1
|
Du M, Li X, Dong W, Zeng F. Implication of Stm1 in the protection of eIF5A, eEF2 and tRNA through dormant ribosomes. Front Mol Biosci 2024; 11:1395220. [PMID: 38698775 PMCID: PMC11063288 DOI: 10.3389/fmolb.2024.1395220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 04/09/2024] [Indexed: 05/05/2024] Open
Abstract
Background: Dormant ribosomes are typically associated with preservation factors to protect themselves from degradation under stress conditions. Stm1/SERBP1 is one such protein that anchors the 40S and 60S subunits together. Several proteins and tRNAs bind to this complex as well, yet the molecular mechanisms remain unclear. Methods: Here, we reported the cryo-EM structures of five newly identified Stm1/SERBP1-bound ribosomes. Results: These structures highlighted that eIF5A, eEF2, and tRNA might bind to dormant ribosomes under stress to avoid their own degradation, thus facilitating protein synthesis upon the restoration of growth conditions. In addition, Ribo-seq data analysis reflected the upregulation of nutrient, metabolism, and external-stimulus-related pathways in the ∆stm1 strain, suggesting possible regulatory roles of Stm1. Discussion: The knowledge generated from the present work will facilitate in better understanding the molecular mechanism of dormant ribosomes.
Collapse
Affiliation(s)
- Mengtan Du
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Xin Li
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Wanlin Dong
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| | - Fuxing Zeng
- Department of Systems Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
2
|
Kalebina TS, Kulakovskaya EV, Rekstina VV, Trilisenko LV, Ziganshin RH, Marmiy NV, Esipov DS, Kulakovskaya TV. Effect of Deletions of the Genes Encoding Pho3p and Bgl2p on Polyphosphate Level, Stress Adaptation, and Attachments of These Proteins to Saccharomyces cerevisiae Cell Wall. BIOCHEMISTRY (MOSCOW) 2023; 88:152-161. [PMID: 37068877 DOI: 10.1134/s0006297923010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Inorganic polyphosphates (polyP), according to literature data, are involved in the regulatory processes of molecular complex of the Saccharomyces cerevisiae cell wall (CW). The aim of the work was to reveal relationship between polyP, acid phosphatase Pho3p, and the major CW protein, glucanosyltransglycosylase Bgl2p, which is the main glucan-remodelling enzyme with amyloid properties. It has been shown that the yeast cells with deletion of the PHO3 gene contain more high molecular alkali-soluble polyP and are also more resistant to exposure to alkali and manganese ions compared to the wild type strain. This suggests that Pho3p is responsible for hydrolysis of the high molecular polyP on the surface of yeast cells, and these polyP belong to the stress resistance factors. The S. cerevisiae strain with deletion of the BGL2 gene is similar to the Δpho3 strain both in the level of high molecular alkali-soluble polyP and in the increased resistance to alkali and manganese. Comparative analysis of the CW proteins demonstrated correlation between the extractability of the acid phosphatase and Bgl2p, and also revealed a change in the mode of Bgl2p attachment to the CW of the strain lacking Pho3p. It has been suggested that Bgl2p and Pho3p are able to form a metabolon or its parts that connects biogenesis of the main structural polymer of the CW, glucan, and catabolism of an important regulatory polymer, polyphosphates.
