1
|
Mancheary John PU, Kandula SK, Cheekatla SS, Metta VSMK, Peddi K. Qualitative and Untargeted Volatilome Fingerprinting of Aspergillus sp. and Bulbithecium sp. by HS-SPME-GCMS and Functional Interactions. J Basic Microbiol 2024; 64:e2400210. [PMID: 39014937 DOI: 10.1002/jobm.202400210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/18/2024]
Abstract
Research on fungal volatile organic compounds (VOCs) has increased worldwide in the last 10 years, but marine fungal volatilomes remain underexplored. Similarly, the hormone-signaling pathways, agronomic significance, and biocontrol potential of VOCs in plant-associated fungi make the area of research extremely promising. In the current investigation, VOCs of the isolates-Aspergillus sp. GSBT S13 and GSBT S14 from marine sediments, and Bulbithecium sp. GSBT E3 from Eucalyptus foliage were extracted using Head Space solid phase microextraction, followed by gas chromatography-mass spectrometry, identification, statistical analyses, and prediction of functions by KEGG COMPOUND and STITCH 5.0 databases. The significance of this research is fingerprinting VOCs of the isolates from distinct origins, identification of compounds using three libraries (NIST02, NIST14, and W9N11), and using bioinformatic tools to perform functional analysis. The most important findings include the identification of previously unreported compounds in fungi-1-methoxy naphthalene, diethyl phthalate, pentadecane, pristane, and nonanal; the prediction of the involvement of small molecules in the degradation of aromatic compound pathways and activation, inhibition, binding, and catalysis of metabolites with predicted protein partners. This study has ample opportunity to validate the findings and understand the mechanism or mode of action, the interspecies interactions, and the role of the metabolites in geochemical cycles.
Collapse
Affiliation(s)
- Prathyash Ushus Mancheary John
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | - Siva Kumar Kandula
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | - Satyanarayana Swamy Cheekatla
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| | | | - Koteswari Peddi
- Department of Biotechnology, GITAM School of Science, GITAM (Deemed-to-be-University), Visakhapatnam, Andhra Pradesh, India
| |
Collapse
|
2
|
Annaz H, El Fakhouri K, Ben Bakrim W, Mahdi I, El Bouhssini M, Sobeh M. Bergamotenes: A comprehensive compile of their natural occurrence, biosynthesis, toxicity, therapeutic merits and agricultural applications. Crit Rev Food Sci Nutr 2024; 64:7343-7362. [PMID: 36876517 DOI: 10.1080/10408398.2023.2184766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2023]
Abstract
Sesquiterpenoids constitute the largest subgroup of terpenoids that have numerous applications in pharmaceutical, flavor, and fragrance industries as well as biofuels. Bergamotenes, a type of bicyclic sesquiterpenes, are found in plants, insects, and fungi with α-trans-bergamotene as the most abundant compound. Bergamotenes and their related structures (Bergamotane sesquiterpenoids) have been shown to possess diverse biological activities such as antioxidant, anti-inflammatory, immunosuppressive, cytotoxic, antimicrobial, antidiabetic, and insecticidal effects. However, studies on their biotechnological potential are still limited. This review compiles the characteristics of bergamotenes and their related structures in terms of occurrence, biosynthesis pathways, and biological activities. It further discusses their functionalities and potential applications in pharmaceutical, nutraceuticals, cosmeceuticals, and pest management sectors. This review also opens novel perspectives in identifying and harnessing bergamotenes for pharmaceutical and agricultural purposes.
Collapse
Affiliation(s)
- Hassan Annaz
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Karim El Fakhouri
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Widad Ben Bakrim
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
- African Sustainable Agriculture Research Institute (ASARI), College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Ismail Mahdi
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mustapha El Bouhssini
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Mansour Sobeh
- AgroBioSciences Program, College for Sustainable Agriculture and Environmental Science, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| |
Collapse
|
3
|
Barac A, Vujovic A, Peric J, Tulic I, Stojanovic M, Stjepanovic M. Rethinking Aspergillosis in the Era of Microbiota and Mycobiota. Mycopathologia 2024; 189:49. [PMID: 38864956 DOI: 10.1007/s11046-024-00853-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 04/09/2024] [Indexed: 06/13/2024]
Abstract
Aspergillosis encompasses a wide range of clinical conditions based on the interaction between Aspergillus and the host. It ranges from colonization to invasive aspergillosis. The human lung provides an entry door for Aspergillus. Aspergillus has virulence characteristics such as conidia, rapid growth at body temperature, and the production of specific proteins, carbohydrates, and secondary metabolites that allow A. fumigatus to infiltrate the lung's alveoli and cause invasive aspergillosis. Alveolar epithelial cells play an important role in both fungus clearance and immune cell recruitment via cytokine release. Although the innate immune system quickly clears conidia in immunocompetent hosts, A. fumigatus has evolved multiple virulence factors in order to escape immune response such as ROS detoxifying enzymes, the rodlet layer, DHN-melanin and toxins. Bacterial co-infections or interactions can alter the immune response, impact Aspergillus growth and virulence, enhance biofilm formation, confound diagnosis, and reduce treatment efficacy. The gut microbiome's makeup influences pulmonary immune responses generated by A. fumigatus infection and vice versa. The real-time PCR for Aspergillus DNA detection might be a particularly useful tool to diagnose pulmonary aspergillosis. Metagenomics analyses allow quick and easy detection and identification of a great variety of fungi in different clinical samples, although optimization is still required particularly for the use of NGS techniques. This review will analyze the current state of aspergillosis in light of recent discoveries in the microbiota and mycobiota.
Collapse
Affiliation(s)
- Aleksandra Barac
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia.
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia.
| | - Ankica Vujovic
- Clinic for Infectious and Tropical Diseases, University Clinical Center of Serbia, Belgrade, Serbia
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
| | - Jovan Peric
- Center for Anesthesiology and Resuscitation, University Clinical Center of Serbia, Belgrade, Serbia
| | - Ivan Tulic
- Clinic for Orthopedic Surgery and Traumatology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Maja Stojanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Allergology and Clinical Immunology, University Clinical Center of Serbia, Belgrade, Serbia
| | - Mihailo Stjepanovic
- Faculty of Medicine, University of Belgrade, Belgrade, Serbia
- Clinic for Pulmonology, University Clinical Center of Serbia, Belgrade, Serbia
| |
Collapse
|
4
|
Lochmann F, Flatschacher D, Speckbacher V, Zeilinger S, Heuschneider V, Bereiter S, Schiller A, Ruzsanyi V. Demonstrating the Applicability of Proton Transfer Reaction Mass Spectrometry to Quantify Volatiles Emitted by the Mycoparasitic Fungus Trichoderma atroviride in Real Time: Monitoring of Trichoderma-Based Biopesticides. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1168-1177. [PMID: 38708575 PMCID: PMC11157538 DOI: 10.1021/jasms.3c00456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 04/04/2024] [Accepted: 04/05/2024] [Indexed: 05/07/2024]
Abstract
The present study aims to explore the potential application of proton transfer reaction time-of-flight mass spectrometry (PTR-ToF-MS) for real-time monitoring of microbial volatile organic compounds (MVOCs). This investigation can be broadly divided into two parts. First, a selection of 14 MVOCs was made based on previous research that characterized the MVOC emissions of Trichoderma atroviride, which is a filamentous fungus widely used as a biocontrol agent. The analysis of gas-phase standards using PTR-ToF-MS allowed for the categorization of these 14 MVOCs into two groups: the first group primarily undergoes nondissociative proton transfer, resulting in the formation of protonated parent ions, while the second group mainly undergoes dissociative proton transfer, leading to the formation of fragment ions. In the second part of this investigation, the emission of MVOCs from samples of T. atroviride was continuously monitored over a period of five days using PTR-ToF-MS. This also included the first quantitative online analysis of 6-amyl-α-pyrone (6-PP), a key MVOC emitted by T. atroviride. The 6-PP emissions of T. atroviride cultures were characterized by a gradual increase over the first two days of cultivation, reaching a plateau-like maximum with volume mixing ratios exceeding 600 ppbv on days three and four. This was followed by a marked decrease, where the 6-PP volume mixing ratios plummeted to below 50 ppbv on day five. This observed sudden decrease in 6-PP emissions coincided with the start of sporulation of the T. atroviride cultures as well as increasing intensities of product ions associated with 1-octen-3-ol and 3-octanone, whereas both these MVOCs were previously associated with sporulation in T. atroviride. The study also presents the observations and discussion of further MVOC emissions from the T. atroviride samples and concludes with a critical assessment of the possible applications and limitations of PTR-ToF-MS for the online monitoring of MVOCs from biological samples in real time.
Collapse
Affiliation(s)
- Franziska Lochmann
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Daniel Flatschacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Verena Speckbacher
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Susanne Zeilinger
- Institut
für Mikrobiologie, Universität
Innsbruck, Technikerstrasse
25d, A-6020 Innsbruck, Austria
| | - Valentina Heuschneider
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Stephanie Bereiter
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Arne Schiller
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| | - Veronika Ruzsanyi
- Institut
für Atemgasanalytik, Universität
Innsbruck, Innrain 52a and 80-82, A-6020 Innsbruck, Austria
| |
Collapse
|
5
|
Cuervo L, Méndez C, Olano C, Malmierca MG. Volatilome: Smells like microbial spirit. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:1-43. [PMID: 38763526 DOI: 10.1016/bs.aambs.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
In recent years, the study of volatile compounds has sparked interest due to their implications in signaling and the enormous variety of bioactive properties attributed to them. Despite the absence of analysis methods standardization, there are a multitude of tools and databases that allow the identification and quantification of volatile compounds. These compounds are chemically heterogeneous and their diverse properties are exploited by various fields such as cosmetics, the food industry, agriculture and medicine, some of which will be discussed here. In virtue of volatile compounds being ubiquitous and fast chemical messengers, these molecules mediate a large number of interspecific and intraspecific interactions, which are key at an ecological level to maintaining the balance and correct functioning of ecosystems. This review briefly summarized the role of volatile compounds in inter- and intra-specific relationships as well as industrial applications associated with the use of these compounds that is emerging as a promising field of study.
Collapse
Affiliation(s)
- Lorena Cuervo
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carmen Méndez
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Carlos Olano
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain
| | - Mónica G Malmierca
- Functional Biology Department, University of Oviedo, Oviedo, Spain; University Institute of Oncology of Asturias, University of Oviedo, Oviedo, Spain; Health Research Institute of Asturias, Av. del Hospital Universitario, s/n, Oviedo, Spain.
| |
Collapse
|
6
|
Truong TTT, Chiu CC, Su PY, Chen JY, Nguyen TP, Ohme-Takagi M, Lee RH, Cheng WH, Huang HJ. Signaling pathways involved in microbial indoor air pollutant 3-methyl-1-butanol in the induction of stomatal closure in Arabidopsis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:7556-7568. [PMID: 38165546 DOI: 10.1007/s11356-023-31641-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/17/2023] [Indexed: 01/04/2024]
Abstract
Indoor air pollution is a global problem and one of the main stress factors that has negative effects on plant and human health. 3-methyl-1-butanol (3MB), an indoor air pollutant, is a microbial volatile organic compound (mVOC) commonly found in damp indoor dwellings. In this study, we reported that 1 mg/L of 3MB can elicit a significant reduction in the stomatal aperture ratio in Arabidopsis and tobacco. Our results also showed that 3MB enhances the reactive oxygen species (ROS) production in guard cells of wild-type Arabidopsis after 24 h exposure. Further investigation of 24 h 3MB fumigation of rbohD, the1-1, mkk1, mkk3, and nced3 mutants revealed that ROS production, cell wall integrity, MAPK kinases cascade, and phytohormone abscisic acid are all involved in the process of 3MB-induced stomatal. Our findings proposed a mechanism by which 3MB regulates stomatal closure in Arabidopsis. Understanding the mechanisms by which microbial indoor air pollutant induces stomatal closure is critical for modulating the intake of harmful gases from indoor environments into leaves. Investigations into how stomata respond to the indoor mVOC 3MB will shed light on the plant's "self-defense" system responding to indoor air pollution.
