1
|
Chen J, Huang B, Deng Y, Wang W, Zhai C, Han D, Wang N, Zhao Y, Zhai D, Tan W. Synergistic Immunity and Protection in Mice by Co-Immunization with DNA Vaccines Encoding the Spike Protein and Other Structural Proteins of SARS-CoV-2. Vaccines (Basel) 2023; 11:243. [PMID: 36851120 PMCID: PMC9967269 DOI: 10.3390/vaccines11020243] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/11/2023] [Accepted: 01/17/2023] [Indexed: 01/26/2023] Open
Abstract
The emergence of new variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has generated recurring worldwide infection outbreaks. These highly mutated variants reduce the effectiveness of current coronavirus disease 2019 (COVID-19) vaccines, which are designed to target only the spike (S) protein of the original virus. Except for the S of SARS-CoV-2, the immunoprotective potential of other structural proteins (nucleocapsid, N; envelope, E; membrane, M) as vaccine target antigens is still unclear and worthy of investigation. In this study, synthetic DNA vaccines encoding four SARS-CoV-2 structural proteins (pS, pN, pE, and pM) were developed, and mice were immunized with three doses via intramuscular injection and electroporation. Notably, co-immunization with two DNA vaccines that expressed the S and N proteins induced higher neutralizing antibodies and was more effective in reducing the SARS-CoV-2 viral load than the S protein alone in mice. In addition, pS co-immunization with either pN or pE + pM induced a higher S protein-specific cellular immunity after three immunizations and caused milder histopathological changes than pS alone post-challenge. The role of the conserved structural proteins of SARS-CoV-2, including the N/E/M proteins, should be investigated further for their applications in vaccine design, such as mRNA vaccines.
Collapse
Affiliation(s)
- Jinni Chen
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Baoying Huang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Yao Deng
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Wen Wang
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Chengcheng Zhai
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Di Han
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| | - Na Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, China
| | - Desheng Zhai
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
| | - Wenjie Tan
- School of Public Health, Xinxiang Medical University, Xinxiang 453003, China
- NHC Key Laboratory of Biosafety, National Institute for Viral Disease Control and Prevention, China CDC, Beijing 102206, China
| |
Collapse
|
2
|
Chen J, Deng Y, Huang B, Han D, Wang W, Huang M, Zhai C, Zhao Z, Yang R, Zhao Y, Wang W, Zhai D, Tan W. DNA Vaccines Expressing the Envelope and Membrane Proteins Provide Partial Protection Against SARS-CoV-2 in Mice. Front Immunol 2022; 13:827605. [PMID: 35281016 PMCID: PMC8907653 DOI: 10.3389/fimmu.2022.827605] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has become a public health emergency of international concern, and an effective vaccine is urgently needed to control the pandemic. Envelope (E) and membrane (M) proteins are highly conserved structural proteins among SARS-CoV-2 and SARS-CoV and have been proposed as potential targets for the development of cross-protective vaccines. Here, synthetic DNA vaccines encoding SARS-CoV-2 E/M proteins (called p-SARS-CoV-2-E/M) were developed, and mice were immunised with three doses via intramuscular injection and electroporation. Significant cellular immune responses were elicited, whereas no robust humoral immunity was detected. In addition, novel H-2d-restricted T-cell epitopes were identified. Notably, although no drop in lung tissue virus titre was detected in DNA-vaccinated mice post-challenge with SARS-CoV-2, immunisation with either p-SARS-CoV-2-E or p-SARS-CoV-2-M provided minor protection and co-immunisation with p-SARS-CoV-2-E+M increased protection. Therefore, E/M proteins should be considered as vaccine candidates as they may be valuable in the optimisation of vaccination strategies against COVID-19.
