1
|
Jiang J, Keniya MV, Puri A, Zhan X, Cheng J, Wang H, Lin G, Lee YK, Jaber N, Hassoun Y, Shor E, Shi Z, Lee SH, Xu M, Perlin DS, Dai W. Structural and Biophysical Dynamics of Fungal Plasma Membrane Proteins and Implications for Echinocandin Action in Candida glabrata. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596243. [PMID: 38854035 PMCID: PMC11160696 DOI: 10.1101/2024.05.29.596243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Fungal plasma membrane proteins represent key therapeutic targets for antifungal agents, yet their structure and spatial distribution in the native context remain poorly characterized. Herein, we employ an integrative multimodal approach to elucidate the structural and functional organization of plasma membrane protein complexes in Candida glabrata , focusing on prominent and essential membrane proteins, the polysaccharide synthase β-(1,3)-glucan synthase (GS) and the proton pump Pma1. Cryo-electron tomography (cryo-ET) and live cell imaging reveal that GS and Pma1 are heterogeneously distributed into distinct plasma membrane microdomains. Treatment with caspofungin, an echinocandin antifungal that targets GS, alters the plasma membrane and disrupts the native distribution of GS and Pma1. Based on these findings, we propose a model for echinocandin action that considers how drug interactions with the plasma membrane environment lead to inhibition of GS. Our work underscores the importance of interrogating the structural and dynamic characteristics of fungal plasma membrane proteins in situ to understand function and facilitate precisely targeted development of novel antifungal therapies.
Collapse
|
2
|
Hoffman HJ, McClelland EE. Measuring Urease and Phospholipase Secretion in Cryptococcus neoformans. Methods Mol Biol 2024; 2775:269-275. [PMID: 38758324 DOI: 10.1007/978-1-0716-3722-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Urease and phospholipase are enzymes that are important virulence factors for Cryptococcus neoformans. These are two of the most studied enzymes involved in how C. neoformans breaches the blood-brain barrier. Additionally, phospholipase secretion also supports dissemination from the lungs. This chapter describes the methods used to measure the secretion of these enzymes, which may be used to characterize strain invasiveness and virulence.
Collapse
Affiliation(s)
- Hunter J Hoffman
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, IN, USA
| | - Erin E McClelland
- Department of Biomedical Sciences, Marian University College of Osteopathic Medicine, Indianapolis, IN, USA.
| |
Collapse
|
3
|
Burandt QC, Deising HB, von Tiedemann A. Further Limitations of Synthetic Fungicide Use and Expansion of Organic Agriculture in Europe Will Increase the Environmental and Health Risks of Chemical Crop Protection Caused by Copper-Containing Fungicides. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:19-30. [PMID: 37850744 DOI: 10.1002/etc.5766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/15/2023] [Accepted: 10/16/2023] [Indexed: 10/19/2023]
Abstract
Copper-containing fungicides have been used in agriculture since 1885. The divalent copper ion is a nonbiodegradable multisite inhibitor that has a strictly protective, nonsystemic effect on plants. Copper-containing plant protection products currently approved in Germany contain copper oxychloride, copper hydroxide, and tribasic copper sulfate. Copper is primarily used to control oomycete pathogens in grapevine, hop, potato, and fungal diseases in fruit production. In the environment, copper is highly persistent and toxic to nontarget organisms. The latter applies for terrestric and aquatic organisms such as earthworms, insects, birds, fish, Daphnia, and algae. Hence, copper fungicides are currently classified in the European Union as candidates for substitution. Pertinently, copper also exhibits significant mammalian toxicity (median lethal dose oral = 300-2500 mg/kg body wt in rats). To date, organic production still profoundly relies on the use of copper fungicides. Attempts to reduce doses of copper applications and the search for copper substitutes have not been successful. Copper compounds compared with modern synthetic fungicides with similar areas of use display significantly higher risks for honey bees (3- to 20-fold), beneficial insects (6- to 2000-fold), birds (2- to 13-fold), and mammals (up to 17-fold). These data contradict current views that crop protection in organic farming is associated with lower environmental or health risks. Further limitations in the range and use of modern single-site fungicides may force conventional production to fill the gaps with copper fungicides to counteract fungicide resistance. In contrast to the European Union Green Deal goals, the intended expansion of organic farming in Europe would further enhance the use of copper fungicides and hence increase the overall risks of chemical crop protection in Europe. Environ Toxicol Chem 2024;43:19-30. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Quentin C Burandt