Collapse
Affiliation(s)
- Tatyana S Kalebina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| | - Ekaterina V Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 142290, Russia
| | - Valentina V Rekstina
- Department of Molecular Biology, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ludmila V Trilisenko
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 142290, Russia
| | - Rustam H Ziganshin
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, 117997, Russia
| | - Natalia V Marmiy
- Institute of Mitoengineering, Lomonosov Moscow State University, Moscow, 119992, Russia
| | - Dmitriy S Esipov
- Department of Bioorganic Chemistry, Faculty of Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Tatiana V Kulakovskaya
- Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Skryabin Institute of Biochemistry and Physiology of Microorganisms, Pushchino, 142290, Russia
| |
Collapse
|
3
|
Solhtalab M, Moller SR, Gu AZ, Jaisi D, Aristilde L. Selectivity in Enzymatic Phosphorus Recycling from Biopolymers: Isotope Effect, Reactivity Kinetics, and Molecular Docking with Fungal and Plant Phosphatases. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16441-16452. [PMID: 36283689 PMCID: PMC9670850 DOI: 10.1021/acs.est.2c04948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/05/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Among ubiquitous phosphorus (P) reserves in environmental matrices are ribonucleic acid (RNA) and polyphosphate (polyP), which are, respectively, organic and inorganic P-containing biopolymers. Relevant to P recycling from these biopolymers, much remains unknown about the kinetics and mechanisms of different acid phosphatases (APs) secreted by plants and soil microorganisms. Here we investigated RNA and polyP dephosphorylation by two common APs, a plant purple AP (PAP) from sweet potato and a fungal phytase from Aspergillus niger. Trends of δ18O values in released orthophosphate during each enzyme-catalyzed reaction in 18O-water implied a different extent of reactivity. Subsequent enzyme kinetics experiments revealed that A. niger phytase had 10-fold higher maximum rate for polyP dephosphorylation than the sweet potato PAP, whereas the sweet potato PAP dephosphorylated RNA at a 6-fold faster rate than A. niger phytase. Both enzymes had up to 3 orders of magnitude lower reactivity for RNA than for polyP. We determined a combined phosphodiesterase-monoesterase mechanism for RNA and terminal phosphatase mechanism for polyP using high-resolution mass spectrometry and 31P nuclear magnetic resonance, respectively. Molecular modeling with eight plant and fungal AP structures predicted substrate binding interactions consistent with the relative reactivity kinetics. Our findings implied a hierarchy in enzymatic P recycling from P-polymers by phosphatases from different biological origins, thereby influencing the relatively longer residence time of RNA versus polyP in environmental matrices. This research further sheds light on engineering strategies to enhance enzymatic recycling of biopolymer-derived P, in addition to advancing environmental predictions of this P recycling by plants and microorganisms.
Collapse
Affiliation(s)
- Mina Solhtalab
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| | - Spencer R. Moller
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - April Z. Gu
- School
of Civil and Environmental Engineering, College of Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Deb Jaisi
- Department
of Plant and Soil Sciences, University of
Delaware, Newark, Delaware 19716, United States
| | - Ludmilla Aristilde
- Department
of Biological and Environmental Engineering, College of Agriculture
and Life Sciences, Cornell University, Ithaca, New York 14853, United States
- Department
of Civil and Environmental Engineering, McCormick School of Engineering
and Applied Science, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
4
|
Nakajima T, Hosoyamada S, Kobayashi T, Mukai Y. Secreted acid phosphatases maintain replicative lifespan via inositol polyphosphate metabolism in budding yeast. FEBS Lett 2022; 596:189-198. [PMID: 34845723 DOI: 10.1002/1873-3468.14245] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/03/2021] [Accepted: 11/24/2021] [Indexed: 11/07/2022]
Abstract
Secreted acid phosphatases (APases) dephosphorylate extracellular organic phosphate compounds to supply inorganic phosphate (Pi) to maintain cellular functions. Here, we show that APases are necessary to maintain a normal replicative lifespan in Saccharomyces cerevisiae. Deletion of all four APase genes shortened the lifespan in yeast strains on synthetic media (irrespective of the concentrations of Pi in the media), but it did not affect the intracellular ortho- and polyphosphate levels. Deletion of inositol-pentakisphosphate 2-kinase (IPK1), which encodes inositol-pentakisphosphate 2-kinase, restored the lifespan in APase-null mutants, and IPK1 overexpression shortened the lifespan in wild-type strains. Overexpression of inositol hexakisphosphate (IP6 ) and heptakisphosphate kinases, KCS1 and VIP1, recovered the lifespan in APase-null mutants. Thus, yeast APases modulate the replicative lifespan, probably through dephosphorylation of intracellular IP6 .
Collapse
Affiliation(s)
- Toshio Nakajima
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| | - Shun Hosoyamada
- Institute for Quantitative Biosciences, The University of Tokyo, Japan
| | - Takehiko Kobayashi
- Institute for Quantitative Biosciences, The University of Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Japan
| | - Yukio Mukai
- Department of Frontier Bioscience, Nagahama Institute of Bio-Science and Technology, Shiga, Japan
| |
Collapse
|
5
|
Šoštarić N, Arslan A, Carvalho B, Plech M, Voordeckers K, Verstrepen KJ, van Noort V. Integrated Multi-Omics Analysis of Mechanisms Underlying Yeast Ethanol Tolerance. J Proteome Res 2021; 20:3840-3852. [PMID: 34236875 PMCID: PMC8353626 DOI: 10.1021/acs.jproteome.1c00139] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
![]()
For yeast cells,
tolerance to high levels of ethanol is vital both
in their natural environment and in industrially relevant conditions.
