memory B cells and memory T cells be stationed in mucosal tissues at portals of viral entry. Mucosal vaccine administration is more effective than parenteral vaccine delivery for this purpose. The challenge has been to achieve efficient vaccine uptake at mucosal surfaces, and to identify safe and effective adjuvants, especially for mucosally administered HIV envelope protein immunogens. Here, we discuss strategies used to deliver potential HIV vaccine candidates in the intestine, respiratory tract, and male and female genital tract of humans and nonhuman primates. We also review mucosal adjuvants, including Toll-like receptor agonists, which may adjuvant both mucosal humoral and cellular immune responses to HIV protein immunogens.
Collapse
Affiliation(s)
- Pamela A. Kozlowski
- Department of Microbiology, Immunology and Parasitology, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Anna Aldovini
- Department of Medicine, and Harvard Medical School, Boston Children’s Hospital, Department of Pediatrics, Boston MA, 02115, USA
| |
Collapse
|
21
|
Hijano DR, Maron G, Hayden RT. Respiratory Viral Infections in Patients With Cancer or Undergoing Hematopoietic Cell Transplant. Front Microbiol 2018; 9:3097. [PMID: 30619176 PMCID: PMC6299032 DOI: 10.3389/fmicb.2018.03097] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022] Open
Abstract
Survival rates for pediatric cancer have steadily improved over time but it remains a significant cause of morbidity and mortality among children. Infections are a major complication of cancer and its treatment. Community acquired respiratory viral infections (CRV) in these patients increase morbidity, mortality and can lead to delay in chemotherapy. These are the result of infections with a heterogeneous group of viruses including RNA viruses, such as respiratory syncytial virus (RSV), influenza virus (IV), parainfluenza virus (PIV), metapneumovirus (HMPV), rhinovirus (RhV), and coronavirus (CoV). These infections maintain a similar seasonal pattern to those of immunocompetent patients. Clinical manifestations vary significantly depending on the type of virus and the type and degree of immunosuppression, ranging from asymptomatic or mild disease to rapidly progressive fatal pneumonia Infections in this population are characterized by a high rate of progression from upper to lower respiratory tract infection and prolonged viral shedding. Use of corticosteroids and immunosuppressive therapy are risk factors for severe disease. The clinical course is often difficult to predict, and clinical signs are unreliable. Accurate prognostic viral and immune markers, which have become part of the standard of care for systemic viral infections, are currently lacking; and management of CRV infections remains controversial. Defining effective prophylactic and therapeutic strategies is challenging, especially considering, the spectrum of immunocompromised patients, the variety of respiratory viruses, and the presence of other opportunistic infections and medical problems. Prevention remains one of the most important strategies against these viruses. Early diagnosis, supportive care and antivirals at an early stage, when available and indicated, have proven beneficial. However, with the exception of neuraminidase inhibitors for influenza infection, there are no accepted treatments. In high-risk patients, pre-emptive treatment with antivirals for upper respiratory tract infection (URTI) to decrease progression to LRTI is a common strategy. In the future, viral load and immune markers may prove beneficial in predicting severe disease, supporting decision making and monitor treatment in this population.
Collapse
Affiliation(s)
- Diego R. Hijano
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Gabriela Maron
- Department of Infectious Diseases, St Jude Children's Research Hospital, Memphis, TN, United States
| | - Randall T. Hayden
- Department of Pathology, St Jude Children's Research Hospital, Memphis, TN, United States
| |
Collapse
|
22
|
Noh JY, Jeong DG, Yoon SW, Kim JH, Choi YG, Kang SY, Kim HK. Isolation and characterization of novel bat paramyxovirus B16-40 potentially belonging to the proposed genus Shaanvirus. Sci Rep 2018; 8:12533. [PMID: 30135435 PMCID: PMC6105681 DOI: 10.1038/s41598-018-30319-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 07/27/2018] [Indexed: 01/19/2023] Open
Abstract
The bat paramyxovirus B16-40 was first isolated in Korea in this study. Using the isolated virus, we could obtain not only genomic information, but also several biological characteristics of the virus. In the phylogenetic analysis, the virus was found to belong to the recently proposed genus Shaanvirus. Through sequence analyses and in vitro testing, the isolated virus was also found to have haemagglutinin-neuraminidase (HN) protein as one of the structural proteins. When mouse antiserum was generated against the isolated virus and tested, it was cross-reactive to human parainfluenza virus 1 in an indirect immunofluorescence assay but could not cross-neutralize human parainfluenza virus 1. In addition, the bat paramyxovirus B16-40 was not infectious in the mouse model. Collectively, this study provided basic information on further classification of the bat paramyxovirus B16-40 and related viruses in the proposed genus Shaanvirus.
