1
|
Bende G, Zsindely N, Laczi K, Kristóffy Z, Papp C, Farkas A, Tóth L, Sáringer S, Bodai L, Rákhely G, Marx F, Galgóczy L. The Neosartorya (Aspergillus) fischeri antifungal protein NFAP2 has low potential to trigger resistance development in Candida albicans in vitro. Microbiol Spectr 2025; 13:e0127324. [PMID: 39560388 PMCID: PMC11705825 DOI: 10.1128/spectrum.01273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 10/28/2024] [Indexed: 11/20/2024] Open
Abstract
Due to the increase in the number of drug-resistant Candida albicans strains, new antifungal compounds with limited potential for the development of resistance are urgently needed. NFAP2, an antifungal protein (AFP) secreted by Neosartorya (Aspergillus) fischeri, is a promising candidate. We investigated the ability of C. albicans to develop resistance to NFAP2 in a microevolution experiment compared with generic fluconazole (FLC). C. albicans adapted to only 1× minimum inhibitory concentration (MIC) of NFAP2, which can be considered tolerance rather than resistance, compared with 32× MIC of FLC. Genome analysis revealed non-silent mutations in only two genes in NFAP2-tolerant strains and in several genes in FLC-resistant strains. Tolerance development to NFAP2 did not influence cell morphology. The susceptibility of NFAP2-tolerant strains did not change to FLC, amphotericin B, micafungin, and terbinafine. These strains did not show altered susceptibility to AFPs from Penicillium chrysogenum, except one which had less susceptibility to Penicillium chrysogenum antifungal protein B. FLC-resistant strains had decreased susceptibility to terbinafine and NFAP2, but not to other drugs and AFPs from P. chrysogenum. NFAP2-tolerant and FLC-resistant strains showed decreased and increased NFAP2 binding and uptake, respectively. The development of tolerance to NFAP2 decreased tolerance to cell wall, heat, and UV stresses. The development of FLC resistance increased tolerance to cell wall stress and decreased tolerance to heat and UV stresses. Tolerance to NFAP2 did not have significant metabolic fitness cost and could not increase virulence, compared with resistance to FLC.IMPORTANCEDue to the increasing number of (multi)drug-resistant strains, only a few effective antifungal drugs are available to treat infections caused by opportunistic Candida species. Therefore, the incidence of hard-to-treat candidiasis has increased dramatically in the past decade, and the demand to identify antifungal compounds with minimal potential to trigger resistance is substantial. The features of NFAP2 make it a promising candidate for the topical treatment of Candida infection. Data on the development of resistance to antifungal proteins in Candida albicans are lacking. In this study, we provide evidence that NFAP2 has a low potential to trigger resistance in C. albicans in vitro, and the developed tolerance to NFAP2 is not associated with severe phenotypic changes compared with development of resistance to generic fluconazole. These results suggest the slow emergence of NFAP2-resistant Candida strains, and NFAP2 can reliably be used long-term in the clinic.
Collapse
Affiliation(s)
- Gábor Bende
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Nóra Zsindely
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Krisztián Laczi
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Plant Biology, HUN-REN Biological Research Center, Szeged, Hungary
| | - Zsolt Kristóffy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Csaba Papp
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Attila Farkas
- Institute of Plant Biology, HUN-REN Biological Research Center, Szeged, Hungary
| | - Liliána Tóth
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Szabolcs Sáringer
- Department of Physiology, Albert Szent-Györgyi Medical School, University of Szeged, Szeged, Hungary
| | - László Bodai
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
| | - Gábor Rákhely
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biophysics, HUN-REN Biological Research Center, Szeged, Hungary
| | - Florentine Marx
- Institute of Molecular Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - László Galgóczy
- Department of Biotechnology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Institute of Biochemistry, HUN-REN Biological Research Center, Szeged, Hungary
| |
Collapse
|
2
|
Schmidlin K, Apodaca S, Newell D, Sastokas A, Kinsler G, Geiler-Samerotte K. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. eLife 2024; 13:RP94144. [PMID: 39255191 PMCID: PMC11386965 DOI: 10.7554/elife.94144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024] Open
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Kara Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Sam Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Daphne Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Alexander Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| | - Grant Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, United States
| | - Kerry Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, United States
- School of Life Sciences, Arizona State University, Tempe, United States
| |
Collapse
|
3
|
Ismail SHH, Hamdy R, Altaie AM, Fayed B, Dakalbab S, El-Awady R, Soliman SSM. Decoding host cell interaction- and fluconazole-induced metabolic alterations and drug resistance in Candida auris. Mycologia 2024; 116:673-693. [PMID: 39024116 DOI: 10.1080/00275514.2024.2363730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 05/31/2024] [Indexed: 07/20/2024]
Abstract
Candida auris is an emerging drug-resistant pathogen associated with high mortality rates. This study aimed to explore the metabolic alterations and associated pathogenesis and drug resistance in fluconazole-treated Candida auris-host cell interaction. Compared with controls, secreted metabolites from fluconazole-treated C. auris and fluconazole-treated C. auris-host cell co-culture demonstrated notable anti-Candida activity. Fluconazole caused significant reductions in C. auris cell numbers and aggregated phenotype. Metabolites produced by C. auris with potential fungal colonization, invasion, and host immune evasion effects were identified. Metabolites known to enhance biofilm formation produced during C. auris-host cell interaction were inhibited by fluconazole. Fluconazole enhanced the production of metabolites with biofilm inhibition activity, including behenyl alcohol and decanoic acid. Metabolites with potential Candida growth inhibition activity such as 2-palmitoyl glycerol, 1-tetradecanol, and 1-nonadecene were activated by fluconazole. Different patterns of proinflammatory cytokine expression presented due to fluconazole concentration and host cell type (fibroblasts versus macrophages). This highlights the immune response's complexity, emphasizing the necessity for additional research to comprehend cell-type-specific responses to antifungal therapies. Both host cell interaction and fluconazole treatment increased the expression of CDR1 and ERG11 genes, both associated with drug resistance. This study provides insights into pathogenesis in C. auris due to host cell interaction and fluconazole treatment. Understanding these interactions is crucial for enhancing fluconazole sensitivity and effectively combating C. auris.
Collapse
Affiliation(s)
- Samah H H Ismail
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Rania Hamdy
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Faculty of Pharmacy, Zagazig University, P.O. Box 44519, Zagazig, Egypt
| | - Alaa M Altaie
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Bahgat Fayed
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- Department of Chemistry of Natural and Microbial Product, National Research Centre, P.O. Box 12622, Cairo, Egypt
| | - Salam Dakalbab
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Raafat El-Awady
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Sameh S M Soliman
- Research Institute for Medical and Health Sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
- College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| |
Collapse
|
4
|
Schmidlin, Apodaca, Newell, Sastokas, Kinsler, Geiler-Samerotte. Distinguishing mutants that resist drugs via different mechanisms by examining fitness tradeoffs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.10.17.562616. [PMID: 37905147 PMCID: PMC10614906 DOI: 10.1101/2023.10.17.562616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
There is growing interest in designing multidrug therapies that leverage tradeoffs to combat resistance. Tradeoffs are common in evolution and occur when, for example, resistance to one drug results in sensitivity to another. Major questions remain about the extent to which tradeoffs are reliable, specifically, whether the mutants that provide resistance to a given drug all suffer similar tradeoffs. This question is difficult because the drug-resistant mutants observed in the clinic, and even those evolved in controlled laboratory settings, are often biased towards those that provide large fitness benefits. Thus, the mutations (and mechanisms) that provide drug resistance may be more diverse than current data suggests. Here, we perform evolution experiments utilizing lineage-tracking to capture a fuller spectrum of mutations that give yeast cells a fitness advantage in fluconazole, a common antifungal drug. We then quantify fitness tradeoffs for each of 774 evolved mutants across 12 environments, finding these mutants group into 6 classes with characteristically different tradeoffs. Their unique tradeoffs may imply that each group of mutants affects fitness through different underlying mechanisms. Some of the groupings we find are surprising. For example, we find some mutants that resist single drugs do not resist their combination, while others do. And some mutants to the same gene have different tradeoffs than others. These findings, on one hand, demonstrate the difficulty in relying on consistent or intuitive tradeoffs when designing multidrug treatments. On the other hand, by demonstrating that hundreds of adaptive mutations can be reduced to a few groups with characteristic tradeoffs, our findings may yet empower multidrug strategies that leverage tradeoffs to combat resistance. More generally speaking, by grouping mutants that likely affect fitness through similar underlying mechanisms, our work guides efforts to map the phenotypic effects of mutation.
Collapse
Affiliation(s)
- Schmidlin
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Apodaca
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Newell
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Sastokas
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| | - Kinsler
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA
| | - Geiler-Samerotte
- Biodesign Center for Mechanisms of Evolution, Arizona State University, Tempe, AZ
- School of Life Sciences, Arizona State University, Tempe AZ
| |
Collapse
|
5
|
Schuster M, Kilaru S, Steinberg G. Azoles activate type I and type II programmed cell death pathways in crop pathogenic fungi. Nat Commun 2024; 15:4357. [PMID: 38821954 PMCID: PMC11143370 DOI: 10.1038/s41467-024-48157-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 04/22/2024] [Indexed: 06/02/2024] Open
Abstract
Triazoles are widely used to control pathogenic fungi. They inhibit the ergosterol biosynthetic pathway, but the precise mechanisms leading to fungicidal activities in many fungal pathogens are poorly understood. Here, we elucidate the mode of action of epoxiconazole and metconazole in the wheat pathogen Zymoseptoria tritici and the rice blast fungus Magnaporthe oryzae. We show that both azoles have fungicidal activity and reduce fluidity, but not integrity, of the plasma membrane. This impairs localisation of Cdc15-like F-BAR proteins, resulting in defective actin ring assembly and incomplete septation. However, mutant studies and pharmacological experiments in vitro and in planta show that azole lethality is due to a combination of reactive oxygen species-induced apoptosis and macroautophagy. Simultaneous inhibition of both programmed cell death pathways abolishes azole-induced cell death. Other classes of ergosterol biosynthesis inhibitors also induce apoptosis and macroautophagy, suggesting that activation of these two cell death pathways is a hallmark of ergosterol synthesis-targeting fungicides. This knowledge will inform future crop protection strategies.
Collapse
|
6
|
Xiong L, Pereira De Sa N, Zarnowski R, Huang MY, Mota Fernandes C, Lanni F, Andes DR, Del Poeta M, Mitchell AP. Biofilm-associated metabolism via ERG251 in Candida albicans. PLoS Pathog 2024; 20:e1012225. [PMID: 38739655 PMCID: PMC11115363 DOI: 10.1371/journal.ppat.1012225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/23/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Biofilm formation by the fungal pathogen Candida albicans is the basis for its ability to infect medical devices. The metabolic gene ERG251 has been identified as a target of biofilm transcriptional regulator Efg1, and here we report that ERG251 is required for biofilm formation but not conventional free-living planktonic growth. An erg251Δ/Δ mutation impairs biofilm formation in vitro and in an in vivo catheter infection model. In both in vitro and in vivo biofilm contexts, cell number is reduced and hyphal length is limited. To determine whether the mutant defect is in growth or some other aspect of biofilm development, we examined planktonic cell features in a biofilm-like environment, which was approximated with sealed unshaken cultures. Under those conditions, the erg251Δ/Δ mutation causes defects in growth and hyphal extension. Overexpression in the erg251Δ/Δ mutant of the paralog ERG25, which is normally expressed more weakly than ERG251, partially improves biofilm formation and biofilm hyphal content, as well as growth and hyphal extension in a biofilm-like environment. GC-MS analysis shows that the erg251Δ/Δ mutation causes a defect in ergosterol accumulation when cells are cultivated under biofilm-like conditions, but not under conventional planktonic conditions. Overexpression of ERG25 in the erg251Δ/Δ mutant causes some increase in ergosterol levels. Finally, the hypersensitivity of efg1Δ/Δ mutants to the ergosterol inhibitor fluconazole is reversed by ERG251 overexpression, arguing that reduced ERG251 expression contributes to this efg1Δ/Δ phenotype. Our results indicate that ERG251 is required for biofilm formation because its high expression levels are necessary for ergosterol synthesis in a biofilm-like environment.