We recently genotyped experimentally evolved yeast strains adapted
to high levels of ethanol and identified mutations linked to ethanol
tolerance. In this study, by integrating genomic sequencing data with
quantitative proteomics profiles from six evolved strains (data set
identifier PXD006631) and construction of protein interaction networks,
we elucidate exactly how the genotype and phenotype are related at
the molecular level. Our multi-omics approach points to the rewiring
of numerous metabolic pathways affected by genomic and proteomic level
changes, from energy-producing and lipid pathways to differential
regulation of transposons and proteins involved in cell cycle progression.
One of the key differences is found in the energy-producing metabolism,
where the ancestral yeast strain responds to ethanol by switching
to respiration and employing the mitochondrial electron transport
chain. In contrast, the ethanol-adapted strains appear to have returned
back to energy production mainly via glycolysis and ethanol fermentation,
as supported by genomic and proteomic level changes. This work is
relevant for synthetic biology where systems need to function under
stressful conditions, as well as for industry and in cancer biology,
where it is important to understand how the genotype relates to the
phenotype.
Collapse
Affiliation(s)
- Nikolina Šoštarić
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Ahmed Arslan
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Bernardo Carvalho
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium
| | - Marcin Plech
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Karin Voordeckers
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Kevin J Verstrepen
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,VIB-KU Leuven Center for Microbiology, Bioincubator, Gaston Geenslaan 1, B-3001 Leuven, Belgium
| | - Vera van Noort
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 22, B-3001 Leuven, Belgium.,Institute of Biology Leiden, Faculty of Science, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
6
|
Morita R, Shigeta Y, Harada R. Comprehensive predictions of secondary structures for comparative analysis in different species. J Struct Biol 2021; 213:107735. [PMID: 33831508 DOI: 10.1016/j.jsb.2021.107735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 03/05/2021] [Accepted: 03/31/2021] [Indexed: 10/21/2022]
Abstract
Protein structures are directly linked to biological functions. However, there is a gap of knowledge between the decoded genome and the structure. To bridge the gap, we focused on the secondary structure (SS). From a comprehensive analysis of predicted SS of proteins in different types of organisms, we have arrived at the following findings: The proportions of SS in genomes were different among phylogenic domains. The distributions of strand lengths indicated structural limitations in all of the species. Different from bacteria and archaea, eukaryotes have an abundance of α-helical and random coil proteins. Interestingly, there was a relationship between SS and post-translational modifications. By calculating hydrophobicity moments of helices and strands, highly amphipathic fragments of SS were found, which might be related to the biological functions. In conclusion, comprehensive predictions of SS will provide valuable perspectives to understand the entire protein structures in genomes and will help one to discover or design functional proteins.
Collapse
Affiliation(s)
- Rikuri Morita
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki. Japan.
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki. Japan
| | - Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Ibaraki. Japan.
| |
Collapse
|
7
|
Gupta R, Laxman S. Cycles, sources, and sinks: Conceptualizing how phosphate balance modulates carbon flux using yeast metabolic networks. eLife 2021; 10:e63341. [PMID: 33544078 PMCID: PMC7864628 DOI: 10.7554/elife.63341] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022] Open
Abstract
Phosphates are ubiquitous molecules that enable critical intracellular biochemical reactions. Therefore, cells have elaborate responses to phosphate limitation. Our understanding of long-term transcriptional responses to phosphate limitation is extensive. Contrastingly, a systems-level perspective presenting unifying biochemical concepts to interpret how phosphate balance is critically coupled to (and controls) metabolic information flow is missing. To conceptualize such processes, utilizing yeast metabolic networks we categorize phosphates utilized in metabolism into cycles, sources and sinks. Through this, we identify metabolic reactions leading to putative phosphate sources or sinks. With this conceptualization, we illustrate how mass action driven flux towards sources and sinks enable cells to manage phosphate availability during transient/immediate phosphate limitations. We thereby identify how intracellular phosphate availability will predictably alter specific nodes in carbon metabolism, and determine signature cellular metabolic states. Finally, we identify a need to understand intracellular phosphate pools, in order to address mechanisms of phosphate regulation and restoration.
