1
|
Liu S, Cai M, Liu Z, Gao W, Li J, Li Y, Abudouxukuer X, Zhang J. Comprehensive Insights into the Development of Antitoxoplasmosis Drugs: Current Advances, Obstacles, and Future Perspectives. J Med Chem 2024; 67:20740-20764. [PMID: 39589152 DOI: 10.1021/acs.jmedchem.4c01733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
Current therapies for toxoplasmosis rely on a few drugs, most of which have severe side effects, and seeking ideal therapies for different types of toxoplasmosis is a long-term and challenging mission. Research and development (R&D) of novel drugs against Toxoplasma gondii (T. gondii) has focused on two main directions, the structural modification of lead compounds and natural products. Here we summarize the recent advances in the development of anti-T. gondii drugs from these two perspectives and provide comprehensive insights, reflecting on the advantages and selected molecules in each field. This review also focuses on the current obstacles to the development of novel anti-T. gondii agents, proposes comprehensive solutions, and facilitates future development.
Collapse
Affiliation(s)
- Siyang Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Minghao Cai
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Zhendi Liu
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Weixin Gao
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Junjie Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Yuxueqing Li
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Xiayire Abudouxukuer
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| | - Jili Zhang
- Health Science Center, Ningbo University, No. 818 Fenghua Road, Jiangbei District, Ningbo 513211, China
| |
Collapse
|
2
|
Li ZH, Asady B, Chang L, Triana MAH, Li C, Coppens I, Moreno SN. Calcium transfer from the ER to other organelles for optimal signaling in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.15.608087. [PMID: 39185237 PMCID: PMC11343207 DOI: 10.1101/2024.08.15.608087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Ca2+ signaling in cells begins with the opening of Ca2+ channels in either the plasma membrane (PM) or the endoplasmic reticulum (ER) and results in a dramatic increase in the physiologically low (<100 nM) cytosolic Ca2+ level. The temporal and spatial Ca2+ levels are well regulated to enable precise and specific activation of critical biological processes. Ca2+ signaling regulates pathogenic features of apicomplexan parasites like Toxoplasma gondii which infects approximately one-third of the world's population. T. gondii relies on Ca2+ signals to stimulate traits of its infection cycle and several Ca2+ signaling elements play essential roles in its parasitic cycle. Active egress, an essential step for the infection cycle of T. gondii is preceded by a large increase in cytosolic Ca2+ most likely by release from intracellular stores. Intracellular parasites take up Ca2+ from the host cell during host Ca2+ signaling events to replenish intracellular stores. In this work, we investigated the mechanism by which intracellular stores are replenished with Ca2+ and demonstrated a central role for the SERCA-Ca2+-ATPase in keeping not only the ER filled with Ca2+ but also other stores. We show mitochondrial Ca2+ uptake, by transfer of Ca2+ from the ER likely through membrane contact sites. We propose a central role for the ER in sequestering and redistributing calcium to other intracellular organelles following influx at the PM.
Collapse
Affiliation(s)
- Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
| | - Beejan Asady
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, MD 21205
| | - Le Chang
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
| | - Miryam Andrea Hortua Triana
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
| | - Catherine Li
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Heath, Baltimore, MD 21205
| | - Silvia N.J. Moreno
- Center for Tropical and Emerging Global Diseases, Department of Computes Science, University of Georgia, Athens, Georgia 30602
- Department of Cellular Biology, University of Georgia, Athens, Georgia 30602
| |
Collapse
|
3
|
Pasquarelli RR, Quan JJ, Cheng ES, Yang V, Britton TA, Sha J, Wohlschlegel JA, Bradley PJ. Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labeling. mBio 2024; 15:e0238024. [PMID: 39345210 PMCID: PMC11559087 DOI: 10.1128/mbio.02380-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 08/26/2024] [Indexed: 10/01/2024] Open
Abstract
Toxoplasma gondii possesses a highly polarized secretory pathway that contains both broadly conserved eukaryotic organelles and unique apicomplexan organelles, which play essential roles in the parasite's lytic cycle. As in other eukaryotes, the T. gondii Golgi apparatus sorts and modifies proteins prior to their distribution to downstream organelles. Many of the typical trafficking factors found involved in these processes are missing from apicomplexan genomes, suggesting that these parasites have evolved unique proteins to fill these roles. Here, we identify a Golgi-localizing protein (ULP1), which is structurally similar to the eukaryotic trafficking factor p115/Uso1. We demonstrate that depletion of ULP1 leads to a dramatic reduction in parasite fitness that is the result of defects in microneme secretion, invasion, replication, and egress. Using ULP1 as bait for TurboID proximity labeling and immunoprecipitation, we identify 11 more Golgi-associated proteins and demonstrate that ULP1 interacts with the T. gondii-conserved oligomeric Golgi (COG) complex. These proteins include both conserved trafficking factors and parasite-specific proteins. Using a conditional knockdown approach, we assess the effect of each of these 11 proteins on parasite fitness. Together, this work reveals a diverse set of T. gondii Golgi-associated proteins that play distinct roles in the secretory pathway. As several of these proteins are absent outside of the Apicomplexa, they represent potential targets for the development of novel therapeutics against these parasites. IMPORTANCE Apicomplexan parasites such as Toxoplasma gondii infect a large percentage of the world's population and cause substantial human disease. These widespread pathogens use specialized secretory organelles to infect their host cells, modulate host cell functions, and cause disease. While the functions of the secretory organelles are now better understood, the Golgi apparatus of the parasite remains largely unexplored, particularly regarding parasite-specific innovations that may help direct traffic intracellularly. In this work, we characterize ULP1, a protein that is unique to parasites but shares structural similarity to the eukaryotic trafficking factor p115/Uso1. We show that ULP1 plays an important role in parasite fitness and demonstrate that it interacts with the conserved oligomeric Golgi (COG) complex. We then use ULP1 proximity labeling to identify 11 additional Golgi-associated proteins, which we functionally analyze via conditional knockdown. This work expands our knowledge of the Toxoplasma Golgi apparatus and identifies potential targets for therapeutic intervention.
Collapse
Affiliation(s)
| | - Justin J. Quan
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Emily S. Cheng
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California, USA
| | - Vivian Yang
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Timmie A. Britton
- Molecular Biology Institute, University of California, Los Angeles, California, USA
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| | - Peter J. Bradley
- Molecular Biology Institute, University of California, Los Angeles, California, USA
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, California, USA
| |
Collapse
|
4
|
Qin B, Fan B, Li Y, Wang Y, Shen B, Xia N. An endoplasmic reticulum localized acetyl-CoA transporter is required for efficient fatty acid synthesis in Toxoplasma gondii. Open Biol 2024; 14:240184. [PMID: 39532149 PMCID: PMC11557232 DOI: 10.1098/rsob.240184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/11/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that can infect humans and diverse animals. Fatty acids are critical for the growth and proliferation of T. gondii, which has at least two pathways to synthesize fatty acids, including the type II de novo synthesis pathway in the apicoplast and the elongation pathway in the endoplasmic reticulum (ER). Acetyl-CoA is the key substrate for both fatty acid synthesis pathways. In the apicoplast, acetyl-CoA is mainly provided by the pyruvate dehydrogenase complex. However, how the ER acquires acetyl-CoA is not fully understood. Here, we identified a putative acetyl-CoA transporter (TgAT1) that localized to the ER of T. gondii. Deletion of TgAT1 impaired parasite growth and invasion in vitro and attenuated tachyzoite virulence in vivo. Metabolic tracing using 13C-acetate found that loss of TgAT1 reduced the incorporation of 13C into certain fatty acids, suggesting reduced activities of elongation. Truncation of AT1 was previously reported to confer resistance to the antimalarial compound GNF179 in Plasmodium falciparum. Interestingly, GNF179 had much weaker inhibitory effect on Toxoplasma than on Plasmodium. In addition, deletion of AT1 did not affect the susceptibility of Toxoplasma to GNF179, suggesting that this compound might be taken up differently or has different inhibitory mechanisms in these parasites. Together, our data show that TgAT1 has important roles for parasite growth and fatty acid synthesis, but its disruption does not confer GNF179 resistance in T. gondii.
Collapse
Affiliation(s)
- Biyun Qin
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bolin Fan
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Yazhou Li
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Yidan Wang
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
| | - Bang Shen
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- Key Laboratory of Preventive Veterinary Medicine in Hubei Province, Wuhan, Hubei Province, People’s Republic of China
- Hubei Hongshan Laboratory, Wuhan, Hubei Province, People’s Republic of China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, Guangdong Province, People’s Republic of China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, People’s Republic of China
| | - Ningbo Xia
- National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, People’s Republic of China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, Guangdong Province, People’s Republic of China
| |
Collapse
|
5
|
Alvarez JA, Gas-Pascual E, Malhi S, Sánchez-Arcila JC, Njume FN, van der Wel H, Zhao Y, García-López L, Ceron G, Posada J, Souza SP, Yap GS, West CM, Jensen KDC. The GPI sidechain of Toxoplasma gondii inhibits parasite pathogenesis. mBio 2024; 15:e0052724. [PMID: 39302131 PMCID: PMC11481522 DOI: 10.1128/mbio.00527-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/23/2024] [Indexed: 09/22/2024] Open
Abstract
Glycosylphosphatidylinositols (GPIs) are highly conserved anchors for eukaryotic cell surface proteins. The apicomplexan parasite, Toxoplasma gondii, is a widespread intracellular parasite of warm-blooded animals whose plasma membrane is covered with GPI-anchored proteins, and free GPIs called GIPLs. While the glycan portion is conserved, species differ in sidechains added to the triple mannose core. The functional significance of the Glcα1,4GalNAcβ1- sidechain reported in Toxoplasma gondii has remained largely unknown without understanding its biosynthesis. Here we identify and disrupt two glycosyltransferase genes and confirm their respective roles by serology and mass spectrometry. Parasites lacking the sidechain on account of deletion of the first glycosyltransferase, PIGJ, exhibit increased virulence during primary and secondary infections, suggesting it is an important pathogenesis factor. Cytokine responses, antibody recognition of GPI-anchored SAGs, and complement binding to PIGJ mutants are intact. By contrast, the scavenger receptor CD36 shows enhanced binding to PIGJ mutants, potentially explaining a subtle tropism for macrophages detected early in infection. Galectin-3, which binds GIPLs, exhibits an enhancement of binding to PIGJ mutants, and the protection of galectin-3 knockout mice from lethality suggests that Δpigj parasite virulence in this context is sidechain dependent. Parasite numbers are not affected by Δpigj early in the infection in wild-type mice, suggesting a breakdown of tolerance. However, increased tissue cysts in the brains of mice infected with Δpigj parasites indicate an advantage over wild-type strains. Thus, the GPI sidechain of T. gondii plays a crucial and diverse role in regulating disease outcomes in the infected host.IMPORTANCEThe functional significance of sidechain modifications to the glycosylphosphatidylinositol (GPI) anchor in parasites has yet to be determined because the glycosyltransferases responsible for these modifications have not been identified. Here we present identification and characterization of both Toxoplasmsa gondii GPI sidechain-modifying glycosyltransferases. Removal of the glycosyltransferase that adds the first GalNAc to the sidechain results in parasites without a sidechain on the GPI, and increased host susceptibility to infection. Loss of the second glycosyltransferase results in a sidechain with GalNAc alone, and no glucose added, and has negligible effect on disease outcomes. This indicates GPI sidechains are fundamental to host-parasite interactions.
Collapse
Affiliation(s)
- Julia A. Alvarez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Elisabet Gas-Pascual
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Sahil Malhi
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Juan C. Sánchez-Arcila
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Ferdinand Ngale Njume
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Yanlin Zhao
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Laura García-López
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - Gabriella Ceron
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Jasmine Posada
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
| | - Scott P. Souza
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Quantitative and Systems Biology Graduate Program, University of California, Merced, California, USA
| | - George S. Yap
- Department of Medicine and Center for Immunity and Inflammation, New Jersey Medical School, Rutgers University, Newark, New Jersey, USA
| | - Christopher M. West
- Department of Biochemistry and Molecular Biology, Center for Tropical and Emerging Global Diseases, and Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia, USA
| | - Kirk D. C. Jensen
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, California, USA
- Health Sciences Research Institute, University of California, Merced, California, USA
| |
Collapse
|
6
|
Oliveira Souza RO, Yang C, Arrizabalaga G. Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. PLoS Pathog 2024; 20:e1012127. [PMID: 39374269 PMCID: PMC11486366 DOI: 10.1371/journal.ppat.1012127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 10/17/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024] Open
Abstract
The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.