Collapse
Affiliation(s)
- Liping Xiong
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
| | - Nivea Pereira De Sa
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Robert Zarnowski
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Manning Y. Huang
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - Caroline Mota Fernandes
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frederick Lanni
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| | - David R. Andes
- Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, United States of America
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, United States of America
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
7
|
Gutierrez-Gongora D, Woods M, Prosser RS, Geddes-McAlister J. Natural compounds from freshwater mussels disrupt fungal virulence determinants and influence fluconazole susceptibility in the presence of macrophages in Cryptococcus neoformans. Microbiol Spectr 2024; 12:e0284123. [PMID: 38329361 PMCID: PMC10913472 DOI: 10.1128/spectrum.02841-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 01/12/2024] [Indexed: 02/09/2024] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen responsible for fatal infections, especially in patients with a depressed immune system. Overexposure to antifungal drugs due to prolonged treatment regimens and structure-similar applications in agriculture have weakened the efficacy of current antifungals in the clinic. The rapid evolution of antifungal resistance urges the discovery of new compounds that inhibit fungal virulence determinants, rather than directly killing the pathogen, as alternative strategies to overcome disease and reduce selective pressure toward resistance. Here, we evaluated the efficacy of freshwater mussel extracts (crude and clarified) against the production of well-defined virulence determinants (i.e., thermotolerance, melanin, capsule, and biofilm) and fluconazole resistance in C. neoformans. We demonstrated the extracts' influence on fungal thermotolerance, capsule production, and biofilm formation, as well as susceptibility to fluconazole in the presence of macrophages. Additionally, we measured the inhibitory activity of extracts against commercial peptidases (family representatives of cryptococcal orthologs) related to fungal virulence determinants and fluconazole resistance, and integrated these phenotypic findings with quantitative proteomics profiling. Our approach defined distinct signatures of each treatment and validated a new mechanism of anti-virulence action toward the polysaccharide capsule from a selected extract following fractionation. By understanding the mechanisms driving the antifungal activity of mussels, we may develop innovative treatment options to overcome fungal infections and promote susceptibility to fluconazole in resistant strains. IMPORTANCE As the prevalence and severity of global fungal infections rise, along with an increasing incidence of antifungal resistance, new strategies to combat fungal pathogens and overcome resistance are urgently needed. Critically, our current methods to overcome fungal infections are limited and drive the evolution of resistance forward; however, an anti-virulence approach to disarm virulence factors of the pathogen and promote host cell clearance is promising. Here, we explore the efficacy of natural compounds derived from freshwater mussels against classical fungal virulence determinants, including thermotolerance, capsule production, stress response, and biofilm formation. We integrate our phenotypic discoveries with state-of-the-art mass spectrometry-based proteomics to identify mechanistic drivers of these antifungal properties and propose innovative avenues to reduce infection and support the treatment of resistant strains.
Collapse
Affiliation(s)
| | - Michael Woods
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Ryan S. Prosser
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | | |
Collapse
|
8
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Fernández-Sánchez S, Eraso E, Munro CA, Valentín E, Mateo E, de Groot PWJ. The good, the bad, and the hazardous: comparative genomic analysis unveils cell wall features in the pathogen Candidozyma auris typical for both baker's yeast and Candida. FEMS Yeast Res 2024; 24:foae039. [PMID: 39656857 PMCID: PMC11657238 DOI: 10.1093/femsyr/foae039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 11/04/2024] [Accepted: 12/03/2024] [Indexed: 12/17/2024] Open
Abstract
The drug-resistant pathogenic yeast Candidozyma auris (formerly named Candida auris) is considered a critical health problem of global importance. As the cell wall plays a crucial role in pathobiology, here we performed a detailed bioinformatic analysis of its biosynthesis in C. auris and related Candidozyma haemuli complex species using Candida albicans and Saccharomyces cerevisiae as references. Our data indicate that the cell wall architecture described for these reference yeasts is largely conserved in Candidozyma spp.; however, expansions or reductions in gene families point to subtle alterations, particularly with respect to β--1,3--glucan synthesis and remodeling, phosphomannosylation, β-mannosylation, and glycosylphosphatidylinositol (GPI) proteins. In several aspects, C. auris holds a position in between C. albicans and S. cerevisiae, consistent with being classified in a separate genus. Strikingly, among the identified putative GPI proteins in C. auris are adhesins typical for both Candida (Als and Hyr/Iff) and Saccharomyces (Flo11 and Flo5-like flocculins). Further, 26 putative C. auris GPI proteins lack homologs in Candida genus species. Phenotypic analysis of one such gene, QG37_05701, showed mild phenotypes implicating a role associated with cell wall β-1,3-glucan. Altogether, our study uncovered a wealth of information relevant for the pathogenicity of C. auris as well as targets for follow-up studies.
Collapse
Affiliation(s)
- María Alvarado
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | - Jesús A Gómez-Navajas
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Emilia Gómez-Molero
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| | | | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Carol A Munro
- Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, United Kingdom
| | - Eulogio Valentín
- GMCA Research Unit, Departament of Microbiology and Ecology, University of Valencia, Burjassot, 46010 Valencia, Spain
- Severe Infection Research Group, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Estibaliz Mateo
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain
| | - Piet W J de Groot
- Institute for Biomedicine, ETSIAMB, University of Castilla-La Mancha, 02008 Albacete, Spain
| |
Collapse
|
9
|
Bautista-Crescencio C, Casimiro-Ramos A, Fragoso-Vázquez MJ, Correa-Basurto J, Olano C, Hernández-Rodríguez C, Villa-Tanaca L. Streptomyces albidoflavus Q antifungal metabolites inhibit the ergosterol biosynthesis pathway and yeast growth in fluconazole-resistant Candida glabrata: phylogenomic and metabolomic analyses. Microbiol Spectr 2023; 11:e0127123. [PMID: 37754674 PMCID: PMC10581079 DOI: 10.1128/spectrum.01271-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
There is an urgent need to develop new antifungals due to the increasing prevalence of multidrug-resistant fungal infections and the recent emergence of COVID-19-associated candidiasis. A good study model for evaluating new antifungal compounds is Candida glabrata, an opportunistic fungal pathogen with intrinsic resistance to azoles (the most common clinical drugs for treating fungal infections). The aim of the current contribution was to conduct in vitro tests of antifungal metabolites produced by the bacteria Streptomyces albidoflavus Q, identify their molecular structures, and utilize several techniques to provide evidence of their therapeutic target. S. albidoflavus was isolated from maize rhizospheric soil in Mexico and identified by phylogenomic analysis using a 92-gene core. Of the 66 metabolites identified in S. albidoflavus Q by a liquid chromatography-high resolution mass spectrometry (LC-HRMS) metabolomic analysis of the lyophilized supernatant, six were selected by the Way2drug server based on their in silico binding to the likely target, 3-hydroxy-3-methyl-glutaryl-CoA reductase (HMGR, the key enzyme in the ergosterol biosynthesis pathway). Molecular modeling studies show a relatively high binding affinity for the CgHMGR enzyme by two secondary metabolites: isogingerenone B (diaryl heptanoid) and notoginsenoside J (polycyclic triterpene). These secondary metabolites were able to inhibit ergosterol synthesis and affect yeast viability in vitro. They also caused alterations in the ultrastructure of the yeast cytoplasmic membrane, as evidenced by transmission electron microscopy. The putative target of isogingerenone B and notoginsenoside J is distinct from that of azole drugs (the most common clinical antifungals). The target for the latter is the lanosterol 14 alpha-demethylase enzyme (Erg11). IMPORTANCE Multidrug resistance has emerged among yeasts of the genus Candida, posing a severe threat to global health. The problem has been exacerbated by the pandemic associated with COVID-19, during which resistant strains of Candida auris and Candida glabrata have been isolated from patients infected with the SARS-CoV-2 virus. To confront this challenge, the World Health Organization has invoked scientists to search for new antifungals with alternative molecular targets. This study identified 66 metabolites produced by the bacteria Streptomyces albidoflavus Q, 6 of which had promising properties for potential antifungal activity. The metabolites were tested in vitro as inhibitors of ergosterol synthesis and C. glabrata growth, with positive results. They were also found to damage the cytoplasmic membrane of the fungus. The corresponding molecular structures and their probable therapeutic target were established. The target is apparently distinct from that of azole drugs.
Collapse
Affiliation(s)
- Celia Bautista-Crescencio
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - Arturo Casimiro-Ramos
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - M. Jonathan Fragoso-Vázquez
- Departamento de Química Orgánica, Escuela Nacional de Ciencias, Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala, Col. Casco de Santo Tomás, Ciudad de México, México
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica (Laboratory for the Design and Development of New Drugs and Biotechnological Innovation), SEPI-Escuela Superior de Medicina del Instituto Politécnico Nacional, Plan de San Luis y Salvador Díaz Mirón, Casco de Santo Tomás, Ciudad de México, México
| | - Carlos Olano
- Departamento de Biología Funcional, Universidad de Oviedo, Oviedo, Spain
| | - César Hernández-Rodríguez
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| | - Lourdes Villa-Tanaca
- Departamento de Microbiología, Laboratorio de Biología Molecular de Bacterias y Levaduras, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Prolongación de Carpio y Plan de Ayala, Casco de Santo Tomás, Ciudad de México, Ciudad de México, México
| |
Collapse
|
10
|
Gach J, Olejniczak T, Pannek J, Boratyński F. Fungistatic Effect of Phthalide Lactones on Rhodotorula mucilaginosa. Molecules 2023; 28:5423. [PMID: 37513295 PMCID: PMC10384090 DOI: 10.3390/molecules28145423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/30/2023] Open
Abstract
Currently, there is an increasing number of cases of fungal infections caused by opportunistic strains of the yeast Rhodotorula mucilaginosa, mainly in immunocompromised patients during hospitalization. The excessive use of antibiotics and azole compounds increases the risk of resistance to microorganisms. A new alternative to these drugs may be synthetic phthalide lactones with a structure identical to or similar to the natural ones found in celery plants, which show low toxicity and relatively high fungistatic activity. In the present study, the fungistatic activity of seven phthalide lactones was determined against R. mucilaginosa IHEM 18459. We showed that 3-n-butylidenephthalide, the most potent compound selected in the microdilution test, caused a dose-dependent decrease in dry yeast biomass. Phthalide accumulated in yeast cells and contributed to an increase in reactive oxygen species content. The synergistic effect of fluconazole resulted in a reduction in the azole concentration required for yeast inhibition. We observed changes in the color of the yeast cultures; thus, we conducted experiments to prove that the carotenoid profile was altered. The addition of lactones also triggered a decline in fatty acid methyl esters.