Collapse
Affiliation(s)
- Tu-Trinh Thi Truong
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
- Faculty of Technology, The University of Danang-Campus in Kontum, No. 704 Phan Dinh Phung, Kontum, Vietnam
| | - Chi-Chou Chiu
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Pei-Yu Su
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Jing-Yu Chen
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Tri-Phuong Nguyen
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Masaru Ohme-Takagi
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Ruey-Hua Lee
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan
| | - Wan-Hsing Cheng
- Institute of Plant and Microbial Biology, Academia Sinica, No. 128, Section 2, Academia Rd, Nangang District, Taipei City, Taiwan
| | - Hao-Jen Huang
- Department of Life Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
- Institute of Tropical Plant Sciences and Microbiology, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
- Graduate Program in Translational Agricultural Sciences, National Cheng Kung University, No. 1, Dasyue Rd, East District, Tainan, Taiwan.
| |
Collapse
|
7
|
Venugopalan LP, Aimanianda V, Namperumalsamy VP, Prajna L, Kuppamuthu D, Jayapal JM. Comparative proteome analysis identifies species-specific signature proteins in Aspergillus pathogens. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12559-4. [PMID: 37166481 DOI: 10.1007/s00253-023-12559-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/12/2023]
Abstract
Aspergillus flavus and Aspergillus fumigatus are important human pathogens that can infect the lung and cornea. During infection, Aspergillus dormant conidia are the primary morphotype that comes in contact with the host. As the conidial surface-associated proteins (CSPs) and the extracellular proteins during the early stages of growth play a crucial role in establishing infection, we profiled and compared these proteins between a clinical strain of A. flavus and a clinical strain of A. fumigatus. We identified nearly 100 CSPs in both Aspergillus, and these non-covalently associated surface proteins were able to stimulate the neutrophils to secrete interleukin IL-8. Mass spectrometry analysis identified more than 200 proteins in the extracellular space during the early stages of conidial growth and germination (early exoproteome). The conidial surface proteins and the early exoproteome of A. fumigatus were enriched with immunoreactive proteins and those with pathogenicity-related functions while that of the A. flavus were primarily enzymes involved in cell wall reorganization and binding. Comparative proteome analysis of the CSPs and the early exoproteome between A. flavus and A. fumigatus enabled the identification of a common core proteome and potential species-specific signature proteins. Transcript analysis of selected proteins indicate that the transcript-protein level correlation does not exist for all proteins and might depend on factors such as membrane-anchor signals and protein half-life. The probable signature proteins of A. flavus and A. fumigatus identified in this study can serve as potential candidates for developing species-specific diagnostic tests. KEY POINTS: • CSPs and exoproteins could differentiate A. flavus and A. fumigatus. • A. fumigatus conidial surface harbored more antigenic proteins than A. flavus. • Identified species-specific signature proteins of A. flavus and A. fumigatus.
Collapse
Affiliation(s)
- Lakshmi Prabha Venugopalan
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
- Present address: Centre for Biotechnology, Anna University, Chennai, India
| | - Vishukumar Aimanianda
- Unité des Aspergillus, Institut Pasteur, 75015, Paris, France
- Present address: Unité de recherche Mycologie Moléculaire, UMR2000, Institut Pasteur, 75015, Paris, France
| | | | - Lalitha Prajna
- Department of Ocular Microbiology, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Dharmalingam Kuppamuthu
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India
| | - Jeya Maheshwari Jayapal
- Department of Proteomics, Aravind Medical Research Foundation, Anna Nagar, Madurai, Tamil Nadu, India.
| |
Collapse
|
8
|
Systematic Review: Contribution of the Gut Microbiome to the Volatile Metabolic Fingerprint of Colorectal Neoplasia. Metabolites 2022; 13:metabo13010055. [PMID: 36676980 PMCID: PMC9865897 DOI: 10.3390/metabo13010055] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/16/2022] [Accepted: 12/22/2022] [Indexed: 12/31/2022] Open
Abstract
Colorectal cancer (CRC) has been associated with changes in volatile metabolic profiles in several human biological matrices. This enables its non-invasive detection, but the origin of these volatile organic compounds (VOCs) and their relation to the gut microbiome are not yet fully understood. This systematic review provides an overview of the current understanding of this topic. A systematic search using PubMed, Embase, Medline, Cochrane Library, and the Web of Science according to PRISMA guidelines resulted in seventy-one included studies. In addition, a systematic search was conducted that identified five systematic reviews from which CRC-associated gut microbiota data were extracted. The included studies analyzed VOCs in feces, urine, breath, blood, tissue, and saliva. Eight studies performed microbiota analysis in addition to VOC analysis. The most frequently reported dysregulations over all matrices included short-chain fatty acids, amino acids, proteolytic fermentation products, and products related to the tricarboxylic acid cycle and Warburg metabolism. Many of these dysregulations could be related to the shifts in CRC-associated microbiota, and thus the gut microbiota presumably contributes to the metabolic fingerprint of VOC in CRC. Future research involving VOCs analysis should include simultaneous gut microbiota analysis.
Collapse
|
9
|
Frau A, Ijaz UZ, Slater R, Jonkers D, Penders J, Campbell BJ, Kenny JG, Hall N, Lenzi L, Burkitt MD, Pierik M, Darby AC, Probert CSJ. Inter-kingdom relationships in Crohn's disease explored using a multi-omics approach. Gut Microbes 2022; 13:1930871. [PMID: 34241567 PMCID: PMC8274447 DOI: 10.1080/19490976.2021.1930871] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The etiology of Crohn's disease (CD) is multifactorial. Bacterial and fungal microbiota are involved in the onset and/or progression of the disease. A bacterial dysbiosis in CD patients is accepted; however, less is known about the mycobiome and the relationships between the two communities. We investigated the interkingdom relationships, their metabolic consequences, and the changes in the fungal community during relapse and remission in CD.Two cohorts were evaluated: a British cohort (n = 63) comprising CD and ulcerative colitis patients, and controls. The fungal and bacterial communities of biopsy and fecal samples were analyzed, with the fecal volatiles; datasets were also integrated; and a Dutch cohort (n = 41) comprising CD patients and healthy controls was analyzed for stability of the gut mycobiome.A dysbiosis of the bacterial community was observed in biopsies and stool. Results suggest Bacteroides is likely key in CD and may modulate Candida colonization. A dysbiosis of the fungal community was observed only in the Dutch cohort; Malassezia and Candida were increased in patients taking immunosuppressants. Longitudinal analysis showed an increase in Cyberlindnera in relapse. Saccharomyces was dominant in all fecal samples, but not in biopsies, some of which did not yield fungal reads; amino acid degradation was the main metabolic change associated with CD and both bacteria and fungi might be implicated.We have shown that Bacteroides and yeasts may play a role in CD; understanding their role and relationship in the disease would shed new light on the development and treatment of CD.
Collapse
Affiliation(s)
- Alessandra Frau
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK,CONTACT Alessandra Frau Department of Molecular and Clinical Cancer Medicine, Nuffield Building, Ashton Street, LiverpoolL69 3GE, UK
| | - Umer Z. Ijaz
- School of Engineering, University of Glasgow, Glasgow, UK,Umer Z. Ijaz School of Engineering, University of Glasgow, Glasgow, UK
| | - Rachael Slater
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Daisy Jonkers
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - John Penders
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Barry J. Campbell
- Department of Infection & Microbiomes, University of Liverpool, Liverpool, UK
| | | | - Neil Hall
- Earlham Institute, Norwich, UK,School of Biological Sciences, University of East Anglia, Norwich, Norfolk, UK
| | - Luca Lenzi
- Centre for Genomic Research, University of Liverpool, Liverpool, UK
| | - Michael D. Burkitt
- Division of Diabetes, Endocrinology and Gastroenterology, University of Manchester, Manchester, UK
| | - Marieke Pierik
- School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, Netherlands
| | - Alistair C. Darby
- Department of Infection & Microbiomes, University of Liverpool, Liverpool, UK
| | - Christopher S. J. Probert
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
10
|
Ahmed W, White IR, Wilkinson M, Johnson CF, Rattray N, Kishore AK, Goodacre R, Smith CJ, Fowler SJ. Breath and plasma metabolomics to assess inflammation in acute stroke. Sci Rep 2021; 11:21949. [PMID: 34753981 PMCID: PMC8578671 DOI: 10.1038/s41598-021-01268-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 09/27/2021] [Indexed: 12/25/2022] Open
Abstract
Inflammation is strongly implicated in both injury and repair processes occurring after stroke. In this exploratory study we assessed the feasibility of repeated sampling of exhaled volatile organic compounds and performed an untargeted metabolomic analysis of plasma collected at multiple time periods after stroke. Metabolic profiles were compared with the time course of the inflammatory markers C-reactive protein (CRP) and interleukin-6 (IL-6). Serial breath sampling was well-tolerated by all patients and the measurement appears feasible in this group. We found that exhaled decanal tracks CRP and IL-6 levels post-stroke and correlates with several metabolic pathways associated with a post-stroke inflammatory response. This suggests that measurement of breath and blood metabolites could facilitate development of novel therapeutic and diagnostic strategies. Results are discussed in relation to the utility of breath analysis in stroke care, such as in monitoring recovery and complications including stroke associated infection.
Collapse
Affiliation(s)
- Waqar Ahmed
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Iain R White
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Laboratory for Environmental and Life Sciences, University of Nova Gorica, Nova Gorica, Slovenia
| | - Maxim Wilkinson
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Craig F Johnson
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
| | - Nicholas Rattray
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| | - Amit K Kishore
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK
- Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Royston Goodacre
- Department of Biochemistry and Systems Biology, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Craig J Smith
- Greater Manchester Comprehensive Stroke Centre, Geoffrey Jefferson Brain Research Centre, Salford Royal NHS Foundation Trust, Manchester Academic Health Science Centre, Salford, UK.