- Department of Crop Sciences, Division of Plant Pathology and Plant Protection, Georg-August-University Göttingen, Göttingen, Germany
- Institute of Plant Breeding, Seed Science and Population Genetics, Division of Crop Biodiversity and Breeding Informatics, University of Hohenheim, Stuttgart, Germany
| | - Holger B Deising
- Institute of Agricultural and Nutritional Sciences, Division of Phytopathology and Crop Protection; Martin Luther University Halle-Wittenberg, Halle, Germany
| | - Andreas von Tiedemann
- Department of Crop Sciences, Division of Plant Pathology and Plant Protection, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
4
|
Matos GS, Fernandes CM, Del Poeta M. Role of sphingolipids in the host-pathogen interaction. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159384. [PMID: 37673393 PMCID: PMC11218662 DOI: 10.1016/j.bbalip.2023.159384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/21/2023] [Accepted: 07/05/2023] [Indexed: 09/08/2023]
Abstract
Fungal pathogens have been under the spotlight as their expanding geographic range combined with their potential harm to vulnerable populations turns them into increasingly threats to public health. Therefore, it is ultimately important to unveil the mechanisms associated with their infection process for further new treatment discovery. With this purpose, sphingolipid-based research has gained attention over the last years as these molecules have key properties that can regulate fungal pathogenicity. Here we discuss some of these properties as well as their role in fungal diseases, focusing on the subgroup of glycosphingolipids, as they represent promising molecules for drug discovery and for the development of fungal vaccines.
Collapse
Affiliation(s)
- Gabriel Soares Matos
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA
| | | | - Maurizio Del Poeta
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY, USA; Institute of Chemical Biology and Drug Discovery (ICB&DD), Stony Brook, NY, USA; Division of Infectious Diseases, School of Medicine, Stony Brook University, Stony Brook, NY, USA; Veterans Administration Medical Center, Northport, NY, USA.
| |
Collapse
|
5
|
Choy HL, Gaylord EA, Doering TL. Ergosterol distribution controls surface structure formation and fungal pathogenicity. mBio 2023; 14:e0135323. [PMID: 37409809 PMCID: PMC10470819 DOI: 10.1128/mbio.01353-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans. We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have abnormally thin and permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2∆ cells cannot survive in physiologically relevant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
Collapse
Affiliation(s)
- Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Choy HL, Gaylord EA, Doering TL. Ergosterol distribution controls surface structure formation and fungal pathogenicity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.17.528979. [PMID: 36824733 PMCID: PMC9949117 DOI: 10.1101/2023.02.17.528979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans . We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have thinner and more permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2 Î" cells cannot survive in physiologically-rele-vant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
Collapse
Affiliation(s)
- Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
7
|
Mattila H, Österman-Udd J, Mali T, Lundell T. Basidiomycota Fungi and ROS: Genomic Perspective on Key Enzymes Involved in Generation and Mitigation of Reactive Oxygen Species. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:837605. [PMID: 37746164 PMCID: PMC10512322 DOI: 10.3389/ffunb.2022.837605] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Our review includes a genomic survey of a multitude of reactive oxygen species (ROS) related intra- and extracellular enzymes and proteins among fungi of Basidiomycota, following their taxonomic classification within the systematic classes and orders, and focusing on different fungal lifestyles (saprobic, symbiotic, pathogenic). Intra- and extracellular ROS metabolism-involved enzymes (49 different protein families, summing 4170 protein models) were searched as protein encoding genes among 63 genomes selected according to current taxonomy. Extracellular and intracellular ROS metabolism and mechanisms in Basidiomycota are illustrated in detail. In brief, it may be concluded that differences between the set of extracellular enzymes activated by ROS, especially by H2O2, and involved in generation of H2O2, follow the differences in fungal lifestyles. The wood and plant biomass degrading white-rot fungi and the litter-decomposing species of Agaricomycetes contain the highest counts for genes encoding various extracellular peroxidases, mono- and peroxygenases, and oxidases. These findings further confirm the necessity of the multigene families of various extracellular oxidoreductases for efficient and complete degradation of wood lignocelluloses by fungi. High variations in the sizes of the extracellular