Collapse
Affiliation(s)
- Ji Yeong Noh
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dae Gwin Jeong
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Sun-Woo Yoon
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
- Bio-Analytical Science Division, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Ji Hyung Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Yong Gun Choi
- The Korean Institute of Biospeleology, Daejeon, Republic of Korea
| | - Shien-Young Kang
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Hye Kwon Kim
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea.
| |
Collapse
|
23
|
Efficient Delivery of Human Cytomegalovirus T Cell Antigens by Attenuated Sendai Virus Vectors. J Virol 2018; 92:JVI.00569-18. [PMID: 29769344 DOI: 10.1128/jvi.00569-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 05/08/2018] [Indexed: 02/07/2023] Open
Abstract
Human cytomegalovirus (HCMV) represents a major cause of clinical complications during pregnancy as well as immunosuppression, and the licensing of a protective HCMV vaccine remains an unmet global need. Here, we designed and validated novel Sendai virus (SeV) vectors delivering the T cell immunogens IE-1 and pp65. To enhance vector safety, we used a replication-deficient strain (rdSeV) that infects target cells in a nonproductive manner while retaining viral gene expression. In this study, we explored the impact that transduction with rdSeV has on human dendritic cells (DCs) by comparing it to the parental, replication-competent Sendai virus strain (rcSeV) as well as the poxvirus strain modified vaccinia Ankara (MVA). We found that wild-type SeV is capable of replicating to high titers in DCs while rdSeV infects cells abortively. Due to the higher degree of attenuation, IE-1 and pp65 protein levels mediated by rdSeV after infection of DCs were markedly reduced compared to those of the parental Sendai virus recombinants, but antigen-specific restimulation of T cell clones was not negatively affected by this. Importantly, rdSeV showed reduced cytotoxic effects compared to rcSeV and MVA and was capable of mediating DC maturation as well as secretion of alpha interferon and interleukin-6. Finally, in a challenge model with a murine cytomegalovirus (MCMV) strain carrying an HCMV pp65 peptide, we found that viral replication was restricted if mice were previously vaccinated with rdSeV-pp65. Taken together, these data demonstrate that rdSeV has great potential as a vector system for the delivery of HCMV immunogens.IMPORTANCE HCMV is a highly prevalent betaherpesvirus that establishes lifelong latency after primary infection. Congenital HCMV infection is the most common viral complication in newborns, causing a number of late sequelae ranging from impaired hearing to mental retardation. At the same time, managing HCMV reactivation during immunosuppression remains a major hurdle in posttransplant care. Since options for the treatment of HCMV infection are still limited, the development of a vaccine to confine HCMV-related morbidities is urgently needed. We generated new vaccine candidates in which the main targets of T cell immunity during natural HCMV infection, IE-1 and pp65, are delivered by a replication-deficient, Sendai virus-based vector system. In addition to classical prophylactic vaccine concepts, these vectors could also be used for therapeutic applications, thereby expanding preexisting immunity in high-risk groups such as transplant recipients or for immunotherapy of glioblastomas expressing HCMV antigens.