Collapse
Affiliation(s)
- Joanna Gach
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Teresa Olejniczak
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Jakub Pannek
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| | - Filip Boratyński
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
| |
Collapse
|
11
|
Alvarado M, Gómez-Navajas JA, Blázquez-Muñoz MT, Gómez-Molero E, Berbegal C, Eraso E, Kramer G, De Groot PWJ. Integrated post-genomic cell wall analysis reveals floating biofilm formation associated with high expression of flocculins in the pathogen Pichia kudriavzevii. PLoS Pathog 2023; 19:e1011158. [PMID: 37196016 DOI: 10.1371/journal.ppat.1011158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 05/30/2023] [Accepted: 04/27/2023] [Indexed: 05/19/2023] Open
Abstract
The pathogenic yeast Pichia kudriavzevii, previously known as Candida krusei, is more distantly related to Candida albicans than clinically relevant CTG-clade Candida species. Its cell wall, a dynamic organelle that is the first point of interaction between pathogen and host, is relatively understudied, and its wall proteome remains unidentified to date. Here, we present an integrated study of the cell wall in P. kudriavzevii. Our comparative genomic studies and experimental data indicate that the general structure of the cell wall in P. kudriavzevii is similar to Saccharomyces cerevisiae and C. albicans and is comprised of β-1,3-glucan, β-1,6-glucan, chitin, and mannoproteins. However, some pronounced differences with C. albicans walls were observed, for instance, higher mannan and protein levels and altered protein mannosylation patterns. Further, despite absence of proteins with high sequence similarity to Candida adhesins, protein structure modeling identified eleven proteins related to flocculins/adhesins in S. cerevisiae or C. albicans. To obtain a proteomic comparison of biofilm and planktonic cells, P. kudriavzevii cells were grown to exponential phase and in static 24-h cultures. Interestingly, the 24-h static cultures of P. kudriavzevii yielded formation of floating biofilm (flor) rather than adherence to polystyrene at the bottom. The proteomic analysis of both conditions identified a total of 33 cell wall proteins. In line with a possible role in flor formation, increased abundance of flocculins, in particular Flo110, was observed in the floating biofilm compared to exponential cells. This study is the first to provide a detailed description of the cell wall in P. kudriavzevii including its cell wall proteome, and paves the way for further investigations on the importance of flor formation and flocculins in the pathogenesis of P. kudriavzevii.
Collapse
Affiliation(s)
- María Alvarado
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Jesús Alberto Gómez-Navajas
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - María Teresa Blázquez-Muñoz
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Emilia Gómez-Molero
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| | - Carmen Berbegal
- ENOLAB, Estructura de Recerca Interdisciplinar (ERI) BioTecMed and Departament de Microbiologia i Ecología, Universitat de València, Burjassot, Spain
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Gertjan Kramer
- Mass Spectrometry of Biomolecules, University of Amsterdam, Swammerdam Institute for Life Sciences Amsterdam, Amsterdam, The Netherlands
| | - Piet W J De Groot
- Regional Center for Biomedical Research, Castilla-La Mancha Science & Technology Park, University of Castilla-La Mancha, Albacete, Spain
| |
Collapse
|
12
|
β-Nitrostyrene derivatives as broad range potential antifungal agents targeting fungal cell wall. Eur J Med Chem 2022; 240:114609. [DOI: 10.1016/j.ejmech.2022.114609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 06/26/2022] [Accepted: 07/10/2022] [Indexed: 11/22/2022]
|
13
|
Hattab S, Dagher AM, Wheeler RT. Pseudomonas Synergizes with Fluconazole against Candida during Treatment of Polymicrobial Infection. Infect Immun 2022; 90:e0062621. [PMID: 35289633 PMCID: PMC9022521 DOI: 10.1128/iai.00626-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/10/2022] [Indexed: 12/14/2022] Open
Abstract
Polymicrobial infections are challenging to treat because we don't fully understand how pathogens interact during infection and how these interactions affect drug efficacy. Candida albicans and Pseudomonas aeruginosa are opportunistic pathogens that can be found in similar sites of infection such as in burn wounds and most importantly in the lungs of CF and mechanically ventilated patients. C. albicans is particularly difficult to treat because of the paucity of antifungal agents, some of which lack fungicidal activity. In this study, we investigated the efficacy of anti-fungal treatment during C. albicans-P. aeruginosa coculture in vitro and co-infection in the mucosal zebrafish infection model analogous to the lung. We find that P. aeruginosa enhances the activity of fluconazole (FLC), an anti-fungal drug that is fungistatic in vitro, to promote both clearance of C. albicans during co-infection in vivo and fungal killing in vitro. This synergy between FLC treatment and bacterial antagonism is partly due to iron piracy, as it is reduced upon iron supplementation and knockout of bacterial siderophores. Our work demonstrates that FLC has enhanced activity in clinically relevant contexts and highlights the need to understand antimicrobial effectiveness in the complex environment of the host with its associated microbial communities.
Collapse
Affiliation(s)
- Siham Hattab
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Anna-Maria Dagher
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
| | - Robert T. Wheeler
- Department of Molecular & Biomedical Sciences, University of Maine, Orono, Maine, USA
- Graduate School of Biomedical Sciences and Engineering, University of Maine, Orono, Maine, USA
| |
Collapse
|
14
|
Ribeiro GF, Denes E, Heaney H, Childers DS. What 'Omics Can Tell Us About Antifungal Adaptation. FEMS Yeast Res 2021; 21:6484793. [PMID: 34958354 PMCID: PMC8755904 DOI: 10.1093/femsyr/foab070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/22/2021] [Indexed: 12/01/2022] Open
Abstract
Invasive candidiasis, the most frequent healthcare-associated invasive fungal infection, is commonly caused by Candida albicans. However, in recent years other antifungal-resistant Candida species—namely Candida glabrata and Candidaauris—have emerged as a serious matter of concern. Much of our understanding of the mechanisms regulating antifungal resistance and tolerance relies on studies utilizing C. albicans, C. glabrataand the model yeast Saccharomyces cerevisiae. ‘Omics studies have been used to describe alterations in metabolic, genomic and transcriptomic expression profiles upon antifungal treatment of fungal cells. The physiological changes identified by these approaches could significantly affect fungal fitness in the host and survival during antifungal challenge, as well as provide further understanding of clinical resistance. Thus, this review aims to comparatively address ‘omics data for C. albicans, C. glabrata andS. cerevisiae published from 2000 to 2021 to identify what these technologies can tell us regarding cellular responses to antifungal therapy. We will also highlight possible effects on pathogen survival and identify future avenues for antifungal research.
Collapse
Affiliation(s)
- Gabriela Fior Ribeiro
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Eszter Denes
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Helen Heaney
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| | - Delma S Childers
- University of Aberdeen, Institute of Medical Sciences, Aberdeen Fungal Group, Aberdeen, UK, AB25 2ZD
| |
Collapse
|
15
|
Awad A, El Khoury P, Geukgeuzian G, Khalaf RA. Cell Wall Proteome Profiling of a Candida albicans Fluconazole-Resistant Strain from a Lebanese Hospital Patient Using Tandem Mass Spectrometry-A Pilot Study. Microorganisms 2021; 9:microorganisms9061161. [PMID: 34071222 PMCID: PMC8229660 DOI: 10.3390/microorganisms9061161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/14/2021] [Accepted: 04/15/2021] [Indexed: 11/16/2022] Open
Abstract
Candida albicans is an opportunistic pathogenic fungus responsible for high mortality rates in immunocompromised individuals. Azole drugs such as fluconazole are the first line of therapy in fungal infection treatment. However, resistance to azole treatment is on the rise. Here, we employ a tandem mass spectrometry approach coupled with a bioinformatics approach to identify cell wall proteins present in a fluconazole-resistant hospital isolate upon drug exposure. The isolate was previously shown to have an increase in cell membrane ergosterol and cell wall chitin, alongside an increase in adhesion, but slightly attenuated in virulence. We identified 50 cell wall proteins involved in ergosterol biosynthesis such as Erg11, and Erg6, efflux pumps such as Mdr1 and Cdr1, adhesion proteins such as Als1, and Pga60, chitin deposition such as Cht4, and Crh11, and virulence related genes including Sap5 and Lip9. Candidial proteins identified in this study go a long way in explaining the observed phenotypes. Our pilot study opens the way for a future large-scale analysis to identify novel proteins involved in drug-resistance mechanisms.
Collapse
|
16
|
Moreno-Martínez AE, Gómez-Molero E, Sánchez-Virosta P, Dekker HL, de Boer A, Eraso E, Bader O, de Groot PWJ. High Biofilm Formation of Non-Smooth Candida parapsilosis Correlates with Increased Incorporation of GPI-Modified Wall Adhesins. Pathogens 2021; 10:pathogens10040493. [PMID: 33921809 PMCID: PMC8073168 DOI: 10.3390/pathogens10040493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/16/2022] Open
Abstract
Candida parapsilosis is among the most frequent causes of candidiasis. Clinical isolates of this species show large variations in colony morphotype, ranging from round and smooth to a variety of non-smooth irregular colony shapes. A non-smooth appearance is related to increased formation of pseudohyphae, higher capacity to form biofilms on abiotic surfaces, and invading agar. Here, we present a comprehensive study of the cell wall proteome of C. parapsilosis reference strain CDC317 and seven clinical isolates under planktonic and sessile conditions. This analysis resulted in the identification of 40 wall proteins, most of them homologs of known Candida albicans cell wall proteins, such as Gas, Crh, Bgl2, Cht2, Ecm33, Sap, Sod, Plb, Pir, Pga30, Pga59, and adhesin family members. Comparative analysis of exponentially growing and stationary phase planktonic cultures of CDC317 at 30 °C and 37 °C revealed only minor variations. However, comparison of smooth isolates to non-smooth isolates with high biofilm formation capacity showed an increase in abundance and diversity of putative wall adhesins from Als, Iff/Hyr, and Hwp families in the latter. This difference depended more strongly on strain phenotype than on the growth conditions, as it was observed in planktonic as well as biofilm cells. Thus, in the set of isolates analyzed, the high biofilm formation capacity of non-smooth C. parapsilosis isolates with elongated cellular phenotypes correlates with the increased surface expression of putative wall adhesins in accordance with their proposed cellular function.
Collapse
Affiliation(s)
- Ana Esther Moreno-Martínez
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Emilia Gómez-Molero
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
| | - Pablo Sánchez-Virosta
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Henk L. Dekker
- Mass Spectrometry of Biomolecules, Swammerdam Institute for Life Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands;
| | - Albert de Boer
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
| | - Elena Eraso
- Department of Immunology, Microbiology and Parasitology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Bilbao, Spain;
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, 37075 Göttingen, Germany
- Correspondence: (O.B.); (P.W.J.d.G.)
| | - Piet W. J. de Groot
- Albacete Regional Center for Biomedical Research, Castilla—La Mancha Science & Technology Park, University of Castilla-La Mancha, 02008 Albacete, Spain; (A.E.M.-M.); (E.G.-M.); (P.S.-V.); (A.d.B.)