Collapse
Affiliation(s)
- Rodolpho Ornitz Oliveira Souza
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, United States of America
| |
Collapse
|
7
|
Pasquarelli RR, Quan JJ, Cheng ES, Yang V, Britton TA, Sha J, Wohlschlegel JA, Bradley PJ. Characterization and functional analysis of Toxoplasma Golgi-associated proteins identified by proximity labelling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578703. [PMID: 38352341 PMCID: PMC10862792 DOI: 10.1101/2024.02.02.578703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Toxoplasma gondii possesses a highly polarized secretory pathway that contains both broadly conserved eukaryotic organelles and unique apicomplexan organelles which play essential roles in the parasite's lytic cycle. As in other eukaryotes, the T. gondii Golgi apparatus sorts and modifies proteins prior to their distribution to downstream organelles. Many of the typical trafficking factors found involved in these processes are missing from apicomplexan genomes, suggesting that these parasites have evolved unique proteins to fill these roles. Here we identify a novel Golgi-localizing protein (ULP1) which contains structural homology to the eukaryotic trafficking factor p115/Uso1. We demonstrate that depletion of ULP1 leads to a dramatic reduction in parasite fitness and replicative ability. Using ULP1 as bait for TurboID proximity labelling and immunoprecipitation, we identify eleven more novel Golgi-associated proteins and demonstrate that ULP1 interacts with the T. gondii COG complex. These proteins include both conserved trafficking factors and parasite-specific proteins. Using a conditional knockdown approach, we assess the effect of each of these eleven proteins on parasite fitness. Together, this work reveals a diverse set of novel T. gondii Golgi-associated proteins that play distinct roles in the secretory pathway. As several of these proteins are absent outside of the Apicomplexa, they represent potential targets for the development of novel therapeutics against these parasites. Importance Apicomplexan parasites such as Toxoplasma gondii infect a large percentage of the world's population and cause substantial human disease. These widespread pathogens use specialized secretory organelles to infect their host cells, modulate host cell functions, and cause disease. While the functions of the secretory organelles are now better understood, the Golgi apparatus of the parasite remains largely unexplored, particularly regarding parasite-specific innovations that may help direct traffic intracellularly. In this work, we characterize ULP1, a protein that is unique to parasites but shares structural similarity to the eukaryotic trafficking factor p115/Uso1. We show that ULP1 plays an important role in parasite replication and demonstrate that it interacts with the conserved oligomeric Golgi (COG) complex. We then use ULP1 proximity labelling to identify eleven additional Golgi-associated proteins which we functionally analyze via conditional knockdown. This work expands our knowledge of the Toxoplasma Golgi apparatus and identifies potential targets for therapeutic intervention.
Collapse
|
8
|
Quan JJ, Nikolov LA, Sha J, Wohlschlegel JA, Coppens I, Bradley PJ. Systematic characterization of all Toxoplasma gondii TBC domain-containing proteins identifies an essential regulator of Rab2 in the secretory pathway. PLoS Biol 2024; 22:e3002634. [PMID: 38713739 PMCID: PMC11101121 DOI: 10.1371/journal.pbio.3002634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 05/17/2024] [Accepted: 04/22/2024] [Indexed: 05/09/2024] Open
Abstract
Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host cell manipulation, and parasite replication. Rab GTPases are major regulators of the parasite's secretory traffic that function as nucleotide-dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii, precisely how these Rabs are regulated remains poorly understood. To better understand the parasite's secretory traffic, we investigated the entire family of Tre2-Bub2-Cdc16 (TBC) domain-containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC domain-containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. Second, we use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein, which localizes to the endoplasmic reticulum (ER), is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and mitochondrial morphology. TgTBC9 knockdown also results in the formation of large lipid droplets (LDs) and multi-membranous structures surrounded by ER membranes, further indicating a disruption of ER functions. We show that the conserved dual-finger active site in the TBC domain of the protein is critical for its GTPase-activating protein (GAP) function and that the Plasmodium falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast 2 hybrid analyses that TgTBC9 preferentially binds Rab2, indicating that the TBC9-Rab2 pair controls ER morphology and vesicular trafficking in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan and provide new insight into intracellular vesicle trafficking in T. gondii.
Collapse
Affiliation(s)
- Justin J. Quan
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Lachezar A. Nikolov
- Department of Biology, Indiana University, Bloomington, Indiana, United States of America
| | - Jihui Sha
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - James A. Wohlschlegel
- Department of Biological Chemistry and Institute of Genomics and Proteomics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Peter J. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
9
|
Ornitz Oliveira Souza R, Yang C, Arrizabalaga G. Myosin A and F-Actin play a critical role in mitochondrial dynamics and inheritance in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585462. [PMID: 38562694 PMCID: PMC10983951 DOI: 10.1101/2024.03.18.585462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
The single mitochondrion of the obligate intracellular parasite Toxoplasma gondii is highly dynamic. Toxoplasma's mitochondrion changes morphology as the parasite moves from the intracellular to the extracellular environment and during division. Toxoplasma's mitochondrial dynamic is dependent on an outer mitochondrion membrane-associated protein LMF1 and its interaction with IMC10, a protein localized at the inner membrane complex (IMC). In the absence of either LMF1 or IMC10, parasites have defective mitochondrial morphology and inheritance defects. As little is known about mitochondrial inheritance in Toxoplasma, we have used the LMF1/IMC10 tethering complex as an entry point to dissect the machinery behind this process. Using a yeast two-hybrid screen, we previously identified Myosin A (MyoA) as a putative interactor of LMF1. Although MyoA is known to be located at the parasite's pellicle, we now show through ultrastructure expansion microscopy (U-ExM) that this protein accumulates around the mitochondrion in the late stages of parasite division. Parasites lacking MyoA show defective mitochondrial morphology and a delay in mitochondrion delivery to the daughter parasite buds during division, indicating that this protein is involved in organellar inheritance. Disruption of the parasite's actin network also affects mitochondrion morphology. We also show that parasite-extracted mitochondrion vesicles interact with actin filaments. Interestingly, mitochondrion vesicles extracted out of parasites lacking LMF1 pulled down less actin, showing that LMF1 might be important for mitochondrion and actin interaction. Accordingly, we are showing for the first time that actin and Myosin A are important for Toxoplasma mitochondrial morphology and inheritance.
Collapse
Affiliation(s)
| | - Chunlin Yang
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine
| |
Collapse
|
10
|
Hortua Triana MA, Márquez-Nogueras KM, Fazli MS, Quinn S, Moreno SNJ. Regulation of calcium entry by cyclic GMP signaling in Toxoplasma gondii. J Biol Chem 2024; 300:105771. [PMID: 38382669 PMCID: PMC10959671 DOI: 10.1016/j.jbc.2024.105771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/28/2024] [Indexed: 02/23/2024] Open
Abstract
Ca2+ signaling impacts almost every aspect of cellular life. Ca2+ signals are generated through the opening of ion channels that permit the flow of Ca2+ down an electrochemical gradient. Cytosolic Ca2+ fluctuations can be generated through Ca2+ entry from the extracellular milieu or release from intracellular stores. In Toxoplasma gondii, Ca2+ ions play critical roles in several essential functions for the parasite, like invasion of host cells, motility, and egress. Plasma membrane Ca2+ entry in T. gondii was previously shown to be activated by cytosolic calcium and inhibited by the voltage-operated Ca2+ channel blocker nifedipine. However, Ca2+ entry in T. gondii did not show the classical characteristics of store regulation. In this work, we characterized the mechanism by which cytosolic Ca2+ regulates plasma membrane Ca2+ entry in extracellular T. gondii tachyzoites loaded with the Ca2+ indicator Fura-2. We compared the inhibition by nifedipine with the effect of the broad spectrum TRP channel inhibitor, anthranilic acid or ACA, and we find that both inhibitors act on different Ca2+ entry activities. We demonstrate, using pharmacological and genetic tools, that an intracellular signaling pathway engaging cyclic GMP, protein kinase G, Ca2+, and the phosphatidyl inositol phospholipase C affects Ca2+ entry and we present a model for crosstalk between cyclic GMP and cytosolic Ca2+ for the activation of T. gondii's lytic cycle traits.
Collapse
Affiliation(s)
- Miryam A Hortua Triana
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA
| | | | | | - Shannon Quinn
- Department of Computer Science, University of Georgia, Athens, Georgia, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, USA; Department of Cellular Biology, University of Georgia, Athens, Georgia, USA.
| |
Collapse
|
11
|
Marques-Santos F, Faria RX, Amendoeira MRR. The Search for Drugs Derived from Natural Products for Toxoplasma gondii Infection Treatment in the Last 20 Years - A Systematic Review. Curr Top Med Chem 2024; 24:1960-1999. [PMID: 38952156 DOI: 10.2174/0115680266299409240606062235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 07/03/2024]
Abstract
INTRODUCTION Toxoplasmosis is a worldwide distributed zoonosis caused by Toxoplasma gondii (T. gondii), an obligate intracellular protozoan. The infection in immunocompetent hosts usually progresses with mild or no symptoms. However, in immunocompromised individuals, this disease can cause severe or fatal symptoms. METHOD Sulfadiazine and pyrimethamine are two drugs used as standard therapies for human toxoplasmosis. Although they do not cause chronic infection, they may cause hematological toxicity, hypersensitivity, intolerance, teratogenic effects, gastrointestinal disorders, and bone marrow suppression. RESULTS The limited effect, significant toxicity, and emerging resistance to current drugs available to treat T. gondii infections require investigating other effective, nontoxic, and well-tolerated alternatives. Medicinal plants are, traditionally, the most promising sources used to treat infectious diseases Conclusion: This review provides data on new therapeutic and prophylactic methods for T. gondii infection based on the use of extracts and/or compounds derived from natural products, which have been reported to be useful as alternative treatment options in the last 20 years.
Collapse
Affiliation(s)
- Fabielle Marques-Santos
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| | - Robson Xavier Faria
- Fundação Oswaldo Cruz, Fiocruz, Instituto Oswaldo Cruz, Laboratório de Avaliação e Promoção da Saúde Ambiental, Rio de Janeiro, RJ, Brasil
| | - Maria Regina Reis Amendoeira
- FundaçãoOswaldo Cruz - Fiocruz, Instituto Oswaldo Cruz, Laboratório de Toxoplasmose e outras Protozooses, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
12
|
Liang QL, Nie LB, Elsheikha HM, Li TT, Sun LX, Zhang ZW, Wang M, Fu BQ, Zhu XQ, Wang JL. The Toxoplasma protein phosphatase 6 catalytic subunit (TgPP6C) is essential for cell cycle progression and virulence. PLoS Pathog 2023; 19:e1011831. [PMID: 38091362 PMCID: PMC10752510 DOI: 10.1371/journal.ppat.1011831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/27/2023] [Accepted: 11/16/2023] [Indexed: 12/28/2023] Open
Abstract
Protein phosphatases are post-translational regulators of Toxoplasma gondii proliferation, tachyzoite-bradyzoite differentiation and pathogenesis. Here, we identify the putative protein phosphatase 6 (TgPP6) subunits of T. gondii and elucidate their role in the parasite lytic cycle. The putative catalytic subunit TgPP6C and regulatory subunit TgPP6R likely form a complex whereas the predicted structural subunit TgPP6S, with low homology to the human PP6 structural subunit, does not coassemble with TgPP6C and TgPP6R. Functional studies showed that TgPP6C and TgPP6R are essential for parasite growth and replication. The ablation of TgPP6C significantly reduced the synchronous division of the parasite's daughter cells during endodyogeny, resulting in disordered rosettes. Moreover, the six conserved motifs of TgPP6C were required for efficient endodyogeny. Phosphoproteomic analysis revealed that ablation of TgPP6C predominately altered the phosphorylation status of proteins involved in the regulation of the parasite cell cycle. Deletion of TgPP6C significantly attenuated the parasite virulence in mice. Immunization of mice with TgPP6C-deficient type I RH strain induced protective immunity against challenge with a lethal dose of RH or PYS tachyzoites and Pru cysts. Taken together, the results show that TgPP6C contributes to the cell division, replication and pathogenicity in T. gondii.