Collapse
|
24
|
Forth LF, Konrath A, Klose K, Schlottau K, Hoffmann K, Ulrich RG, Höper D, Pohlmann A, Beer M. A Novel Squirrel Respirovirus with Putative Zoonotic Potential. Viruses 2018; 10:v10070373. [PMID: 30021939 PMCID: PMC6070802 DOI: 10.3390/v10070373] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/14/2018] [Accepted: 07/16/2018] [Indexed: 12/29/2022] Open
Abstract
In a globalized world, the threat of emerging pathogens plays an increasing role, especially if their zoonotic potential is unknown. In this study, a novel respirovirus, family Paramyxoviridae, was isolated from a Sri Lankan Giant squirrel (Ratufa macroura), which originated in Sri Lanka and deceased with severe pneumonia in a German zoo. The full-genome characterization of this novel virus, tentatively named Giant squirrel respirovirus (GSqRV), revealed similarities to murine (71%), as well as human respiroviruses (68%) with unique features, for example, a different genome length and a putative additional accessory protein. Congruently, phylogenetic analyses showed a solitary position of GSqRV between known murine and human respiroviruses, implicating a putative zoonotic potential. A tailored real-time reverse transcription-polymerase chain reaction (RT-qPCR) for specific detection of GSqRV confirmed a very high viral load in the lung, and, to a lesser extent, in the brain of the deceased animal. A pilot study on indigenous and exotic squirrels did not reveal additional cases in Germany. Therefore, further research is essential to assess the geographic distribution, host range, and zoonotic potential of this novel viral pathogen.
Collapse
Affiliation(s)
- Leonie F Forth
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Andrea Konrath
- Saxon State Laboratory of Health and Veterinary Affairs, Bahnhofstraße 58-60, 04158 Leipzig, Germany.
| | - Kristin Klose
- Institute of Pathology, Faculty of Veterinary Medicine, University of Leipzig, An den Tierkliniken 33, 04103 Leipzig, Germany.
| | - Kore Schlottau
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Kathrin Hoffmann
- Saxon State Laboratory of Health and Veterinary Affairs, Jägerstraße 8/10, 01099 Dresden, Germany.
| | - Rainer G Ulrich
- Institute of Novel and Emerging Infectious Diseases, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Dirk Höper
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Anne Pohlmann
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| | - Martin Beer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, 17493 Greifswald-Insel Riems, Germany.
| |
Collapse
|
25
|
Ilyinskaya GV, Mukhina EV, Soboleva AV, Matveeva OV, Chumakov PM. Oncolytic Sendai Virus Therapy of Canine Mast Cell Tumors (A Pilot Study). Front Vet Sci 2018; 5:116. [PMID: 29915788 PMCID: PMC5995045 DOI: 10.3389/fvets.2018.00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background: Canine mastocytomas (mast cell tumors) represent a common malignancy among many dog breeds. A typical treatment strategy for canine mastocytomas includes surgery, chemo- and radio-therapy, although in many cases the therapy fails and the disease progression resumes. New treatment approaches are needed. Aims: The goal of this pilot study was to examine safety and efficacy of oncolytic Sendai virus therapy administered to canine patients with cutaneous or subcutaneous mastocytomas. Materials and Methods: Six canine patients, with variable grades and stages of the disease, received virus therapy, either as a monotherapy, or in combination with surgery. The therapy included two or more virus applications administered weekly or biweekly. Each application of Sendai virus (107-108.6 EID50) consisted of multiple individual 0.01-0.1 ml injections delivered intratumorally, intradermally around a tumor, and under a tumor bed. Results: The treatment was well tolerated, with minor transitory side effects. Of the six dogs, two did not receive surgery or any other treatment besides the virus injections. The other four animals underwent radical or debulking surgeries, and in three of them the subsequent administration of Sendai virus completely cleared locally recurrent or/and remaining tumor masses. Five dogs demonstrated a complete response to the treatment, the animals remained disease free during the time of observation (2-3 years). One dog responded only partially to the virotherapy; its after-surgical recurrent tumor and some, but not all, metastases were cleared. This dog had the most advanced stage of the disease with multiple enlarged lymph nodes and cutaneous metastases. Conclusion: The results of the pilot study suggest that Sendai virus injections could be safe and efficient for the treatment of dogs affected by mastocytomas.They also suggest the need of further studies for finding optimal schemes and schedules for this kind of therapy.