Collapse
Affiliation(s)
- Ritu Gupta
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| | - Sunil Laxman
- Institute for Stem Cell Science and Regenerative Medicine (inStem)BangaloreIndia
| |
Collapse
|
8
|
Andreeva N, Ledova L, Ryasanova L, Kulakovskaya T, Eldarov M. The acid phosphatase Pho5 of Saccharomyces cerevisiae is not involved in polyphosphate breakdown. Folia Microbiol (Praha) 2019; 64:867-873. [PMID: 30937822 DOI: 10.1007/s12223-019-00702-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 03/25/2019] [Indexed: 01/05/2023]
Abstract
Inorganic polyphosphate is involved in architecture and functioning of yeast cell wall. The strain of Saccharomyces cerevisiae constitutively overexpressing acid phosphatase Pho5 was constructed for studying the Pho5 properties and its possible participation in polyphosphate metabolism. The parent strain was transformed by the vector carrying the PHO5 gene under a strong constitutive promoter of glyceraldehyde-3-phosphate dehydrogenase of S. cerevisiae. The culture liquid and biomass of transformant strain contained approximately equal total acid phosphatase activity. The levels of acid phosphatase activity associated with the cell wall and culture liquid increased in the transformant strain compared to the parent strain ~ 10- and 20-fold, respectively. The Pho5 preparation (specific activity of 46 U/mg protein and yield of 95 U/L) was obtained from culture liquid of overproducing strain. The overproducing strain had no changes in polyphosphate level. The activity of Pho5 with long-chained polyP was negligible. We concluded that Pho5 is not involved in polyphosphate metabolism. Purified Pho5 showed a similar activity with p-nitrophenylphosphate, ATP, ADP, glycerophosphate, and glucose-6-phosphate. The substrate specificity of Pho5 and its extracellular localization suggest its function: the hydrolysis of organic compounds with phosphoester bonds at phosphate limitation.
Collapse
Affiliation(s)
- Nadeshda Andreeva
- FRC Pushchino Center for Biological Research, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow region, 142290, Russia
| | - Larisa Ledova
- FRC Pushchino Center for Biological Research, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow region, 142290, Russia
| | - Lubov Ryasanova
- FRC Pushchino Center for Biological Research, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow region, 142290, Russia
| | - Tatiana Kulakovskaya
- FRC Pushchino Center for Biological Research, Skryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, pr. Nauki 5, Pushchino, Moscow region, 142290, Russia.
| | - Michail Eldarov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky prosp. 33-2, Moscow, 119071, Russia
| |
Collapse
|
9
|
Bereketoglu C, Arga KY, Eraslan S, Mertoglu B. Genome reprogramming in Saccharomyces cerevisiae upon nonylphenol exposure. Physiol Genomics 2017; 49:549-566. [PMID: 28887370 DOI: 10.1152/physiolgenomics.00034.2017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 07/17/2017] [Accepted: 08/28/2017] [Indexed: 02/07/2023] Open
Abstract
Bioaccumulative environmental estrogen, nonylphenol (NP; 4-nonylphenol), is widely used as a nonionic surfactant and can affect human health. Since genomes of Saccharomyces cerevisiae and higher eukaryotes share many structural and functional similarities, we investigated subcellular effects of NP on S. cerevisiae BY4742 cells by analyzing genome-wide transcriptional profiles. We examined effects of low (1 mg/l; <15% cell number reduction) and high (5 mg/l; >65% cell number reduction) inhibitory concentration exposures for 120 or 180 min. After 120 and 180 min of 1 mg/l NP exposure, 187 (63 downregulated, 124 upregulated) and 103 genes (56 downregulated, 47 upregulated), respectively, were differentially expressed. Similarly, 678 (168 repressed, 510 induced) and 688 genes (215 repressed, 473 induced) were differentially expressed in cells exposed to 5 mg/l NP for 120 and 180 min, respectively. Only 15 downregulated and 63 upregulated genes were common between low and high NP inhibitory concentration exposure for 120 min, whereas 16 downregulated and 31 upregulated genes were common after the 180-min exposure. Several processes/pathways were prominently affected by either low or high inhibitory concentration exposure, while certain processes were affected by both inhibitory concentrations, including ion transport, response to chemicals, transmembrane transport, cellular amino acids, and carbohydrate metabolism. While minimal expression changes were observed with low inhibitory concentration exposure, 5 mg/l NP treatment induced substantial expression changes in genes involved in oxidative phosphorylation, cell wall biogenesis, ribosomal biogenesis, and RNA processing, and encoding heat shock proteins and ubiquitin-conjugating enzymes. Collectively, these results provide considerable information on effects of NP at the molecular level.