ROS-involved gene families were found, however, among species with mycorrhizal symbiotic lifestyle. In addition, there are some differences among the sets of intracellular thiol-mediation involving proteins, and existence of enzyme mechanisms for quenching of intracellular H2O2 and ROS. In animal- and plant-pathogenic species, extracellular ROS enzymes are absent or rare. In these fungi, intracellular peroxidases are seemingly in minor role than in the independent saprobic, filamentous species of Basidiomycota. Noteworthy is that our genomic survey and review of the literature point to that there are differences both in generation of extracellular ROS as well as in mechanisms of response to oxidative stress and mitigation of ROS between fungi of Basidiomycota and Ascomycota.
Collapse
Affiliation(s)
| | | | | | - Taina Lundell
- Department of Microbiology, Faculty of Agriculture and Forestry, Viikki Campus, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Abstract
Membrane lateral heterogeneity, historically referred to as the lipid raft hypothesis, has been extensively investigated through physiochemical experiments on model membranes. Currently, the basic principles are well understood; however, the physiological relevance of these structures in living organisms is still not clear. Thus, studying membrane organization in vivo is extremely important and elucidates the role of such structures in various membrane-associated processes. This is particularly true when a whole single-celled organism can be studied rather than an isolated cell. The ordered and disordered membrane phases are characterized by the degree of acyl chain packing in the lipid bilayer. Polar water molecules can penetrate into the low-density lipid packing of the disordered phase, but are more excluded from the tightly packed ordered phase. Here, polarity-sensitive probes, embedded in the lipid bilayer, are used to report on membrane organization and to quantitate this parameter via 2-channel fluorescence microscopy. Coupling genetic approaches, which are easily accessible in yeast model organisms, with the imaging approach described here provides a great opportunity to investigate how membrane heterogeneity impacts physiology.
Collapse
Affiliation(s)
- Maria Makarova
- School of Biosciences, University of Birmingham, Birmingham, UK.
| | - Dylan M Owen
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK
- School of Mathematics, University of Birmingham, Birmingham, UK
| |
Collapse
|
9
|
Souza TN, Valdez AF, Rizzo J, Zamith-Miranda D, Guimarães AJ, Nosanchuk JD, Nimrichter L. Host cell membrane microdomains and fungal infection. Cell Microbiol 2021; 23:e13385. [PMID: 34392593 PMCID: PMC8664998 DOI: 10.1111/cmi.13385] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 07/14/2021] [Accepted: 07/24/2021] [Indexed: 01/13/2023]
Abstract
Lipid microdomains or lipid rafts are dynamic and tightly ordered regions of the plasma membrane. In mammalian cells, they are enriched in cholesterol, glycosphingolipids, Glycosylphosphatidylinositol-anchored and signalling-related proteins. Several studies have suggested that mammalian pattern recognition receptors are concentrated or recruited to lipid domains during host-pathogen association to enhance the effectiveness of host effector processes. However, pathogens have also evolved strategies to exploit these domains to invade cells and survive. In fungal organisms, a complex cell wall network usually mediates the first contact with the host cells. This cell wall may contain virulence factors that interfere with the host membrane microdomains dynamics, potentially impacting the infection outcome. Indeed, the microdomain disruption can dampen fungus-host cell adhesion, phagocytosis and cellular immune responses. Here, we provide an overview of regulatory strategies employed by pathogenic fungi to engage with and potentially subvert the lipid microdomains of host cells. TAKE AWAY: Lipid microdomains are ordered regions of the plasma membrane enriched in cholesterol, glycosphingolipids (GSL), GPI-anchored and signalling-related proteins. Pathogen recognition by host immune cells can involve lipid microdomain participation. During this process, these domains can coalesce in larger complexes recruiting receptors and signalling proteins, significantly increasing their signalling abilities. The antifungal innate immune response is mediated by the engagement of pathogen-associated molecular patterns to pattern recognition receptors (PRRs) at the plasma membrane of innate immune cells. Lipid microdomains can concentrate or recruit PRRs during host cell-fungi association through a multi-interactive mechanism. This association can enhance the effectiveness of host effector processes. However, virulence factors at the fungal cell surface and extracellular vesicles can re-assembly these domains, compromising the downstream signalling and favouring the disease development. Lipid microdomains are therefore very attractive targets for novel drugs to combat fungal infections.