- Division of Cardiovascular Sciences, Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| | - Stephen J Fowler
- Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
- NIHR Manchester Biomedical Research Centre, Manchester University Hospitals NHS Foundation Trust, Manchester, UK.
| |
Collapse
|
11
|
Josselin L, De Clerck C, De Boevre M, Moretti A, Jijakli MH, Soyeurt H, Fauconnier ML. Volatile Organic Compounds Emitted by Aspergillus flavus Strains Producing or Not Aflatoxin B1. Toxins (Basel) 2021; 13:705. [PMID: 34678998 PMCID: PMC8539470 DOI: 10.3390/toxins13100705] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/16/2021] [Accepted: 09/28/2021] [Indexed: 11/16/2022] Open
Abstract
Aspergillus flavus is a phytopathogenic fungus able to produce aflatoxin B1 (AFB1), a carcinogenic mycotoxin that can contaminate several crops and food commodities. In A. flavus, two different kinds of strains can co-exist: toxigenic and non-toxigenic strains. Microbial-derived volatile organic compounds (mVOCs) emitted by toxigenic and non-toxigenic strains of A. flavus were analyzed by solid phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS) in a time-lapse experiment after inoculation. Among the 84 mVOCs emitted, 44 were previously listed in the scientific literature as specific to A. flavus, namely alcohols (2-methylbutan-1-ol, 3-methylbutan-1-ol, 2-methylpropan-1-ol), aldehydes (2-methylbutanal, 3-methylbutanal), hydrocarbons (toluene, styrene), furans (2,5-dimethylfuran), esters (ethyl 2-methylpropanoate, ethyl 2-methylbutyrate), and terpenes (epizonaren, trans-caryophyllene, valencene, α-copaene, β-himachalene, γ-cadinene, γ-muurolene, δ-cadinene). For the first time, other identified volatile compounds such as α-cadinol, cis-muurola-3,5-diene, α-isocomene, and β-selinene were identified as new mVOCs specific to the toxigenic A. flavus strain. Partial Least Square Analysis (PLSDA) showed a distinct pattern between mVOCs emitted by toxigenic and non-toxigenic A. flavus strains, mostly linked to the diversity of terpenes emitted by the toxigenic strains. In addition, the comparison between mVOCs of the toxigenic strain and its non-AFB1-producing mutant, coupled with a semi-quantification of the mVOCs, revealed a relationship between emitted terpenes (β-chamigrene, α-corocalene) and AFB1 production. This study provides evidence for the first time of mVOCs being linked to the toxigenic character of A. flavus strains, as well as terpenes being able to be correlated to the production of AFB1 due to the study of the mutant. This study could lead to the development of new techniques for the early detection and identification of toxigenic fungi.
Collapse
Affiliation(s)
- Laurie Josselin
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Caroline De Clerck
- AgricultureIsLife, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Marthe De Boevre
- Centre of Excellence in Mycotoxicology and Public Health, Department of Bioanalysis, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Gent, Belgium;
| | - Antonio Moretti
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/o, 70126 Bari, Italy;
| | - M. Haïssam Jijakli
- Integrated and Urban Plant Pathology Laboratory, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Hélène Soyeurt
- Statistic, Informatic and Applied Modelling, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| | - Marie-Laure Fauconnier
- Laboratory of Chemistry of Natural Molecules, Gembloux Agro-Bio Tech, Liege University, Passage des déportés 2, 5030 Gembloux, Belgium;
| |
Collapse
|
12
|
Inamdar AA, Morath S, Bennett JW. Fungal Volatile Organic Compounds: More Than Just a Funky Smell? Annu Rev Microbiol 2021; 74:101-116. [PMID: 32905756 DOI: 10.1146/annurev-micro-012420-080428] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many volatile organic compounds (VOCs) associated with industry cause adverse health effects, but less is known about the physiological effects of biologically produced volatiles. This review focuses on the VOCs emitted by fungi, which often have characteristic moldy or "mushroomy" odors. One of the most common fungal VOCs, 1-octen-3-ol, is a semiochemical for many arthropod species and also serves as a developmental hormone for several fungal groups. Other fungal VOCs are flavor components of foods and spirits or are assayed in indirect methods for detecting the presence of mold in stored agricultural produce and water-damaged buildings. Fungal VOCs function as antibiotics as well as defense and plant-growth-promoting agents and have been implicated in a controversial medical condition known as sick building syndrome. In this review, we draw attention to the ubiquity, diversity, and toxicological significance of fungal VOCs as well as some of their ecological roles.
Collapse
Affiliation(s)
- Arati A Inamdar
- Department of Pathology, RWJ Barnabas Health, Livingston, New Jersey 07039, USA;
| | - Shannon Morath
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| | - Joan W Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, USA; ,
| |
Collapse
|
13
|
Rodríguez-Hernández P, Rodríguez-Estévez V, Arce L, Gómez-Laguna J. Application of Volatilome Analysis to the Diagnosis of Mycobacteria Infection in Livestock. Front Vet Sci 2021; 8:635155. [PMID: 34109231 PMCID: PMC8180594 DOI: 10.3389/fvets.2021.635155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 04/08/2021] [Indexed: 01/22/2023] Open
Abstract
Volatile organic compounds (VOCs) are small molecular mass metabolites which compose the volatilome, whose analysis has been widely employed in different areas. This innovative approach has emerged in research as a diagnostic alternative to different diseases in human and veterinary medicine, which still present constraints regarding analytical and diagnostic sensitivity. Such is the case of the infection by mycobacteria responsible for tuberculosis and paratuberculosis in livestock. Although eradication and control programs have been partly managed with success in many countries worldwide, the often low sensitivity of the current diagnostic techniques against Mycobacterium bovis (as well as other mycobacteria from Mycobacterium tuberculosis complex) and Mycobacterium avium subsp. paratuberculosis together with other hurdles such as low mycobacteria loads in samples, a tedious process of microbiological culture, inhibition by many variables, or intermittent shedding of the mycobacteria highlight the importance of evaluating new techniques that open different options and complement the diagnostic paradigm. In this sense, volatilome analysis stands as a potential option because it fulfills part of the mycobacterial diagnosis requirements. The aim of the present review is to compile the information related to the diagnosis of tuberculosis and paratuberculosis in livestock through the analysis of VOCs by using different biological matrices. The analytical techniques used for the evaluation of VOCs are discussed focusing on the advantages and drawbacks offered compared with the routine diagnostic tools. In addition, the differences described in the literature among in vivo and in vitro assays, natural and experimental infections, and the use of specific VOCs (targeted analysis) and complete VOC pattern (non-targeted analysis) are highlighted. This review emphasizes how this methodology could be useful in the problematic diagnosis of tuberculosis and paratuberculosis in livestock and poses challenges to be addressed in future research.
Collapse
Affiliation(s)
- Pablo Rodríguez-Hernández
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Vicente Rodríguez-Estévez
- Department of Animal Production, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Lourdes Arce
- Department of Analytical Chemistry, Inst Univ Invest Quim Fina and Nanoquim Inst Univ Invest Quim Fina and Nanoquim (IUNAN), International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| | - Jaime Gómez-Laguna
- Department of Anatomy and Comparative Pathology and Toxicology, International Agrifood Campus of Excellence (ceiA3), University of Córdoba, Córdoba, Spain
| |
Collapse
|
14
|
Orban A, Weber A, Herzog R, Hennicke F, Rühl M. Transcriptome of different fruiting stages in the cultivated mushroom Cyclocybe aegerita suggests a complex regulation of fruiting and reveals enzymes putatively involved in fungal oxylipin biosynthesis. BMC Genomics 2021; 22:324. [PMID: 33947322 PMCID: PMC8097960 DOI: 10.1186/s12864-021-07648-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 04/19/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cyclocybe aegerita (syn. Agrocybe aegerita) is a commercially cultivated mushroom. Its archetypal agaric morphology and its ability to undergo its whole life cycle under laboratory conditions makes this fungus a well-suited model for studying fruiting body (basidiome, basidiocarp) development. To elucidate the so far barely understood biosynthesis of fungal volatiles, alterations in the transcriptome during different developmental stages of C. aegerita were analyzed and combined with changes in the volatile profile during its different fruiting stages. RESULTS A transcriptomic study at seven points in time during fruiting body development of C. aegerita with seven mycelial and five fruiting body stages was conducted. Differential gene expression was observed for genes involved in fungal fruiting body formation showing interesting transcriptional patterns and correlations of these fruiting-related genes with the developmental stages. Combining transcriptome and volatilome data, enzymes putatively involved in the biosynthesis of C8 oxylipins in C. aegerita including lipoxygenases (LOXs), dioxygenases (DOXs), hydroperoxide lyases (HPLs), alcohol dehydrogenases (ADHs) and ene-reductases could be identified. Furthermore, we were able to localize the mycelium as the main source for sesquiterpenes predominant during sporulation in the headspace of C. aegerita cultures. In contrast, changes in the C8 profile detected in late stages of development are probably due to the activity of enzymes located in the fruiting bodies. CONCLUSIONS In this study, the combination of volatilome and transcriptome data of C. aegerita revealed interesting candidates both for functional genetics-based analysis of fruiting-related genes and for prospective enzyme characterization studies to further elucidate the so far barely understood biosynthesis of fungal C8 oxylipins.
Collapse
Affiliation(s)
- Axel Orban
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany
| | - Annsophie Weber
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany
| | - Robert Herzog
- International Institute Zittau, Technical University Dresden, 02763, Zittau, Saxony, Germany
| | - Florian Hennicke
- Project Group Genetics and Genomics of Fungi, Ruhr-University Bochum, Chair Evolution of Plants and Fungi, 44780, Bochum, North Rhine-Westphalia, Germany.
| | - Martin Rühl
- Institute of Food Chemistry and Food Biotechnology, Justus Liebig University Giessen, 35392, Giessen, Hesse, Germany. .,Fraunhofer Institute for Molecular Biology and Applied Ecology IME Branch for Bioresources, 35392, Giessen, Hesse, Germany.
| |
Collapse
|
15
|
Abstract
Valley fever (coccidioidomycosis) is an endemic fungal pneumonia of the North and South American deserts. The causative agents of Valley fever are the dimorphic fungi Coccidioides immitis and C. posadasii, which grow as mycelia in the environment and as spherules within the lungs of vulnerable hosts. Current diagnostics for Valley fever are severely lacking due to poor sensitivity and invasiveness, contributing to a 23-day median time to diagnosis, and therefore, new diagnostic tools are needed. We are working toward the development of a breath-based diagnostic for coccidioidomycosis, and in this initial study, we characterized the volatile metabolomes (or volatilomes) of in vitro cultures of Coccidioides. Using solid-phase microextraction (SPME) and comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry (GC×GC-TOFMS), we characterized the volatile organic compounds (VOCs) produced by six strains of each species during mycelial or spherule growth. We detected a total of 353 VOCs that were at least 2-fold more abundant in a Coccidioides culture than in medium controls and found that the volatile metabolome of Coccidioides is more dependent on the growth phase (spherules versus mycelia) than on the species. The volatile profiles of C. immitis and C. posadasii have strong similarities, indicating that a single suite of Valley fever breath biomarkers can be developed to detect both species. IMPORTANCE Coccidioidomycosis, or Valley fever, causes up to 30% of community-acquired pneumonias in highly populated areas of the U.S. desert southwest where the disease is endemic. The infection is difficult to diagnose by standard serological and histopathological methods, which delays appropriate treatment. Therefore, we are working toward the development of breath-based diagnostics for Valley fever. In this study, we characterized the volatile metabolomes (or volatilomes) of six strains each of Coccidioides immitis and C. posadasii, the dimorphic fungal species that cause Valley fever. By analyzing the volatilomes during the two modes of growth of the fungus—mycelia and spherules—we observed that the life cycle plays a significant role in the volatiles produced by Coccidioides. In contrast, we observed no significant differences in the C. immitis versus C. posadasii volatilomes. These data suggest that life cycle, rather than species, should guide the selection of putative biomarkers for a Valley fever breath test.