Collapse
Affiliation(s)
- Qin-Li Liang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Lan-Bi Nie
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M. Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Ting-Ting Li
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Li-Xiu Sun
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Zhi-Wei Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Meng Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Bao-Quan Fu
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xing-Quan Zhu
- Laboratory of Parasitic Diseases, College of Veterinary Medicine, Shanxi Agricultural University, Taigu, China
| | - Jin-Lei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| |
Collapse
|
13
|
Thind AC, Mota CM, Gonçalves APN, Sha J, Wohlschlegel JA, Mineo TWP, Bradley PJ. The Toxoplasma gondii effector GRA83 modulates the host's innate immune response to regulate parasite infection. mSphere 2023; 8:e0026323. [PMID: 37768053 PMCID: PMC10597413 DOI: 10.1128/msphere.00263-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Toxoplasma gondii's propensity to infect its host and cause disease is highly dependent on its ability to modulate host cell functions. One of the strategies the parasite uses to accomplish this is via the export of effector proteins from the secretory dense granules. Dense granule (GRA) proteins are known to play roles in nutrient acquisition, host cell cycle manipulation, and immune regulation. Here, we characterize a novel dense granule protein named GRA83, which localizes to the parasitophorous vacuole (PV) in tachyzoites and bradyzoites. Disruption of GRA83 results in increased virulence, weight loss, and parasitemia during the acute infection, as well as a marked increase in the cyst burden during the chronic infection. This increased parasitemia was associated with an accumulation of inflammatory infiltrates in tissues in both acute and chronic infections. Murine macrophages infected with ∆gra83 tachyzoites produced less interleukin-12 (IL-12) in vitro, which was confirmed with reduced IL-12 and interferon-gamma in vivo. This dysregulation of cytokines correlates with reduced nuclear translocation of the p65 subunit of the nuclear factor-κB (NF-κB) complex. While GRA15 similarly regulates NF-κB, infection with ∆gra83/∆gra15 parasites did not further reduce p65 translocation to the host cell nucleus, suggesting these GRAs function in converging pathways. We also used proximity labeling experiments to reveal candidate GRA83 interacting T. gondii-derived partners. Taken together, this work reveals a novel effector that stimulates the innate immune response, enabling the host to limit the parasite burden. Importance Toxoplasma gondii poses a significant public health concern as it is recognized as one of the leading foodborne pathogens in the United States. Infection with the parasite can cause congenital defects in neonates, life-threatening complications in immunosuppressed patients, and ocular disease. Specialized secretory organelles, including the dense granules, play an important role in the parasite's ability to efficiently invade and regulate components of the host's infection response machinery to limit parasite clearance and establish an acute infection. Toxoplasma's ability to avoid early clearance, while also successfully infecting the host long enough to establish a persistent chronic infection, is crucial in allowing for its transmission to a new host. While multiple GRAs directly modulate host signaling pathways, they do so in various ways highlighting the parasite's diverse arsenal of effectors that govern infection. Understanding how parasite-derived effectors harness host functions to evade defenses yet ensure a robust infection is important for understanding the complexity of the pathogen's tightly regulated infection. In this study, we characterize a novel secreted protein named GRA83 that stimulates the host cell's response to limit infection.
Collapse
Affiliation(s)
- Amara C. Thind
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - Caroline M. Mota
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Ana Paula N. Gonçalves
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Jihui Sha
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California, USA
| | - Tiago W. P. Mineo
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Laboratory of Immunoparasitology “Dr. Mário Endsfeldz Camargo,” Institute of Biomedical Sciences, Federal University of Uberlândia, Uberlândia, Minas Gerais, Brazil
| | - Peter J. Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, California, USA
| |
Collapse
|
14
|
Quan JJ, Nikolov LA, Sha J, Wohlschlegel JA, Bradley PJ. Toxoplasma gondii encodes an array of TBC-domain containing proteins including an essential regulator that targets Rab2 in the secretory pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.28.542599. [PMID: 37398139 PMCID: PMC10312441 DOI: 10.1101/2023.05.28.542599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Toxoplasma gondii resides in its intracellular niche by employing a series of specialized secretory organelles that play roles in invasion, host-cell manipulation and parasite replication. Rab GTPases are major regulators of the parasite's secretory traffic that function as nucleotide dependent molecular switches to control vesicle trafficking. While many of the Rab proteins have been characterized in T. gondii , precisely how these Rabs are regulated remains poorly understood. To better understand the parasite's secretory traffic, we investigated the entire family of Tre2-Bub2-Cdc16 (TBC)-domain containing proteins, which are known to be involved in vesicle fusion and secretory protein trafficking. We first determined the localization of all 18 TBC-domain containing proteins to discrete regions of the secretory pathway or other vesicles in the parasite. We then use an auxin-inducible degron approach to demonstrate that the protozoan-specific TgTBC9 protein that localizes to the ER is essential for parasite survival. Knockdown of TgTBC9 results in parasite growth arrest and affects the organization of the ER and Golgi apparatus. We show that the conserved dual-finger active site in the TBC-domain of the protein is critical for its GTPase-activating protein (GAP) function and that the P. falciparum orthologue of TgTBC9 can rescue the lethal knockdown. We additionally show by immunoprecipitation and yeast two hybrid analyses that TgTBC9 directly binds Rab2, indicating that this TBC-Rab pair controls ER to Golgi traffic in the parasite. Together, these studies identify the first essential TBC protein described in any protozoan, provide new insight into intracellular vesicle trafficking in T. gondii , and reveal promising targets for the design of novel therapeutics that can specifically target apicomplexan parasites.
Collapse
|
15
|
Diao Y, Yao Y, El-Ashram S, Bian M. Egress Regulatory Factors: How Toxoplasma Exits from Infected Cells? Pathogens 2023; 12:pathogens12050679. [PMID: 37242349 DOI: 10.3390/pathogens12050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 05/28/2023] Open
Abstract
Toxoplasma gondii is an obligatory intracellular protozoan in the family Apicomplexa. It infects almost one-third of the world's population and causes toxoplasmosis, a prevalent disease. The parasite's egress from infected cells is a key step in the pathology caused by T. gondii. Moreover, T. gondii's continuous infection relies heavily on its capacity to migrate from one cell to another. Many pathways are involved in T. gondii egress. Individual routes may be modified to respond to various environmental stimuli, and many paths can converge. Regardless of the stimuli, the relevance of Ca2+ as a second messenger in transducing these signals, and the convergence of various signaling pathways in the control of motility and, ultimately, egress, is well recognized. This review attempts to outline intra- and extra-parasitic regulators that mediate T. gondii egress, and provides insight into potential clinical interventions and research.
Collapse
Affiliation(s)
- Yujie Diao
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| | - Yong Yao
- College of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Saeed El-Ashram
- College of Life Science and Engineering, Foshan University, 18 Jiangwan Street, Foshan 528231, China
- Faculty of Science, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Maohong Bian
- Department of Blood Transfusion, The First Affiliated Hospital of Anhui Medical University, Hefei 230032, China
| |
Collapse
|
16
|
Munera López J, Alonso AM, Figueras MJ, Saldarriaga Cartagena AM, Hortua Triana MA, Diambra L, Vanagas L, Deng B, Moreno SNJ, Angel SO. Analysis of the Interactome of the Toxoplasma gondii Tgj1 HSP40 Chaperone. Proteomes 2023; 11:9. [PMID: 36976888 PMCID: PMC10056330 DOI: 10.3390/proteomes11010009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/20/2023] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Toxoplasma gondii is an obligate intracellular apicomplexan that causes toxoplasmosis in humans and animals. Central to its dissemination and pathogenicity is the ability to rapidly divide in the tachyzoite stage and infect any type of nucleated cell. Adaptation to different cell contexts requires high plasticity in which heat shock proteins (Hsps) could play a fundamental role. Tgj1 is a type I Hsp40 of T. gondii, an ortholog of the DNAJA1 group, which is essential during the tachyzoite lytic cycle. Tgj1 consists of a J-domain, ZFD, and DNAJ_C domains with a CRQQ C-terminal motif, which is usually prone to lipidation. Tgj1 presented a mostly cytosolic subcellular localization overlapping partially with endoplasmic reticulum. Protein-protein Interaction (PPI) analysis showed that Tgj1 could be implicated in various biological pathways, mainly translation, protein folding, energy metabolism, membrane transport and protein translocation, invasion/pathogenesis, cell signaling, chromatin and transcription regulation, and cell redox homeostasis among others. The combination of Tgj1 and Hsp90 PPIs retrieved only 70 interactors linked to the Tgj1-Hsp90 axis, suggesting that Tgj1 would present specific functions in addition to those of the Hsp70/Hsp90 cycle, standing out invasion/pathogenesis, cell shape motility, and energy pathway. Within the Hsp70/Hsp90 cycle, translation-associated pathways, cell redox homeostasis, and protein folding were highly enriched in the Tgj1-Hsp90 axis. In conclusion, Tgj1 would interact with a wide range of proteins from different biological pathways, which could suggest a relevant role in them.
Collapse
Affiliation(s)
- Jonathan Munera López
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Andrés Mariano Alonso
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Maria Julia Figueras
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Ana María Saldarriaga Cartagena
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Miryam A. Hortua Triana
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Luis Diambra
- Centro Regional de Estudios Genómicos, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Laura Vanagas
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| | - Bin Deng
- Department of Biology and VBRN, University of Vermont, Burlington, VT 05405, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Sergio Oscar Angel
- Laboratorio de Parasitología Molecular, INTECH, CONICET-UNSAM, Av. Intendente Marino Km. 8.2, C.C 164, Chascomús 7130, Argentina
| |
Collapse
|
17
|
Huţanu DE, Oprita G, Domocos D, Selescu T, Manolache A, Stratulat T, Sauer SK, Tunaru S, Babes A, Babes RM. The antimalarial artemisinin is a non-electrophilic agonist of the transient receptor potential ankyrin type 1 receptor-channel. Eur J Pharmacol 2023; 939:175467. [PMID: 36543288 DOI: 10.1016/j.ejphar.2022.175467] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Artemisinin and its derivatives are the main therapeutic drugs against Plasmodium protists, the causative agents of malaria. While several putative mechanisms of action have been proposed, the precise molecular targets of these compounds have not been fully elucidated. In addition to their antimalarial properties, artemisinins have been reported to act as anti-tumour agents and certain antinociceptive effects have also been proposed. We investigated the effect of the parent compound, artemisinin, on a number of temperature-gated Transient Receptor Potential ion channels (so called thermoTRPs), given their demonstrated roles in pain-sensing and cancer. We report that artemisinin acts as an agonist of the Transient Receptor Potential Ankyrin type 1 (TRPA1) receptor channel. Artemisinin was able to evoke calcium transients in HEK293T cells expressing recombinant human TRPA1, as well as in a subpopulation of mouse dorsal root ganglion (DRG) neurons which also responded to the selective TRPA1 agonist allyl isothiocyanate (AITC) and these responses were reversibly abolished by the selective TRPA1 antagonist A967079. Artemisinin also triggered whole-cell currents in HEK293T cells transiently transfected with human TRPA1, as well as in TRPA1-expressing DRG neurons, and these currents were inhibited by A967079. Interestingly, using human TRPA1 mutants, we demonstrate that artemisinin acts as a non-electrophilic agonist of TRPA1, activating the channel in a similar manner to carvacrol and menthol. These results may provide a better understanding of the biological actions of the very important antimalarial and anti-tumour agent artemisinin.
Collapse
Affiliation(s)
- Debora-Elena Huţanu
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095, Bucharest, Romania
| | - George Oprita
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095, Bucharest, Romania
| | - Dan Domocos
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095, Bucharest, Romania; Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei 296, 060031, Bucharest, Romania
| | - Tudor Selescu
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095, Bucharest, Romania
| | - Alexandra Manolache
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095, Bucharest, Romania
| | - Teodora Stratulat
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095, Bucharest, Romania; Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei 296, 060031, Bucharest, Romania
| | - Susanne K Sauer
- Institute of Physiology and Experimental Pathophysiology, Friedrich-Alexander University of Erlangen-Nuremberg, Universitaetsstrasse 17, 91054, Erlangen, Germany
| | - Sorin Tunaru
- Cell Signalling Research Group, Institute of Biochemistry of the Romanian Academy, Splaiul Independenţei 296, 060031, Bucharest, Romania
| | - Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, Faculty of Biology, University of Bucharest, Splaiul Independenţei 91-95, 050095, Bucharest, Romania.
| | - Ramona-Madalina Babes
- Department of Biophysics, "Carol Davila" University of Medicine and Pharmacy, Str. Dionisie Lupu 37, 020021, Bucharest, Romania
| |
Collapse
|
18
|
Huet D, Moreno SNJ. Interorganellar Communication Through Membrane Contact Sites in Toxoplasma Gondii. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2023; 6:25152564231189064. [PMID: 37560622 PMCID: PMC10408353 DOI: 10.1177/25152564231189064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 07/03/2023] [Accepted: 07/04/2023] [Indexed: 08/11/2023]
Abstract
Apicomplexan parasites are a group of protists that cause disease in humans and include pathogens like Plasmodium spp., the causative agent of malaria, and Toxoplasma gondii, the etiological agent of toxoplasmosis and one of the most ubiquitous human parasites in the world. Membrane contact sites (MCSs) are widespread structures within eukaryotic cells but their characterization in apicomplexan parasites is only in its very beginnings. Basic biological features of the T. gondii parasitic cycle support numerous organellar interactions, including the transfer of Ca2+ and metabolites between different compartments. In T. gondii, Ca2+ signals precede a series of interrelated molecular processes occurring in a coordinated manner that culminate in the stimulation of key steps of the parasite life cycle. Calcium transfer from the endoplasmic reticulum to other organelles via MCSs would explain the precision, speed, and efficiency that is needed during the lytic cycle of T. gondii. In this short review, we discuss the implications of these structures in cellular signaling, with an emphasis on their potential role in Ca2+ signaling.