Collapse
Affiliation(s)
- Jinni Chen
- School of Public Health, Xinxiang Medical University, Xinxiang, China.,National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Yao Deng
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Baoying Huang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Di Han
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Wen Wang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Mengjing Huang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,Basic Medical College, Inner Mongolia Medical University, Hohhot, China
| | - Chengcheng Zhai
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China.,School of Public Health, Baotou Medical College, Baotou, China
| | - Zhimin Zhao
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Ren Yang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Ying Zhao
- School of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Wenling Wang
- National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| | - Desheng Zhai
- School of Public Health, Xinxiang Medical University, Xinxiang, China
| | - Wenjie Tan
- School of Public Health, Xinxiang Medical University, Xinxiang, China.,National Health Commission (NHC) Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, China CDC, Beijing, China
| |
Collapse
|
3
|
Kardani K, Basimi P, Fekri M, Bolhassani A. Antiviral therapy for the sexually transmitted viruses: recent updates on vaccine development. Expert Rev Clin Pharmacol 2020; 13:1001-1046. [PMID: 32838584 DOI: 10.1080/17512433.2020.1814743] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The sexually transmitted infections (STIs) caused by viruses including human T cell leukemia virus type-1 (HTLV-1), human immunodeficiency virus-1 (HIV-1), human simplex virus-2 (HSV-2), hepatitis C virus (HCV), hepatitis B virus (HBV), and human papillomavirus (HPV) are major public health issues. These infections can cause cancer or result in long-term health problems. Due to high prevalence of STIs, a safe and effective vaccine is required to overcome these fatal viruses. AREAS COVERED This review includes a comprehensive overview of the literatures relevant to vaccine development against the sexually transmitted viruses (STVs) using PubMed and Sciencedirect electronic search engines. Herein, we discuss the efforts directed toward development of effective vaccines using different laboratory animal models including mice, guinea pig or non-human primates in preclinical trials, and human in clinical trials with different phases. EXPERT OPINION There is no effective FDA approved vaccine against the sexually transmitted viruses (STVs) except for HBV and HPV as prophylactic vaccines. Many attempts are underway to develop vaccines against these viruses. There are several approaches for improving prophylactic or therapeutic vaccines such as heterologous prime/boost immunization, delivery system, administration route, adjuvants, etc. In this line, further studies can be helpful for understanding the immunobiology of STVs in human. Moreover, development of more relevant animal models is a worthy goal to induce effective immune responses in humans.
Collapse
Affiliation(s)
- Kimia Kardani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Parya Basimi
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Mehrshad Fekri
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| | - Azam Bolhassani
- Department of Hepatitis and AIDS, Pasteur Institute of Iran , Tehran, Iran
| |
Collapse
|
4
|
Humoral and cellular immunity against both ZIKV and poxvirus is elicited by a two-dose regimen using DNA and non-replicating vaccinia virus-based vaccine candidates. Vaccine 2019; 37:2122-2130. [DOI: 10.1016/j.vaccine.2019.02.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/07/2019] [Accepted: 02/17/2019] [Indexed: 02/06/2023]
|
5
|
Chuai X, Xie B, Chen H, Tan X, Wang W, Huang B, Deng Y, Li W, Tan W. The immune response of rhesus macaques to novel vaccines comprising hepatitis B virus S, PreS1, and Core antigens. Vaccine 2018; 36:3740-3746. [PMID: 29778513 DOI: 10.1016/j.vaccine.2018.05.061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 05/09/2018] [Accepted: 05/14/2018] [Indexed: 12/18/2022]
Abstract
Therapeutic vaccines represent a unique approach to hepatitis B virus (HBV) treatment and have the potential to induce long-term control of infection. This study explored the immune responses of rhesus macaques to novel vaccines comprising the S, PreS1, and Core antigens of the HBV that showed promise as prophylactic and therapeutic approaches in a mouse model. The tested vaccines included two DNA vaccines (pVRC-SS1, pVRC-CS1), an HBV particle subunit (HBSS1) vaccine and the recombinant vaccinia virus- (RVJ-) based vaccines (RVJSS1 and RVJCS1) in which SS1 containing S (1-223 aa) and PreS1 (21-47 aa), CS1 containing Core (1-144 aa) and PreS1 (1-42 aa). The humoral immunity and cell-mediated immunity (CMI) induced by vaccines comprising the S, PreS1, and Core antigens of HBV were investigated in a longitudinal study that continued up to 98 weeks after the firstvaccination. In rhesus macaques, anti-PreS1 antibody was induced more rapidly than anti-S or anti-Core antibody after DNA vaccination. The antibody and cell-mediated immune responses against S, PreS1, and C were significantly enhanced in macaques boosted with RVJSS1 and RVJCS1, whereas the cell-mediated response to C was most robust and durable. The immune response to S, PreS1, and C was restored by HBSS1 boosting and detected in macaques until weeks 74 and 98 after the first vaccination. Additionally, robust neutralizing activity was detected at week 52. In conclusion, novel HBV vaccine candidates, especially those used for therapeutic applications should incorporate the PreS1 and Core antigens.