Collapse
|
16
|
Camarena-Pozos DA, Flores-Núñez VM, López MG, Partida-Martínez LP. Fungal volatiles emitted by members of the microbiome of desert plants are diverse and capable of promoting plant growth. Environ Microbiol 2021; 23:2215-2229. [PMID: 33432727 DOI: 10.1111/1462-2920.15395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 01/06/2021] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Fungi represent a group of eukaryotic microorganisms that are an important part of the plant microbiome. They produce a vast array of metabolites, including fungal volatile organic compounds (fVOCs). However, the diversity and biological activities of fVOCs emitted by the mycobiota of plants native to arid and semi-arid environments remain under-explored. We characterized the chemical diversity of fVOCs produced by 22 representative members of the microbiome of agaves and cacti using SPME-GC-MS. We further tested the effects of pure compounds on the growth and development of Arabidopsis thaliana and host plants. Members of the Sordariomycetes (nine strains), Eurotiomycetes (three), Dothideomycetes (eight), Saccharomycetes (one) and Mucoromycetes (one) were included in our study. We identified 94 fungal organic volatiles classified into nine chemical classes. Terpenes showed the greatest chemical diversity, followed by alcohols and aliphatic compounds. We discovered that camphene and benzyl benzoate, together with the widely distributed and already tested benzyl alcohol, 2-phenylethyl alcohol and 3-methyl-1-butanol, improved plant growth and development of A. thaliana, Agave tequilana and Agave salmiana. Our studies on the fungal VOCs from desert plants underscore an untapped chemical diversity with promising biotechnological applications.
Collapse
Affiliation(s)
- D A Camarena-Pozos
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - V M Flores-Núñez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - M G López
- Departamento de Biotecnología y Bioquímica, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| | - L P Partida-Martínez
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados, Irapuato, 36824, Mexico
| |
Collapse
|
17
|
Almaliki HS, Angela A, Goraya NJ, Yin G, Bennett JW. Volatile Organic Compounds Produced by Human Pathogenic Fungi Are Toxic to Drosophila melanogaster. FRONTIERS IN FUNGAL BIOLOGY 2021; 1:629510. [PMID: 37743879 PMCID: PMC10512272 DOI: 10.3389/ffunb.2020.629510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Accepted: 12/21/2020] [Indexed: 09/26/2023]
Abstract
Volatile organic compounds (VOCs) are low molecular mass organic compounds that easily evaporate at room temperature. Fungi produce diverse mixtures of VOCs, some of which may contribute to "sick building syndrome," and which have been shown to be toxigenic in a variety of laboratory bioassays. We hypothesized that VOCs from medically important fungi might be similarly toxigenic and tested strains of Aspergillus fumigatus, Candida albicans, Cryptococcus neoformans, Cryptococcus gattii, and Saccharomyces cerevisiae in a Drosophila melanogaster eclosion bioassay. Fungi were grown in a shared microhabitat with third instar larvae of D. melanogaster such that there was no physical contact between flies and fungi. As the flies went through metamorphosis, the numbers of larvae, pupae, and adults were counted daily for 15 days. After 8 days, ~80% of controls had eclosed into adults and after 15 days the controls yielded 96-97% eclosion. In contrast, eclosion rates at 8 days were below 70% for flies exposed to VOCs from six different A. fumigatus strains; the eclosion rate at 15 days was only 58% for flies exposed to VOCs from A. fumigatus strain SRRC 1607. When flies were grown in a shared atmosphere with VOCs from S. cerevisiae, after 15 days, 82% of flies had eclosed into adults. Exposure to the VOCs from the medically important yeasts Candida albicans, Cryptococcus neoformans, and Cryptococcus gattii caused significant delays in metamorphosis with eclosion rates of 58% for Candida albicans, 44% for Cryptococcus neoformans, and 56% for Cryptococcus gattii. Using gas chromatography-mass spectrometry, the VOCs from the most toxic and least toxic strains of A. fumigatus were assayed. The two most common VOCs produced by both strains were 1-octen-3-ol and isopentyl alcohol; however, these compounds were produced in 10-fold higher concentrations by the more toxic strain. Our research demonstrates that gas phase compounds emitted by fungal pathogens may have been overlooked as contributing to the pathogenicity of medically important fungi and therefore deserve more scrutiny by the medical mycology research community.
Collapse
Affiliation(s)
- Hadeel S. Almaliki
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
- Technical Institute of Samawa, Al-Furat Al-Awsat Technical University, Samawa, Iraq
| | - Astrid Angela
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Nayab J. Goraya
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Guohua Yin
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| | - Joan W. Bennett
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ, United States
| |
Collapse
|
18
|
Loulier J, Lefort F, Stocki M, Asztemborska M, Szmigielski R, Siwek K, Grzywacz T, Hsiang T, Ślusarski S, Oszako T, Klisz M, Tarakowski R, Nowakowska JA. Detection of Fungi and Oomycetes by Volatiles Using E-Nose and SPME-GC/MS Platforms. Molecules 2020; 25:E5749. [PMID: 33291490 PMCID: PMC7730677 DOI: 10.3390/molecules25235749] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/03/2020] [Accepted: 12/04/2020] [Indexed: 01/18/2023] Open
Abstract
Fungi and oomycetes release volatiles into their environment which could be used for olfactory detection and identification of these organisms by electronic-nose (e-nose). The aim of this study was to survey volatile compound emission using an e-nose device and to identify released molecules through solid phase microextraction-gas chromatography/mass spectrometry (SPME-GC/MS) analysis to ultimately develop a detection system for fungi and fungi-like organisms. To this end, cultures of eight fungi (Armillaria gallica, Armillaria ostoyae, Fusarium avenaceum, Fusarium culmorum, Fusarium oxysporum, Fusarium poae, Rhizoctonia solani, Trichoderma asperellum) and four oomycetes (Phytophthora cactorum, P. cinnamomi, P. plurivora, P. ramorum) were tested with the e-nose system and investigated by means of SPME-GC/MS. Strains of F. poae, R. solani and T. asperellum appeared to be the most odoriferous. All investigated fungal species (except R. solani) produced sesquiterpenes in variable amounts, in contrast to the tested oomycetes strains. Other molecules such as aliphatic hydrocarbons, alcohols, aldehydes, esters and benzene derivatives were found in all samples. The results suggested that the major differences between respective VOC emission ranges of the tested species lie in sesquiterpene production, with fungi emitting some while oomycetes released none or smaller amounts of such molecules. Our e-nose system could discriminate between the odors emitted by P. ramorum, F. poae, T. asperellum and R. solani, which accounted for over 88% of the PCA variance. These preliminary results of fungal and oomycete detection make the e-nose device suitable for further sensor design as a potential tool for forest managers, other plant managers, as well as regulatory agencies such as quarantine services.
Collapse
Affiliation(s)
- Jérémie Loulier
- InTNE (Plants & Pathogens Group), Hepia, University of Applied Sciences and Arts of Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland;
| | - François Lefort
- InTNE (Plants & Pathogens Group), Hepia, University of Applied Sciences and Arts of Western Switzerland, 150 route de Presinge, 1254 Jussy, Switzerland;
| | - Marcin Stocki
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.S.); (T.O.)
| | - Monika Asztemborska
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.A.); (R.S.)
| | - Rafał Szmigielski
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland; (M.A.); (R.S.)
| | - Krzysztof Siwek
- Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-661 Warsaw, Poland; (K.S.); (T.G.)
| | - Tomasz Grzywacz
- Faculty of Electrical Engineering, Warsaw University of Technology, Koszykowa 75, 00-661 Warsaw, Poland; (K.S.); (T.G.)
| | - Tom Hsiang
- Environmental Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Sławomir Ślusarski
- Forest Protection Department, Forest Research Institute, Braci Leśnej 3, 05-090 Sękocin Stary, Poland;
| | - Tomasz Oszako
- Institute of Forest Sciences, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, Wiejska 45E, 15-351 Bialystok, Poland; (M.S.); (T.O.)
- Forest Protection Department, Forest Research Institute, Braci Leśnej 3, 05-090 Sękocin Stary, Poland;
| | - Marcin Klisz
- Department of Silviculture and Genetics, Forest Research Institute, Braci Leśnej 3, 05-090 Sękocin Stary, Poland;
| | - Rafał Tarakowski
- Faculty of Physics, Warsaw University of Technology, Koszykowa 75, 00-662 Warsaw, Poland;
| | - Justyna Anna Nowakowska
- Institute of Biological Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3 Street, 01-938 Warsaw, Poland
| |
Collapse
|
19
|
Ghosh PN, Brookes LM, Edwards HM, Fisher MC, Jervis P, Kappel D, Sewell TR, Shelton JM, Skelly E, Rhodes JL. Cross-Disciplinary Genomics Approaches to Studying Emerging Fungal Infections. Life (Basel) 2020; 10:E315. [PMID: 33260763 PMCID: PMC7761180 DOI: 10.3390/life10120315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 11/16/2022] Open
Abstract
Emerging fungal pathogens pose a serious, global and growing threat to food supply systems, wild ecosystems, and human health. However, historic chronic underinvestment in their research has resulted in a limited understanding of their epidemiology relative to bacterial and viral pathogens. Therefore, the untargeted nature of genomics and, more widely, -omics approaches is particularly attractive in addressing the threats posed by and illuminating the biology of these pathogens. Typically, research into plant, human and wildlife mycoses have been largely separated, with limited dialogue between disciplines. However, many serious mycoses facing the world today have common traits irrespective of host species, such as plastic genomes; wide host ranges; large population sizes and an ability to persist outside the host. These commonalities mean that -omics approaches that have been productively applied in one sphere and may also provide important insights in others, where these approaches may have historically been underutilised. In this review, we consider the advances made with genomics approaches in the fields of plant pathology, human medicine and wildlife health and the progress made in linking genomes to other -omics datatypes and sets; we identify the current barriers to linking -omics approaches and how these are being underutilised in each field; and we consider how and which -omics methodologies it is most crucial to build capacity for in the near future.
Collapse
Affiliation(s)
- Pria N. Ghosh
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom 2520, South Africa
| | - Lola M. Brookes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Royal Veterinary College, Hawkshead Lane, North Mymms, Herts AL9 7TA, UK
| | - Hannah M. Edwards
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Matthew C. Fisher
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Phillip Jervis
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- Institute of Zoology, Zoological Society of London, London NW1 4RY, UK
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Dana Kappel
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Thomas R. Sewell
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Jennifer M.G. Shelton
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
- UK Centre for Ecology & Hydrology, Wallingford OX10 8BB, UK
| | - Emily Skelly
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| | - Johanna L. Rhodes
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, St Mary’s Campus, Imperial College London, London W2 1PG, UK; (L.M.B.); (H.M.E.); (M.C.F.); (P.J.); (D.K.); (T.R.S.); (J.M.G.S.); (E.S.); (J.L.R.)
| |
Collapse
|
20
|
Volatile Organic Compounds (VOCs) of Endophytic Fungi Growing on Extracts of the Host, Horseradish ( Armoracia rusticana). Metabolites 2020; 10:metabo10110451. [PMID: 33171636 PMCID: PMC7695154 DOI: 10.3390/metabo10110451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 01/19/2023] Open
Abstract
The interaction between plant defensive metabolites and different plant-associated fungal species is of high interest to many disciplines. Volatile organic compounds (VOCs) are natural products that are easily evaporated under ambient conditions. They play a very important role in inter-species communication of microbes and their hosts. In this study, the VOCs produced by 43 different fungal isolates of endophytic and soil fungi during growth on horseradish root (Armoracia rusticana) extract or malt extract agar were examined, by using headspace-gas chromatography-mass spectrometry (headspace-GC-MS) and a high relative surface agar film as a medium. The proposed technique enabled sensitive detection of several typical VOCs (acetone, methyl acetate, methyl formate, ethyl acetate, methyl butanol isomers, styrene, beta-phellandrene), along with glucosinolate decomposition products, including allyl cyanide and allyl isothiocyanate and other sulfur-containing compounds—carbon disulfide, dimethyl sulfide. The VOC patterns of fungi belonging to Setophoma, Paraphoma, Plectosphaerella, Pyrenochaeta, Volutella, Cadophora, Notophoma, and Curvularia genera were described for the first time. The VOC pattern was significantly different among the isolates. The pattern was indicative of putative myrosinase activity for many tested isolates. On the other hand, endophytes and soil fungi as groups could not be separated by VOC pattern or intensity.