Collapse
Affiliation(s)
- Diego Huet
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, USA
| | - Silvia N. J. Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA, USA
- Department of Cellular Biology, University of Georgia, Athens, GA, USA
| |
Collapse
|
19
|
Müller J, Schlange C, Heller M, Uldry AC, Braga-Lagache S, Haynes RK, Hemphill A. Proteomic characterization of Toxoplasma gondii ME49 derived strains resistant to the artemisinin derivatives artemiside and artemisone implies potential mode of action independent of ROS formation. Int J Parasitol Drugs Drug Resist 2022; 21:1-12. [PMID: 36512904 PMCID: PMC9763631 DOI: 10.1016/j.ijpddr.2022.11.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/13/2022]
Abstract
The sesquiterpene lactone artemisinin and its amino-artemisinin derivatives artemiside (GC008) and artemisone (GC003) are potent antimalarials. The mode of action of artemisinins against Plasmodium sp is popularly ascribed to 'activation' of the peroxide group by heme-Fe(II) or labile Fe(II) to generate C-radicals that alkylate parasite proteins. An alternative postulate is that artemisinins elicit formation of reactive oxygen species by interfering with flavin disulfide reductases resposible for maintaining intraparasitic redox homeostasis. However, in contradistinction to the heme-activation mechanism, the amino-artemisinins are effective in vitro against non-heme-degrading apicomplexan parasites including T. gondii, with IC 50 values of 50-70 nM, and induce distinct ultrastructural alterations. However, T. gondii strains readily adapted to increased concentrations (2.5 μM) of these two compounds within few days. Thus, T. gondii strains that were resistant against artemisone and artemiside were generated by treating the T. gondii reference strain ME49 with stepwise increasing amounts of these compounds, yielding the artemisone resistant strain GC003R and the artemiside resistant strain GC008R. Differential analyses of the proteomes of these resistant strains compared to the wildtype ME49 revealed that 215 proteins were significantly downregulated in artemisone resistant tachyzoites and only 8 proteins in artemiside resistant tachyzoites as compared to their wildtype. Two proteins, namely a hypothetical protein encoded by ORF TGME49_236950, and the rhoptry neck protein RON2 encoded by ORF TGME49_300100 were downregulated in both resistant strains. Interestingly, eight proteins involved in ROS scavenging including catalase and superoxide dismutase were amongst the differentially downregulated proteins in the artemisone-resistant strain. In parallel, ROS formation was significantly enhanced in isolated tachyzoites from the artemisone resistant strain and - to a lesser extent - in tachyzoites from the artemiside resistant strain as compared to wildtype tachyzoites. These findings suggest that amino-artemisinin derivatives display a mechanism of action in T. gondii distinct from Plasmodium.
Collapse
Affiliation(s)
- Joachim Müller
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Carling Schlange
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland
| | - Manfred Heller
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Sophie Braga-Lagache
- Proteomics & Mass Spectrometry Core Facility, Department for BioMedical Research (DBMR), University of Bern, Freiburgstrasse 15, CH-3010, Bern, Switzerland
| | - Richard K Haynes
- Centre of Excellence for Pharmaceutical Sciences, Faculty of Health Sciences, North-West University, Potchefstroom, 2520, South Africa
| | - Andrew Hemphill
- Institute of Parasitology, University of Bern, Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty, Länggass-Strasse 122, CH-3012, Bern, Switzerland.
| |
Collapse
|
20
|
Zhong W, Guo F, Chen F, Law MK, Lu J, Shao D, Yu H, Chan G, Chen M. A multifunctional oxidative stress nanoamplifier with ROS amplification and GSH exhaustion for enhanced chemodynamic therapy. Front Pharmacol 2022; 13:1044083. [PMID: 36438812 PMCID: PMC9689698 DOI: 10.3389/fphar.2022.1044083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/26/2022] [Indexed: 10/09/2023] Open
Abstract
Chemodynamic therapy (CDT) eradicates tumors by intratumoral catalytic chemical reaction and subsequently disrupts redox homeostasis, which shows tumor specific reactive oxygen species (ROS)-mediated therapy. However, insufficient ROS generation and high levels of glutathione (GSH) in cancer cells have limited the therapeutic efficacy of CDT. Herein, we constructed a multifunctional oxidative stress nanoamplifier with ROS amplification and GSH exhaustion for enhanced CDT. Such a sandwich-like nanoamplifier comprised layer-by-layer artesunate (AS) and calcium carbonate coatings on the surface of manganese dioxide (MnO2) nanoparticles. The nanoamplifier was disassembled under an acidic environment once accumulated into tumor sites, and subsequently released AS to replenish the intratumoral peroxide pool for ROS amplification. Besides being an AS carrier, MnO2 exhausted GSH to yield Mn2+ ions that catalyzed the overexpression of H2O2 in the tumor, further intensifying the oxidative stress and facilitating cancer cell death. Taken together, our findings not only provide a paradigm for fabricating intratumoral catalytic nanomaterials, but also present a new ROS enhancement strategy to improve anti-tumor efficacy. Our multifunctional oxidative stress nanoamplifier might broaden the future of CDT.
Collapse
Affiliation(s)
- Wenzhao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Feng Guo
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Fangman Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Man-Kay Law
- State Key Laboratory of Analog and Mixed-Signal VLSI, IME and FST-ECE, University of Macau, Macau, Macau SAR, China
| | - Jun Lu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Shao
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
| | - Hua Yu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Ging Chan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| | - Meiwan Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, Macau SAR, China
| |
Collapse
|
21
|
Chromatin structure undergoes global and local reorganization during murine dendritic cell development and activation. Proc Natl Acad Sci U S A 2022; 119:e2207009119. [PMID: 35969760 PMCID: PMC9407307 DOI: 10.1073/pnas.2207009119] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Classical dendritic cells (cDCs) are essential for immune responses and differentiate from hematopoietic stem cells via intermediate progenitors, such as monocyte-DC progenitors (MDPs) and common DC progenitors (CDPs). Upon infection, cDCs are activated and rapidly express host defense-related genes, such as those encoding cytokines and chemokines. Chromatin structures, including nuclear compartments and topologically associating domains (TADs), have been implicated in gene regulation. However, the extent and dynamics of their reorganization during cDC development and activation remain unknown. In this study, we comprehensively determined higher-order chromatin structures by Hi-C in DC progenitors and cDC subpopulations. During cDC differentiation, chromatin activation was initially induced at the MDP stage. Subsequently, a shift from inactive to active nuclear compartments occurred at the cDC gene loci in CDPs, which was followed by increased intra-TAD interactions and loop formation. Mechanistically, the transcription factor IRF8, indispensable for cDC differentiation, mediated chromatin activation and changes into the active compartments in DC progenitors, thereby possibly leading to cDC-specific gene induction. Using an infection model, we found that the chromatin structures of host defense-related gene loci were preestablished in unstimulated cDCs, indicating that the formation of higher-order chromatin structures prior to infection may contribute to the rapid responses to pathogens. Overall, these results suggest that chromatin structure reorganization is closely related to the establishment of cDC-specific gene expression and immune functions. This study advances the fundamental understanding of chromatin reorganization in cDC differentiation and activation.
Collapse
|
22
|
Li S, Qian J, Xu M, Yang J, He Z, Zhao T, Zhao J, Fang R. A new adenine nucleotide transporter located in the ER is essential for maintaining the growth of Toxoplasma gondii. PLoS Pathog 2022; 18:e1010665. [PMID: 35788770 PMCID: PMC9286291 DOI: 10.1371/journal.ppat.1010665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/15/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
The lumen of the endoplasmic reticulum (ER) is the subcellular site where secretory protein folding, glycosylation and sulfation of membrane-bound proteins, proteoglycans, and lipids occur. The protein folding and degradation in the lumen of the ER require high levels of energy in the form of ATP. Biochemical and genetic approaches show that ATP must first be translocated across ER membrane by particular transporters before serving as substrates and energy sources in the lumenal reactions. Here we describe an ATP/ADP transporter residing in the ER membranes of T.gondii. Immunofluorescence (IFA) assay in transgenic TgANT1-HA tag revealed that TgANT1 is a protein specifically expressed in the ER. In vitro assays, functional integration of TgANT in the cytoplasmic membrane of intact E. coli cells reveals high specificity for an ATP/ADP antiport. The depletion of TgANT leads to fatal growth defects in T.gondii, including a significant slowdown in replication, no visible plaque formation, and reduced ability to invade. We also found that the amino acid mutations in two domains of TgANT lead to the complete loss of its function. Since these two domains are conserved in multiple species, they may share the same transport mechanism. Our results indicate that TgANT is the only ATP/ADP transporter in the ER of T. gondii, and the lack of ATP in the ER is the cause of the death of T. gondii. The secretory protein of T. gondii is essential for its invasion and normal growth in host cells, all the secretory proteins are synthesized in the ER before being destined for these distinct organelles, such as apicoplast, microneme, dense granule and rhoptry. ER ATP is demanded to support secretory protein folding and trafficking, and the level of ER ATP determines which proteins are able to be directed to the distinct organelles. In theory, the supply of ATP in the ER is necessary for T. gondii. However, the transport mechanism and importance of the ER ATP in T. gondii are still unclear. In our study, we identified an ATP/ADP transporter (TgANT) located in the ER and verified its function through various methods. Unlike the ER ATP/ADP transporter in mammals, we proved that TgANT is functionally specific; the deletion of TgANT caused the interruption of the supply of ATP in the ER, which leads to fatal phenotypic defects of T. gondii. Our research further expands the understanding of the growth regulation in T. gondii.
Collapse
Affiliation(s)
- Senyang Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jiahui Qian
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Ming Xu
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Jing Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Zhengming He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Tongjie Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Junlong Zhao
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Rui Fang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei Province, China
- * E-mail:
| |
Collapse
|
23
|
Tan S, Tong WH, Vyas A. Impact of Plant-Based Foods and Nutraceuticals on Toxoplasma gondii Cysts: Nutritional Therapy as a Viable Approach for Managing Chronic Brain Toxoplasmosis. Front Nutr 2022; 9:827286. [PMID: 35284438 PMCID: PMC8914227 DOI: 10.3389/fnut.2022.827286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/31/2022] [Indexed: 12/13/2022] Open
Abstract
Toxoplasma gondii is an obligate intracellular parasite that mainly infects warm-blooded animals including humans. T. gondii can encyst and persist chronically in the brain, leading to a broad spectrum of neurological sequelae. Despite the associated health threats, no clinical drug is currently available to eliminate T. gondii cysts. In a continuous effort to uncover novel therapeutic agents for these cysts, the potential of nutritional products has been explored. Herein, we describe findings from in vitro and in vivo studies that support the efficacy of plant-based foods and nutraceuticals against brain cyst burden and cerebral pathologies associated with chronic toxoplasmosis. Finally, we discuss strategies to increase the translatability of preclinical studies and nutritional products to address whether nutritional therapy can be beneficial for coping with chronic T. gondii infections in humans.
Collapse
|
24
|
Fukumoto J, Sakura T, Matsubara R, Tahara M, Matsuzaki M, Nagamune K. Rhoptry kinase protein 39 (ROP39) is a novel factor that recruits host mitochondria to the parasitophorous vacuole of Toxoplasma gondii. Biol Open 2021; 10:272331. [PMID: 34590698 PMCID: PMC8496691 DOI: 10.1242/bio.058988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Most intracellular pathogens replicate in a vacuole to avoid the defense system of the host. A few pathogens recruit host mitochondria around those vacuoles, but the molecules responsible for mitochondrial recruitment remain unidentified. It is only in the apicomplexan parasite Toxoplasma gondii, that mitochondrial association factor 1b (MAF1b) has been identified as an association factor for host mitochondria. Here, we show that rhoptry kinase family protein 39 (ROP39) induces host mitochondrial recruitment in T. gondii. We found that the abundance of ROP39 was increased on host mitochondria extracted from human foreskin fibroblasts (HFFs) infected with T. gondii. ROP39 expressed exogenously in HFFs localized on host mitochondria, indicating that it has the potential to bind to host mitochondria without assistance from other parasite factors. Confocal microscopy revealed that ROP39 colocalized with host mitochondria on the membrane of parasitophorous vacuoles, in which the parasites reside. Moreover, we observed about a 10% reduction in the level of mitochondrial association in rop39-knockout parasites compared with a parental strain. Summary: We revealed that ROP39 recruitments host mitochondria, possibly through its kinase activity. Exploiting components involved with recruitment of host mitochondria advances the understanding of how the parasites employ mitochondrial recruitment to survive in host cells.