- Correspondence: (O.B.); (P.W.J.d.G.)
| |
Collapse
|
17
|
Owens RA, Doyle S. Effects of antifungal agents on the fungal proteome: informing on mechanisms of sensitivity and resistance. Expert Rev Proteomics 2021; 18:185-199. [PMID: 33797307 DOI: 10.1080/14789450.2021.1912601] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
INTRODUCTION Antifungal agents are essential in the fight against serious fungal disease, however emerging resistance is threatening an already limited collection of therapeutics. Proteomic analyses of effects of antifungal agents can expand our understanding of multifactorial mechanisms of action and have also proven valuable to elucidate proteomic changes associated with antifungal resistance. AREAS COVERED This review covers the application of proteomic techniques to examine sensitivity and resistance to antifungals including commonly used therapeutics, amphotericin B, echinocandins and the azoles, based predominantly on studies involving Aspergillus fumigatus, Candida albicans and Candida glabrata from the last 10 years. In addition, non-clinical antimicrobial agents are also discussed, which highlight the potential of proteomics to identify new antifungal targets. EXPERT COMMENTARY Fungal proteomics has evolved in the last decade with increased genome availability and developments in mass spectrometry. Collectively, these have led to the advancement of proteomic techniques, allowing increased coverage of the proteome. Gel-based proteomics laid the foundation for these types of studies, which has now shifted to the more powerful gel-free proteomics. This has resulted in the identification of key mediators and potential biomarkers of antifungal resistance, as well as elucidating the mechanisms of action of novel and established antifungal agents.
Collapse
Affiliation(s)
- Rebecca A Owens
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,The Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Sean Doyle
- Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
18
|
Transcriptome Analyses of Candida albicans Biofilms, Exposed to Arachidonic Acid and Fluconazole, Indicates Potential Drug Targets. G3-GENES GENOMES GENETICS 2020; 10:3099-3108. [PMID: 32631950 PMCID: PMC7466979 DOI: 10.1534/g3.120.401340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Candida albicans is an opportunistic yeast pathogen within the human microbiota with significant medical importance because of its pathogenic potential. The yeast produces highly resistant biofilms, which are crucial for maintaining infections. Though antifungals are available, their effectiveness is dwindling due to resistance. Alternate options that comprise the combination of existing azoles and polyunsaturated fatty acids, such as arachidonic acid (AA), have been shown to increase azoles susceptibility of C. albicans biofilms; however, the mechanisms are still unknown. Therefore, transcriptome analysis was conducted on biofilms exposed to sub-inhibitory concentrations of AA alone, fluconazole alone, and AA combined with fluconazole to understand the possible mechanism involved with the phenomenon. Protein ANalysis THrough Evolutionary Relationships (PANTHER) analysis from the differentially expressed genes revealed that the combination of AA and fluconazole influences biological processes associated with essential processes including methionine synthesis and those involved in ATP generation, such as AMP biosynthesis, fumarate metabolism and fatty acid oxidation. These observations suggests that the interference of AA with these processes may be a possible mechanisms to induce increased antifungal susceptibility.
Collapse
|
19
|
Golbaghi G, Groleau M, López de los Santos Y, Doucet N, Déziel E, Castonguay A. Cationic Ru
II
Cyclopentadienyl Complexes with Antifungal Activity against Several
Candida
Species. Chembiochem 2020; 21:3112-3119. [DOI: 10.1002/cbic.202000254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 06/22/2020] [Indexed: 01/23/2023]
Affiliation(s)
- Golara Golbaghi
- Organometallic Chemistry Laboratory for the Design of Catalysts and Therapeutics INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Marie‐Christine Groleau
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | | | - Nicolas Doucet
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Eric Déziel
- INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| | - Annie Castonguay
- Organometallic Chemistry Laboratory for the Design of Catalysts and Therapeutics INRS-Centre Armand-Frappier Santé Biotechnologie 531 boul. des Prairies Laval, Quebec H7V 1B7 Canada
| |
Collapse
|
20
|
Bandara HMHN, Wood DLA, Vanwonterghem I, Hugenholtz P, Cheung BPK, Samaranayake LP. Fluconazole resistance in Candida albicans is induced by Pseudomonas aeruginosa quorum sensing. Sci Rep 2020; 10:7769. [PMID: 32385378 PMCID: PMC7211000 DOI: 10.1038/s41598-020-64761-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 04/22/2020] [Indexed: 12/16/2022] Open
Abstract
Microorganisms employ quorum sensing (QS) mechanisms to communicate with each other within microbial ecosystems. Emerging evidence suggests that intraspecies and interspecies QS plays an important role in antimicrobial resistance in microbial communities. However, the relationship between interkingdom QS and antimicrobial resistance is largely unknown. Here, we demonstrate that interkingdom QS interactions between a bacterium, Pseudomonas aeruginosa and a yeast, Candida albicans, induce the resistance of the latter to a widely used antifungal fluconazole. Phenotypic, transcriptomic, and proteomic analyses reveal that P. aeruginosa's main QS molecule, N-(3-Oxododecanoyl)-L-homoserine lactone, induces candidal resistance to fluconazole by reversing the antifungal's effect on the ergosterol biosynthesis pathway. Accessory resistance mechanisms including upregulation of C. albicans drug-efflux, regulation of oxidative stress response, and maintenance of cell membrane integrity, further confirm this phenomenon. These findings demonstrate that P. aeruginosa QS molecules may confer protection to neighboring yeasts against azoles, in turn strengthening their co-existence in hostile polymicrobial infection sites.
Collapse
Affiliation(s)
- H M H N Bandara
- Oral Microbiology, Bristol Dental School, University of Bristol, Lower Maudlin Street, Bristol, BS1 2LY, UK.
| | - D L A Wood
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - I Vanwonterghem
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - P Hugenholtz
- Australian Centre for Ecogenomics, School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia
| | - B P K Cheung
- Faculty of Dentistry, The University of Hong Kong, 34 Hospital Rd, Sai Ying Pun, Hong Kong SAR, China
| | - L P Samaranayake
- College of Dental Medicine, The University of Sharjah, P.O. Box, 27272, Sharjah, UAE
| |
Collapse
|
21
|
The Role of Secretory Pathways in Candida albicans Pathogenesis. J Fungi (Basel) 2020; 6:jof6010026. [PMID: 32102426 PMCID: PMC7151058 DOI: 10.3390/jof6010026] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/17/2022] Open
Abstract
Candida albicans is a fungus that is a commensal organism and a member of the normal human microbiota. It has the ability to transition into an opportunistic invasive pathogen. Attributes that support pathogenesis include secretion of virulence-associated proteins, hyphal formation, and biofilm formation. These processes are supported by secretion, as defined in the broad context of membrane trafficking. In this review, we examine the role of secretory pathways in Candida virulence, with a focus on the model opportunistic fungal pathogen, Candida albicans.
Collapse
|
22
|
Suchodolski J, Muraszko J, Korba A, Bernat P, Krasowska A. Lipid composition and cell surface hydrophobicity of Candida albicans influence the efficacy of fluconazole-gentamicin treatment. Yeast 2020; 37:117-129. [PMID: 31826306 PMCID: PMC7004182 DOI: 10.1002/yea.3455] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/08/2019] [Indexed: 12/18/2022] Open
Abstract
Adherence of the fungus, Candida albicans, to biotic (e.g. human tissues) and abiotic (e.g. catheters) surfaces can lead to emergence of opportunistic infections in humans. The process of adhesion and further biofilm development depends, in part, on cell surface hydrophobicity (CSH). In this study, we compared the resistance of C. albicans strains with different CSH to the most commonly prescribed antifungal drug, fluconazole, and the newly described synergistic combination, fluconazole and gentamicin. The hydrophobic strain was more resistant to fluconazole due to, among others, overexpression of the ERG11 gene encoding the fluconazole target protein (CYP51A1, Erg11p), which leads to overproduction of ergosterol in this strain. Additionally, the hydrophobic strain displayed high efflux activity of the multidrug resistance Cdr1 pump due to high expression of the CDR1 gene. On the other hand, the hydrophobic C. albicans strain was more susceptible to fluconazole-gentamicin combination because of its different effect on lipid content in the two strains. The combination resulted in ergosterol depletion with subsequent Cdr1p mislocalization and loss of activity in the hydrophobic strain. We propose that C. albicans strains with different CSH may possess altered lipid metabolism and consequently may differ in their response to treatment.
Collapse
Affiliation(s)
- Jakub Suchodolski
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jakub Muraszko
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Aleksandra Korba
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Przemysław Bernat
- Department of Industrial Microbiology and Biotechnology, Faculty of Biology and Environmental Protection, University of Łódź, Łódź, Poland
| | - Anna Krasowska
- Department of Biotransformation, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
23
|
Xu T, Cao L, Zeng J, Franco CMM, Yang Y, Hu X, Liu Y, Wang X, Gao Y, Bu Z, Shi L, Zhou G, Zhou Q, Liu X, Zhu Y. The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:58-69. [PMID: 31519258 DOI: 10.1016/j.pestbp.2019.06.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 06/17/2019] [Accepted: 06/26/2019] [Indexed: 06/10/2023]
Abstract
Microbial antagonists and their bioactive metabolites provide one of the best alternatives to chemical pesticides to control crop disease for sustainable agriculture and global food security. The rice endophyte Streptomyces hygroscopicus OsiSh-2, with remarkable antagonistic activity towards the rice blast fungus Magnaporthe oryzae, was reported in our previous study. The present study deciphered the possible direct interaction mode of OsiSh-2 against M. oryzae. An in vitro antibiotic assay for OsiSh-2 culture filtrate revealed strong suppression of mycelial growth, conidial germination and appressorial formation of M. oryzae. Meanwhile, severe morphological and internal abnormalities in M. oryzae hyphae were observed under a scanning electron microscope and transmission electron microscope. Foliar treatment of rice seedlings by OsiSh-2 culture filtrate in the greenhouse and in the field showed 23.5% and 28.3% disease reduction, respectively. Correspondingly, OsiSh-2 culture filtrate could induce disorganized chitin deposition in the cell wall and lowered ergosterol content in the cell membrane of M. oryzae. Additionally, cell wall integrity pathway activation, large cell electrolytes release, reactive oxygen species accumulation and tricarboxylic acid cycle-related enzyme activity changes were found in M. oryzae. All these results suggested that the direct antagonistic activity of OsiSh-2 against M. oryzae may be attributed to damaging the integrity of the cell wall and membrane and disrupting mitochondrial function in the pathogen.