Collapse
|
21
|
Microbial production of limonene and its derivatives: Achievements and perspectives. Biotechnol Adv 2020; 44:107628. [DOI: 10.1016/j.biotechadv.2020.107628] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/24/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022]
|
22
|
Elmassry MM, Farag MA, Preissner R, Gohlke BO, Piechulla B, Lemfack MC. Sixty-One Volatiles Have Phylogenetic Signals Across Bacterial Domain and Fungal Kingdom. Front Microbiol 2020; 11:557253. [PMID: 33101231 PMCID: PMC7554305 DOI: 10.3389/fmicb.2020.557253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Microorganisms are diverse in their genome sequences and subsequently in their encoded metabolic pathways, which enabled them to adapt to numerous environmental conditions. They produce thousands of small molecules, many of which are volatiles in nature and play important roles in signaling in intra- and inter-species to kingdom and domain interactions, survival, or virulence. Many of these compounds have been studied, characterized, and organized in the mVOC 2.0 database. However, such dataset has not been investigated comprehensively in terms of its phylogeny to determine key volatile markers for certain taxa. It was hypothesized that some of the volatiles described in the mVOC 2.0 database could function as a phylogenetic signal since their production is conserved among certain taxa within the microbial evolutionary tree. Our meta-analysis revealed that some volatiles were produced by a large number of bacteria but not in fungal genera such as dimethyl disulfide, acetic acid, 2-nonanone, dimethyl trisulfide, 2-undecanone, isovaleric acid, 2-tridecanone, propanoic acid, and indole (common bacterial compounds). In contrast, 1-octen-3-ol, 3-octanone, and 2-pentylfuran (common fungal compounds) were produced primarily by fungal genera. Such chemical information was further confirmed by investigating genomic data of publicly available databases revealing that bacteria or fungi harbor gene families involved in these volatiles’ biosynthesis. Our phylogenetic signal testing identified 61 volatiles with a significant phylogenetic signal as demonstrated by phylogenetic D statistic P-value < 0.05. Thirty-three volatiles were phylogenetically conserved in the bacterial domain (e.g., cyclocitral) compared to 17 volatiles phylogenetically conserved in the fungal kingdom (e.g., aristolochene), whereas 11 volatiles were phylogenetically conserved in genera from both bacteria and fungi (e.g., geosmin). These volatiles belong to different chemical classes such as heterocyclic compounds, long-chain fatty acids, sesquiterpenoids, and aromatics. The performed approaches serve as a starting point to investigate less explored volatiles with potential roles in signaling, antimicrobial therapy, or diagnostics.
Collapse
Affiliation(s)
- Moamen M Elmassry
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States
| | - Mohamed A Farag
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Giza, Egypt.,Department of Chemistry, School of Sciences and Engineering, The American University in Cairo, New Cairo, Egypt
| | - Robert Preissner
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Björn-Oliver Gohlke
- Institute of Physiology and Science-IT, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Birgit Piechulla
- Institute of Biological Science, University of Rostock, Rostock, Germany
| | - Marie C Lemfack
- Institute of Biological Science, University of Rostock, Rostock, Germany
| |
Collapse
|
23
|
Kataoka R, Watanabe T, Hayashi R, Isogai A, Yamada O, Ogihara J. Awamori fermentation test and 1-octen-3-ol productivity analysis using fatty acid oxygenase disruptants of Aspergillus luchuensis. J Biosci Bioeng 2020; 130:489-495. [PMID: 32753307 DOI: 10.1016/j.jbiosc.2020.06.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 06/10/2020] [Accepted: 06/11/2020] [Indexed: 10/23/2022]
Abstract
1-Octen-3-ol is a major aroma component of awamori, a traditional distilled liquor produced in Okinawa Prefecture, Japan. As 1-octen-3-ol is thought to affect the sensory properties of awamori, it is important to fully characterize the compound's biosynthetic pathway and control mechanism. We previously reported that the fatty acid oxygenase ppoC (ppo: psi-produced oxygenase) of Aspergillus luchuensis is directly involved in the production of 1-octen-3-ol in rice koji (Kataoka et al., J. Biosci. Bioeng., 129, 192-198, 2020). In the present study, we constructed A. luchuensis ppoD disruptants to characterize the role of ppo genes in 1-octen-3-ol biosynthesis. A small-scale awamori fermentation test was performed using ppoA, ppoC, and ppoD single disruptants (ΔppoA, ΔppoC, and ΔppoD, respectively), along with the parent strain, ΔligD. 1-Octen-3-ol was not detected in the distillate prepared using the ΔppoC strain. We conclude that A. luchuensis ppoC is the only 1-octen-3-ol-producing factor in the awamori brewing process. Because ΔppoA and ΔppoD slightly enhanced 1-octen-3-ol productivity, these two genes may play a role in negatively controlling 1-octen-3-ol biosynthesis.
Collapse
Affiliation(s)
- Ryousuke Kataoka
- Applied Microbiology and Biotechnology Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| | - Taisuke Watanabe
- Applied Microbiology and Biotechnology Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan.
| | - Risa Hayashi
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Atsuko Isogai
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Osamu Yamada
- National Research Institute of Brewing, 3-7-1 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Jun Ogihara
- Applied Microbiology and Biotechnology Laboratory, College of Bioresource Sciences, Nihon University, 1866 Kameino, Fujisawa, Kanagawa 252-0880, Japan
| |
Collapse
|
24
|
Nazik H, Sass G, Déziel E, Stevens DA. Aspergillus Is Inhibited by Pseudomonas aeruginosa Volatiles. J Fungi (Basel) 2020; 6:jof6030118. [PMID: 32722412 PMCID: PMC7557479 DOI: 10.3390/jof6030118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/09/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022] Open
Abstract
Background: Pseudomonas aeruginosa (Pa) and Aspergillus fumigatus (Af) compete with each other for nutrients and survival in natural environments, and have been extensively studied because of their intermicrobial interactions in the human microbiome. These are the principal microbes infecting immunocompromised patients and persons with cystic fibrosis, particularly the airways. These intermicrobial studies have largely been conducted in liquid medium or on agar, and thus focus on soluble or diffusible microbial products. Several key inhibitory molecules were defined in such studies. Methods: in the present report, we examine several methodologies which can be conveniently used to study the interaction of microbial volatiles, including capture methods and kinetics. Results: Pa volatiles inhibit Af, and the inhibitory mechanism appears to be the incorporation of the inhibitory molecules into the substrate nourishing the Af, rather than directly onto Af structures. We define by mass spectroscopy some specific volatile Pa products that can inhibit Af. Some of these molecules are selected for interest by the study of gene deletion mutants, producing a few Pa strains that were impaired in inhibition. We presumed the volatiles of these latter strains could be excluded from the search for inhibitors. Conclusion: the Pa inhibition of Af via a gaseous phase could be critical components in their competition, particularly in airways, where more direct contact may not be extensive.
Collapse
Affiliation(s)
- Hasan Nazik
- California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
| | - Eric Déziel
- Institut National de la Recherche Scientifique, Institut Armand-Frappier, Laval, QC H7V 1B7, Canada;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (H.N.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
25
|
Velázquez JE, Sadañoski MA, Zapata PD, Comelli NA, Villalba LL. Bioproduction of α-terpineol and R-(+)-limonene derivatives by terpene-tolerant ascomycete fungus as a potential contribution to the citrus value chain. J Appl Microbiol 2020; 130:76-89. [PMID: 32648320 DOI: 10.1111/jam.14777] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 06/12/2020] [Accepted: 07/03/2020] [Indexed: 12/14/2022]
Abstract
AIMS The aims of this article were to select fungal species with high tolerance and high growth rate in mediums supplemented with limonene and citrus essential oils (CEOs), and to test the bioconversion capability of the chosen isolates for the bioproduction of aroma compounds. METHODS AND RESULTS Based on the use of predictive mycology, 21 of 29 isolates were selected after assaying R-(+)-limonene and CEO tolerance (10 g l-1 ). With a dendrogram divisive coefficient of 0·937, the subcluster two with isolates Aspergillus niger LBM 055, Penicillium sp. LBM 150, Penicillium sp. LBM 151 and Penicillium sp. LBM 154 gathered the highest tolerance and mycelia growth speed. Ultrastructural analysis indicated that culture media containing limonene had no visible toxic activity that could promote morphological changes in the fungal cell wall. The biomass of A. niger LBM055 was distinctive in liquid media supplemented with R-(+)-limonene (0·57 ± 0·07 g) and it was selected to prove bioconversion capacity, under static and agitated conditions, and converted up to 98% of limonene, yielding a wide variety of products that were quantified by GC-FID. It was obtained at molecular weights less than limonene (64-100%), between limonene and α-terpineol (12-72%) and greater than α-terpineol (2-48%). CONCLUSIONS Aspergillus niger LBM 055, Penicillium sp. LBM 150, Penicillium sp. LBM 151 and Penicillium sp. LBM 154 showed to the highest tolerance and growth rate in mediums supplemented with R-(+)-limonene and orange and lemon essential oils. Particularly, A. niger LBM055, showed limonene bioconversion capability and produced different molecular weights compounds such us α-terpineol. SIGNIFICANCE AND IMPACT OF THE STUDY Different bioproducts can be obtained by changing operative condition with the same fungus, and this bioprocess aspect is a significant approach to be adopted on industrial scale leading to the creation of new natural flavours and fragrance compositions.
Collapse
Affiliation(s)
- J E Velázquez
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", CONICET, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - M A Sadañoski
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", CONICET, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - P D Zapata
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", CONICET, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| | - N A Comelli
- Departamento de Ciencias Básicas, Área Química, Facultad de Ingeniería y Ciencias Agropecuarias, Universidad Nacional de San Luis - Instituto de Investigación en Tecnología Química (INTEQUI - CONICET), San Luis, Argentina
| | - L L Villalba
- Laboratorio de Biotecnología Molecular, Facultad de Ciencias Exactas, Químicas y Naturales, Instituto de Biotecnología Misiones "Dra. María Ebe Reca", CONICET, Universidad Nacional de Misiones, Posadas, Misiones, Argentina
| |
Collapse
|
26
|
Hérivaux A, Gonçalves SM, Carvalho A, Cunha C. Microbiota-derived metabolites as diagnostic markers for respiratory fungal infections. J Pharm Biomed Anal 2020; 189:113473. [PMID: 32771720 DOI: 10.1016/j.jpba.2020.113473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/10/2020] [Accepted: 07/12/2020] [Indexed: 01/05/2023]
Abstract
An emerging body of evidence has highlighted the significant role of the pulmonary microbiota during respiratory infections. The individual microbiome is nowadays recognized to supervise the outcome of the host-pathogen interaction by orchestrating mechanisms of immune regulation, inflammation, metabolism, and other physiological processes. A shift in the normal flora of the respiratory tract is associated with several lung inflammatory disorders including asthma, chronic obstructive pulmonary disease, or cystic fibrosis. These diseases are characterized by a lung microenvironment that becomes permissive to infections caused by the opportunistic fungal pathogen Aspergillus fumigatus. Although the role of the lung microbiota in the pathophysiology of respiratory fungal diseases remains elusive, microbiota-derived components have been proposed as important biomarkers to be considered in the diagnosis of these severe infections. Here, we review this emerging area of research and discuss the potential of microbiota-derived products in the diagnosis of respiratory fungal diseases.