Collapse
Affiliation(s)
- Junpei Fukumoto
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Takaya Sakura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Ryuma Matsubara
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.,Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Michiru Tahara
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Motomichi Matsuzaki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.,Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
25
|
Abou-El-Naga IF, Gomaa MM, ElAchy SN. Effect of HIV aspartyl protease inhibitors on experimental infection with a cystogenic Me49 strain of Toxoplasma gondii. Pathog Glob Health 2021; 116:107-118. [PMID: 34420500 DOI: 10.1080/20477724.2021.1967628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Toxoplasmosis is a zoonotic disease of major significant perspectives in public health and veterinary medicine. So far, the available drugs control only the active infection, once the parasite encysts in the tissues, they lose their efficacy. Cytokines; IFN-γ and IL-10, play a critical role in the modulation of toxoplasmic encephalitis and neuro-inflammation in chronic toxoplasmosis. Antiretroviral protease inhibitors applied in the treatment of acquired immunodeficiency syndrome, revealed activity against multiple parasites. Aluvia (lopinavir/ritonavir) (L/R); an aspartyl protease inhibitor, had efficiently treated T. gondii RH strain infection. We investigated the potential activity of L/R against experimental T. gondii infection with a cystogenic Me49 strain in mice, considering the role of IFN-γ and IL-10 in the neuropathology versus pyrimethamine-sulfadiazine combination therapy. Three aluvia regimens were applied; starting on the day of infection (acute phase), 2-week PI (early chronic phase) and eight weeks PI (late chronic phase). L/R reduced the brain-tissue cyst burden significantly in all treatment regimens. It impaired the parasite infectivity markedly in the late chronic phase. Ultrastructural changes were detected in Toxoplasma cyst membrane and wall, bradyzoite membrane and nuclear envelope. The signs of bradyzoite paraptosis and cytoplasmic lipid droplets were observed. L/R had significantly reduced the brain-homogenate levels of IFN-γ and IL-10 in its three regimens however, they could not reach the normal level in chronic phases. Cerebral hypercellularity, perivascular inflammatory response, lymphoplasmacytic infiltrates and glial cellular reaction were ameliorated by L/R treatment. Herein, L/R was proved to possess promising preventive and therapeutic perspectives in chronic cerebral toxoplasmosis.
Collapse
Affiliation(s)
- Iman Fathy Abou-El-Naga
- Department Of Medical Parasitology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| | - Maha Mohamed Gomaa
- Department Of Medical Parasitology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| | - Samar Nabil ElAchy
- Department Of Pathology, Faculty Of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
26
|
de Oliveira LS, Alborghetti MR, Carneiro RG, Bastos IMD, Amino R, Grellier P, Charneau S. Calcium in the Backstage of Malaria Parasite Biology. Front Cell Infect Microbiol 2021; 11:708834. [PMID: 34395314 PMCID: PMC8355824 DOI: 10.3389/fcimb.2021.708834] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/14/2021] [Indexed: 12/26/2022] Open
Abstract
The calcium ion (Ca2+) is a ubiquitous second messenger involved in key biological processes in prokaryotes and eukaryotes. In Plasmodium species, Ca2+ signaling plays a central role in the parasite life cycle. It has been associated with parasite development, fertilization, locomotion, and host cell infection. Despite the lack of a canonical inositol-1,4,5-triphosphate receptor gene in the Plasmodium genome, pharmacological evidence indicates that inositol-1,4,5-triphosphate triggers Ca2+ mobilization from the endoplasmic reticulum. Other structures such as acidocalcisomes, food vacuole and mitochondria are proposed to act as supplementary intracellular Ca2+ reservoirs. Several Ca2+-binding proteins (CaBPs) trigger downstream signaling. Other proteins with no EF-hand motifs, but apparently involved with CaBPs, are depicted as playing an important role in the erythrocyte invasion and egress. It is also proposed that a cross-talk among kinases, which are not members of the family of Ca2+-dependent protein kinases, such as protein kinases G, A and B, play additional roles mediated indirectly by Ca2+ regulation. This statement may be extended for proteins directly related to invasion or egress, such as SUB1, ERC, IMC1I, IMC1g, GAP45 and EBA175. In this review, we update our understanding of aspects of Ca2+-mediated signaling correlated to the developmental stages of the malaria parasite life cycle.
Collapse
Affiliation(s)
- Lucas Silva de Oliveira
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Marcos Rodrigo Alborghetti
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
- Brazilian Biosciences National Laboratory, Brazilian Center for Research in Energy and Materials, Campinas, Brazil
| | - Renata Garcia Carneiro
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Izabela Marques Dourado Bastos
- Laboratory of Host-Pathogen Interaction, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| | - Rogerio Amino
- Unité Infection et Immunité Paludéennes, Institut Pasteur, Paris, France
| | - Philippe Grellier
- UMR 7245 MCAM, Molécules de Communication et Adaptation des Micro-organismes, Muséum National d’Histoire Naturelle, CNRS, Équipe Parasites et Protistes Libres, Paris, France
| | - Sébastien Charneau
- Laboratory of Biochemistry and Protein Chemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
27
|
Márquez-Nogueras KM, Hortua Triana MA, Chasen NM, Kuo IY, Moreno SN. Calcium signaling through a transient receptor channel is important for Toxoplasma gondii growth. eLife 2021; 10:63417. [PMID: 34106044 PMCID: PMC8216714 DOI: 10.7554/elife.63417] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/08/2021] [Indexed: 12/24/2022] Open
Abstract
Transient receptor potential (TRP) channels participate in calcium ion (Ca2+) influx and intracellular Ca2+ release. TRP channels have not been studied in Toxoplasma gondii or any other apicomplexan parasite. In this work, we characterize TgGT1_310560, a protein predicted to possess a TRP domain (TgTRPPL-2), and determined its role in Ca2+ signaling in T. gondii, the causative agent of toxoplasmosis. TgTRPPL-2 localizes to the plasma membrane and the endoplasmic reticulum (ER) of T. gondii. The ΔTgTRPPL-2 mutant was defective in growth and cytosolic Ca2+ influx from both extracellular and intracellular sources. Heterologous expression of TgTRPPL-2 in HEK-3KO cells allowed its functional characterization. Patching of ER-nuclear membranes demonstrates that TgTRPPL-2 is a non-selective cation channel that conducts Ca2+. Pharmacological blockers of TgTRPPL-2 inhibit Ca2+ influx and parasite growth. This is the first report of an apicomplexan ion channel that conducts Ca2+ and may initiate a Ca2+ signaling cascade that leads to the stimulation of motility, invasion, and egress. TgTRPPL-2 is a potential target for combating toxoplasmosis.
Collapse
Affiliation(s)
- Karla Marie Márquez-Nogueras
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States.,Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | | | - Nathan M Chasen
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States
| | - Ivana Y Kuo
- Department of Cell and Molecular Physiology, Stritch School of Medicine, Loyola University Chicago, Maywood, United States
| | - Silvia Nj Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, United States.,Department of Cellular Biology, University of Georgia, Athens, United States
| |
Collapse
|
28
|
Almeida C. A potential third-order role of the host endoplasmic reticulum as a contact site in interkingdom microbial endosymbiosis and viral infection. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:255-271. [PMID: 33559322 DOI: 10.1111/1758-2229.12938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The normal functioning of eukaryotic cells depends on the compartmentalization of metabolic processes within specific organelles. Interactions among organelles, such as those between the endoplasmic reticulum (ER) - considered the largest single structure in eukaryotic cells - and other organelles at membrane contact sites (MCSs) have also been suggested to trigger synergisms, including intracellular immune responses against pathogens. In addition to the ER-endogenous functions and ER-organelle MCSs, we present the perspective of a third-order role of the ER as a host contact site for endosymbiotic microbial non-pathogens and pathogens, from endosymbiont bacteria to parasitic protists and viruses. Although understudied, ER-endosymbiont interactions have been observed in a range of eukaryotic hosts, including protists, plants, algae, and metazoans. Host ER interactions with endosymbionts could be an ER function built from ancient, conserved mechanisms selected for communicating with mutualistic endosymbionts in specific life cycle stages, and they may be exploited by pathogens and parasites. The host ER-'guest' interactome and traits in endosymbiotic biology are briefly discussed. The acknowledgment and understanding of these possible mechanisms might reveal novel evolutionary perspectives, uncover the causes of unexplained cellular disorders and suggest new pharmacological targets.
Collapse
Affiliation(s)
- Celso Almeida
- ENDOBIOS Biotech®, Praceta Progresso Clube n° 6, 2725-110 Mem-Martins, Portugal
| |
Collapse
|
29
|
Vella SA, Moore CA, Li ZH, Hortua Triana MA, Potapenko E, Moreno SNJ. The role of potassium and host calcium signaling in Toxoplasma gondii egress. Cell Calcium 2021; 94:102337. [PMID: 33524795 DOI: 10.1016/j.ceca.2020.102337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/22/2023]
Abstract
Toxoplasma gondii is an obligate intracellular parasite and replicates inside a parasitophorous vacuole (PV) within the host cell. The membrane of the PV (PVM) contains pores that permits for equilibration of ions and small molecules between the host cytosol and the PV lumen. Ca2+ signaling is universal and both T. gondii and its mammalian host cell utilize Ca2+ signals to stimulate diverse cellular functions. Egress of T. gondii from host cells is an essential step for the infection cycle of T. gondii, and a cytosolic Ca2+ increase initiates a Ca2+ signaling cascade that culminates in the stimulation of motility and egress. In this work we demonstrate that intracellular T. gondii tachyzoites are able to take up Ca2+ from the host cytoplasm during host cell signaling events. Both intracellular and extracellular Ca2+ sources are important in reaching a threshold of parasite cytosolic Ca2+ needed for successful egress. Two peaks of Ca2+ were observed in egressing single parasites with the second peak resulting from Ca2+ entry. We patched infected host cells to allow the delivery of precise concentrations of Ca2+ for the stimulation of motility and egress. Using this approach of patching infected host cells, allowed us to determine that increasing the host cytosolic Ca2+ to a specific concentration can trigger egress, which is further accelerated by diminishing the concentration of potassium (K+).
Collapse
Affiliation(s)
- Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Microbiology, University of Georgia, United States
| | - Christina A Moore
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Cellular Biology, University of Georgia, Athens, GA, 30602, United States
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States
| | | | - Evgeniy Potapenko
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, United States; Department of Cellular Biology, University of Georgia, Athens, GA, 30602, United States.
| |
Collapse
|
30
|
Kavak E, Mutlu D, Ozok O, Arslan S, Kivrak A. Design, synthesis and pharmacological evaluation of novel Artemisinin-Thymol. Nat Prod Res 2021; 36:3511-3519. [PMID: 33416016 DOI: 10.1080/14786419.2020.1865954] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A molecular hybridization of natural products is a new concept in drug discovery and having critical roles to design new molecules with improved biological properties. Hybrid molecules display higher biological activities when compared to the parent drugs. In the present study, two natural products (thymol and artemisinin (ART)) are used for the synthesis of new hybrid thymol-artemisinin. After characterization, the cytotoxic activity of ART-thymol was tested against different cancer cell lines and non-cancerous human cell line. ART-Thymol show the cytotoxic effect with EC50 values 70,96μM for HepG2, 97,31μM for LnCap, 6,03μM for Caco-2, 77,98μM for HeLa and 62,28μM for HEK293 cells, respectively. Moreover, ART-Thymol was checked for drug-likeness, and the kinase inhibitory activity. ART-Thymol is investigated by using molecular docking. The results of qPCR was indicated CDK2 and P38 were inhibited by ART-Thymol. These results improved that thymol-artemisinin may be new candidates as an anticancer agents.