Collapse
Affiliation(s)
- Ting Xu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Lidan Cao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Jiarui Zeng
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Christopher M M Franco
- Department of Medical Biotechnology, School of Medicine, Flinders University, Adelaide, SA 5042, Australia
| | - Yuanzhu Yang
- Yahua Seeds Science Academy of Hunan, Changsha, Hunan 410119, China
| | - Xiaochun Hu
- Yahua Seeds Science Academy of Hunan, Changsha, Hunan 410119, China
| | - Ying Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Xiang Wang
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yan Gao
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Zhigang Bu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Liming Shi
- State Key Laboratory of Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guoying Zhou
- Hunan Provincial Key Laboratory for Control of Forest Diseases and Pests, Central South University of Forestry and Technology, Changsha, Hunan 410008, China
| | - Qian Zhou
- Hunan Provincial Key Laboratory for Biology and Control of Plant Diseases and Insect Pests, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xuanming Liu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China
| | - Yonghua Zhu
- Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, College of Biology, Hunan University, Changsha, Hunan 410082, China.
| |
Collapse
|
24
|
Hosseinzadeh A, Stylianou M, Lopes JP, Müller DC, Häggman A, Holmberg S, Grumaz C, Johansson A, Sohn K, Dieterich C, Urban CF. Stable Redox-Cycling Nitroxide Tempol Has Antifungal and Immune-Modulatory Properties. Front Microbiol 2019; 10:1843. [PMID: 31481939 PMCID: PMC6710993 DOI: 10.3389/fmicb.2019.01843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 07/26/2019] [Indexed: 11/13/2022] Open
Abstract
Invasive mycoses remain underdiagnosed and difficult to treat. Hospitalized individuals with compromised immunity increase in number and constitute the main risk group for severe fungal infections. Current antifungal therapy is hampered by slow and insensitive diagnostics and frequent toxic side effects of standard antifungal drugs. Identification of new antifungal compounds with high efficacy and low toxicity is therefore urgently required. We investigated the antifungal activity of tempol, a cell-permeable nitroxide. To narrow down possible mode of action we used RNA-seq technology and metabolomics to probe for pathways specifically disrupted in the human fungal pathogen Candida albicans due to tempol administration. We found genes upregulated which are involved in iron homeostasis, mitochondrial stress, steroid synthesis, and amino acid metabolism. In an ex vivo whole blood infection, tempol treatment reduced C. albicans colony forming units and at the same time increased the release of pro-inflammatory cytokines, such as interleukin 8 (IL-8, monocyte chemoattractant protein-1, and macrophage migration inhibitory factor). In a systemic mouse model, tempol was partially protective with a significant reduction of fungal burden in the kidneys of infected animals during infection onset. The results obtained propose tempol as a promising new antifungal compound and open new opportunities for the future development of novel therapies.
Collapse
Affiliation(s)
- Ava Hosseinzadeh
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Marios Stylianou
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - José Pedro Lopes
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Daniel C Müller
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - André Häggman
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Sandra Holmberg
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Christian Grumaz
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Anders Johansson
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| | - Kai Sohn
- Department of Molecular Biotechnology, Fraunhofer Institute for Interfacial Engineering and Biotechnology, Stuttgart, Germany
| | - Christoph Dieterich
- Department of Internal Medicine III, Klaus Tschira Institute for Integrative Computational Cardiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Constantin F Urban
- Department of Clinical Microbiology, Umeå University, Umeå, Sweden.,Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden.,Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
| |
Collapse
|
25
|
Expression and purification of the transcription factor StMsn2 from Setosphaeria turcica in Escherichia coli. ELECTRON J BIOTECHN 2019. [DOI: 10.1016/j.ejbt.2019.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
26
|
Childers DS, Avelar GM, Bain JM, Larcombe DE, Pradhan A, Budge S, Heaney H, Brown AJP. Impact of the Environment upon the Candida albicans Cell Wall and Resultant Effects upon Immune Surveillance. Curr Top Microbiol Immunol 2019; 425:297-330. [PMID: 31781866 DOI: 10.1007/82_2019_182] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fungal cell wall is an essential organelle that maintains cellular morphology and protects the fungus from environmental insults. For fungal pathogens such as Candida albicans, it provides a degree of protection against attack by host immune defences. However, the cell wall also presents key epitopes that trigger host immunity and attractive targets for antifungal drugs. Rather than being a rigid shield, it has become clear that the fungal cell wall is an elastic organelle that permits rapid changes in cell volume and the transit of large liposomal particles such as extracellular vesicles. The fungal cell wall is also flexible in that it adapts to local environmental inputs, thereby enhancing the fitness of the fungus in these microenvironments. Recent evidence indicates that this cell wall adaptation affects host-fungus interactions by altering the exposure of major cell wall epitopes that are recognised by innate immune cells. Therefore, we discuss the impact of environmental adaptation upon fungal cell wall structure, and how this affects immune recognition, focussing on C. albicans and drawing parallels with other fungal pathogens.
Collapse
Affiliation(s)
- Delma S Childers
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Gabriela M Avelar
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Judith M Bain
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Daniel E Larcombe
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Susan Budge
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Helen Heaney
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Alistair J P Brown
- Aberdeen Fungal Group, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK.
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| |
Collapse
|
27
|
CORT0C04210 is required for Candida orthopsilosis adhesion to human buccal cells. Fungal Genet Biol 2018; 120:19-29. [DOI: 10.1016/j.fgb.2018.09.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Revised: 09/04/2018] [Accepted: 09/07/2018] [Indexed: 01/09/2023]
|
28
|
Miura N, Ueda M. Evaluation of Unconventional Protein Secretion by Saccharomyces cerevisiae and other Fungi. Cells 2018; 7:cells7090128. [PMID: 30200367 PMCID: PMC6162777 DOI: 10.3390/cells7090128] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 08/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
Development of proteome analysis of extracellular proteins has revealed that a wide variety of proteins, including fungal allergens are present outside the cell. These secreted allergens often do not contain known secretion signal sequences. Recent research progress shows that some fungal allergens are secreted by unconventional secretion pathways, including autophagy- and extracellular-vesicle-dependent pathways. However, secretion pathways remain unknown for the majority of extracellular proteins. This review summarizes recent data on unconventional protein secretion in Saccharomyces cerevisiae and other fungi. Particularly, methods for evaluating unconventional protein secretion are proposed for fungal species, including S. cerevisiae, a popular model organism for investigating protein secretion pathways.
Collapse
Affiliation(s)
- Natsuko Miura
- Graduate School of Life and Environmental Sciences, Osaka Prefecture University, Sakai 599-8531, Japan.
| | - Mitsuyoshi Ueda
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan.
| |
Collapse
|
29
|
Jha A, Vimal A, Bakht A, Kumar A. Inhibitors of CPH1-MAP Kinase Pathway: Ascertaining Potential Ligands as Multi-Target Drug Candidate in Candida albicans. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9747-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
30
|
Antifungal tolerance is a subpopulation effect distinct from resistance and is associated with persistent candidemia. Nat Commun 2018; 9:2470. [PMID: 29941885 PMCID: PMC6018213 DOI: 10.1038/s41467-018-04926-x] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/05/2018] [Indexed: 11/23/2022] Open
Abstract
Tolerance to antifungal drug concentrations above the minimal inhibitory concentration (MIC) is rarely quantified, and current clinical recommendations suggest it should be ignored. Here, we quantify antifungal tolerance in Candida albicans isolates as the fraction of growth above the MIC, and find that it is distinct from susceptibility/resistance. Instead, tolerance is due to the slow growth of subpopulations of cells that overcome drug stress more efficiently than the rest of the population, and correlates inversely with intracellular drug accumulation. Many adjuvant drugs used in combination with fluconazole, a widely used fungistatic drug, reduce tolerance without affecting resistance. Accordingly, in an invertebrate infection model, adjuvant combination therapy is more effective than fluconazole in treating infections with highly tolerant isolates and does not affect infections with low tolerance isolates. Furthermore, isolates recovered from immunocompetent patients with persistent candidemia display higher tolerance than isolates readily cleared by fluconazole. Thus, tolerance correlates with, and may help predict, patient responses to fluconazole therapy. The authors show that antifungal tolerance, defined as the fraction of growth of a fungal pathogen above the minimal inhibitory concentration, is due to the slow growth of subpopulations of cells that overcome drug stress, and that high tolerance is often associated with persistent infections.
Collapse
|
31
|
Roles of VPH2 and VMA6 in localization of V-ATPase subunits, cell wall functions and filamentous development in Candida albicans. Fungal Genet Biol 2018. [PMID: 29522815 DOI: 10.1016/j.fgb.2018.03.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The vacuolar-type H+-ATPase (V-ATPase) is known to be associated with various cellular processes. Several V-ATPase subunits have been identified in C. albicans. However, there are still a few V-ATPase subunits and assembly factors that remain uncharacterized. In this study, we identified one of putative V-ATPase assembly factors, Vph2, and V0 subunit, Vma6, and explored their potential functions in C. albicans. Our results revealed that Vph2 and Vma6 were required for the correct distribution of V0 subunit Vph1 and V1 subunit Tfp1. Furthermore, Vph2 and Vma6 played an important role in endocytosis and vacuolar acidification. Disruption of VPH2 or VMA6 affected cell wall stress resistance and composition, accompanying induction of cell wall integrity (CWI) pathway. Besides, deletion of VPH2 or VMA6 led to weakened hyphal development in Spider medium that was not dependent on Hog1 activation. Moreover, the vph2Δ/Δ and vma6Δ/Δ mutants displayed attenuated virulence in a mouse model of systemic candidiasis. Taken together, our data indicated that Vph2 and Vma6 were essential for the proper localization of V-ATPase subunits, cell wall functions, filamentous growth and C. albicans pathogenesis, and provided the potential to better exploit V-ATPase-related proteins as antifungal targets.
Collapse
|
32
|
Targeting Candida spp. to develop antifungal agents. Drug Discov Today 2018; 23:802-814. [PMID: 29353694 DOI: 10.1016/j.drudis.2018.01.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023]
Abstract
Invasive fungal infections are a complex challenge throughout the world because of their high incidence, mainly in critically ill patients, and high mortality rates. The antifungal agents currently available are limited; thus, there is a need for the rapid development of new drugs. In silico methods are a modern strategy to explore interactions between new compounds and specific fungal targets, but they depend on precise genetic information. Here, we discuss the main Candida spp. target genes, including information about null mutants, virulence, cytolocalization, co-regulatory genes, and compounds that are related to protein expression. These data will provide a basis for the future in silico development of antifungal drugs.