Collapse
Affiliation(s)
- Ceyhun Bereketoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey; .,Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, Gümüşhane University; Baglarbasi, Gumushane, Turkey; and
| | - Kazim Yalcin Arga
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| | - Serpil Eraslan
- Department of Chemical Engineering, Boğaziçi University, Bebek, Istanbul, Turkey
| | - Bulent Mertoglu
- Department of Bioengineering, Faculty of Engineering, Marmara University; Goztepe, Kadikoy, Istanbul, Turkey
| |
Collapse
|
10
|
Phosphate Acquisition and Virulence in Human Fungal Pathogens. Microorganisms 2017; 5:microorganisms5030048. [PMID: 28829379 PMCID: PMC5620639 DOI: 10.3390/microorganisms5030048] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 01/23/2023] Open
Abstract
The ability of pathogenic fungi to acquire essential macro and micronutrients during infection is a well-established virulence trait. Recent studies in the major human fungal pathogens Candida albicans and Cryptococcus neoformans have revealed that acquisition of the essential macronutrient, phosphate, is essential for virulence. The phosphate sensing and acquisition pathway in fungi, known as the PHO pathway, has been extensively characterized in the model yeast Saccharomyces cerevisiae. In this review, we highlight recent advances in phosphate sensing and signaling mechanisms, and use the S. cerevisiae PHO pathway as a platform from which to compare the phosphate acquisition and storage strategies employed by several human pathogenic fungi. We also explore the multi-layered roles of phosphate acquisition in promoting fungal stress resistance to pH, cationic, and oxidative stresses, and describe emerging roles for the phosphate storage molecule polyphosphate (polyP). Finally, we summarize the recent studies supporting the necessity of phosphate acquisition in mediating the virulence of human fungal pathogens, highlighting the concept that this requirement is intimately linked to promoting resistance to host-imposed stresses.
Collapse
|
11
|
Ramakrishnan S, Pokhrel S, Palani S, Pflueger C, Parnell TJ, Cairns BR, Bhaskara S, Chandrasekharan MB. Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription. Nat Commun 2016; 7:11949. [PMID: 27325136 PMCID: PMC4919544 DOI: 10.1038/ncomms11949] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 05/17/2016] [Indexed: 02/03/2023] Open
Abstract
Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic roles in transcription and chromatin dynamics remain poorly understood. We investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Here, we show that Set1 and Jhd2 predominantly co-regulate genome-wide transcription. We find combined activities of Set1 and Jhd2 via H3K4 methylation contribute to positive or negative transcriptional regulation. Providing mechanistic insights, our data reveal that Set1 and Jhd2 together control nucleosomal turnover and occupancy during transcriptional co-regulation. Moreover, we find a genome-wide co-regulation of chromatin structure by Set1 and Jhd2 at different groups of transcriptionally active or inactive genes and at different regions within yeast genes. Overall, our study puts forth a model wherein combined actions of Set1 and Jhd2 via modulating H3K4 methylation-demethylation together control chromatin dynamics during various facets of transcriptional regulation.