Collapse
Affiliation(s)
- Emrah Kavak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Dogukan Mutlu
- Department of Biology, Faculty of Arts and Science, Pamukkale University, Denizli, Turkey
| | - Omruye Ozok
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey.,Department of Molecular Biology and Genetics, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| | - Sevki Arslan
- Department of Biology, Faculty of Arts and Science, Pamukkale University, Denizli, Turkey
| | - Arif Kivrak
- Department of Chemistry, Faculty of Sciences, Van Yüzüncü Yil University, Van, Turkey
| |
Collapse
|
31
|
Experimental infection with Toxoplasma gondii in broiler chickens (Gallus domesticus): seroconversion, tissue cyst distribution, and prophylaxis. Parasitol Res 2021; 120:593-603. [PMID: 33415386 DOI: 10.1007/s00436-020-06984-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 11/22/2020] [Indexed: 10/22/2022]
Abstract
Toxoplasma gondii is a widespread zoonotic protozoan that infects most species of mammals and birds, including poultry. This study aimed to investigate the course of T. gondii infection and the efficacy of diclazuril and Artemisia annua in preventing infection in experimentally infected chickens. Seventy-five 1-month-old chickens, female and male, were randomly divided into five groups (n = 15 each) as follows: (1) uninfected untreated (negative control, NC); (2) infected with T. gondii genotype II/III isolated from a wild cat (group WC); (3) infected with T. gondii genotype II isolated from a domestic cat (group DC); (4) infected with T. gondii domestic cat strain and treated with the anticoccidial diclazuril (group DC-D); and (5) infected with T. gondii domestic cat strain and treated with the medicinal plant Artemisia annua (group DC-A). Clinical signs, body temperature, mortality rate, weight gain, feed conversion ratio, hematological parameters, and the presence of T. gondii-specific IgY antibodies were recorded in all groups. Five chickens per group were euthanized 28 days post-infection (p.i.) and their brains, hearts, and breast muscle tested for T. gondii by mouse bioassay and polymerase chain reaction (PCR). No clinical signs related to the experimental infection were observed throughout the study period. T. gondii-specific antibodies were detected by day 28 p.i., but not in all infected chickens. Overall, T. gondii DNA was detected (bioassay or tissue digests) in all infected and untreated chickens (10/10), while viable parasite (bioassay) was isolated from 7 out of 10 chickens. The parasite was most frequently identified in the brain (7/10). There were no differences in the T. gondii strains regarding clinical infection and the rate of T. gondii detection in tissues. However, higher antibody titers were obtained in chickens infected with T. gondii WC strain (1:192) comparing with T. gondii DC strain (1:48). A. annua reduced replication of the parasite in 3 out of 5 chickens, while diclazuril did not. In conclusion, broiler chickens were resistant to clinical toxoplasmosis, irrespective of the strain (domestic or wild cat strain). The herb A. annua presented prophylactic efficacy by reduced parasite replication. However, further studies are required aiming at the efficacy of diclazuril and A. annua for the prevention of T. gondii infection in chickens using quantitative analysis methods.
Collapse
|
32
|
Elazab ST, Soliman AF, Nishikawa Y. Effect of some plant extracts from Egyptian herbal plants against Toxoplasma gondii tachyzoites in vitro. J Vet Med Sci 2020; 83:100-107. [PMID: 33268605 PMCID: PMC7870401 DOI: 10.1292/jvms.20-0458] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Nowadays, herbal extracts are considered to be a potential source for developing new drugs that will overcome resistance to conventional chemotherapeutic agents.
This study was aimed to explore the efficacy of several Egyptian plant extracts against Toxoplasma gondii infection in vitro for
future development of a new, safe, and effective compound for T. gondii. Methanol extracts from Matricaria chamomilla
(German chamomile), Laurus nobilis, Citrullus colocynthis, Cinnamum camphora, Boswellia
scara, and Melissa officionalis plants and oil extracts (either essential or fixed oils) of some plants such as: lemon grass
(Cymbopogon citratus), marjoram (Origanum majorana), watercress (Nasturtium officionale), wheat germ
(Triticum aestivum), sesame (Sesamum indicum), rosemary (Salvia rosmarinus), citronella (Cymbopogon
nardus), clove (Syzygum aromaticum), jojoba (Simmondsia chinesis), and basil (Ocimum basilicum) were investigated for
their anti-Toxoplasma activities. The methanol extracts from C. colocynthis and L. nobilis and the oil extracts
from lemon grass and marjoram were active against T. gondii with half maximal inhibitory concentrations (IC50) of 22.86 µg/ml, 31.35
µg/ml, 4.6 µg/ml, and 26.24 µg/ml, respectively. Their selectivity index (SI) values were <10. Interestingly, the methanol extract from M.
chamomilla and oil from citronella had the lowest IC50 values for T. gondii (3.56 µg/ml and 2.54 µg/ml, respectively) and the
highest SI values (130.33 and 15.02, respectively). In conclusion, methanol extract from M. chamomilla and oil from citronella might be potential
sources of novel therapies for treating toxoplasmosis.
Collapse
Affiliation(s)
- Sara T Elazab
- Department of Pharmacology, Faculty of Veterinary Medicine, Mansoura University, El-Mansoura 35516, Egypt.,National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| | - Amal F Soliman
- Department of Pharmacognosy, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
33
|
Tan S, Tong WH, Vyas A. Urolithin-A attenuates neurotoxoplasmosis and alters innate response towards predator odor. Brain Behav Immun Health 2020; 8:100128. [PMID: 34589880 PMCID: PMC8474456 DOI: 10.1016/j.bbih.2020.100128] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 12/29/2022] Open
Abstract
Neurotoxoplasmosis, also known as cerebral toxoplasmosis, is an opportunistic chronic infection caused by the persistence of parasite Toxoplasma gondii cysts in the brain. In wild animals, chronic infection is associated with behavioral manipulation evident by an altered risk perception towards predators. In humans, reactivation of cysts and conversion of quiescent parasites into highly invasive tachyzoites is a significant cause of mortality in immunocompromised patients. However, the current standard therapy for toxoplasmosis is not well tolerated and is ineffective against the parasite cysts. In recent years, the concept of dietary supplementation with natural products derived from plants has gained popularity as a natural remedy for brain disorders. Notably, urolithin-A, a metabolite produced in the gut following consumption of ellagitannins-enriched food such as pomegranate, is reported to be blood-brain barrier permeable and exhibits neuroprotective effects in-vivo. In this study, we investigated the potential of pomegranate extract and urolithin-A as anti-neurotoxoplasmosis agents in-vitro and in-vivo. Treatment with pomegranate extract and urolithin-A reduced the parasite tachyzoite load and interfered with cyst development in differentiated human neural culture. Administration of urolithin-A also resulted in the formation of smaller brain cysts in chronically infected mice. Interestingly, this phenomenon was mirrored by an enhanced risk perception of the UA-treated infected mice towards predatory cues. Together, our findings demonstrate the potential of dietary supplementation with urolithin-A-enriched food as a novel natural remedy for the treatment of acute and chronic neurotoxoplasmosis. Pomegranate extract reduces T. gondii tachyzoite load and cyst formation in-vitro. Urolithin-A, in part, underlies the anti-T. gondii effect of pomegranate extract. Urolithin-A perturbs cyst development in the brain of chronically infected mice. The reduction in brain cyst burden associates with enhanced fear of infected mice towards cat odor. Dietary supplementation with urolithin-A is a potential therapy for neurotoxoplasmosis.
Collapse
Affiliation(s)
- Sijie Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Wen Han Tong
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| | - Ajai Vyas
- School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore
| |
Collapse
|
34
|
Luo Y, Guo Q, Zhang L, Zhuan Q, Meng L, Fu X, Hou Y. Dihydroartemisinin exposure impairs porcine ovarian granulosa cells by activating PERK-eIF2α-ATF4 through endoplasmic reticulum stress. Toxicol Appl Pharmacol 2020; 403:115159. [PMID: 32721431 DOI: 10.1016/j.taap.2020.115159] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 07/19/2020] [Accepted: 07/22/2020] [Indexed: 12/16/2022]
Abstract
Dihydroartemisinin (DHA) is an artemisinin derivative commonly used in malaria therapy, and a growing number of studies have focused on the potent anticancer activity of DHA. However, the reproductive toxicity of anticancer drugs is a major concern for young female cancer patients. Previous studies have suggested that DHA can cause embryonic damage and affect oocyte maturation. Here, we explored the side effects of DHA exposure on ovarian somatic cells. We exposed porcine granulosa cells to 5 μM and 40 μM DHA for 24 h or 48 h in vitro. DHA inhibited granulosa cell viability in a dose-dependent manner and, in the 48 h treatment group, DHA enhanced the apoptotic rate. We observed that the levels of intracellular calcium, mitochondrial calcium, and ATP concentration were elevated with DHA treatment. In granulosa cells exposed to DHA, the mRNA levels of endoplasmic reticulum stress-related genes GRP78 and ATF4 were increased. Furthermore, analysis of the unfolded protein response signaling pathway showed that the protein levels of P-PERK, P-eIF2α, and ATF4 were upregulated by DHA exposure. These results demonstrate that in granulosa cells, DHA exposure induces endoplasmic reticulum stress that then activates the PERK/eIF2α/ATF4 signaling pathway, thus providing insight into the mechanism underlying DHA-induced reproductive toxicity, and giving reference to DHA use in females.
Collapse
Affiliation(s)
- Yan Luo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qing Guo
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Luyao Zhang
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Qingrui Zhuan
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Lin Meng
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Xiangwei Fu
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and National Engineering Laboratory for Animal Breeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yunpeng Hou
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
35
|
Bisio H, Soldati-Favre D. Signaling Cascades Governing Entry into and Exit from Host Cells by Toxoplasma gondii. Annu Rev Microbiol 2020; 73:579-599. [PMID: 31500539 DOI: 10.1146/annurev-micro-020518-120235] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The Apicomplexa phylum includes a large group of obligate intracellular protozoan parasites responsible for important diseases in humans and animals. Toxoplasma gondii is a widespread parasite with considerable versatility, and it is capable of infecting virtually any warm-blooded animal, including humans. This outstanding success can be attributed at least in part to an efficient and continuous sensing of the environment, with a ready-to-adapt strategy. This review updates the current understanding of the signals governing the lytic cycle of T. gondii, with particular focus on egress from infected cells, a key step for balancing survival, multiplication, and spreading in the host. We cover the recent advances in the conceptual framework of regulation of microneme exocytosis that ensures egress, motility, and invasion. Particular emphasis is given to the trigger molecules and signaling cascades regulating exit from host cells.
Collapse
Affiliation(s)
- Hugo Bisio
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| | - Dominique Soldati-Favre
- Département de Microbiologie et Médecine Moléculaire, Centre Médical Universitaire, Université de Genève, 1211 Geneva 4, Switzerland;
| |
Collapse
|
36
|
Fukumoto J, Yamano A, Matsuzaki M, Kyan H, Masatani T, Matsuo T, Matsui T, Murakami M, Takashima Y, Matsubara R, Tahara M, Sakura T, Takeuchi F, Nagamune K. Molecular and biological analysis revealed genetic diversity and high virulence strain of Toxoplasma gondii in Japan. PLoS One 2020; 15:e0227749. [PMID: 32012177 PMCID: PMC6996823 DOI: 10.1371/journal.pone.0227749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 12/27/2019] [Indexed: 12/16/2022] Open
Abstract
Toxoplasma gondii is classified into 16 haplogroups based on a worldwide genotyping study of the parasite. However, only a few isolates from Japan were included in this analysis. To conduct more precise genotyping of T. gondii, we examined the genotypes of Japanese isolates in this study. DNA sequences of 6 loci were determined in 17 Japanese isolates and compared with those of strains of 16 haplogroups. As a result, Japanese isolates were classified into four groups. We investigated the virulence of some Japanese isolates and found a highly virulent strain in mice, comparable to that of RH strain, although this Japanese isolate was sister to strains of haplogroup 2, which show moderate virulence in mice. We further investigated whether this high virulence isolate had different virulence mechanism and strategy to adapt to Japanese host from other strains by comparing the virulence-related genes, ROP5, 18 and the immunomodulatory gene, ROP16 of the isolate with those of archetypical strains (GT1, ME49 and VEG). This analysis indicated the high virulence of the isolate in mice was partly explained by gene sequences of ROP5 and ROP16. These findings lead to the elucidation of biodiversity of T. gondii and have potential to optimize the diagnostic protocol.