Collapse
Affiliation(s)
- Taiane N Souza
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro F Valdez
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juliana Rizzo
- Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, Institut Pasteur, Paris, France
| | - Daniel Zamith-Miranda
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Allan Jefferson Guimarães
- Departamento de Microbiologia e Parasitologia-MIP, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, Brazil
| | - Joshua D Nosanchuk
- Departments of Medicine (Division of Infectious Diseases) and Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Leonardo Nimrichter
- Departamento de Microbiologia Geral, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
10
|
Peláez-Jaramillo CA, Jiménez-Alzate MDP, Araque-Marin P, Hung CY, Castro-Lopez N, Cole GT. Lipid Secretion by Parasitic Cells of Coccidioides Contributes to Disseminated Disease. Front Cell Infect Microbiol 2021; 11:592826. [PMID: 34055661 PMCID: PMC8155295 DOI: 10.3389/fcimb.2021.592826] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 04/14/2021] [Indexed: 11/13/2022] Open
Abstract
Coccidioides is a soil-borne fungal pathogen and causative agent of a human respiratory disease (coccidioidomycosis) endemic to semi-desert regions of southwestern United States, Mexico, Central and South America. Aerosolized arthroconidia inhaled by the mammalian host first undergo conversion to large parasitic cells (spherules, 80-100 μm diameter) followed by endosporulation, a process by which the contents of spherules give rise to multiple endospores. The latter are released upon rupture of the maternal spherules and establish new foci of lung infection. A novel feature of spherule maturation prior to endosporulation is the secretion of a lipid-rich, membranous cell surface layer shed in vivo during growth of the parasitic cells and secretion into liquid culture medium during in vitro growth. Chemical analysis of the culture derived spherule outer wall (SOW) fraction showed that it is composed largely of phospholipids and is enriched with saturated fatty acids, including myristic, palmitic, elaidic, oleic, and stearic acid. NMR revealed the presence of monosaccharide- and disaccharide-linked acylglycerols and sphingolipids. The major sphingolipid components are sphingosine and ceramide. Primary neutrophils derived from healthy C57BL/6 and DBA/2 mice incubated with SOW lipids revealed a significant reduction in fungicidal activity against viable Coccidioides arthroconidia compared to incubation of neutrophils with arthroconidia alone. Host cell exposure to SOW lipids had no effect on neutrophil viability. Furthermore, C57BL/6 mice that were challenged subcutaneously with Coccidioides arthroconidia in the presence of the isolated SOW fraction developed disseminated disease, while control mice challenged with arthroconidia alone by the same route showed no dissemination of infection. We hypothesize that SOW lipids contribute to suppression of inflammatory response to Coccidioides infection. Studies are underway to characterize the immunosuppressive mechanism(s) of SOW lipids.