Collapse
Affiliation(s)
- Saravanan Ramakrishnan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Srijana Pokhrel
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Sowmiya Palani
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Christian Pflueger
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Timothy J Parnell
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Bradley R Cairns
- Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Srividya Bhaskara
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| | - Mahesh B Chandrasekharan
- Department of Radiation Oncology, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA.,Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah 84112, USA
| |
Collapse
|
12
|
Yadav KK, Singh N, Rajasekharan R. PHO4 transcription factor regulates triacylglycerol metabolism under low-phosphate conditions in Saccharomyces cerevisiae. Mol Microbiol 2015; 98:456-72. [PMID: 26179227 DOI: 10.1111/mmi.13133] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2015] [Indexed: 02/01/2023]
Abstract
In Saccharomyces cerevisiae, PHM8 encodes a phosphatase that catalyses the dephosphorylation of lysophosphatidic acids to monoacylglycerol and nucleotide monophosphate to nucleoside and releases free phosphate. In this report, we investigated the role of PHM8 in triacylglycerol metabolism and its transcriptional regulation by a phosphate responsive transcription factor Pho4p under low-phosphate conditions. We found that the wild-type (BY4741) cells accumulate triacylglycerol and the expression of PHM8 was high under low-phosphate conditions. Overexpression of PHM8 in the wild-type, phm8Δ and quadruple phosphatase mutant (pah1Δdpp1Δlpp1Δapp1Δ) caused an increase in the triacylglycerol levels. However, the introduction of the PHM8 deletion into the quadruple phosphatase mutant resulted in a reduction in triacylglycerol levels and LPA phosphatase activity. The transcriptional activator Pho4p binds to the PHM8 promoter under low-phosphate conditions, activating PHM8 expression, which leads to the formation of monoacylglycerol from LPA. The synthesized monoacylglycerol is acylated to diacylglycerol by Dga1p, which is further acylated to triacylglycerol by the same enzyme.
Collapse
Affiliation(s)
- Kamlesh Kumar Yadav
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus
| | - Neelima Singh
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus
| | - Ram Rajasekharan
- Lipidomic Centre, Department of Lipid Science, CSIR-Central Food Technological Research Institute (CFTRI), Mysore, Karnataka, 570020, India.,Academy of Scientific and Innovative Research (AcSIR), CSIR-CFTRI Campus
| |
Collapse
|
13
|
Kowalska E, Kujda M, Wolak N, Kozik A. Altered expression and activities of enzymes involved in thiamine diphosphate biosynthesis in Saccharomyces cerevisiae under oxidative and osmotic stress. FEMS Yeast Res 2012; 12:534-46. [PMID: 22449018 DOI: 10.1111/j.1567-1364.2012.00804.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 03/19/2012] [Accepted: 03/19/2012] [Indexed: 11/26/2022] Open
Abstract
Thiamine diphosphate (TDP) serves as a cofactor for enzymes engaged in pivotal carbohydrate metabolic pathways, which are known to be modulated under stress conditions to ensure the cell survival. Recent reports have proven a protective role of thiamine (vitamin B(1)) in the response of plants to abiotic stress. This work aimed at verifying a hypothesis that also baker's yeast, which can synthesize thiamine de novo similarly to plants and bacteria, adjust thiamine metabolism to adverse environmental conditions. Our analyses on the gene expression and enzymatic activity levels generally showed an increased production of thiamine biosynthesis enzymes (THI4 and THI6/THI6), a TDP synthesizing enzyme (THI80/THI80) and a TDP-requiring enzyme, transketolase (TKL1/TKL) by yeast subjected to oxidative (1 mM hydrogen peroxide) and osmotic (1 M sorbitol) stress. However, these effects differed in magnitude, depending on yeast growth phase and presence of thiamine in growth medium. A mutant thi4Δ with increased sensitivity to oxidative stress exhibited enhanced TDP biosynthesis as compared with the wild-type strain. Similar tendencies were observed in mutants yap1Δ and hog1Δ defective in the signaling pathways of the defense against oxidative and osmotic stress, respectively, suggesting that thiamine metabolism can partly compensate damages of yeast general defense systems.