Collapse
Affiliation(s)
- Xia Chuai
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China; Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang 050017, Heibei Province, People's Republic of China
| | - Bangxiang Xie
- Capital Medical University Affiliated Beijing You'an Hospital, Beijing Institute of Hepatology, Beijing 100069, People's Republic of China
| | - Hong Chen
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Xinyi Tan
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, People's Republic of China
| | - Wen Wang
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Baoying Huang
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Yao Deng
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China
| | - Wenhui Li
- National Institute of Biological Sciences, Beijing 102206, People's Republic of China
| | - Wenjie Tan
- MOH Key Laboratory of Medical Virology, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, People's Republic of China.
| |
Collapse
|
6
|
Chuai X, Chen P, Chen H, Wang W, Deng Y, Ruan L, Li W, Tan W. Protective efficacy and hepatitis B virus clearance in mice enhanced by cell-mediated immunity with novel prime-boost regimens. J Viral Hepat 2017; 24:337-345. [PMID: 27885748 DOI: 10.1111/jvh.12649] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/13/2016] [Indexed: 12/30/2022]
Abstract
In this study, anti-hepatitis B virus (HBV) immunity was evaluated in mice using several regimens of the HBV recombinant protein vaccine HBSS1 that expressed in CHO cells containing S (1-223 aa) and preS1 (21-47 aa) and recombinant adenovirus rAdSS1 vaccine. Further, the protective efficacy of these vaccine regimens was studied in a mouse model. High titres of antigen-specific antibodies and neutralizing activity were elicited in mice after vaccination. However, robust multi-antigen (preS1 and S)-specific cell-mediated immunity (CMI) was only detected in mice primed with HBSS1 and boosted with rAdSS1. Moreover, functional T-cell responses with high levels of cytokines and antigen-specific cytotoxic T-cell responses (CD107a+ CD8+ ) were also detected in the mice. Rapid clearance of hepatitis B surface antigen and HBV DNA in blood and significantly decreased hepatitis B envelope antigen levels were observed in mice immunized with the heterogeneous prime-boost vaccine after hepatitis B virus challenge by hydrodynamic injection (HI) of pCS-HBV1.3. The clearance of HBV correlated well with antigen-specific CMI (Th1 and CTL responses) and cytokine profiles (IFN-γ, TNF-α, IL-2) elicited by vaccination. Taken together, our results might contribute to the development of new human HBV vaccines and a better understanding of the mechanisms underlying immune protection and clearance of hepatitis B virus infection.
Collapse
Affiliation(s)
- X Chuai
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.,Department of Pathogenic Biology, Hebei Medical University, Shijiazhuang, Heibei Province, China
| | - P Chen
- National Institute of Biological Sciences, Beijing, China
| | - H Chen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Y Deng
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - L Ruan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - W Li
- National Institute of Biological Sciences, Beijing, China
| | - W Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| |
Collapse
|
7
|
Liu H, Wang S, Jia Y, Li J, Huang Z, Lu S, Xing Y. N-Linked Glycosylation at an Appropriate Position in the Pre-S2 Domain Is Critical for Cellular and Humoral Immunity against Middle HBV Surface Antigen. TOHOKU J EXP MED 2016; 236:131-8. [PMID: 26062906 DOI: 10.1620/tjem.236.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Infection with hepatitis B virus (HBV) remains a worldwide health problem, and DNA-based vaccines against HBV have been tested for therapeutic applications. HBV possesses three envelope lipoproteins that are translated from a single reading-frame: large, middle, and small HBV surface antigens. Among these envelope proteins, the middle HBV surface antigen (MHBs) contains a constitutive N-linked glycosylation site at position 4 (Asn4) in the amino-terminal portion (MQWNSTTFHQ) of pre-S2 domain. Asn4 (shown in bold) is essential for secretion of viral particles and conserved among all serotypes of HBV, but its influence on the immunogenicity of MHBs remains unknown. Here, we constructed four MHBs genes carrying mutations, underlined, in the amino-terminal portion of pre-S2 domain. One mutant protein contains Q at position 4 (MQWQSTTFHQ). In addition, each of three mutant MHBs proteins contains a N-linked glycosylation site (N-X-S/T), relocated to position 5 (MQWQNTTFHQ), 6 (MQWQSNTSHQ) or 7 (MQWQSTNFTQ) in pre-S2 domain. The expression and immunogenic properties of mutant DNA vaccines were examined in 293T human renal epithelial cells and in BALB/c mice, respectively. We showed that Asn4 was critical for secretion and immunogenicity of MHBs. Moreover, the MHBs protein that carries a N-linked glycosylation site at position 5 or 7 retained the properties similar to wild-type MHBs. In contrast, the secretion-defective mutant protein carrying Asn at position 6 induced only marginal humoral and cellular immune responses in mice, despite the N-linked glycosylation. In conclusion, N-linked glycosylation at an appropriate position in pre-S2 domain is an essential requirement for DNA vaccine expressing MHBs.