Collapse
Affiliation(s)
- Junpei Fukumoto
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Akinori Yamano
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Motomichi Matsuzaki
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- RIKEN Center for Advanced Intelligence Project, Chuo-ku, Tokyo, Japan
| | - Hisako Kyan
- Okinawa Prefectural Institute of Health and Environment, Uruma, Okinawa, Japan
| | - Tatsunori Masatani
- Transboundary Animal Diseases Research Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Tomohide Matsuo
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Toshihiro Matsui
- Laboratory of Parasitology, Joint Faculty of Veterinary Medicine, Kagoshima University, Korimoto, Kagoshima, Japan
| | - Mami Murakami
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, University of Gifu, Gifu, Gifu, Japan
| | - Yasuhiro Takashima
- Graduate School of Applied Biological Sciences and Faculty of Applied Biological Sciences, University of Gifu, Gifu, Gifu, Japan
| | - Ryuma Matsubara
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Michiru Tahara
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Takaya Sakura
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
| | - Fumihiko Takeuchi
- Department of Gene Diagnostics and Therapeutics, Research Institute National Center for Global Health and Medicine, Shinjyuku-ku, Tokyo, Japan
| | - Kisaburo Nagamune
- Department of Parasitology, National Institute of Infectious Diseases, Shinjyuku-ku, Tokyo, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail:
| |
Collapse
|
37
|
Zhang T, Zhang Y, Jiang N, Zhao X, Sang X, Yang N, Feng Y, Chen R, Chen Q. Dihydroartemisinin regulates the immune system by promotion of CD8 + T lymphocytes and suppression of B cell responses. SCIENCE CHINA-LIFE SCIENCES 2019; 63:737-749. [PMID: 31290095 DOI: 10.1007/s11427-019-9550-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 04/18/2019] [Indexed: 01/06/2023]
Abstract
Artemisia annua is an anti-fever herbal medicine first described in traditional Chinese medicine 1,000 years ago. Artemisinin, the extract of A. annua, and its derivatives (dihydroartemisinin (DHA), artemether, and artesunate) have been used for the treatment of malaria with substantial efficacy. Recently, DHA has also been tested for the treatment of lupus erythematosus, indicating that it may function to balance the immune response in immunocompromised individuals. In the present study, the regulatory effect of artemisinin on the murine immune system was systematically investigated in mice infected with two different protozoan parasites (Toxoplasma gondii and Plasmodium berghei). Our results revealed that the mouse spleen index significantly increased (spleen enlargement) in the healthy mice after DHA administration primarily due to the generation of an extra number of lymphocytes and CD8+ T lymphocytes in both the spleen and circulation. DHA could increase the proportion of T helper cells and CD8+ T cells, as well as decrease the number of splenic and circulatory B cells. Further, DHA could reduce the production of proinflammatory cytokines. Our study revealed that apart from their anti-parasitic activity, artemisinin and its derivatives can also actively modulate the immune system to directly benefit the host.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yiwei Zhang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ning Jiang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xu Zhao
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiaoyu Sang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Na Yang
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ying Feng
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Ran Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China
| | - Qijun Chen
- Key Laboratory of Livestock Infectious Diseases in Northeast China, Ministry of Education, Key Laboratory of Zoonosis, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
38
|
Sánchez-Sánchez R, Vázquez P, Ferre I, Ortega-Mora LM. Treatment of Toxoplasmosis and Neosporosis in Farm Ruminants: State of Knowledge and Future Trends. Curr Top Med Chem 2019; 18:1304-1323. [PMID: 30277158 PMCID: PMC6340160 DOI: 10.2174/1568026618666181002113617] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/03/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022]
Abstract
Toxoplasmosis and neosporosis are closely related protozoan diseases that lead to important economic impacts in farm ruminants. Toxoplasma gondii infection mainly causes reproductive failure in small ruminants and is a widespread zoonosis, whereas Neospora caninum infection is one of the most important causes of abortion in cattle worldwide. Vaccination has been considered the most economic measure for controlling these diseases. However, despite vaccine development efforts, only a live-attenuated T. gondii vaccine has been licensed for veterinary use, and no promising vaccines against ne-osporosis have been developed; therefore, vaccine development remains a key goal. Additionally, drug therapy could be a valuable strategy for disease control in farm ruminants, as several drugs that limit T. gondii and N. caninum proliferation and dissemination have been evaluated. This approach may also be relevant to performing an initial drug screening for potential human therapy for zoonotic parasites. Treat-ments can be applied against infections in adult ruminants to minimize the outcomes of a primo-infection or the reactivation of a chronic infection during gestation or in newborn ruminants to avoid infection chronification. In this review, the current status of drug development against toxoplasmosis and neosporo-sis in farm ruminants is presented, and in an effort to promote additional treatment options, prospective drugs that have shown efficacy in vitro and in laboratory animal models of toxoplasmosis and neosporosis are examined
Collapse
Affiliation(s)
- Roberto Sánchez-Sánchez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Patricia Vázquez
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ignacio Ferre
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Luis Miguel Ortega-Mora
- SALUVET, Animal Health Department, Faculty of Veterinary Sciences, Complutense University of Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| |
Collapse
|
39
|
Hortua Triana MA, Márquez-Nogueras KM, Vella SA, Moreno SNJ. Calcium signaling and the lytic cycle of the Apicomplexan parasite Toxoplasma gondii. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:1846-1856. [PMID: 30992126 DOI: 10.1016/j.bbamcr.2018.08.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 01/24/2023]
Abstract
Toxoplasma gondii has a complex life cycle involving different hosts and is dependent on fast responses, as the parasite reacts to changing environmental conditions. T. gondii causes disease by lysing the host cells that it infects and it does this by reiterating its lytic cycle, which consists of host cell invasion, replication inside the host cell, and egress causing host cell lysis. Calcium ion (Ca2+) signaling triggers activation of molecules involved in the stimulation and enhancement of each step of the parasite lytic cycle. Ca2+ signaling is essential for the cellular and developmental changes that support T. gondii parasitism. The characterization of the molecular players and pathways directly activated by Ca2+ signaling in Toxoplasma is sketchy and incomplete. The evolutionary distance between Toxoplasma and other eukaryotic model systems makes the comparison sometimes not informative. The advent of new genomic information and new genetic tools applicable for studying Toxoplasma biology is rapidly changing this scenario. The Toxoplasma genome reveals the presence of many genes potentially involved in Ca2+ signaling, even though the role of most of them is not known. The use of Genetically Encoded Calcium Indicators (GECIs) has allowed studies on the role of novel calcium-related proteins on egress, an essential step for the virulence and dissemination of Toxoplasma. In addition, the discovery of new Ca2+ players is generating novel targets for drugs, vaccines, and diagnostic tools and a better understanding of the biology of these parasites.
Collapse
Affiliation(s)
| | | | - Stephen A Vella
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, GA 30602, USA; Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
40
|
Zhang X, Zhang H, Fu Y, Liu J, Liu Q. Effects of Estradiol and Progesterone-Induced Intracellular Calcium Fluxes on Toxoplasma gondii Gliding, Microneme Secretion, and Egress. Front Microbiol 2018; 9:1266. [PMID: 29946311 PMCID: PMC6005879 DOI: 10.3389/fmicb.2018.01266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 05/24/2018] [Indexed: 01/07/2023] Open
Abstract
Research has shown that estrogen is present and plays a critical role in vertebrate reproduction and metabolism, but the influence of steroids on Toxoplasma gondii has received less attention. Our data showed that estradiol and progesterone induced parasitic cytosolic Ca2+ fluxes. This process required estrogen to enter the cytoplasm of T. gondii, and cGMP-dependent protein kinase G (PKG) and phosphoinositide-phospholipase C (PI-PLC) emerged as important factors controlling parasitic intracellular (IC) Ca2+ signals. Cytosolic Ca2+, which is regulated by estradiol, was mostly mobilized from acidic organelles. Moreover, cytosolic Ca2+ slightly increased MIC2 protein secretion and promoted the gliding motility and egress of parasites, thus enhancing the pathogenicity of T. gondii, as shown in our previous research. We subsequently determined that the main source of Ca2+ regulated by progesterone was a neutral store. In contrast to the findings of estradiol, progesterone reduced MIC2 protein secretion and inhibited the gliding motility of parasites, which may decrease their pathogenicity. Additionally, unlike in mammals, estradiol and progesterone had no effect on nitric oxide (NO) or reactive oxygen species (ROS) production in T. gondii.
Collapse
Affiliation(s)
- Xiao Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Heng Zhang
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Yong Fu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jing Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Qun Liu
- National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing, China.,Key Laboratory of Animal Epidemiology of the Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
41
|
Hortua Triana MA, Márquez-Nogueras KM, Chang L, Stasic AJ, Li C, Spiegel KA, Sharma A, Li ZH, Moreno SNJ. Tagging of Weakly Expressed Toxoplasma gondii Calcium-Related Genes with High-Affinity Tags. J Eukaryot Microbiol 2018; 65:709-721. [PMID: 29672999 DOI: 10.1111/jeu.12626] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 04/05/2018] [Accepted: 04/05/2018] [Indexed: 12/21/2022]
Abstract
Calcium ions regulate a diversity of cellular functions in all eukaryotes. The cytosolic Ca2+ concentration is tightly regulated at the physiological cytosolic concentration of 50-100 nm. The Toxoplasma gondii genome predicts the presence of several genes encoding potential Ca2+ channels, pumps, and transporters. Many of these genes are weakly expressed and likely tightly regulated due to their potential impact to the physiology of the cell. Endogenous tagging has been widely used to localize proteins in T. gondii but low level of expression of many of them makes visualization of tags difficult and sometimes impossible. The use of high-performance tags for labeling proteins expressed at low level is ideal for investigating the localization of these gene products. We designed a Carboxy-terminus tagging plasmid containing the previously characterized "spaghetti monster-HA" (smHA) or "spaghetti monster-MYC" (smMYC) tags. These tags consist of 10 copies of a single epitope (HA or MYC) inserted into a darkened green fluorescence protein scaffold. We localized six proteins of various levels of expression. Clonal lines were isolated and validated by PCR, western blot, and immunofluorescence analyses. Some gene products were only visible when tagged with smHA and in one case the smHA revealed a novel localization previously undetected.
Collapse
Affiliation(s)
- Miryam A Hortua Triana
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, 30602
| | | | - Le Chang
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, 30602
| | - Andrew J Stasic
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, 30602
| | - Catherine Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, 30602
| | - Kevin A Spiegel
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, 30602
| | - Amrita Sharma
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, 30602.,Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| | - Zhu-Hong Li
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, 30602
| | - Silvia N J Moreno
- Center for Tropical and Emerging Global Diseases, University of Georgia, Athens, Georgia, 30602.,Department of Cellular Biology, University of Georgia, Athens, Georgia, 30602
| |
Collapse
|
42
|
Meier A, Erler H, Beitz E. Targeting Channels and Transporters in Protozoan Parasite Infections. Front Chem 2018; 6:88. [PMID: 29637069 PMCID: PMC5881087 DOI: 10.3389/fchem.2018.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Infectious diseases caused by pathogenic protozoa are among the most significant causes of death in humans. Therapeutic options are scarce and massively challenged by the emergence of resistant parasite strains. Many of the current anti-parasite drugs target soluble enzymes, generate unspecific oxidative stress, or act by an unresolved mechanism within the parasite. In recent years, collections of drug-like compounds derived from large-scale phenotypic screenings, such as the malaria or pathogen box, have been made available to researchers free of charge boosting the identification of novel promising targets. Remarkably, several of the compound hits have been found to inhibit membrane proteins at the periphery of the parasites, i.e., channels and transporters for ions and metabolites. In this review, we will focus on the progress made on targeting channels and transporters at different levels and the potential for use against infections with apicomplexan parasites mainly Plasmodium spp. (malaria) and Toxoplasma gondii (toxoplasmosis), with kinetoplastids Trypanosoma brucei (sleeping sickness), Trypanosoma cruzi (Chagas disease), and Leishmania ssp. (leishmaniasis), and the amoeba Entamoeba histolytica (amoebiasis).
Collapse
Affiliation(s)
- Anna Meier
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Holger Erler
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Eric Beitz
- Department of Pharmaceutical and Medicinal Chemistry, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
43
|
Jiao J, Yang Y, Liu M, Li J, Cui Y, Yin S, Tao J. Artemisinin and Artemisia annua leaves alleviate Eimeria tenella infection by facilitating apoptosis of host cells and suppressing inflammatory response. Vet Parasitol 2018; 254:172-177. [PMID: 29657004 DOI: 10.1016/j.vetpar.2018.03.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 03/10/2018] [Accepted: 03/18/2018] [Indexed: 12/30/2022]
Abstract
Evasion strategies of intracellular parasites by hijacking cellular pathways, are necessary to ensure successful survival and replication. Eimeria tenella (E. tenella) has the ability to circumvent apoptosis of infected cells through increased expression of the transcriptional factor NF-κB and the anti-apoptotic factor Bcl-xL during the development of second generation schizonts. Artemisinin (ART) and its original plant, the dried leaves of Artemisia annua (LAA) have been shown to be effective against avian coccidiosis, however, the underlying mechanism remains unclear. We showed that E. tenella infection promoted the expression of anti-apoptotic protein Bcl-2 and inhibited the expression of pro-apoptotic proteins Bax and cleaved caspase-3 at 60 h post infection (PI), with a higher ratio of Bcl-2 to Bax. Nevertheless, the expression trends of Bcl-2, Bax and caspase-3 were reversed at 120 h and 192 h PI. ART treatment significantly abrogated Bcl-2 expression, whereas it promoted the expression levels of Bax and cleaved caspase-3 at the three time points above. Additionally, ART remarkably suppressed the increased mRNA expressions of NF-κB and interleukin-17A in ceca during infection by E. tenella. Compared with the ART treatment, LAA treatment exerted more improvements in clinical symptoms, promoting apoptosis and suppressing inflammatory response. These alterations caused by ART and LAA treatments were consistent with the reduced clinical diarrhea and pathological improvements in chicken ceca. Collectively, these results indicate that the inhibitory effects of ART or LAA on E. tenella infection may work through facilitating the apoptosis of infected host cells and inhibiting the inflammatory response.