Collapse
Affiliation(s)
- Anaїs Hérivaux
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal; ICVS/3B's - PT Government Associate Laboratory, Guimarães, Braga, Portugal.
| |
Collapse
|
27
|
Critical thresholds of 1-Octen-3-ol shape inter-species Aspergillus interactions modulating the growth and secondary metabolism. Sci Rep 2020; 10:11116. [PMID: 32632328 PMCID: PMC7338521 DOI: 10.1038/s41598-020-68096-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
In fungi, contactless interactions are mediated via the exchange of volatile organic compounds (VOCs). As these pair-wise interactions are fundamental to complex ecosystem, we examined the effects of inter-species VOCs trade-offs in Aspergillus flavus development. First, we exposed A. flavus to the A. oryzae volatilome (Treatment-1) with highest relative abundance of 1-Octen-3-ol (~ 4.53 folds) among the C-8 VOCs. Further, we examined the effects of gradient titers of 1-Octen-3-ol (Treatment-2: 100–400 ppm/day) in a range that elicits natural interactions. On 7-day, VOC-treated A. flavus displayed significantly reduced growth and sclerotial counts (p < 0.01) coupled with higher conidial density (T2100-200 ppm/day, p < 0.01) and α-amylase secretion (T2200 ppm/day, p < 0.01), compared to the untreated sets. Similar phenotypic trends except for α-amylases were evident for 9-day incubated A. flavus in T2. The corresponding metabolomics data displayed a clustered pattern of secondary metabolite profiles for VOC-treated A. flavus (PC1-18.03%; PC2-10.67%). Notably, a higher relative abundance of aflatoxin B1 with lower levels of most anthraquinones, indole-terpenoids, and oxylipins was evident in VOC-treated A. flavus. The observed correlations among the VOC-treatments, phenotypes, and altered metabolomes altogether suggest that the distant exposure to the gradient titers of 1-Octen-3-ol elicits an attenuated developmental response in A. flavus characterized by heightened virulence.
Collapse
|
28
|
Calla-Quispe E, Fuentes-Rivera HL, Ramírez P, Martel C, Ibañez AJ. Mass Spectrometry: A Rosetta Stone to Learn How Fungi Interact and Talk. Life (Basel) 2020; 10:E89. [PMID: 32575729 PMCID: PMC7345136 DOI: 10.3390/life10060089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/16/2020] [Accepted: 06/18/2020] [Indexed: 01/08/2023] Open
Abstract
Fungi are a highly diverse group of heterotrophic organisms that play an important role in diverse ecological interactions, many of which are chemically mediated. Fungi have a very versatile metabolism, which allows them to synthesize a large number of still little-known chemical compounds, such as soluble compounds that are secreted into the medium and volatile compounds that are chemical mediators over short and long distances. Mass spectrometry (MS) is currently playing a dominant role in mycological studies, mainly due to its inherent sensitivity and rapid identification capabilities of different metabolites. Furthermore, MS has also been used as a reliable and accurate tool for fungi identification (i.e., biotyping). Here, we introduce the readers about fungal specialized metabolites, their role in ecological interactions and provide an overview on the MS-based techniques used in fungal studies. We particularly present the importance of sampling techniques, strategies to reduce false-positive identification and new MS-based analytical strategies that can be used in mycological studies, further expanding the use of MS in broader applications. Therefore, we foresee a bright future for mass spectrometry-based research in the field of mycology.
Collapse
Affiliation(s)
- Erika Calla-Quispe
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| | - Hammerly Lino Fuentes-Rivera
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Pablo Ramírez
- Laboratory of Molecular Microbiology and Biotechnology, Faculty of Biological Sciences, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Germán Amézaga 375, Lima 15081, Peru;
| | - Carlos Martel
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
- Museo de Historia Natural, Universidad Nacional Mayor de San Marcos (UNMSM), Av. Arenales 1256, Jesús María 15072, Lima, Peru
| | - Alfredo J. Ibañez
- Instituto de Ciencias Ómicas y Biotecnología Aplicada (ICOBA), Pontificia Universidad Católica del Perú (PUCP), Av. Universitaria 1801, San Miguel 15088, Lima, Peru; (E.C.-Q.); (H.L.F.-R.); (C.M.)
| |
Collapse
|
29
|
Chatterjee P, Sass G, Swietnicki W, Stevens DA. Review of Potential Pseudomonas Weaponry, Relevant to the Pseudomonas-Aspergillus Interplay, for the Mycology Community. J Fungi (Basel) 2020; 6:jof6020081. [PMID: 32517271 PMCID: PMC7345761 DOI: 10.3390/jof6020081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most prominent opportunistic bacteria in airways of cystic fibrosis patients and in immunocompromised patients. These bacteria share the same polymicrobial niche with other microbes, such as the opportunistic fungus Aspergillus fumigatus. Their inter-kingdom interactions and diverse exchange of secreted metabolites are responsible for how they both fare in competition for ecological niches. The outcomes of their contests likely determine persistent damage and degeneration of lung function. With a myriad of virulence factors and metabolites of promising antifungal activity, P. aeruginosa products or their derivatives may prove useful in prophylaxis and therapy against A. fumigatus. Quorum sensing underlies the primary virulence strategy of P. aeruginosa, which serves as cell–cell communication and ultimately leads to the production of multiple virulence factors. Understanding the quorum-sensing-related pathogenic mechanisms of P. aeruginosa is a first step for understanding intermicrobial competition. In this review, we provide a basic overview of some of the central virulence factors of P. aeruginosa that are regulated by quorum-sensing response pathways and briefly discuss the hitherto known antifungal properties of these virulence factors. This review also addresses the role of the bacterial secretion machinery regarding virulence factor secretion and maintenance of cell–cell communication.
Collapse
Affiliation(s)
- Paulami Chatterjee
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-114 Wroclaw, Poland;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
30
|
Abstract
Aspergillus fumigatus is a saprotrophic fungus; its primary habitat is the soil. In its ecological niche, the fungus has learned how to adapt and proliferate in hostile environments. This capacity has helped the fungus to resist and survive against human host defenses and, further, to be responsible for one of the most devastating lung infections in terms of morbidity and mortality. In this review, we will provide (i) a description of the biological cycle of A. fumigatus; (ii) a historical perspective of the spectrum of aspergillus disease and the current epidemiological status of these infections; (iii) an analysis of the modes of immune response against Aspergillus in immunocompetent and immunocompromised patients; (iv) an understanding of the pathways responsible for fungal virulence and their host molecular targets, with a specific focus on the cell wall; (v) the current status of the diagnosis of different clinical syndromes; and (vi) an overview of the available antifungal armamentarium and the therapeutic strategies in the clinical context. In addition, the emergence of new concepts, such as nutritional immunity and the integration and rewiring of multiple fungal metabolic activities occurring during lung invasion, has helped us to redefine the opportunistic pathogenesis of A. fumigatus.
Collapse
Affiliation(s)
- Jean-Paul Latgé
- School of Medicine, University of Crete, Heraklion, Crete, Greece
| | - Georgios Chamilos
- School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| |
Collapse
|
31
|
Lacey HJ, Gilchrist CLM, Crombie A, Kalaitzis JA, Vuong D, Rutledge PJ, Turner P, Pitt JI, Lacey E, Chooi YH, Piggott AM. Nanangenines: drimane sesquiterpenoids as the dominant metabolite cohort of a novel Australian fungus, Aspergillus nanangensis. Beilstein J Org Chem 2019; 15:2631-2643. [PMID: 31807198 PMCID: PMC6880815 DOI: 10.3762/bjoc.15.256] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Accepted: 10/14/2019] [Indexed: 12/22/2022] Open
Abstract
Chemical investigation of an undescribed Australian fungus, Aspergillus nanangensis, led to the identification of the nanangenines - a family of seven new and three previously reported drimane sesquiterpenoids. The structures of the nanangenines were elucidated by detailed spectroscopic analysis supported by single crystal X-ray diffraction studies. The compounds were assayed for in vitro activity against bacteria, fungi, mammalian cells and plants. Bioinformatics analysis, including comparative analysis with other acyl drimenol-producing Aspergilli, led to the identification of a putative nanangenine biosynthetic gene cluster that corresponds to the proposed biosynthetic pathway for nanangenines.
Collapse
Affiliation(s)
- Heather J Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Cameron L M Gilchrist
- School of Molecular Sciences, The University of Western Australia, WA 6009, Australia
| | - Andrew Crombie
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - John A Kalaitzis
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia
| | - Daniel Vuong
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Peter J Rutledge
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - Peter Turner
- School of Chemistry, The University of Sydney, NSW 2006, Australia
| | - John I Pitt
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
| | - Ernest Lacey
- Microbial Screening Technologies, Smithfield, NSW 2164, Australia
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia
| | - Yit-Heng Chooi
- School of Molecular Sciences, The University of Western Australia, WA 6009, Australia
| | - Andrew M Piggott
- Department of Molecular Sciences, Macquarie University, NSW 2109, Australia
| |
Collapse
|
32
|
Achimón F, Dambolena JS, Zygadlo JA, Pizzolitto RP. Carbon sources as factors affecting the secondary metabolism of the maize pathogen Fusarium verticillioides. Lebensm Wiss Technol 2019. [DOI: 10.1016/j.lwt.2019.108470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Rojas-Flores C, Ventura-Aguilar RI, Bautista-Baños S, Revah S, Saucedo-Lucero JO. Estimating CO2 and VOCs production of Colletotrichum fragariae and Rhizopus stolonifer grown in cold stored strawberry fruit. Microbiol Res 2019; 228:126327. [DOI: 10.1016/j.micres.2019.126327] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/12/2019] [Accepted: 08/30/2019] [Indexed: 10/26/2022]
|
34
|
Yeast Volatomes Differentially Affect Larval Feeding in an Insect Herbivore. Appl Environ Microbiol 2019; 85:AEM.01761-19. [PMID: 31444202 PMCID: PMC6803314 DOI: 10.1128/aem.01761-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Accepted: 08/18/2019] [Indexed: 01/25/2023] Open
Abstract
Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques. Yeasts form mutualistic interactions with insects. Hallmarks of this interaction include provision of essential nutrients, while insects facilitate yeast dispersal and growth on plant substrates. A phylogenetically ancient chemical dialogue coordinates this interaction, where the vocabulary, the volatile chemicals that mediate the insect response, remains largely unknown. Here, we used gas chromatography-mass spectrometry, followed by hierarchical cluster and orthogonal partial least-squares discriminant analyses, to profile the volatomes of six Metschnikowia spp., Cryptococcus nemorosus, and brewer’s yeast (Saccharomyces cerevisiae). The yeasts, which are all found in association with insects feeding on foliage or fruit, emit characteristic, species-specific volatile blends that reflect the phylogenetic context. Species specificity of these volatome profiles aligned with differential feeding of cotton leafworm (Spodoptera littoralis) larvae on these yeasts. Bioactivity correlates with yeast ecology; phylloplane species elicited a stronger response than fruit yeasts, and larval discrimination may provide a mechanism for establishment of insect-yeast associations. The yeast volatomes contained a suite of insect attractants known from plant and especially floral headspace, including (Z)-hexenyl acetate, ethyl (2E,4Z)-deca-2,4-dienoate (pear ester), (3E)-4,8-dimethylnona-1,3,7-triene (DMNT), linalool, α-terpineol, β-myrcene, or (E,E)-α-farnesene. A wide overlap of yeast and plant volatiles, notably floral scents, further emphasizes the prominent role of yeasts in plant-microbe-insect relationships, including pollination. The knowledge of insect-yeast interactions can be readily brought to practical application, as live yeasts or yeast metabolites mediating insect attraction provide an ample toolbox for the development of sustainable insect management. IMPORTANCE Yeasts interface insect herbivores with their food plants. Communication depends on volatile metabolites, and decoding this chemical dialogue is key to understanding the ecology of insect-yeast interactions. This study explores the volatomes of eight yeast species which have been isolated from foliage, from flowers or fruit, and from plant-feeding insects. These yeasts each release a rich bouquet of volatile metabolites, including a suite of known insect attractants from plant and floral scent. This overlap underlines the phylogenetic dimension of insect-yeast associations, which according to the fossil record long predate the appearance of flowering plants. Volatome composition is characteristic for each species, aligns with yeast taxonomy, and is further reflected by a differential behavioral response of cotton leafworm larvae, which naturally feed on foliage of a wide spectrum of broad-leaved plants. Larval discrimination may establish and maintain associations with yeasts and is also a substrate for designing sustainable insect management techniques.