Collapse
Affiliation(s)
- Hao Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Nanjing Medical University, 2) Department of Infectious Diseases, Nanjing Children's Hospital, Affiliated to Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | |
Collapse
|
8
|
Priming with two DNA vaccines expressing hepatitis C virus NS3 protein targeting dendritic cells elicits superior heterologous protective potential in mice. Arch Virol 2015. [PMID: 26215441 DOI: 10.1007/s00705-015-2535-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Development an effective vaccine may offer an alternative preventive and therapeutic strategy against HCV infection. DNA vaccination has been shown to induce robust humoral and cellular immunity and overcome many problems associated with conventional vaccines. In this study, mice were primed with either conventional pVRC-based or suicidal pSC-based DNA vaccines carrying DEC-205-targeted NS3 antigen (DEC-NS3) and boosted with type 5 adenoviral vectors encoding the partial NS3 and core antigens (C44P). The prime boost regimen induced a marked increase in antigen-specific humoral and T-cell responses in comparison with either rAd5-based vaccines or DEC-205-targeted DNA immunization in isolation. The protective effect against heterogeneous challenge was correlated with high levels of anti-NS3 IgG and T-cell-mediated immunity against NS3 peptides. Moreover, priming with a suicidal DNA vaccine (pSC-DEC-NS3), which elicited increased TNF-α-producing CD4+ and CD8+ T-cells against NS3-2 peptides (aa 1245-1461), after boosting, showed increased heterogeneous protective potential compared with priming with a conventional DNA vaccine (pVRC-DEC-NS3). In conclusion, a suicidal DNA vector (pSC-DEC-NS3) expressing DEC-205-targeted NS3 combined with boosting using an rAd5-based HCV vaccine (rAd5-C44P) is a good candidate for a safe and effective vaccine against HCV infection.
Collapse
|
9
|
Toita R, Kawano T, Kang JH, Murata M. Applications of human hepatitis B virus preS domain in bio- and nanotechnology. World J Gastroenterol 2015; 21:7400-7411. [PMID: 26139986 PMCID: PMC4481435 DOI: 10.3748/wjg.v21.i24.7400] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/24/2015] [Accepted: 05/04/2015] [Indexed: 02/06/2023] Open
Abstract
Human hepatitis B virus (HBV) is a member of the family Hepadnaviridae, and causes acute and chronic infections of the liver. The hepatitis B surface antigen (HBsAg) contains the large (L), middle (M), and small (S) surface proteins. The L protein consists of the S protein, preS1, and preS2. In HBsAg, the preS domain (preS1 + preS2) plays a key role in the infection of hepatocytic cells by HBV and has several immunogenic epitopes. Based on these characteristics of preS, several preS-based diagnostic and therapeutic materials and systems have been developed. PreS1-specific monoclonal antibodies (e.g., MA18/7 and KR127) can be used to inhibit HBV infection. A myristoylated preS1 peptide (amino acids 2-48) also inhibits the attachment of HBV to HepaRG cells, primary human hepatocytes, and primary tupaia hepatocytes. Antibodies and antigens related to the components of HBsAg, preS (preS1 + preS2), or preS1 can be available as diagnostic markers of acute and chronic HBV infections. Hepatocyte-targeting delivery systems for therapeutic molecules (drugs, genes, or proteins) are very important for increasing the clinical efficacy of these molecules and in reducing their adverse effects on other organs. The selective delivery of diagnostic molecules to target hepatocytic cells can also improve the efficiency of diagnosis. In addition to the full-length HBV vector, preS (preS1 + preS2), preS1, and preS1-derived fragments can be useful in hepatocyte-specific targeting. In this review, we discuss the literature concerning the applications of the HBV preS domain in bio- and nanotechnology.