Collapse
Affiliation(s)
- Carlos Alberto Peláez-Jaramillo
- The Biology Department and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States.,Grupo Interdisciplinario de Estudios Moleculares, Chemistry Institute, Faculty of Natural and Exact Sciencess, Medellín, Antioquia, Colombia.,Grupo Micología Médica, Microbiology and Parasitology Department, School of Medicine, Universidad de Antioquia, Medellín, Antioquia, Colombia
| | - Maria Del Pilar Jiménez-Alzate
- The Biology Department and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States.,Grupo Interdisciplinario de Estudios Moleculares, Chemistry Institute, Faculty of Natural and Exact Sciencess, Medellín, Antioquia, Colombia
| | - Pedronel Araque-Marin
- School of Life Sciences, EIA University (Universidad Escuela de Ingenieros de Antioquia), Envigado, Antioquia, Colombia
| | - Chiung-Yu Hung
- The Biology Department and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Natalia Castro-Lopez
- The Biology Department and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| | - Garry T Cole
- The Biology Department and South Texas Center for Emerging Infectious Diseases, University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
11
|
Santos-Pereira C, Andrés MT, Chaves SR, Fierro JF, Gerós H, Manon S, Rodrigues LR, Côrte-Real M. Lactoferrin perturbs lipid rafts and requires integrity of Pma1p-lipid rafts association to exert its antifungal activity against Saccharomyces cerevisiae. Int J Biol Macromol 2021; 171:343-357. [PMID: 33421469 DOI: 10.1016/j.ijbiomac.2020.12.224] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/30/2020] [Accepted: 12/31/2020] [Indexed: 02/06/2023]
Abstract
Lactoferrin (Lf) is a bioactive milk-derived protein with remarkable wide-spectrum antifungal activity. To deepen our understanding of the molecular mechanisms underlying Lf cytotoxicity, the role of plasma membrane ergosterol- and sphingolipid-rich lipid rafts and their association with the proton pump Pma1p was explored. Pma1p was previously identified as a Lf-binding protein. Results showed that bovine Lf (bLf) perturbs ergosterol-rich lipid rafts organization by inducing intracellular accumulation of ergosterol. Using yeast mutant strains lacking lipid rafts-associated proteins or enzymes involved in the synthesis of ergosterol and sphingolipids, we found that perturbations in the composition of these membrane domains increase resistance to bLf-induced yeast cell death. Also, when Pma1p-lipid rafts association is compromised in the Pma1-10 mutant and in the absence of the Pma1p-binding protein Ast1p, the bLf killing activity is impaired. Altogether, results showed that the perturbation of lipid rafts and the inhibition of both Pma1p and V-ATPase activities mediate the antifungal activity of bLf. Since it is suggested that the combination of conventional antifungals with lipid rafts-disrupting compounds is a powerful antifungal approach, our data will help to pave the way for the use of bLf alone or in combination for the treatment/eradication of clinically and agronomically relevant yeast pathogens/fungi.
Collapse
Affiliation(s)
- Cátia Santos-Pereira
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal; Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - María T Andrés
- Laboratory of Oral Microbiology, University Clinic of Dentistry (CLUO) and Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Susana R Chaves
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - José F Fierro
- Laboratory of Oral Microbiology, University Clinic of Dentistry (CLUO) and Department of Functional Biology (Microbiology), Faculty of Medicine, University of Oviedo, 33006 Oviedo, Asturias, Spain
| | - Hernâni Gerós
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal
| | - Stéphen Manon
- Institut de Biochimie et de Génétique Cellulaires, UMR5095, CNRS et Université de Bordeaux, CS61390, 1 Rue Camille Saint-Saëns, 33000 Bordeaux, France
| | - Lígia R Rodrigues
- Centre of Biological Engineering (CEB), Department of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Manuela Côrte-Real
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
12
|
Parthasarathy A, Kalesh K. Defeating the trypanosomatid trio: proteomics of the protozoan parasites causing neglected tropical diseases. RSC Med Chem 2020; 11:625-645. [PMID: 33479664 PMCID: PMC7549140 DOI: 10.1039/d0md00122h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/12/2020] [Indexed: 12/20/2022] Open
Abstract
Mass spectrometry-based proteomics enables accurate measurement of the modulations of proteins on a large scale upon perturbation and facilitates the understanding of the functional roles of proteins in biological systems. It is a particularly relevant methodology for studying Leishmania spp., Trypanosoma cruzi and Trypanosoma brucei, as the gene expression in these parasites is primarily regulated by posttranscriptional mechanisms. Large-scale proteomics studies have revealed a plethora of information regarding modulated proteins and their molecular interactions during various life processes of the protozoans, including stress adaptation, life cycle changes and interactions with the host. Important molecular processes within the parasite that regulate the activity and subcellular localisation of its proteins, including several co- and post-translational modifications, are also accurately captured by modern proteomics mass spectrometry techniques. Finally, in combination with synthetic chemistry, proteomic techniques facilitate unbiased profiling of targets and off-targets of pharmacologically active compounds in the parasites. This provides important data sets for their mechanism of action studies, thereby aiding drug development programmes.