Collapse
Affiliation(s)
- Galina V. Ilyinskaya
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Blokhin Cancer Research Center, Moscow, Russia
| | - Elena V. Mukhina
- Veterinary Clinic of Herzen Oncology Research Institute, Moscow, Russia
| | - Alesya V. Soboleva
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow, Russia
| | | | - Peter M. Chumakov
- Engelhardt Institute of Molecular Biology, Moscow, Russia
- Chumakov Federal Scientific Center for Research and Development of Immune-and-Biological Products, Moscow, Russia
| |
Collapse
|
26
|
Bonvehí PE, Temporiti ER. Transmission and Control of Respiratory Viral Infections in the Healthcare Setting. CURRENT TREATMENT OPTIONS IN INFECTIOUS DISEASES 2018; 10:182-196. [PMID: 32226322 PMCID: PMC7099383 DOI: 10.1007/s40506-018-0163-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Purpose of the review Viral respiratory infections have been recognized as a cause of severe illness in immunocompromised and non-immunocompromised hosts. This acknowledgement is a consequence of improvement in diagnosis and better understanding of transmission. Available vaccines and antiviral drugs for prophylaxis and treatment have been developed accordingly. Viral respiratory pathogens are increasingly recognized as nosocomial pathogens as well. The purpose of this review is to describe the most frequent and relevant nosocomial viral respiratory infections, their mechanisms of transmission and the infection control measures to prevent their spread in the healthcare setting. Recent findings Although most mechanisms of transmission and control measures of nosocomial viral infections are already known, improved diagnostic tools allow better characterization of these infections and also lead to the discovery of new viruses such as the coronavirus, which is the cause of the Middle East Respiratory Syndrome, or the human bocavirus. Also, the ability to understand better the impact, dissemination and prevention of these viruses, allows us to improve the measures to prevent these infections. Summary Healthcare viral respiratory infections increase patient morbidity. Each virus has a different mechanism of transmission; therefore, early detection and prompt implementation of infection control measures are very important in order to avoid their transmission in the hospital setting.
Collapse
Affiliation(s)
- Pablo E Bonvehí
- Department of Internal Medicine and Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Galván 4102, C1431FWO Ciudad Autónoma de Buenos Aires, Argentina
| | - Elena R Temporiti
- Department of Internal Medicine and Division of Infectious Diseases, Centro de Educación Médica e Investigaciones Clínicas (CEMIC), Galván 4102, C1431FWO Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
27
|
Russell CJ, Simões EAF, Hurwitz JL. Vaccines for the Paramyxoviruses and Pneumoviruses: Successes, Candidates, and Hurdles. Viral Immunol 2018; 31:133-141. [PMID: 29323621 DOI: 10.1089/vim.2017.0137] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Human parainfluenza viruses (family Paramyxoviridae), human metapneumovirus, and respiratory syncytial virus (family Pneumoviridae) infect most infants and children within the first few years of life and are the etiologic agents for many serious acute respiratory illnesses. These virus infections are also associated with long-term diseases that impact quality of life, including asthma. Despite over a half-century of vaccine research, development, and clinical trials, no vaccine has been licensed to date for the paramyxoviruses or pneumoviruses for the youngest infants. In this study, we describe the recent reclassification of paramyxoviruses and pneumoviruses into distinct families by the International Committee on the Taxonomy of Viruses. We also discuss some past unsuccessful vaccine trials and some currently preferred vaccine strategies. Finally, we discuss hurdles that must be overcome to support successful respiratory virus vaccine development for the youngest children.