Collapse
|
10
|
Obeng-Adjei N, Hutnick NA, Yan J, Chu JS, Myles DJF, Morrow MP, Sardesai NY, Weiner DB. DNA vaccine cocktail expressing genotype A and C HBV surface and consensus core antigens generates robust cytotoxic and antibody responses in mice and Rhesus macaques. Cancer Gene Ther 2013; 20:652-62. [PMID: 24310062 DOI: 10.1038/cgt.2013.65] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/30/2013] [Accepted: 10/15/2013] [Indexed: 12/15/2022]
Abstract
There are well over a quarter of a billion chronic hepatitis B virus (HBV) carriers across the globe. Most carriers are at high risk for development of liver cirrhosis and subsequent progression to hepatocellular carcinoma. It is therefore imperative to develop new approaches for immunotherapy against this infection. Antibodies and cytotoxic T cells to different HBV antigens are believed to be important for reducing viral load and clearing HBV-infected cells from the liver. Some of the major challenges facing current vaccine candidates have been their inability to induce both humoral and cellular immunity to multiple antigenic targets and the induction of potent immune responses against the major genotypes of HBV. In this study, highly optimized synthetic DNA plasmids against the HBV consensus core (HBc) and surface (HBs) antigens genotypes A and C were developed and evaluated for their immune potential. These plasmids, which encode the most prevalent genotypes of the virus, were observed to individually induce binding antibodies to HBs antigens and drove robust cell-mediated immunity in animal models. Similar responses to both HBc and HBs antigens were observed when mice and non-human primates were inoculated with the HBc-HBs cocktails. In addition to the cytotoxic T lymphocyte activities exhibited by the immunized mice, the vaccine-induced responses were broadly distributed across multiple antigenic epitopes. These elements are believed to be important to develop an effective therapeutic vaccine. These data support further evaluation of multivalent synthetic plasmids as therapeutic HBV vaccines.
Collapse
Affiliation(s)
- N Obeng-Adjei
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - N A Hutnick
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - J Yan
- Inovio Pharmaceuticals Inc., Blue Bell, PA, USA
| | - J S Chu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - D J F Myles
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - M P Morrow
- Inovio Pharmaceuticals Inc., Blue Bell, PA, USA
| | | | - D B Weiner
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
11
|
Chuai X, Wang W, Chen H, Deng Y, Wen B, Tan W. Lentiviral backbone-based hepatitis B virus replicon-mediated transfer favours the establishment of persistent hepatitis B virus infection in mice after hydrodynamic injection. Antiviral Res 2013; 101:68-74. [PMID: 24239872 DOI: 10.1016/j.antiviral.2013.10.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 10/04/2013] [Accepted: 10/30/2013] [Indexed: 01/29/2023]
Abstract
Establishment of a non-transgenic mouse model of persistent hepatitis B virus (HBV) infection is urgently needed. In this study, we constructed novel lentiviral-transfer plasmids containing HBV replicon DNA (pCS-HBV1.3, containing a 1.3-fold-overlength genome of HBV) and employed hydrodynamic injection (HDI) to develop an HBV-persistent mouse model. We explored the impact of host (different mouse strains, BALB/c and C57BL/6), gender, and the plasmid backbone on persistent HBV in mice. Our data showed that HBV antigenaemia (HBsAg, HBeAg) and HBV DNA persisted for >56days post-injection, while the appearance of anti-HBs antibody in the serum was only found among <30% of female C57BL/6 mice injected with pCS-HBV1.3. Moreover, HBcAg and HBV DNA were also detected in the liver of HDI mice. Compared with previous AAV-backbone based HBV replicon DNA transfer, we found that the HDI transfer with the lentiviral vector-based HBV replicon (pCS-HBV1.3) in this study resulted in a significantly higher level of HBV DNA transfer in the liver and longer persistence of HBV DNA and antigenaemia in the serum. Furthermore, we also showed that immunization of HBV replicon transfer mice with the novel HBSS1-based vaccines was able to overcome tolerance against HBV in mice and induces robust immunity (humoral as well as T-cell responses), followed by the clearance of the HBV viremia. We concluded that lentiviral backbone-based transfer vectors more readily establish persistent HBV infection in mouse models via HDI, providing a new tool useful for the study of HBV infection and immune-based therapies.