Collapse
Affiliation(s)
- JinYing Jiao
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - YunQiao Yang
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China.
| | - Yi Cui
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - ShaoJie Yin
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| | - JianPing Tao
- School of Veterinary Medicine, Yangzhou University, Yangzhou 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, PR China
| |
Collapse
|
44
|
Powell CJ, Jenkins ML, Parker ML, Ramaswamy R, Kelsen A, Warshaw DM, Ward GE, Burke JE, Boulanger MJ. Dissecting the molecular assembly of the Toxoplasma gondii MyoA motility complex. J Biol Chem 2017; 292:19469-19477. [PMID: 28972141 DOI: 10.1074/jbc.m117.809632] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 09/22/2017] [Indexed: 01/28/2023] Open
Abstract
Apicomplexan parasites such as Toxoplasma gondii rely on a unique form of locomotion known as gliding motility. Generating the mechanical forces to support motility are divergent class XIV myosins (MyoA) coordinated by accessory proteins known as light chains. Although the importance of the MyoA-light chain complex is well-established, the detailed mechanisms governing its assembly and regulation are relatively unknown. To establish a molecular blueprint of this dynamic complex, we first mapped the adjacent binding sites of light chains MLC1 and ELC1 on the MyoA neck (residues 775-818) using a combination of hydrogen-deuterium exchange mass spectrometry and isothermal titration calorimetry. We then determined the 1.85 Å resolution crystal structure of MLC1 in complex with its cognate MyoA peptide. Structural analysis revealed a bilobed architecture with MLC1 clamping tightly around the helical MyoA peptide, consistent with the stable 10 nm Kd measured by isothermal titration calorimetry. We next showed that coordination of calcium by an EF-hand in ELC1 and prebinding of MLC1 to the MyoA neck enhanced the affinity of ELC1 for the MyoA neck 7- and 8-fold, respectively. When combined, these factors enhanced ELC1 binding 49-fold (to a Kd of 12 nm). Using the full-length MyoA motor (residues 1-831), we then showed that, in addition to coordinating the neck region, ELC1 appears to engage the MyoA converter subdomain, which couples the motor domain to the neck. These data support an assembly model where staged binding events cooperate to yield high-affinity complexes that are able to maximize force transduction.
Collapse
Affiliation(s)
- Cameron J Powell
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Meredith L Jenkins
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Michelle L Parker
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Raghavendran Ramaswamy
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Anne Kelsen
- the Departments of Microbiology and Molecular Genetics and
| | - David M Warshaw
- Molecular Physiology and Biophysics, University of Vermont, Burlington, Vermont 05405
| | - Gary E Ward
- the Departments of Microbiology and Molecular Genetics and
| | - John E Burke
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| | - Martin J Boulanger
- From the Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia V8P 5C2, Canada and
| |
Collapse
|
45
|
Alday PH, Doggett JS. Drugs in development for toxoplasmosis: advances, challenges, and current status. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 11:273-293. [PMID: 28182168 PMCID: PMC5279849 DOI: 10.2147/dddt.s60973] [Citation(s) in RCA: 206] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Toxoplasma gondii causes fatal and debilitating brain and eye diseases. Medicines that are currently used to treat toxoplasmosis commonly have toxic side effects and require prolonged courses that range from weeks to more than a year. The need for long treatment durations and the risk of relapsing disease are in part due to the lack of efficacy against T. gondii tissue cysts. The challenges for developing a more effective treatment for toxoplasmosis include decreasing toxicity, achieving therapeutic concentrations in the brain and eye, shortening duration, eliminating tissue cysts from the host, safety in pregnancy, and creating a formulation that is inexpensive and practical for use in resource-poor areas of the world. Over the last decade, significant progress has been made in identifying and developing new compounds for the treatment of toxoplasmosis. Unlike clinically used medicines that were repurposed for toxoplasmosis, these compounds have been optimized for efficacy against toxoplasmosis during preclinical development. Medicines with enhanced efficacy as well as features that address the unique aspects of toxoplasmosis have the potential to greatly improve toxoplasmosis therapy. This review discusses the facets of toxoplasmosis that are pertinent to drug design and the advances, challenges, and current status of preclinical drug research for toxoplasmosis.
Collapse
Affiliation(s)
- P Holland Alday
- Division of Infectious Diseases, Oregon Health & Science University
| | - Joseph Stone Doggett
- Division of Infectious Diseases, Oregon Health & Science University; Portland Veterans Affairs Medical Center, Portland, OR, USA
| |
Collapse
|
46
|
Padgett LR, Arrizabalaga G, Sullivan WJ. Targeting of tail-anchored membrane proteins to subcellular organelles in Toxoplasma gondii. Traffic 2017; 18:149-158. [PMID: 27991712 DOI: 10.1111/tra.12464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 12/12/2016] [Accepted: 12/12/2016] [Indexed: 12/20/2022]
Abstract
Proper protein localization is essential for critical cellular processes, including vesicle-mediated transport and protein translocation. Tail-anchored (TA) proteins are integrated into organellar membranes via the C-terminus, orienting the N-terminus towards the cytosol. Localization of TA proteins occurs posttranslationally and is governed by the C-terminus, which contains the integral transmembrane domain (TMD) and targeting sequence. Targeting of TA proteins is dependent on the hydrophobicity of the TMD as well as the length and composition of flanking amino acid sequences. We previously identified an unusual homologue of elongator protein, Elp3, in the apicomplexan parasite Toxoplasma gondii as a TA protein targeting the outer mitochondrial membrane. We sought to gain further insight into TA proteins and their targeting mechanisms using this early-branching eukaryote as a model. Our bioinformatics analysis uncovered 59 predicted TA proteins in Toxoplasma, 9 of which were selected for follow-up analyses based on representative features. We identified novel TA proteins that traffic to specific organelles in Toxoplasma, including the parasite endoplasmic reticulum, mitochondrion, and Golgi apparatus. Domain swap experiments elucidated that targeting of TA proteins to these specific organelles was strongly influenced by the TMD sequence, including charge of the flanking C-terminal sequence.
Collapse
Affiliation(s)
- Leah R Padgett
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gustavo Arrizabalaga
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| | - William J Sullivan
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana.,Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, Indiana
| |
Collapse
|
47
|
Stewart RJ, Whitehead L, Nijagal B, Sleebs BE, Lessene G, McConville MJ, Rogers KL, Tonkin CJ. Analysis of Ca 2+ mediated signaling regulating Toxoplasma infectivity reveals complex relationships between key molecules. Cell Microbiol 2017; 19. [PMID: 27781359 DOI: 10.1111/cmi.12685] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 10/14/2016] [Indexed: 12/28/2022]
Abstract
Host cell invasion, exit and parasite dissemination is critical to the pathogenesis of apicomplexan parasites such as Toxoplasma gondii and Plasmodium spp. These processes are regulated by intracellular Ca2+ signaling although the temporal dynamics of Ca2+ fluxes and down-stream second messenger pathways are poorly understood. Here, we use a genetically encoded biosensor, GFP-Calmodulin-M13-6 (GCaMP6), to capture Ca2+ flux in live Toxoplasma and investigate the role of Ca2+ signaling in egress and motility. Our analysis determines how environmental cues and signal activation influence intracellular Ca2+ flux, allowing placement of effector molecules within this pathway. Importantly, we have identified key interrelationships between cGMP and Ca2+ signaling that are required for activation of egress and motility. Furthermore, we extend this analysis to show that the Ca2+ Dependent Protein Kinases-TgCDPK1 and TgCDPK3-play a role in signal quenching before egress. This work highlights the interrelationships of second messenger pathways of Toxoplasma in space and time, which is likely required for pathogenesis of all apicomplexan species.
Collapse
Affiliation(s)
- Rebecca J Stewart
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Lachlan Whitehead
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Brunda Nijagal
- Metabolomics Australia, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Brad E Sleebs
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Guillaume Lessene
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia.,Department of Pharmacology and Therapeutics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Malcolm J McConville
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Australia
| | - Kelly L Rogers
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| | - Christopher J Tonkin
- The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
48
|
Sharif M, Sarvi S, Pagheh AS, Asfaram S, Rahimi MT, Mehrzadi S, Ahmadpour E, Gholami S, Daryani A. The efficacy of herbal medicines against Toxoplasma gondii during the last 3 decades: a systematic review. Can J Physiol Pharmacol 2016; 94:1237-1248. [DOI: 10.1139/cjpp-2016-0039] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The objective of the current study was to systematically review papers discussing the efficacy of medicinal herbs against Toxoplasma gondii. Data were systematically collected from published papers about the efficacy of herbs used against T. gondii globally from 1988 to 2015, from PubMed, Google Scholar, ISI Web of Science, EBSCO, Science Direct, and Scopus. Forty-nine papers were included in the current systematic review reporting the evaluation of medicinal plants against T. gondii globally, both in vitro and in vivo. Sixty-one plants were evaluated. Most of the studies were carried out on Artemisia annua. The second highest number of studies were carried out on Glycyrrhiza glabra extracts. RH and ME49 were the predominant parasite strains used. Additionally, Swiss-Webster and BALB/c mice were the major animal models used. Alcoholic and aqueous extracts were used more than other types of extracts. Natural compounds mentioned here may be developed as novel and more effective therapeutic agents that improve the treatment of toxoplasmosis due to their lower side effects, higher availability, and better cultural acceptance compared with those of the chemical drugs that are currently being used.
Collapse
Affiliation(s)
- Mahdi Sharif
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shahabeddin Sarvi
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Abdol Sattar Pagheh
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shabnam Asfaram
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Saeed Mehrzadi
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shirzad Gholami
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Daryani
- Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Parasitology and Mycology, Sari Medical School, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
49
|
Artemisinin and its derivatives in treating protozoan infections beyond malaria. Pharmacol Res 2016; 117:192-217. [PMID: 27867026 DOI: 10.1016/j.phrs.2016.11.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/08/2016] [Accepted: 11/14/2016] [Indexed: 01/09/2023]
Abstract
Parasitic protozoan diseases continue to rank among the world's greatest global health problems, which are also common among poor populations. Currently available drugs for treatment present drawbacks, urging the need for more effective, safer, and cheaper drugs. Artemisinin (ART) and its derivatives are some of the most important classes of antimalarial agents originally derived from Artemisia annua L. However, besides the outstanding antimalarial and antischistosomal activities, ART and its derivatives also possess activities against other parasitic protozoa. In this paper we review the activities of ART and its derivatives against protozoan parasites in vitro and in vivo, including Leishmania spp., Trypanosoma spp., Toxoplasma gondii, Neospora caninum, Eimeria tenella, Acanthamoeba castellanii, Naegleria fowleri, Cryptosporidium parvum, Giardia lamblia, and Babesia spp. We conclude that ART and its derivatives may be good alternatives for treating other non-malarial protozoan infections in developing countries, although more studies are necessary before they can be applied clinically.
Collapse
|
50
|
Leesombun A, Boonmasawai S, Shimoda N, Nishikawa Y. Effects of Extracts from Thai Piperaceae Plants against Infection with Toxoplasma gondii. PLoS One 2016; 11:e0156116. [PMID: 27213575 PMCID: PMC4877092 DOI: 10.1371/journal.pone.0156116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 05/08/2016] [Indexed: 11/18/2022] Open
Abstract
Herbal medicines and natural herb extracts are widely used as alternative treatments for various parasitic diseases, and such extracts may also have potential to decrease the side effects of the standard regimen drugs used to treat toxoplasmosis (sulfadiazine-pyrimethamine combination). We evaluated how effective the Thai piperaceae plants Piper betle, P. nigrum and P. sarmentosum are against Toxoplasma gondii infection in vitro and in vivo. Individually, we extracted the piperaceae plants with ethanol, passed them through a rotary evaporator and then lyophilized them to obtain crude extracts for each one. The in vitro study indicated that the P. betle extract was the most effective extract at inhibiting parasite growth in HFF cells (IC50 on RH-GFP: 23.2 μg/mL, IC50 on PLK-GFP: 21.4 μg/mL). Furthermore, treatment of experimental mice with the P. betle extract for 7 days after infection with 1,000 tachyzoites of the T. gondii PLK strain increased their survival (survival rates: 100% in 400 mg/kg-treated, 83.3% in 100 mg/kg-treated, 33.3% in 25 mg/kg-treated, 33.3% in untreated mice). Furthermore, treatment with 400 mg/kg of the P. betle extract resulted in 100% mouse survival following infection with 100,000 tachyzoites. The present study shows that P. betle extract has the potential to act as a medical plant for the treatment of toxoplasmosis.
Collapse
Affiliation(s)
- Arpron Leesombun
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080–8555, Japan
| | - Sookruetai Boonmasawai
- Department of Preclinic and Applied Animal Science, Faculty of Veterinary Science, Mahidol University, 999 Phutthamonthon Sai 4 Road Salaya, Phutthamonthon Nakhonpathom 73170, Thailand
| | - Naomi Shimoda
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080–8555, Japan
| | - Yoshifumi Nishikawa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Inada-cho, Obihiro, Hokkaido 080–8555, Japan
- * E-mail:
| |
Collapse
|