Collapse
Affiliation(s)
- Ewa Kowalska
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | | | | | | |
Collapse
|
14
|
Davies O, Mendes P, Smallbone K, Malys N. Characterisation of multiple substrate-specific (d)ITP/(d)XTPase and modelling of deaminated purine nucleotide metabolism. BMB Rep 2012; 45:259-64. [PMID: 22531138 DOI: 10.5483/bmbrep.2012.45.4.259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Accumulation of modified nucleotides is defective to various cellular processes, especially those involving DNA and RNA. To be viable, organisms possess a number of (deoxy)nucleotide phosphohydrolases, which hydrolyze these nucleotides removing them from the active NTP and dNTP pools. Deamination of purine bases can result in accumulation of such nucleotides as ITP, dITP, XTP and dXTP. E. coli RdgB has been characterised as a deoxyribonucleoside triphosphate pyrophosphohydrolase that can act on these nucleotides. S. cerevisiae homologue encoded by YJR069C was purified and its (d)NTPase activity was assayed using fifteen nucleotide substrates. ITP, dITP, and XTP were identified as major substrates and kinetic parameters measured. Inhibition by ATP, dATP and GTP were established. On the basis of experimental and published data, modelling and simulation of ITP, dITP, XTP and dXTP metabolism was performed. (d)ITP/(d)XTPase is a new example of enzyme with multiple substrate-specificity demonstrating that multispecificity is not a rare phenomenon.
Collapse
Affiliation(s)
- Oluwafemi Davies
- Manchester Centre for Integrative Systems Biology, Manchester Interdisciplinary Biocentre, The University of Manchester, 131 Princess Street, Manchester, UK
| | | | | | | |
Collapse
|
15
|
He Y, Swaminathan A, Lopes JM. Transcription regulation of the Saccharomyces cerevisiae PHO5 gene by the Ino2p and Ino4p basic helix-loop-helix proteins. Mol Microbiol 2011; 83:395-407. [PMID: 22182244 DOI: 10.1111/j.1365-2958.2011.07941.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Saccharomyces cerevisiae PHO5 gene product accounts for a majority of the acid phosphatase activity. Its expression is induced by the basic helix-loop-helix (bHLH) protein, Pho4p, in response to phosphate depletion. Pho4p binds predominantly to two UAS elements (UASp1 at -356 and UASp2 at -247) in the PHO5 promoter. Previous studies from our lab have shown cross-regulation of different biological processes by bHLH proteins. This study tested the ability of all yeast bHLH proteins to regulate PHO5 expression and identified inositol-mediated regulation via the Ino2p/Ino4p bHLH proteins. Ino2p/Ino4p are known regulators of phospholipid biosynthetic genes. Genetic epistasis experiments showed that regulation by inositol required a third UAS site (UASp3 at -194). ChIP assays showed that Ino2p:Ino4p bind the PHO5 promoter and that this binding is dependent on Pho4p binding. These results demonstrate that phospholipid biosynthesis is co-ordinated with phosphate utilization via the bHLH proteins.
Collapse
Affiliation(s)
- Ying He
- Department of Microbiology, and Molecular Cellular Biology Graduate Program, University of Massachusetts, Amherst, MA 01003, USA
| | | | | |
Collapse
|
16
|
Dick CF, Dos-Santos ALA, Meyer-Fernandes JR. Inorganic phosphate as an important regulator of phosphatases. Enzyme Res 2011; 2011:103980. [PMID: 21755037 PMCID: PMC3132463 DOI: 10.4061/2011/103980] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2011] [Accepted: 05/03/2011] [Indexed: 11/20/2022] Open
Abstract
Cellular metabolism depends on the appropriate concentration of intracellular inorganic phosphate (Pi). Pi starvation-responsive genes appear to be involved in multiple metabolic pathways, implying a complex Pi regulation system in microorganisms and plants. A group of enzymes is required for absorption and maintenance of adequate phosphate levels, which is released from phosphate esters and anhydrides. The phosphatase system is particularly suited for the study of regulatory mechanisms because phosphatase activity is easily measured using specific methods and the difference between the repressed and derepressed levels of phosphatase activity is easily detected. This paper analyzes the protein phosphatase system induced during phosphate starvation in different organisms.