Collapse
Affiliation(s)
- Xia Chuai
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China; Department of Microbiology, Hebei Medical University, PR China
| | - Wen Wang
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Hong Chen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Yao Deng
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Bo Wen
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China
| | - Wenjie Tan
- Key Laboratory of Medical Virology, Ministry of Health, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, PR China.
| |
Collapse
|
12
|
Chen H, Chuai X, Deng Y, Wen B, Wang W, Xiong S, Ruan L, Tan W. Optimisation of prime-boost immunization in mice using novel protein-based and recombinant vaccinia (Tiantan)-based HBV vaccine. PLoS One 2012; 7:e43730. [PMID: 22970140 PMCID: PMC3435326 DOI: 10.1371/journal.pone.0043730] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 07/24/2012] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND A therapeutic vaccine for chronic hepatitis B virus (HBV) infection that enhances virus-specific cellular immune responses is urgently needed. The "prime-boost" regimen is a widely used vaccine strategy against many persistence infections. However, few reports have addressed this strategy applying for HBV therapeutic vaccine development. METHODOLOGY/PRINCIPAL FINDINGS To develop an effective HBV therapeutic vaccine, we constructed a recombinant vaccinia virus (Tiantan) containing the S+PreS1 fusion antigen (RVJSS1) combined with the HBV particle-like subunit vaccine HBVSS1 to explore the most effective prime-boost regimen against HBV. The immune responses to different prime-boost regimens were assessed in C57BL/C mice by ELISA, ELISpot assay and Intracellular cytokine staining analysis. Among the combinations tested, an HBV protein particle vaccine priming and recombinant vaccinia virus boosting strategy accelerated specific seroconversion and produced high antibody (anti-PreS1, anti-S antibody) titres as well as the strongest multi-antigen (PreS1, and S)-specific cellular immune response. HBSS1 protein prime/RVJSS1 boost immunization was also generated more significant level of both CD4+ and CD8+ T cell responses for Th1 cytokines (TNF-α and IFN-γ). CONCLUSIONS The HBSS1 protein-vaccine prime plus RVJSS1 vector boost elicits specific antibody as well as CD4 and CD8 cells secreting Th1-like cytokines, and these immune responses may be important parameters for the future HBV therapeutic vaccines.