Collapse
|
33
|
Gerwien F, Skrahina V, Kasper L, Hube B, Brunke S. Metals in fungal virulence. FEMS Microbiol Rev 2018; 42:4562650. [PMID: 29069482 PMCID: PMC5812535 DOI: 10.1093/femsre/fux050] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 10/19/2017] [Indexed: 12/25/2022] Open
Abstract
Metals are essential for life, and they play a central role in the struggle between infecting microbes and their hosts. In fact, an important aspect of microbial pathogenesis is the 'nutritional immunity', in which metals are actively restricted (or, in an extended definition of the term, locally enriched) by the host to hinder microbial growth and virulence. Consequently, fungi have evolved often complex regulatory networks, uptake and detoxification systems for essential metals such as iron, zinc, copper, nickel and manganese. These systems often differ fundamentally from their bacterial counterparts, but even within the fungal pathogens we can find common and unique solutions to maintain metal homeostasis. Thus, we here compare the common and species-specific mechanisms used for different metals among different fungal species-focusing on important human pathogens such as Candida albicans, Aspergillus fumigatus or Cryptococcus neoformans, but also looking at model fungi such as Saccharomyces cerevisiae or A. nidulans as well-studied examples for the underlying principles. These direct comparisons of our current knowledge reveal that we have a good understanding how model fungal pathogens take up iron or zinc, but that much is still to learn about other metals and specific adaptations of individual species-not the least to exploit this knowledge for new antifungal strategies.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Volha Skrahina
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Lydia Kasper
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| | - Sascha Brunke
- Department Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology– Hans Knoell Institute, 07745 Jena, Germany
| |
Collapse
|
34
|
Gil-Bona A, Amador-García A, Gil C, Monteoliva L. The external face of Candida albicans: A proteomic view of the cell surface and the extracellular environment. J Proteomics 2017; 180:70-79. [PMID: 29223801 DOI: 10.1016/j.jprot.2017.12.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Revised: 11/06/2017] [Accepted: 12/04/2017] [Indexed: 01/06/2023]
Abstract
The cell surface and secreted proteins are the initial points of contact between Candida albicans and the host. Improvements in protein extraction approaches and mass spectrometers have allowed researchers to obtain a comprehensive knowledge of these external subproteomes. In this paper, we review the published proteomic studies that have examined C. albicans extracellular proteins, including the cell surface proteins or surfome and the secreted proteins or secretome. The use of different approaches to isolate cell wall and cell surface proteins, such as fractionation approaches or cell shaving, have resulted in different outcomes. Proteins with N-terminal signal peptide, known as classically secreted proteins, and those that lack the signal peptide, known as unconventionally secreted proteins, have been consistently identified. Existing studies on C. albicans extracellular vesicles reveal that they are relevant as an unconventional pathway of protein secretion and can help explain the presence of proteins without a signal peptide, including some moonlighting proteins, in the cell wall and the extracellular environment. According to the global view presented in this review, cell wall proteins, virulence factors such as adhesins or hydrolytic enzymes, metabolic enzymes and stress related-proteins are important groups of proteins in C. albicans surfome and secretome. BIOLOGICAL SIGNIFICANCE Candida albicans extracellular proteins are involved in biofilm formation, cell nutrient acquisition and cell wall integrity maintenance. Furthermore, these proteins include virulence factors and immunogenic proteins. This review is of outstanding interest, not only because it extends knowledge of the C. albicans surface and extracellular proteins that could be related with pathogenesis, but also because it presents insights that may facilitate the future development of new antifungal drugs and vaccines and contributes to efforts to identify new biomarkers that can be employed to diagnose candidiasis. Here, we list more than 570 C. albicans proteins that have been identified in extracellular locations to deliver the most extensive catalogue of this type of proteins to date. Moreover, we describe 16 proteins detected at all locations analysed in the works revised. These proteins include the glycophosphatidylinositol (GPI)-anchored proteins Ecm33, Pga4 and Phr2 and unconventional secretory proteins such as Eft2, Eno1, Hsp70, Pdc11, Pgk1 and Tdh3. Furthermore, 13 of these 16 proteins are immunogenic and could represent a set of interesting candidates for biomarker discovery.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain
| | - Ahinara Amador-García
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain
| | - Concha Gil
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| | - Lucia Monteoliva
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramon y Cajal s/n, 28040 Madrid, Spain; Instituto Ramon y Cajal de Investigacion Sanitaria (IRYCIS), Ctra. De Colmenar Viejo, 28034 Madrid, Spain.
| |
Collapse
|
35
|
Amarsaikhan N, Albrecht-Eckardt D, Sasse C, Braus GH, Ogel ZB, Kniemeyer O. Proteomic profiling of the antifungal drug response of Aspergillus fumigatus to voriconazole. Int J Med Microbiol 2017; 307:398-408. [DOI: 10.1016/j.ijmm.2017.07.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Revised: 06/29/2017] [Accepted: 07/27/2017] [Indexed: 12/18/2022] Open
|
36
|
Gerwien F, Safyan A, Wisgott S, Brunke S, Kasper L, Hube B. The Fungal Pathogen Candida glabrata Does Not Depend on Surface Ferric Reductases for Iron Acquisition. Front Microbiol 2017. [PMID: 28642757 PMCID: PMC5463049 DOI: 10.3389/fmicb.2017.01055] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Iron acquisition is a crucial virulence determinant for many bacteria and fungi, including the opportunistic fungal pathogens Candida albicans and C. glabrata. While the diverse strategies used by C. albicans for obtaining iron from the host are well-described, much less is known about the acquisition of this micronutrient from host sources by C. glabrata – a distant relative of C. albicans with closer evolutionary ties to Saccharomyces cerevisiae, which nonetheless causes severe clinical symptoms in humans. Here we show that C. glabrata is much more restricted than C. albicans in using host iron sources, lacking, for example, the ability to grow on transferrin and hemin/hemoglobin. Instead, C. glabrata is able to use ferritin and non-protein-bound iron (FeCl3) as iron sources in a pH-dependent manner. As in other fungal pathogens, iron-dependent growth requires the reductive high affinity (HA) iron uptake system. Typically highly conserved, this uptake mechanism normally relies on initial ferric reduction by cell-surface ferric reductases. The C. glabrata genome contains only three such putative ferric reductases, which were found to be dispensable for iron-dependent growth. In addition and in contrast to C. albicans and S. cerevisiae, we also detected no surface ferric reductase activity in C. glabrata. Instead, extracellular ferric reduction was found in this and the two other fungal species, which was largely dependent on an excreted low-molecular weight, non-protein ferric reductant. We therefore propose an iron acquisition strategy of C. glabrata which differs from other pathogenic fungi, such as C. albicans, in that it depends on a limited set of host iron sources and that it lacks the need for surface ferric reductases. Extracellular ferric reduction by a secreted molecule possibly compensates for the loss of surface ferric reductase activity in the HA iron uptake system.
Collapse
Affiliation(s)
- Franziska Gerwien
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Abu Safyan
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Stephanie Wisgott
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Sascha Brunke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knoell InstituteJena, Germany.,Department of Microbial Pathogenicity Mechanisms, Friedrich Schiller UniversityJena, Germany.,Center for Sepsis Control and Care, University HospitalJena, Germany
| |
Collapse
|
37
|
Adelantado N, Tarazona P, Grillitsch K, García-Ortega X, Monforte S, Valero F, Feussner I, Daum G, Ferrer P. The effect of hypoxia on the lipidome of recombinant Pichia pastoris. Microb Cell Fact 2017; 16:86. [PMID: 28526017 PMCID: PMC5437588 DOI: 10.1186/s12934-017-0699-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 05/10/2017] [Indexed: 01/17/2023] Open
Abstract
Background Cultivation of recombinant Pichia pastoris (Komagataella sp.) under hypoxic conditions has a strong positive effect on specific productivity when the glycolytic GAP promoter is used for recombinant protein expression, mainly due to upregulation of glycolytic conditions. In addition, transcriptomic analyses of hypoxic P. pastoris pointed out important regulation of lipid metabolism and unfolded protein response (UPR). Notably, UPR that plays a role in the regulation of lipid metabolism, amino acid metabolism and protein secretion, was found to be upregulated under hypoxia. Results To improve our understanding of the interplay between lipid metabolism, UPR and protein secretion, the lipidome of a P. pastoris strain producing an antibody fragment was studied under hypoxic conditions. Furthermore, lipid composition analyses were combined with previously available transcriptomic datasets to further understand the impact of hypoxia on lipid metabolism. Chemostat cultures operated under glucose-limiting conditions under normoxic and hypoxic conditions were analyzed in terms of intra/extracellular product distribution and lipid composition. Integrated analysis of lipidome and transcriptome datasets allowed us to demonstrate an important remodeling of the lipid metabolism under limited oxygen availability. Additionally, cells with reduced amounts of ergosterol through fluconazole treatment were also included in the study to observe the impact on protein secretion and its lipid composition. Conclusions Our results show that cells adjust their membrane composition in response to oxygen limitation mainly by changing their sterol and sphingolipid composition. Although fluconazole treatment results a different lipidome profile than hypoxia, both conditions result in higher recombinant protein secretion levels. Electronic supplementary material The online version of this article (doi:10.1186/s12934-017-0699-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Núria Adelantado
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain.,Evonik Nutrition & Care GmbH, Hanau, Germany
| | - Pablo Tarazona
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Karlheinz Grillitsch
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria
| | - Xavier García-Ortega
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Sergi Monforte
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Francisco Valero
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany.,Department of Plant Biochemistry, Göttingen Center for Molecular Biosciences (GZMB), Georg-August-University, Justus-von-Liebig-Weg 11, 37077, Göttingen, Germany
| | - Günther Daum
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria. .,Institute of Biochemistry, Graz University of Technology, Petersgasse 12/II, 8010, Graz, Austria.
| | - Pau Ferrer
- Department of Chemical, Biological and Environmental Engineering, Escola d'Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, 08193, Barcelona, Catalonia, Spain
| |
Collapse
|
38
|
Bouklas T, Alonso-Crisóstomo L, Székely T, Diago-Navarro E, Orner EP, Smith K, Munshi MA, Del Poeta M, Balázsi G, Fries BC. Generational distribution of a Candida glabrata population: Resilient old cells prevail, while younger cells dominate in the vulnerable host. PLoS Pathog 2017; 13:e1006355. [PMID: 28489916 PMCID: PMC5440053 DOI: 10.1371/journal.ppat.1006355] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 05/22/2017] [Accepted: 04/15/2017] [Indexed: 12/15/2022] Open
Abstract
Similar to other yeasts, the human pathogen Candida glabrata ages when it undergoes asymmetric, finite cell divisions, which determines its replicative lifespan. We sought to investigate if and how aging changes resilience of C. glabrata populations in the host environment. Our data demonstrate that old C. glabrata are more resistant to hydrogen peroxide and neutrophil killing, whereas young cells adhere better to epithelial cell layers. Consequently, virulence of old compared to younger C. glabrata cells is enhanced in the Galleria mellonella infection model. Electron microscopy images of old C. glabrata cells indicate a marked increase in cell wall thickness. Comparison of transcriptomes of old and young C. glabrata cells reveals differential regulation of ergosterol and Hog pathway associated genes as well as adhesion proteins, and suggests that aging is accompanied by remodeling of the fungal cell wall. Biochemical analysis supports this conclusion as older cells exhibit a qualitatively different lipid composition, leading to the observed increased emergence of fluconazole resistance when grown in the presence of fluconazole selection pressure. Older C. glabrata cells accumulate during murine and human infection, which is statistically unlikely without very strong selection. Therefore, we tested the hypothesis that neutrophils constitute the predominant selection pressure in vivo. When we altered experimentally the selection pressure by antibody-mediated removal of neutrophils, we observed a significantly younger pathogen population in mice. Mathematical modeling confirmed that differential selection of older cells is sufficient to cause the observed demographic shift in the fungal population. Hence our data support the concept that pathogenesis is affected by the generational age distribution of the infecting C. glabrata population in a host. We conclude that replicative aging constitutes an emerging trait, which is selected by the host and may even play an unanticipated role in the transition from a commensal to a pathogen state.