Collapse
|
35
|
Aspergillus luchuensis fatty acid oxygenase ppoC is necessary for 1-octen-3-ol biosynthesis in rice koji. J Biosci Bioeng 2019; 129:192-198. [PMID: 31585859 DOI: 10.1016/j.jbiosc.2019.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 11/21/2022]
Abstract
Awamori is a distilled spirit produced in Okinawa Prefecture, in southern Japan. Awamori contains the volatile organic compound 1-octen-3-ol, an important flavor component. Here, using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GCMS), we demonstrate that the black koji mold Aspergillus luchuensis produces 1-octen-3-ol in rice koji. To examine the role of the fatty acid oxygenase genes ppoA and ppoC in 1-octen-3-ol biosynthesis by A. luchuensis, we constructed ppoA and ppoC disruptants, ΔppoA and ΔppoC, respectively, via protoplast-PEG transformation. No clear differences in growth and conidiation were observed between the transformants and the parent strain. Volatile compounds in rice koji prepared using these gene disruptants were analyzed by SPME-GCMS. The amount of 1-octen-3-ol contained in koji produced by the ΔppoA strain was the same as that produced by the parental strain. In contrast, although the ΔppoC strain grew on the rice koji, 1-octen-3-ol was not detected. These results indicate that ppoC is involved in 1-octen-3-ol biosynthesis in A. luchuensis.
Collapse
|
36
|
Interactions between Aspergillus fumigatus and Pulmonary Bacteria: Current State of the Field, New Data, and Future Perspective. J Fungi (Basel) 2019; 5:jof5020048. [PMID: 31212791 PMCID: PMC6617096 DOI: 10.3390/jof5020048] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/10/2019] [Accepted: 06/10/2019] [Indexed: 12/14/2022] Open
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa are central fungal and bacterial members of the pulmonary microbiota. The interactions between A. fumigatus and P. aeruginosa have only just begun to be explored. A balance between inhibitory and stimulatory effects on fungal growth was observed in mixed A. fumigatus-P. aeruginosa cultures. Negative interactions have been seen for homoserine-lactones, pyoverdine and pyochelin resulting from iron starvation and intracellular inhibitory reactive oxidant production. In contrast, several types of positive interactions were recognized. Dirhamnolipids resulted in the production of a thick fungal cell wall, allowing the fungus to resist stress. Phenazines and pyochelin favor iron uptake for the fungus. A. fumigatus is able to use bacterial volatiles to promote its growth. The immune response is also differentially regulated by co-infections.
Collapse
|
37
|
Halperin Kuhns VL, Sanchez J, Sarver DC, Khalil Z, Rajkumar P, Marr KA, Pluznick JL. Characterizing novel olfactory receptors expressed in the murine renal cortex. Am J Physiol Renal Physiol 2019; 317:F172-F186. [PMID: 31042061 DOI: 10.1152/ajprenal.00624.2018] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The kidney uses specialized G protein-coupled receptors, including olfactory receptors (ORs), to act as sensors of molecules and metabolites. In the present study, we cloned and studied seven renal ORs, which we previously found to be expressed in the murine renal cortex. As most ORs are orphan receptors, our goal was to identify ligands for these ORs in the hope that this will guide future research into their functional roles. We identified novel ligands for two ORs: Olfr558 and Olfr90. For Olfr558, we confirmed activation by previously reported ligands and identified 16 additional carboxylic acids that activated this OR. The strongest activation of Olfr558 was produced by butyric, cyclobutanecarboxylic, isovaleric, 2-methylvaleric, 3-methylvaleric, 4-methylvaleric, and valeric acids. The primary in vivo source of both butyric and isovaleric acids is gut microbial metabolism. We also identified 14 novel ligands that activated Olfr90, the strongest of which were 2-methyl-4-propyl-1,3-oxathiane, 1-octen-3-ol, 2-octanol, and 3-octanol. Interestingly, 8 of these 14 ligands are of fungal origin. We also investigated the tissue distribution of these receptors and found that they are each found in a subset of "nonsensory" tissues. Finally, we examined the putative human orthologs of Olfr558 and Olfr90 and found that the human ortholog of Olfr558 (OR51E1) has a similar ligand profile, indicating that the role of this OR is likely evolutionarily conserved. In summary, we examined seven novel renal ORs and identified new ligands for Olfr558 and Olfr90, which imply that both of these receptors serve to detect metabolites produced by microorganisms.
Collapse
Affiliation(s)
- Victoria L Halperin Kuhns
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland.,Department of Physiology, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jason Sanchez
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Dylan C Sarver
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Zoya Khalil
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Premraj Rajkumar
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Kieren A Marr
- Transplant and Oncology Infectious Diseases, Johns Hopkins University School of Medicine , Baltimore, Maryland
| | - Jennifer L Pluznick
- Department of Physiology, Johns Hopkins University School of Medicine , Baltimore, Maryland
| |
Collapse
|
38
|
Duffy E, Morrin A. Endogenous and microbial volatile organic compounds in cutaneous health and disease. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.12.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
39
|
Yeast Smell Like What They Eat: Analysis of Volatile Organic Compounds of Malassezia furfur in Growth Media Supplemented with Different Lipids. Molecules 2019; 24:molecules24030419. [PMID: 30678374 PMCID: PMC6384859 DOI: 10.3390/molecules24030419] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 01/15/2019] [Accepted: 01/21/2019] [Indexed: 12/21/2022] Open
Abstract
Malassezia furfur is part of the human skin microbiota. Its volatile organic compounds (VOCs) possibly contribute to the characteristic odour in humans, as well as to microbiota interaction. The aim of this study was to investigate how the lipid composition of the liquid medium influences the production of VOCs. Growth was performed in four media: (1) mDixon, (2) oleic acid (OA), (3) oleic acid + palmitic acid (OA+PA), and (4) palmitic acid (PA). The profiles of the VOCs were characterized by HS-SPME/GC-MS in the exponential and stationary phases. A total number of 61 VOCs was found in M. furfur, among which alkanes, alcohols, ketones, and furanic compounds were the most abundant. Some compounds previously reported for Malassezia (γ-dodecalactone, 3-methylbutan-1-ol, and hexan-1-ol) were also found. Through our experiments, using univariate and multivariate unsupervised (Hierarchical Cluster Analysis (HCA) and Principal Component Analysis (PCA)) and supervised (Projection to Latent Structures Discriminant Analysis (PLS-DA)) statistical techniques, we have proven that each tested growth medium stimulates the production of a different volatiles profile in M. furfur. Carbon dioxide, hexan-1-ol, pentyl acetate, isomer5 of methyldecane, dimethyl sulphide, undec-5-ene, isomer2 of methylundecane, isomer1 of methyldecane, and 2-methyltetrahydrofuran were established as differentiating compounds among treatments by all the techniques. The significance of our findings deserves future research to investigate if certain volatile profiles could be related to the beneficial or pathogenic role of this yeast.
Collapse
|
40
|
García J, Pemán J. [Microbiological diagnosis of invasive mycosis]. Rev Iberoam Micol 2018; 35:179-185. [PMID: 30471895 DOI: 10.1016/j.riam.2018.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/11/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
The prognosis of invasive fungal infections (IFI) depends on the speed of diagnosis and treatment. Conventional diagnostic methods are of low sensitivity, laborious and too slow, leading to the need for new, faster, and more efficient diagnostic strategies. There are several techniques for diagnosing a candidemia that are faster than the conventional blood culture (BC). Once yeast growth in BC is detected, species identification can be speeded up by mass spectrometry (30minutes), commercialised molecular techniques (60-80minutes) or fluorescent in situ hybridization (90minutes). The combined detection of biomarkers (antimicellium, mannan and anti-mannan or β-glucan) has shown to be of greater use than their individual use. Commercialised nucleic acid amplification techniques (Septifast®, T2Candida®) are very reliable alternatives to BC. The detection of the capsular antigen of Cryptococcus, by means of latex agglutination or immuno-chromatography, is a valuable technique for cryptococcosis diagnosis. Direct microscopic examination and culture of representative specimens is used for the conventional diagnosis of IFI by filamentous fungi. Detection of galactomannan and β-glucan are considered diagnostic criteria for probable invasive aspergillosis and probable IFI, respectively, despite the lack of specificity of the latter. The detection of fungal volatile organic compounds in breath is an interesting diagnostic strategy in pulmonary infections. Although widely used, nucleic acid detection techniques are not considered diagnostic criteria for IFIs caused by moulds in consensus documents, due to their lack of standardisation. However, they are the only alternative to culture methods in invasive infections by Scedosporium/Lomentospora, Fusarium, zygomycetes, or dematiaceous fungi.