Collapse
Affiliation(s)
- Hong Chen
- Biotech Center for Viral Diseases Emergency, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Xia Chuai
- Biotech Center for Viral Diseases Emergency, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- Department of Microbiology, Hebei Medical University, Shijiazhuang, People's Republic of China
| | - Yao Deng
- Biotech Center for Viral Diseases Emergency, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Bo Wen
- Biotech Center for Viral Diseases Emergency, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
- College of Life Science, Jilin University, Changchun, People's Republic of China
| | - Wen Wang
- Biotech Center for Viral Diseases Emergency, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Shaoqing Xiong
- School of Life Science and Bio-engineering, Beijing University of Technology, Beijing, People's Republic of China
| | - Li Ruan
- Biotech Center for Viral Diseases Emergency, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| | - Wenjie Tan
- Biotech Center for Viral Diseases Emergency, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, People's Republic of China
| |
Collapse
|
13
|
Khawaja G, Buronfosse T, Jamard C, Abdul F, Guerret S, Zoulim F, Luxembourg A, Hannaman D, Evans CF, Hartmann D, Cova L. In vivo electroporation improves therapeutic potency of a DNA vaccine targeting hepadnaviral proteins. Virology 2012; 433:192-202. [PMID: 22921316 DOI: 10.1016/j.virol.2012.07.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2012] [Revised: 06/01/2012] [Accepted: 07/16/2012] [Indexed: 12/15/2022]
Abstract
This preclinical study investigated the therapeutic efficacy of electroporation (EP)-based delivery of plasmid DNA (pDNA) encoding viral proteins (envelope, core) and IFN-γ in the duck model of chronic hepatitis B virus (DHBV) infection. Importantly, only DNA EP-therapy resulted in a significant decrease in mean viremia titers and in intrahepatic covalently closed circular DNA (cccDNA) levels in chronic DHBV-carrier animals, compared with standard needle pDNA injection (SI). In addition, DNA EP-therapy stimulated in all virus-carriers a humoral response to DHBV preS protein, recognizing a broader range of major antigenic regions, including neutralizing epitopes, compared with SI. DNA EP-therapy led also to significant higher intrahepatic IFN-γ RNA levels in DHBV-carriers compared to other groups, in the absence of adverse effects. We provide the first evidence on DNA EP-therapy benefit in terms of hepadnaviral infection clearance and break of immune tolerance in virus-carriers, supporting its clinical application for chronic hepatitis B.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/biosynthesis
- Antibodies, Viral/immunology
- Chronic Disease
- DNA, Circular/genetics
- DNA, Circular/immunology
- Disease Models, Animal
- Ducks
- Electroporation
- Epitopes
- Hepadnaviridae Infections/immunology
- Hepadnaviridae Infections/prevention & control
- Hepadnaviridae Infections/veterinary
- Hepadnaviridae Infections/virology
- Hepatitis B Vaccines/administration & dosage
- Hepatitis B Vaccines/immunology
- Hepatitis B Virus, Duck/immunology
- Hepatitis, Viral, Animal/immunology
- Hepatitis, Viral, Animal/prevention & control
- Hepatitis, Viral, Animal/virology
- Immune Tolerance
- Immunity, Humoral
- Interferon-gamma/biosynthesis
- Interferon-gamma/immunology
- Plasmids
- Vaccines, DNA/administration & dosage
- Vaccines, DNA/immunology
- Viral Core Proteins/genetics
- Viral Core Proteins/immunology
- Viral Envelope Proteins/genetics
- Viral Envelope Proteins/immunology
- Viremia/immunology
- Viremia/prevention & control
- Viremia/veterinary
- Viremia/virology
Collapse
|
14
|
Rapid screening for entry inhibitors of highly pathogenic viruses under low-level biocontainment. PLoS One 2012; 7:e30538. [PMID: 22396728 PMCID: PMC3292545 DOI: 10.1371/journal.pone.0030538] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2011] [Accepted: 12/18/2011] [Indexed: 01/17/2023] Open
Abstract
Emerging viruses including Nipah, Hendra, Lujo, and Junin viruses have enormous potential to spread rapidly. Nipah virus, after emerging as a zoonosis, has also evolved the capacity for human-to-human transmission. Most of the diseases caused by these pathogens are untreatable and require high biocontainment conditions. Universal methods for rapidly identifying and screening candidate antivirals are urgently needed. We have developed a modular antiviral platform strategy that relies on simple bioinformatic and genetic information about each pathogen. Central to this platform is the use of envelope glycoprotein cDNAs to establish multi-cycle replication systems under BSL2 conditions for viral pathogens that normally require BSL3 and BSL4 facilities. We generated monoclonal antibodies against Nipah G by cDNA immunization in rats, and we showed that these antibodies neutralize both Nipah and Hendra live viruses. We then used these effective Henipavirus inhibitors to validate our screening strategy. Our proposed strategy should contribute to the response capability for emerging infectious diseases, providing a way to initiate antiviral development immediately upon identifying novel viruses.
Collapse
|
15
|
Enhanced magnitude and breadth of neutralizing humoral response to a DNA vaccine targeting the DHBV envelope protein delivered by in vivo electroporation. Virology 2012; 425:61-9. [DOI: 10.1016/j.virol.2012.01.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Revised: 12/23/2011] [Accepted: 01/03/2012] [Indexed: 02/08/2023]
|