Collapse
Affiliation(s)
- Tejas Bouklas
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Sciences, Long Island University-Post, Brookville, New York, United States of America
| | | | - Tamás Székely
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Elizabeth Diago-Navarro
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Erika P. Orner
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kalie Smith
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
| | - Mansa A. Munshi
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Veterans Administration Medical Center, Northport, New York, United States of America
| | - Gábor Balázsi
- The Louis and Beatrice Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Bettina C. Fries
- Department of Medicine, Division of Infectious Diseases, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
39
|
Pellon A, Ramirez-Garcia A, Buldain I, Antoran A, Rementeria A, Hernando FL. Molecular and cellular responses of the pathogenic fungus Lomentospora prolificans to the antifungal drug voriconazole. PLoS One 2017; 12:e0174885. [PMID: 28362854 PMCID: PMC5376303 DOI: 10.1371/journal.pone.0174885] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 03/16/2017] [Indexed: 11/18/2022] Open
Abstract
The filamentous fungus Lomentospora (Scedosporium) prolificans is an emerging opportunistic pathogen associated with fatal infections in patients with disturbed immune function. Unfortunately, conventional therapies are hardly of any use against this fungus due to its intrinsic resistance. Therefore, we performed an integrated study of the L. prolificans responses to the first option to treat these mycoses, namely voriconazole, with the aim of unveiling mechanisms involved in the resistance to this compound. To do that, we used a wide range of techniques, including fluorescence and electron microscopy to study morphological alterations, ion chromatography to measure changes in cell-wall carbohydrate composition, and proteomics-based techniques to identify the proteins differentially expressed under the presence of the drug. Significantly, we showed drastic changes occurring in cell shape after voriconazole exposure, L. prolificans hyphae being shorter and wider than under control conditions. Interestingly, we proved that the architecture and carbohydrate composition of the cell wall had been modified in the presence of the drug. Specifically, L. prolificans constructed a more complex organelle with a higher presence of glucans and mannans. In addition to this, we identified several differentially expressed proteins, including Srp1 and heat shock protein 70 (Hsp70), as the most overexpressed under voriconazole-induced stress conditions. The mechanisms described in this study, which may be directly related to L. prolificans antifungal resistance or tolerance, could be used as targets to improve existing therapies or to develop new ones in order to successfully eliminate these mycoses.
Collapse
Affiliation(s)
- Aize Pellon
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Andoni Ramirez-Garcia
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
- * E-mail:
| | - Idoia Buldain
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitziber Antoran
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Aitor Rementeria
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Fernando L. Hernando
- Fungal and Bacterial Biomics Research Group, Department of Immunology, Microbiology and Parasitology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
40
|
Luo T, Krüger T, Knüpfer U, Kasper L, Wielsch N, Hube B, Kortgen A, Bauer M, Giamarellos-Bourboulis EJ, Dimopoulos G, Brakhage AA, Kniemeyer O. Immunoproteomic Analysis of Antibody Responses to Extracellular Proteins of Candida albicans Revealing the Importance of Glycosylation for Antigen Recognition. J Proteome Res 2016; 15:2394-406. [PMID: 27386892 DOI: 10.1021/acs.jproteome.5b01065] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
During infection, the human pathogenic fungus Candida albicans undergoes a yeast-to-hypha transition, secretes numerous proteins for invasion of host tissues, and modulates the host's immune response. Little is known about the interplay of C. albicans secreted proteins and the host adaptive immune system. Here, we applied a combined 2D gel- and LC-MS/MS-based approach for the characterization of C. albicans extracellular proteins during the yeast-to-hypha transition, which led to a comprehensive C. albicans secretome map. The serological responses to C. albicans extracellular proteins were investigated by a 2D-immunoblotting approach combined with MS for protein identification. On the basis of the screening of sera from candidemia and three groups of noncandidemia patients, a core set of 19 immunodominant antibodies against secreted proteins of C. albicans was identified, seven of which represent potential diagnostic markers for candidemia (Xog1, Lip4, Asc1, Met6, Tsa1, Tpi1, and Prx1). Intriguingly, some secreted, strongly glycosylated protein antigens showed high cross-reactivity with sera from noncandidemia control groups. Enzymatic deglycosylation of proteins secreted from hyphae significantly impaired sera antibody recognition. Furthermore, deglycosylation of the recombinantly produced, secreted aspartyl protease Sap6 confirmed a significant contribution of glycan epitopes to the recognition of Sap6 by antibodies in patient's sera.
Collapse
Affiliation(s)
| | | | | | | | - Natalie Wielsch
- Department of Mass spectrometry/Proteomics, Max-Planck-Institute for Chemical Ecology , 07745 Jena, Germany
| | - Bernhard Hube
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | | | | | | | | | - Axel A Brakhage
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| | - Olaf Kniemeyer
- Institute of Microbiology, Friedrich Schiller University Jena , 07743 Jena, Germany
| |
Collapse
|
41
|
Dichtl K, Samantaray S, Wagener J. Cell wall integrity signalling in human pathogenic fungi. Cell Microbiol 2016; 18:1228-38. [DOI: 10.1111/cmi.12612] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 04/19/2016] [Accepted: 05/03/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Karl Dichtl
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität München; 80336 Munich Germany
| | - Sweta Samantaray
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität München; 80336 Munich Germany
- Institute of Microbiology and Infection, School of Biosciences; University of Birmingham; Birmingham UK
| | - Johannes Wagener
- Max von Pettenkofer-Institut für Hygiene und Medizinische Mikrobiologie; Ludwig-Maximilians-Universität München; 80336 Munich Germany
| |
Collapse
|
42
|
Nikiforou M, Jacobs EMR, Kemp MW, Hornef MW, Payne MS, Saito M, Newnham JP, Janssen LEW, Jobe AH, Kallapur SG, Kramer BW, Wolfs TGAM. Intra-amniotic Candida albicans infection induces mucosal injury and inflammation in the ovine fetal intestine. Sci Rep 2016; 6:29806. [PMID: 27411776 PMCID: PMC4944185 DOI: 10.1038/srep29806] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 06/21/2016] [Indexed: 11/23/2022] Open
Abstract
Chorioamnionitis is caused by intrauterine infection with microorganisms including Candida albicans (C.albicans). Chorioamnionitis is associated with postnatal intestinal pathologies including necrotizing enterocolitis. The underlying mechanisms by which intra-amniotic C.albicans infection adversely affects the fetal gut remain unknown. Therefore, we assessed whether intra-amniotic C.albicans infection would cause intestinal inflammation and mucosal injury in an ovine model. Additionally, we tested whether treatment with the fungistatic fluconazole ameliorated the adverse intestinal outcome of intra-amniotic C.albicans infection. Pregnant sheep received intra-amniotic injections with 107 colony-forming units C.albicans or saline at 3 or 5 days before preterm delivery at 122 days of gestation. Fetuses were given intra-amniotic and intra-peritoneal fluconazole treatments 2 days after intra-amniotic administration of C.albicans. Intra-amniotic C.albicans caused intestinal colonization and invasive growth within the fetal gut with mucosal injury and intestinal inflammation, characterized by increased CD3+ lymphocytes, MPO+ cells and elevated TNF-α and IL-17 mRNA levels. Fluconazole treatment in utero decreased intestinal C.albicans colonization, mucosal injury but failed to attenuate intestinal inflammation. Intra-amniotic C.albicans caused intestinal infection, injury and inflammation. Fluconazole treatment decreased mucosal injury but failed to ameliorate C.albicans-mediated mucosal inflammation emphasizing the need to optimize the applied antifungal therapeutic strategy.
Collapse
Affiliation(s)
- Maria Nikiforou
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Esmee M R Jacobs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia
| | - Mathias W Hornef
- Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Matthew S Payne
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia
| | - Masatoshi Saito
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia.,Division of Perinatal Medicine, Tohoku University Hospital, Sendai, Japan
| | - John P Newnham
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia
| | - Leon E W Janssen
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands
| | - Alan H Jobe
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Suhas G Kallapur
- School of Women's and Infants' Health, The University of Western Australia, Perth, Western Australia.,Division of Pulmonary Biology, Cincinnati Children's Hospital Medical Centre, University of Cincinnati School of Medicine, Cincinnati, OH, USA
| | - Boris W Kramer
- School for Mental Health and Neuroscience, Maastricht University, Maastricht, the Netherlands.,Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands
| | - Tim G A M Wolfs
- Department of Pediatrics, Maastricht University Medical Center, Maastricht, the Netherlands.,School of Oncology and Developmental Biology, Maastricht University, Maastricht, the Netherlands.,Department of Biomedical Engineering, Maastricht University, Maastricht, the Netherlands
| |
Collapse
|
43
|
Gómez-Molero E, Dekker HL, de Boer AD, de Groot PWJ. Identification of Secreted Candida Proteins Using Mass Spectrometry. Methods Mol Biol 2016; 1356:79-94. [PMID: 26519067 DOI: 10.1007/978-1-4939-3052-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Analysis of fungal secretomes using mass spectrometry is a useful technique in cell biology. Knowledge of the secretome of a human fungal pathogen may yield important information of host-pathogen interactions and may be useful for identifying vaccines candidates or diagnostic markers for antifungal strategies. In this chapter, with a main focus on sample preparation aspects, we describe the methodology that we apply for gel-independent batch identification and quantification of proteins that are secreted during growth in liquid cultures. Using these techniques with Candida and other yeast species, the majority of the identified proteins are classical secretory proteins and cell wall proteins containing N-terminal signal peptides for secretion, although dependent on sample preparation quality and the mass spectrometric analysis also usually, a number of nonsecretory proteins are identified.
Collapse
Affiliation(s)
- Emilia Gómez-Molero
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, Calle Almansa 14, 02008, Albacete, Spain
| | - Henk L Dekker
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands
| | - Albert D de Boer
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, Calle Almansa 14, 02008, Albacete, Spain
| | - Piet W J de Groot
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, Calle Almansa 14, 02008, Albacete, Spain.
| |
Collapse
|
44
|
McCotter SW, Horianopoulos LC, Kronstad JW. Regulation of the fungal secretome. Curr Genet 2016; 62:533-45. [DOI: 10.1007/s00294-016-0578-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/04/2016] [Accepted: 02/06/2016] [Indexed: 02/07/2023]
|
45
|
Gil-Bona A, Reales-Calderon JA, Parra-Giraldo CM, Martinez-Lopez R, Monteoliva L, Gil C. The Cell Wall Protein Ecm33 of Candida albicans is Involved in Chronological Life Span, Morphogenesis, Cell Wall Regeneration, Stress Tolerance, and Host-Cell Interaction. Front Microbiol 2016; 7:64. [PMID: 26870022 PMCID: PMC4735633 DOI: 10.3389/fmicb.2016.00064] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 01/14/2016] [Indexed: 11/24/2022] Open
Abstract
Ecm33 is a glycosylphosphatidylinositol-anchored protein in the human pathogen Candida albicans. This protein is known to be involved in fungal cell wall integrity (CWI) and is also critical for normal virulence in the mouse model of hematogenously disseminated candidiasis, but its function remains unknown. In this work, several phenotypic analyses of the C. albicans ecm33/ecm33 mutant (RML2U) were performed. We observed that RML2U displays the inability of protoplast to regenerate the cell wall, activation of the CWI pathway, hypersensitivity to temperature, osmotic and oxidative stresses and a shortened chronological lifespan. During the exponential and stationary culture phases, nuclear and actin staining revealed the possible arrest of the cell cycle in RML2U cells. Interestingly, a “veil growth,” never previously described in C. albicans, was serendipitously observed under static stationary cells. The cells that formed this structure were also observed in cornmeal liquid cultures. These cells are giant, round cells, without DNA, and contain large vacuoles, similar to autophagic cells observed in other fungi. Furthermore, RML2U was phagocytozed more than the wild-type strain by macrophages at earlier time points, but the damage caused to the mouse cells was less than with the wild-type strain. Additionally, the percentage of RML2U apoptotic cells after interaction with macrophages was fewer than in the wild-type strain.