Collapse
Affiliation(s)
- Charles J Russell
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Molecular Biology, Immunology, and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| | - Eric A F Simões
- 3 Department of Pediatrics, University of Colorado School of Medicine, Department of Epidemiology, Colorado School of Public Health, Section of Infectious Diseases, Children's Hospital Colorado, Aurora, Colorado
| | - Julia L Hurwitz
- 1 Department of Infectious Diseases, St. Jude Children's Research Hospital , Memphis, Tennessee.,2 Department of Molecular Biology, Immunology, and Biochemistry, University of Tennessee Health Science Center , Memphis, Tennessee
| |
Collapse
|
28
|
Clinical and epidemiological characteristics of human parainfluenza virus infections of children in southern Taiwan. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2017; 51:749-755. [PMID: 28757139 DOI: 10.1016/j.jmii.2016.08.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 08/24/2016] [Accepted: 08/26/2016] [Indexed: 11/23/2022]
Abstract
BACKGROUND Human parainfluenza viruses (HPIV) 1-4 had been analyzed as being one of the most frequent causes of hospitalizations for young children with respiratory tract illnesses. METHODS This retrospective study was performed from children virologically confirmed as HPIV infection through throat swab or nasopharyngeal aspirates at a tertiary care university hospital, between January 2012 and December 2014. HPIV4 was not checked and analyzed, due to not include in the commercial kit. The demographic, epidemiological, clinical presentations, diagnosis, treatment, outcomes, and laboratory data were analyzed. RESULTS Totally 398 cases were enrolled, including 39 (9.8%) of HPIV1, 67 (16.8%) of HPIV2, and 292 (73.4%) of HPIV3. The mean age of HPIV-infected children was 2.9 year-old, and 50.5% were among one to three year-old. A total of 56.8% HPIV3-infected children were among one to three years old, however, no HPIV2-infected children was younger than one year-old. The HPIV1-infected patients were more common to develop wheezing and diagnose as acute bronchiolitis. HPIV2-infected children were more likely to have hoarseness (23.9%), and were associated with croup (25.4%). HPIV3 was isolated from two fatal cases, with neurological underlying diseases. CONCLUSION The impact caused by HPIVs infections is significant in hospitalized children. In the current study, our results contribute to the epidemiologic, clinical and laboratory information of HPIV infection in children in the important areas of respiratory tract infection that could support the development of optimization management.
Collapse
|
29
|
Russell CJ, Jones BG, Sealy RE, Surman SL, Mason JN, Hayden RT, Tripp RA, Takimoto T, Hurwitz JL. A Sendai virus recombinant vaccine expressing a gene for truncated human metapneumovirus (hMPV) fusion protein protects cotton rats from hMPV challenge. Virology 2017; 509:60-66. [PMID: 28605636 DOI: 10.1016/j.virol.2017.05.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 05/12/2017] [Accepted: 05/30/2017] [Indexed: 11/25/2022]
Abstract
Human metapneumovirus (hMPV) infections pose a serious health risk to young children, particularly in cases of premature birth. No licensed vaccine exists and there is no standard treatment for hMPV infections apart from supportive hospital care. We describe the production of a Sendai virus (SeV) recombinant that carries a gene for a truncated hMPV fusion (F) protein (SeV-MPV-Ft). The vaccine induces binding and neutralizing antibody responses toward hMPV and protection against challenge with hMPV in a cotton rat system. Results encourage advanced development of SeV-MPV-Ft to prevent the morbidity and mortality caused by hMPV infections in young children.
Collapse
Affiliation(s)
- Charles J Russell
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bart G Jones
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Robert E Sealy
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Sherri L Surman
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - John N Mason
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Randall T Hayden
- Department of Pathology, St. Jude Children's Research Hospital, USA
| | - Ralph A Tripp
- Department of Infectious Diseases, College of Veterinary Medicine, The University of Georgia, Athens, GA, USA
| | | | - Julia L Hurwitz
- Department of Infectious Diseases, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA; Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA.