Collapse
Affiliation(s)
- Claudia Fernanda Dick
- Instituto de Microbiologia Professor Paulo de Góes, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - André Luiz Araújo Dos-Santos
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| | - José Roberto Meyer-Fernandes
- Laboratório de Bioquímica Celular, Instituto de Bioquímica Medica, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Cidade Universitária, Ilha do Fundão, 21941-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
17
|
Bogan KL, Brenner C. 5′-Nucleotidases and their new roles in NAD+ and phosphate metabolism. NEW J CHEM 2010. [DOI: 10.1039/b9nj00758j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Lu SP, Kato M, Lin SJ. Assimilation of endogenous nicotinamide riboside is essential for calorie restriction-mediated life span extension in Saccharomyces cerevisiae. J Biol Chem 2009; 284:17110-17119. [PMID: 19416965 DOI: 10.1074/jbc.m109.004010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
NAD(+) (nicotinamide adenine dinucleotide) is an essential cofactor involved in various biological processes including calorie restriction-mediated life span extension. Administration of nicotinamide riboside (NmR) has been shown to ameliorate deficiencies related to aberrant NAD(+) metabolism in both yeast and mammalian cells. However, the biological role of endogenous NmR remains unclear. Here we demonstrate that salvaging endogenous NmR is an integral part of NAD(+) metabolism. A balanced NmR salvage cycle is essential for calorie restriction-induced life span extension and stress resistance in yeast. Our results also suggest that partitioning of the pyridine nucleotide flux between the classical salvage cycle and the NmR salvage branch might be modulated by the NAD(+)-dependent Sir2 deacetylase. Furthermore, two novel deamidation steps leading to nicotinic acid mononucleotide and nicotinic acid riboside production are also uncovered that further underscore the complexity and flexibility of NAD(+) metabolism. In addition, utilization of extracellular nicotinamide mononucleotide requires prior conversion to NmR mediated by a periplasmic phosphatase Pho5. Conversion to NmR may thus represent a strategy for the transport and assimilation of large nonpermeable NAD(+) precursors. Together, our studies provide a molecular basis for how NAD(+) homeostasis factors confer metabolic flexibility.
Collapse
Affiliation(s)
- Shu-Ping Lu
- From the Department of Microbiology, University of California, Davis, California 95616
| | - Michiko Kato
- From the Department of Microbiology, University of California, Davis, California 95616
| | - Su-Ju Lin
- From the Department of Microbiology, University of California, Davis, California 95616.
| |
Collapse
|
19
|
Abstract
The histidine phosphatase superfamily is a large functionally diverse group of proteins. They share a conserved catalytic core centred on a histidine which becomes phosphorylated during the course of the reaction. Although the superfamily is overwhelmingly composed of phosphatases, the earliest known and arguably best-studied member is dPGM (cofactor-dependent phosphoglycerate mutase). The superfamily contains two branches sharing very limited sequence similarity: the first containing dPGM, fructose-2,6-bisphosphatase, PhoE, SixA, TIGAR [TP53 (tumour protein 53)-induced glycolysis and apoptosis regulator], Sts-1 and many other activities, and the second, smaller, branch composed mainly of acid phosphatases and phytases. Human representatives of both branches are of considerable medical interest, and various parasites contain superfamily members whose inhibition might have therapeutic value. Additionally, several phosphatases, notably the phytases, have current or potential applications in agriculture. The present review aims to draw together what is known about structure and function in the superfamily. With the benefit of an expanding set of histidine phosphatase superfamily structures, a clearer picture of the conserved elements is obtained, along with, conversely, a view of the sometimes surprising variation in substrate-binding and proton donor residues across the superfamily. This analysis should contribute to correcting a history of over- and mis-annotation in the superfamily, but also suggests that structural knowledge, from models or experimental structures, in conjunction with experimental assays, will prove vital for the future description of function in the superfamily.
Collapse
|
20
|
Silanikove N. Milk lipoprotein membranes and their imperative enzymes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2007; 606:143-61. [PMID: 18183928 DOI: 10.1007/978-0-387-74087-4_5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There are two main sources of lipoprotein membranes in milk: the relatively well-defined milk fat globule membrane (MFGM) that covers the milk fat globules, and the much less attended lipoprotein source, in the form of vesicles floating in the milk serum. We challenge the common view that the milk serum lipoprotein membrane (MSLM) is secondly derived from the MFGM and present a different view suggesting that it represents Golgi-derived vesicles that are released intact to milk. The potential role of enzymes attached to the MSLM and MFGM is considered in detail for select ubiquitously expressed enzymes.
Collapse
Affiliation(s)
- Nissim Silanikove
- Agricultural Research Organization, Institute of Animal Science, Bet Dagan, 50-250, Israel.
| |
Collapse
|
21
|
Current awareness on yeast. Yeast 2006. [DOI: 10.1002/yea.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|