Collapse
Affiliation(s)
- Ana Gil-Bona
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| | - Jose A Reales-Calderon
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| | - Claudia M Parra-Giraldo
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Raquel Martinez-Lopez
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid Madrid, Spain
| | - Lucia Monteoliva
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| | - Concha Gil
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain; Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)Madrid, Spain
| |
Collapse
|
46
|
Kołaczkowska A, Kołaczkowski M. Drug resistance mechanisms and their regulation in non-albicans Candida species. J Antimicrob Chemother 2016; 71:1438-50. [PMID: 26801081 DOI: 10.1093/jac/dkv445] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Fungal pathogens use various mechanisms to survive exposure to drugs. Prolonged treatment very often leads to the stepwise acquisition of resistance. The limited number of antifungal therapeutics and their mostly fungistatic rather than fungicidal character facilitates selection of resistant strains. These are able to cope with cytotoxic molecules by acquisition of appropriate mutations, re-wiring gene expression and metabolic adjustments. Recent evidence points to the paramount importance of the permeability barrier and cell wall integrity in the process of adaptation to high drug concentrations. Molecular details of basal and acquired drug resistance are best characterized in the most frequent human fungal pathogen, Candida albicans Effector genes directly related to the acquisition of elevated tolerance of this species to azole and echinocandin drugs are well described. The emergence of high-level drug resistance against intrinsically lower susceptibility to azoles in yeast species other than C. albicans is, however, of particular concern. This is due to their steadily increasing contribution to high mortality rates associated with disseminated infections. Recent findings concerning underlying mechanisms associated with elevated drug resistance suggest a link to cell wall and plasma membrane metabolism in non-albicans Candida species.
Collapse
Affiliation(s)
- Anna Kołaczkowska
- Department of Biochemistry, Pharmacology and Toxicology, Wroclaw University of Environmental and Life Sciences, Norwida 31, PL 50-375, Wroclaw, Poland
| | - Marcin Kołaczkowski
- Department of Biophysics, Wroclaw Medical University, Chalubinskiego 10, PL50-368, Wroclaw, Poland
| |
Collapse
|
47
|
Bertini A, Zoppo M, Lombardi L, Rizzato C, De Carolis E, Vella A, Torelli R, Sanguinetti M, Tavanti A. Targeted gene disruption in Candida parapsilosis demonstrates a role for CPAR2_404800 in adhesion to a biotic surface and in a murine model of ascending urinary tract infection. Virulence 2015; 7:85-97. [PMID: 26632333 DOI: 10.1080/21505594.2015.1112491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
Candida parapsilosis is an emerging opportunistic pathogen, second in frequency only to C. albicans and commonly associated with both mucosal and systemic infections. Adhesion to biotic surfaces is a key step for the development of mycoses. The C. parapsilosis genome encodes 5 predicted agglutinin-like sequence proteins and their precise role in the adhesion process still remains to be elucidated. In this study, we focused on the putative adhesin Cpar2_404800, in view of its high homology to the most important adhesion molecule in C. albicans. Two independent lineages of C. parapsilosis CPAR2_404800 heterozygous and null mutants were obtained by site-specific deletion. CPAR2_404800 mutants did not differ from wild-type strain in terms of in vitro growth or in their ability to undergo morphogenesis. However, when compared for adhesion to a biotic surface, CPAR2_404800 null mutants exhibited a marked reduction in their adhesion to buccal epithelial cells (>60% reduction of adhesion index). Reintroduction of one copy of CPAR2_404800 gene in the null background restored wild type phenotype. A murine model of urinary tract infection was used to elucidate the in vivo contribution of CPAR2_404800. A 0.5 and 1 log10 reduction in colony forming unit numbers (per gram) was observed respectively in bladder and kidneys obtained from mice infected with null mutant compared to wild-type infected ones. Taken together, these findings provide the first evidence for a direct role of CPAR2_404800 in C. parapsilosis adhesion to host surfaces and demonstrate its contribution to the pathogenesis of murine urinary candidiasis.
Collapse
Affiliation(s)
- Alessia Bertini
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Marina Zoppo
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Lisa Lombardi
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Cosmeri Rizzato
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| | - Elena De Carolis
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Antonietta Vella
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Riccardo Torelli
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Maurizio Sanguinetti
- b Institute of Microbiology; Catholic University of the Sacred Heart ; Rome , Italy
| | - Arianna Tavanti
- a Department of Biology ; Genetic Unit; University of Pisa ; Pisa , Italy
| |
Collapse
|
48
|
Gómez-Molero E, de Boer AD, Dekker HL, Moreno-Martínez A, Kraneveld EA, Ichsan, Chauhan N, Weig M, de Soet JJ, de Koster CG, Bader O, de Groot PWJ. Proteomic analysis of hyperadhesive Candida glabrata clinical isolates reveals a core wall proteome and differential incorporation of adhesins. FEMS Yeast Res 2015; 15:fov098. [PMID: 26546455 DOI: 10.1093/femsyr/fov098] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/02/2015] [Indexed: 11/14/2022] Open
Abstract
Attachment to human host tissues or abiotic medical devices is a key step in the development of infections by Candida glabrata. The genome of this pathogenic yeast codes for a large number of adhesins, but proteomic work using reference strains has shown incorporation of only few adhesins in the cell wall. By making inventories of the wall proteomes of hyperadhesive clinical isolates and reference strain CBS138 using mass spectrometry, we describe the cell wall proteome of C. glabrata and tested the hypothesis that hyperadhesive isolates display differential incorporation of adhesins. Two clinical strains (PEU382 and PEU427) were selected, which both were hyperadhesive to polystyrene and showed high surface hydrophobicity. Cell wall proteome analysis under biofilm-forming conditions identified a core proteome of about 20 proteins present in all C. glabrata strains. In addition, 12 adhesin-like wall proteins were identified in the hyperadherent strains, including six novel adhesins (Awp8-13) of which only Awp12 was also present in CBS138. We conclude that the hyperadhesive capacity of these two clinical C. glabrata isolates is correlated with increased and differential incorporation of cell wall adhesins. Future studies should elucidate the role of the identified proteins in the establishment of C. glabrata infections.
Collapse
Affiliation(s)
- Emilia Gómez-Molero
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, E-02008 Albacete, Spain Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Albert D de Boer
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, E-02008 Albacete, Spain
| | - Henk L Dekker
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands
| | - Ana Moreno-Martínez
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, E-02008 Albacete, Spain
| | - Eef A Kraneveld
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, NL-1081 LA Amsterdam, the Netherlands
| | - Ichsan
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Neeraj Chauhan
- Public Health Research Institute and Department of Microbiology, Biochemistry and Molecular Genetics, Rutgers University, 225 Warren Street, Newark, NJ 07103, USA
| | - Michael Weig
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Johannes J de Soet
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam, University of Amsterdam and VU University Amsterdam, Gustav Mahlerlaan 3004, NL-1081 LA Amsterdam, the Netherlands
| | - Chris G de Koster
- Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, NL-1098 XH Amsterdam, the Netherlands
| | - Oliver Bader
- Institute for Medical Microbiology, University Medical Center Göttingen, Kreuzbergring 57, D-37075 Göttingen, Germany
| | - Piet W J de Groot
- Regional Center for Biomedical Research, Albacete Science & Technology Park, University of Castilla-La Mancha, E-02008 Albacete, Spain
| |
Collapse
|
49
|
Adaptations of the Secretome of Candida albicans in Response to Host-Related Environmental Conditions. EUKARYOTIC CELL 2015; 14:1165-72. [PMID: 26453650 PMCID: PMC4664879 DOI: 10.1128/ec.00142-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The wall proteome and the secretome of the fungal pathogen Candida albicans help it to thrive in multiple niches of the human body. Mass spectrometry has allowed researchers to study the dynamics of both subproteomes. Here, we discuss some major responses of the secretome to host-related environmental conditions. Three β-1,3-glucan-modifying enzymes, Mp65, Sun41, and Tos1, are consistently found in large amounts in culture supernatants, suggesting that they are needed for construction and expansion of the cell wall β-1,3-glucan layer and thus correlate with growth and might serve as diagnostic biomarkers. The genes ENG1, CHT3, and SCW11, which encode an endoglucanase, the major chitinase, and a β-1,3-glucan-modifying enzyme, respectively, are periodically expressed and peak in M/G1. The corresponding protein abundances in the medium correlate with the degree of cell separation during single-yeast-cell, pseudohyphal, and hyphal growth. We also discuss the observation that cells treated with fluconazole, or other agents causing cell surface stress, form pseudohyphal aggregates. Fluconazole-treated cells secrete abundant amounts of the transglucosylase Phr1, which is involved in the accumulation of β-1,3-glucan in biofilms, raising the question whether this is a general response to cell surface stress. Other abundant secretome proteins also contribute to biofilm formation, emphasizing the important role of secretome proteins in this mode of growth. Finally, we discuss the relevance of these observations to therapeutic intervention. Together, these data illustrate that C. albicans actively adapts its secretome to environmental conditions, thus promoting its survival in widely divergent niches of the human body.
Collapse
|
50
|
Nasrollahi Z, Yadegari MH, Roudbar Mohammadi S, Roudbary M, Hosseini Poor M, Nikoomanesh F, Rajabi Bazl M. Fluconazole Resistance Candida albicans in Females With Recurrent Vaginitis and Pir1 Overexpression. Jundishapur J Microbiol 2015; 8:e21468. [PMID: 26495107 PMCID: PMC4609386 DOI: 10.5812/jjm.21468] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 11/11/2014] [Accepted: 11/30/2014] [Indexed: 11/17/2022] Open
Abstract
Background: Some genes may be associated with Candida albicans resistance to azoles. Pir1 gene is described as responsible to induce resistance in C. albicans. Objectives: The current study aimed to find the relationship between fluconazole resistance and Pir1 protein (Pir1p) overexpression in the females with recurrent C. albicans vaginitis requiring longer fluconazole therapy. Patients and Methods: A total of 52l vaginal samples were obtained from the females with C. albicans vaginitis. The azole susceptibility phenotype was determined according to the Clinical Laboratory for Standards Institute (CLSI) protocol for disk diffusion method and inhibition zone for fluconazole. Expression of pir1 gene and fluconazole -resistance were evaluated using polymerase chain reaction (PCR) in C. albicans. Results: In the 52 isolates, 49 (94%) were resistant to fluconazole. Overexpression of Pir1 gene was detected in 47 (96%) fluconazole-resistant C. albicans isolates. Conclusions: The findings show fluconazole -resistance in C. albicans isolates with overexpression of Pir1p.
Collapse
Affiliation(s)
- Zahra Nasrollahi
- Religion and Medicine Research center, Qom University of Medical Sciences, Qom, IR Iran
| | - Mohammad Hossein Yadegari
- Department of Mycology, Faculty of Medicine, Tarbiat Modares University, Tehran, IR Iran
- Corresponding author: Mohammad Hossein Yadegari, Department of Mycology, Faculty of Medicine, Tarbiat Modares University, Tehran, IR Iran. Tel: +98-82883883, Fax: +98-2182883019, E-mail:
| | | | - Maryam Roudbary
- Department of Parasitology and Mycology, School of Medicine, Iran University of Medical Sciences, Tehran, IR Iran
| | - Maryam Hosseini Poor
- Department of Mycology, Faculty of Medicine, Tarbiat Modares University, Tehran, IR Iran
| | - Fatemeh Nikoomanesh
- Religion and Medicine Research center, Qom University of Medical Sciences, Qom, IR Iran
| | - Masumeh Rajabi Bazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, IR Iran
| |
Collapse
|