| |
Collapse
|
30
|
A Feasibility Trial of Home Administration of Intranasal Vaccine by Parents to Eligible Children. Clin Ther 2016; 39:204-211.e4. [PMID: 27938896 DOI: 10.1016/j.clinthera.2016.11.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 11/23/2022]
Abstract
PURPOSE Intranasal vaccines are being developed for protection against many different infectious agents. The currently available intranasal live attenuated influenza vaccine (LAIV) is only approved for administration by medical personnel. We conducted a pilot study to investigate the feasibility of training parents to give LAIV to their own children. METHODS Subjects were recruited from several sources: a university-based outpatient clinic, university employee e-mail announcement, and direct referrals from study subjects. After confirming eligibility to receive LAIV, consented parents were trained by viewing a video with the study staff. LAIV was provided in a cooler with instructions to vaccinate within 24 hours. Telephone follow-up was conducted to confirm proper administration and to assess parental attitudes about home administration. At season's end, immunization registry and hospital records were reviewed to confirm no additional doses were given. FINDINGS Twenty-seven families with 41 children were enrolled. All participants successfully administered LAIV to their children, and all preferred or strongly preferred home administration to an office visit for getting vaccinated. Two families stated that without this option they would not have otherwise vaccinated their children. Adverse events were minor. All patients had their state vaccine registries accurately updated and none received duplicate doses. Upon review, no reimbursement was received for vaccination. IMPLICATIONS Home administration of intranasal LAIV was successful and well received. This option could be used in the future for LAIV or other intranasal vaccines as a way to increase vaccination rates and convenience for parents. ClinicalTrials.gov identifier: NCT01938170.
Collapse
|
31
|
Nyombayire J, Anzala O, Gazzard B, Karita E, Bergin P, Hayes P, Kopycinski J, Omosa-Manyonyi G, Jackson A, Bizimana J, Farah B, Sayeed E, Parks CL, Inoue M, Hironaka T, Hara H, Shu T, Matano T, Dally L, Barin B, Park H, Gilmour J, Lombardo A, Excler JL, Fast P, Laufer DS, Cox JH. First-in-Human Evaluation of the Safety and Immunogenicity of an Intranasally Administered Replication-Competent Sendai Virus-Vectored HIV Type 1 Gag Vaccine: Induction of Potent T-Cell or Antibody Responses in Prime-Boost Regimens. J Infect Dis 2016; 215:95-104. [PMID: 28077588 PMCID: PMC5225252 DOI: 10.1093/infdis/jiw500] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/13/2016] [Indexed: 11/22/2022] Open
Abstract
Background. We report the first-in-human safety and immunogenicity assessment of a prototype intranasally administered, replication-competent Sendai virus (SeV)–vectored, human immunodeficiency virus type 1 (HIV-1) vaccine. Methods. Sixty-five HIV-1–uninfected adults in Kenya, Rwanda, and the United Kingdom were assigned to receive 1 of 4 prime-boost regimens (administered at 0 and 4 months, respectively; ratio of vaccine to placebo recipients, 12:4): priming with a lower-dose SeV-Gag given intranasally, followed by boosting with an adenovirus 35–vectored vaccine encoding HIV-1 Gag, reverse transcriptase, integrase, and Nef (Ad35-GRIN) given intramuscularly (SLA); priming with a higher-dose SeV-Gag given intranasally, followed by boosting with Ad35-GRIN given intramuscularly (SHA); priming with Ad35-GRIN given intramuscularly, followed by boosting with a higher-dose SeV-Gag given intranasally (ASH); and priming and boosting with a higher-dose SeV-Gag given intranasally (SHSH). Results. All vaccine regimens were well tolerated. Gag-specific IFN-γ enzyme-linked immunospot–determined response rates and geometric mean responses were higher (96% and 248 spot-forming units, respectively) in groups primed with SeV-Gag and boosted with Ad35-GRIN (SLA and SHA) than those after a single dose of Ad35-GRIN (56% and 54 spot-forming units, respectively) or SeV-Gag (55% and 59 spot-forming units, respectively); responses persisted for ≥8 months after completion of the prime-boost regimen. Functional CD8+ T-cell responses with greater breadth, magnitude, and frequency in a viral inhibition assay were also seen in the SLA and SHA groups after Ad35-GRIN boost, compared with those who received either vaccine alone. SeV-Gag did not boost T-cell counts in the ASH group. In contrast, the highest Gag-specific antibody titers were seen in the ASH group. Mucosal antibody responses were sporadic. Conclusions. SeV-Gag primed functional, durable HIV-specific T-cell responses and boosted antibody responses. The prime-boost sequence appears to determine which arm of the immune response is stimulated. Clinical Trials Registration. NCT01705990.