Collapse
Affiliation(s)
- Julio García
- Servicio de Microbiología, Hospital Universitario La Paz, Madrid, España
| | - Javier Pemán
- Servicio de Microbiología, Hospital Universitari i Politècnic La Fe, Valencia, España.
| |
Collapse
|
41
|
Mercier T, Guldentops E, Van Daele R, Maertens J. Diagnosing Invasive Mold Infections: What Is Next. CURRENT FUNGAL INFECTION REPORTS 2018. [DOI: 10.1007/s12281-018-0322-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
42
|
Savelieff MG, Pappalardo L, Azmanis P. The current status of avian aspergillosis diagnoses: Veterinary practice to novel research avenues. Vet Clin Pathol 2018; 47:342-362. [DOI: 10.1111/vcp.12644] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Lucia Pappalardo
- Department of Biology, Chemistry and Environmental Sciences; American University of Sharjah; Sharjah United Arab Emirates
| | - Panagiotis Azmanis
- Dubai Falcon Hospital/Wadi Al Safa Wildlife Center; Dubai United Arab Emirates
| |
Collapse
|
43
|
Ferrari R, Lacaze I, Le Faouder P, Bertrand-Michel J, Oger C, Galano JM, Durand T, Moularat S, Chan Ho Tong L, Boucher C, Kilani J, Petit Y, Vanparis O, Trannoy C, Brun S, Lalucque H, Malagnac F, Silar P. Cyclooxygenases and lipoxygenases are used by the fungus Podospora anserina to repel nematodes. Biochim Biophys Acta Gen Subj 2018; 1862:2174-2182. [PMID: 30025856 DOI: 10.1016/j.bbagen.2018.07.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/05/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Oxylipins are secondary messengers used universally in the living world for communication and defense. The paradigm is that they are produced enzymatically for the eicosanoids and non-enzymatically for the isoprostanoids. They are supposed to be degraded into volatile organic compounds (VOCs) and to participate in aroma production. Some such chemicals composed of eight carbons are also envisoned as alternatives to fossil fuels. In fungi, oxylipins have been mostly studied in Aspergilli and shown to be involved in signalling asexual versus sexual development, mycotoxin production and interaction with the host for pathogenic species. Through targeted gene deletions of genes encoding oxylipin-producing enzymes and chemical analysis of oxylipins and volatile organic compounds, we show that in the distantly-related ascomycete Podospora anserina, isoprostanoids are likely produced enzymatically. We show the disappearance in the mutants lacking lipoxygenases and cyclooxygenases of the production of 10-hydroxy-octadecadienoic acid and that of 1-octen-3-ol, a common volatile compound. Importantly, this was correlated with the inability of the mutants to repel nematodes as efficiently as the wild type. Overall, our data show that in this fungus, oxylipins are not involved in signalling development but may rather be used directly or as precursors in the production of odors against potential agressors. SIGNIFICANCE We analyzse the role in inter-kingdom communication of lipoxygenase (lox) and cyclooxygenase (cox) genes in the model fungus Podospora anserina. Through chemical analysis we define the oxylipins and volatile organic compounds (VOCs)produce by wild type and mutants for cox and lox genes, We show that the COX and LOX genes are required for the production of some eight carbon VOCs. We show that COX and LOX genes are involved in the production of chemicals repelling nematodes. This role is very different from the ones previously evidenced in other fungi.
Collapse
Affiliation(s)
- Roselyne Ferrari
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Isabelle Lacaze
- Direction Santé Confort, Division Agents Biologiques et Aérocontaminants, Centre Scientifique et Technique du Bâtiment (CSTB), 84, avenue Jean Jaurès, Marne-la-Vallée Cedex F-77447, France
| | - Pauline Le Faouder
- MetaToul-Lipidomic Core Facility, MetaboHUB, Inserm U1048, Toulouse 31 432, France
| | | | - Camille Oger
- Institut des Biomolécules Max Mousseron, (IBMM), CNRS, ENSCM, Université de Montpellier, UMR 5247, 15 Av. Ch. Flahault, Montpellier Cedex F-34093, France
| | - Jean-Marie Galano
- Institut des Biomolécules Max Mousseron, (IBMM), CNRS, ENSCM, Université de Montpellier, UMR 5247, 15 Av. Ch. Flahault, Montpellier Cedex F-34093, France
| | - Thierry Durand
- Institut des Biomolécules Max Mousseron, (IBMM), CNRS, ENSCM, Université de Montpellier, UMR 5247, 15 Av. Ch. Flahault, Montpellier Cedex F-34093, France
| | - Stéphane Moularat
- Direction Santé Confort, Division Agents Biologiques et Aérocontaminants, Centre Scientifique et Technique du Bâtiment (CSTB), 84, avenue Jean Jaurès, Marne-la-Vallée Cedex F-77447, France
| | - Laetitia Chan Ho Tong
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Charlie Boucher
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Jaafar Kilani
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Yohann Petit
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Océane Vanparis
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - César Trannoy
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Sylvain Brun
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Hervé Lalucque
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France
| | - Fabienne Malagnac
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France; Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud, Orsay 91400, France
| | - Philippe Silar
- Sorbonne Paris Cité, Laboratoire Interdisciplinaire des Energies de Demain (LIED), Univ. Paris Diderot, Paris F-75205, France.
| |
Collapse
|
44
|
Dickschat JS, Celik E, Brock NL. Volatiles from three genome sequenced fungi from the genus Aspergillus. Beilstein J Org Chem 2018; 14:900-910. [PMID: 29765471 PMCID: PMC5942377 DOI: 10.3762/bjoc.14.77] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Accepted: 04/16/2018] [Indexed: 01/18/2023] Open
Abstract
The volatiles emitted by agar plate cultures of three genome sequenced fungal strains from the genus Aspergillus were analysed by GC-MS. All three strains produced terpenes for which a biosynthetic relationship is discussed. The obtained data were also correlated to genetic information about the encoded terpene synthases for each strain. Besides terpenes, a series of aromatic compounds and volatiles derived from fatty acid and branched amino acid metabolism were identified. Some of these compounds have not been described as fungal metabolites before. For the compound ethyl (E)-hept-4-enoate known from cantaloupe a structural revision to the Z stereoisomer is proposed. Ethyl (Z)-hept-4-enoate also occurs in Aspergillus clavatus and was identified by synthesis of an authentic standard.
Collapse
Affiliation(s)
- Jeroen S Dickschat
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Ersin Celik
- Kekulé-Institute of Organic Chemistry and Biochemistry, University of Bonn, Gerhard-Domagk-Straße 1, 53121 Bonn, Germany
| | - Nelson L Brock
- Institute of Organic Chemistry, TU Braunschweig, Hagenring 30, 38106 Braunschweig, Germany (former address)
| |
Collapse
|
45
|
Acharige MJT, Koshy S, Ismail N, Aloum O, Jazaerly M, Astudillo CL, Koo S. Breath-based diagnosis of fungal infections. J Breath Res 2018; 12:027108. [PMID: 29109305 DOI: 10.1088/1752-7163/aa98a1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Invasive aspergillosis and other invasive fungal infections are associated with significant morbidity and mortality in immunocompromised patients, in large part due to limitations of existing diagnostic methods for these infections. Detection of species-specific volatile sesquiterpene metabolites of fungal origin in the breath of patients with invasive fungal infections allows the diagnosis and monitoring of these infections in vivo, non-invasively and more rapidly than possible with current diagnostic methods. While detection of exogenous microbial volatile metabolites in the breath has opened up a new and exciting dimension of diagnostic research and development in infectious diseases, we discuss the daunting challenges to volatile diagnostic biomarker discovery and clinical development.
Collapse
Affiliation(s)
- Mahesh J Thalavitiya Acharige
- Division of Infectious Diseases, Brigham and Women's Hospital, 181 Longwood Avenue, MCP642, Boston, MA 02115, United States of America. Harvard Medical School, 25 Shattuck St., Boston, MA 02115, United States of America
| | | | | | | | | | | | | |
Collapse
|
46
|
Ahmed WM, Geranios P, White IR, Lawal O, Nijsen TM, Bromley MJ, Goodacre R, Read ND, Fowler SJ. Development of an adaptable headspace sampling method for metabolic profiling of the fungal volatome. Analyst 2018; 143:4155-4162. [DOI: 10.1039/c8an00841h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Culture headspace sampling and analysis of aspergillus fumigatus volatile metabolites by TD-GC-MS.
Collapse
Affiliation(s)
| | | | - Iain R. White
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- UK
| | | | | | | | - Royston Goodacre
- School of Chemistry
- Manchester Institute of Biotechnology
- University of Manchester
- UK
| | - Nick D. Read
- School of Biological Sciences
- University of Manchester
- UK
| | - Stephen J. Fowler
- School of Biological Sciences
- University of Manchester
- UK
- Manchester Academic Health Science Centre
- Manchester University Hospitals NHS Foundation Trust
| |
Collapse
|
47
|
Mansurova M, Ebert BE, Blank LM, Ibáñez AJ. A breath of information: the volatilome. Curr Genet 2017; 64:959-964. [DOI: 10.1007/s00294-017-0800-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 12/14/2017] [Accepted: 12/18/2017] [Indexed: 01/14/2023]
|
48
|
Al-Maliki HS, Martinez S, Piszczatowski P, Bennett JW. Drosophila melanogaster as a Model for Studying Aspergillus fumigatus. MYCOBIOLOGY 2017; 45:233-239. [PMID: 29371791 PMCID: PMC5780355 DOI: 10.5941/myco.2017.45.4.233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/04/2017] [Accepted: 11/04/2017] [Indexed: 05/13/2023]
Abstract
Drosophila melanogaster is a useful model organism that offers essential insights into developmental and cellular processes shared with humans, which has been adapted for large scale analysis of medically important microbes and to test the toxicity of heavy metals, industrial solvents and other poisonous substances. We here give a brief review of the use of the Drosophila model in medical mycology, discuss the volatile organic compounds (VOCs) produced by the opportunistic human pathogen, Aspergillus fumigatus, and give a brief summary of what is known about the toxicity of some common fungal VOCs. Further, we discuss the use of VOC detection as an indirect indicator of fungal growth, including for early diagnosis of aspergillosis. Finally, we hypothesize that D. melanogaster has promise for investigating the role of VOCs synthesized by A. fumigatus as possible virulence factors.
Collapse
Affiliation(s)
- Hadeel Saeed Al-Maliki
- Department of Plant Biology, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA
- Technical institute of Samawa, Al-Furat Al-Awsat Technical University, Samawa, Iraq
| | - Suceti Martinez
- Department of Plant Biology, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA
| | - Patrick Piszczatowski
- Department of Plant Biology, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA
| | - Joan W Bennett
- Department of Plant Biology, The State University of New Jersey, New Brunswick, NJ 08901-8520, USA
| |
Collapse
|
49
|
Ahmed WM, Lawal O, Nijsen TM, Goodacre R, Fowler SJ. Exhaled Volatile Organic Compounds of Infection: A Systematic Review. ACS Infect Dis 2017; 3:695-710. [PMID: 28870074 DOI: 10.1021/acsinfecdis.7b00088] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
With heightened global concern of microbial drug resistance, advanced methods for early and accurate diagnosis of infection are urgently needed. Analysis of exhaled breath volatile organic compounds (VOCs) toward detecting microbial infection potentially allows a highly informative and noninvasive alternative to current genomics and culture-based methods. We performed a systematic review of research literature reporting human and animal exhaled breath VOCs related to microbial infections. In this Review, we find that a wide range of breath sampling and analysis methods are used by researchers, which significantly affects interstudy method comparability. Studies either perform targeted analysis of known VOCs relating to an infection, or non-targeted analysis to obtain a global profile of volatile metabolites. In general, the field of breath analysis is still relatively immature, and there is much to be understood about the metabolic production of breath VOCs, particularly in a host where both commensal microflora as well as pathogenic microorganisms may be manifested in the airways. We anticipate that measures to standardize high throughput sampling and analysis, together with an increase in large scale collaborative international trials, will bring routine breath VOC analysis to improve diagnosis of infection closer to reality.
Collapse
Affiliation(s)
- Waqar M. Ahmed
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Philips
Research, Royal Philips B.V., High Tech Campus 34, Eindhoven, 5656 AE, The Netherlands
| | - Oluwasola Lawal
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Philips
Research, Royal Philips B.V., High Tech Campus 34, Eindhoven, 5656 AE, The Netherlands
| | - Tamara M. Nijsen
- Philips
Research, Royal Philips B.V., High Tech Campus 34, Eindhoven, 5656 AE, The Netherlands
| | - Royston Goodacre
- School of
Chemistry, Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Stephen J. Fowler
- Division of Infection, Immunity & Respiratory Medicine, School of Biological Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester
Academic Health Science Centre, University Hospital of South Manchester NHS Foundation Trust, Southmoor Road, Wythenshawe, Manchester, M23 9LT, United Kingdom
| |
Collapse
|
50
|
|