Collapse
Affiliation(s)
| | - Omu Anzala
- Kenya AIDS Vaccine Initiative Institute of Clinical Research, Nairobi
| | - Brian Gazzard
- Chelsea and Westminster Healthcare NHS Foundation Trust
| | | | - Philip Bergin
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Peter Hayes
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | - Jakub Kopycinski
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | - Akil Jackson
- Chelsea and Westminster Healthcare NHS Foundation Trust
| | | | - Bashir Farah
- Kenya AIDS Vaccine Initiative Institute of Clinical Research, Nairobi
| | - Eddy Sayeed
- International AIDS Vaccine Initiative, New York, New York
| | | | | | | | | | | | - Tetsuro Matano
- University of Tokyo.,National Institute of Infectious Diseases, Tokyo, Japan
| | - Len Dally
- Emmes Corporation, Rockville, Maryland
| | | | - Harriet Park
- International AIDS Vaccine Initiative, New York, New York
| | - Jill Gilmour
- Human Immunology Laboratory, International AIDS Vaccine Initiative, London, United Kingdom
| | | | | | - Patricia Fast
- International AIDS Vaccine Initiative, New York, New York
| | - Dagna S Laufer
- International AIDS Vaccine Initiative, New York, New York
| | | | | |
Collapse
|
32
|
Russell CJ, Hurwitz JL. Sendai virus as a backbone for vaccines against RSV and other human paramyxoviruses. Expert Rev Vaccines 2015; 15:189-200. [PMID: 26648515 DOI: 10.1586/14760584.2016.1114418] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human paramyxoviruses are the etiological agents for life-threatening respiratory virus infections of infants and young children. These viruses, including respiratory syncytial virus (RSV), the human parainfluenza viruses (hPIV1-4) and human metapneumovirus (hMPV), are responsible for millions of serious lower respiratory tract infections each year worldwide. There are currently no standard treatments and no licensed vaccines for any of these pathogens. Here we review research with which Sendai virus, a mouse parainfluenza virus type 1, is being advanced as a Jennerian vaccine for hPIV1 and as a backbone for RSV, hMPV and other hPIV vaccines for children.
Collapse
Affiliation(s)
- Charles J Russell
- a Department of Infectious Diseases , St. Jude Children's Research Hospital , Memphis , TN , USA.,b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| | - Julia L Hurwitz
- a Department of Infectious Diseases , St. Jude Children's Research Hospital , Memphis , TN , USA.,b Department of Microbiology, Immunology and Biochemistry , University of Tennessee Health Science Center , Memphis , TN , USA
| |
Collapse
|
33
|
Ishii H, Matano T. Development of an AIDS vaccine using Sendai virus vectors. Vaccine 2015; 33:6061-5. [PMID: 26232346 DOI: 10.1016/j.vaccine.2015.06.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Revised: 06/22/2015] [Accepted: 06/30/2015] [Indexed: 10/23/2022]
Abstract
Development of an effective AIDS vaccine is crucial for the control of global human immunodeficiency virus type 1 (HIV-1) prevalence. We have developed a novel AIDS vaccine using a Sendai virus (SeV) vector and investigated its efficacy in a macaque AIDS model of simian immunodeficiency virus (SIV) infection. Its immunogenicity and protective efficacy have been shown, indicating that the SeV vector is a promising delivery tool for AIDS vaccines. Here, we describe the potential of SeV vector as a vaccine antigen delivery tool to induce effective immune responses against HIV-1 infection.
Collapse
Affiliation(s)
- Hiroshi Ishii
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Tetsuro Matano
- AIDS Research Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan; The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|