Collapse
Affiliation(s)
- Anutthaman Parthasarathy
- Rochester Institute of Technology , Thomas H. Gosnell School of Life Sciences , 85 Lomb Memorial Dr , Rochester , NY 14623 , USA
| | - Karunakaran Kalesh
- Department of Chemistry , Durham University , Lower Mount Joy, South Road , Durham DH1 3LE , UK .
| |
Collapse
|
13
|
Amaral VSG, Fernandes CM, Felício MR, Valle AS, Quintana PG, Almeida CC, Barreto-Bergter E, Gonçalves S, Santos NC, Kurtenbach E. Psd2 pea defensin shows a preference for mimetic membrane rafts enriched with glucosylceramide and ergosterol. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2019; 1861:713-728. [PMID: 30639288 DOI: 10.1016/j.bbamem.2018.12.020] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 12/20/2018] [Accepted: 12/29/2018] [Indexed: 12/26/2022]
Abstract
Psd2 is a pea defensin with 47 amino acid residues that inhibits the growth of fungal species by an uncharacterized mechanism. In this work, Psd2 interactions with model membranes mimicking the lipid compositions of different organisms were evaluated. Protein-lipid overlay assays indicated that Psd2 recognizes Fusarium solani glucosylceramide (GlcCerF.solani) and ergosterol (Erg) in addition to phosphatidylcholine (POPC) and some phosphatidylinositol species, such as PtdIns (3)P, (5)P and (3,5)P2, suggesting that these lipids may play important roles as Psd2 targets. Assays using lipid vesicles were also performed to study the behaviour and dynamics that occur after peptide-membrane interactions. Surface plasmon resonance analysis showed that Psd2 has a higher affinity for pure POPC and POPC-based vesicles containing GlcCer and Erg at a 70:30 proportion than for vesicles containing cholesterol (Chol). Partition experiments by fluorescence spectroscopy showed a decrease in Trp42 quantum yield of Psd2 in the presence of GlcCerF.solani and Erg, individually or in simultaneously enriched membranes. The partition coefficient (Kp) obtained indicated a Psd2 partition preference for this vesicles, confirmed by quenching assays using acrylamide and 5/16-doxyl-stearic acid. Furthermore, we showed that the presence of C8C9 double bonds and a methyl group at position C9 of the sphingoid base backbone of GlcCer was relevant to Psd2 activity against Aspergillus nidulans. These results are consistent with the selectivity of Psd2 against fungi and its lack of toxicity in human erythrocytes. Psd2 represents a promising natural compound for the treatment of fungal infections.
Collapse
Affiliation(s)
- Virginia Sara Grancieri Amaral
- Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Mário R Felício
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Aline Sol Valle
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paula G Quintana
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Caroline Correa Almeida
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eliana Barreto-Bergter
- Instituto de Microbiologia Paulo de Goés, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sónia Gonçalves
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Nuno C Santos
- Instituto de Medicina Molecular, Faculdade de Medicina, Universidade de Lisboa, Lisbon, Portugal
| | - Eleonora Kurtenbach
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
14
|
Peng CA, Gaertner AAE, Henriquez SA, Fang D, Colon-Reyes RJ, Brumaghim JL, Kozubowski L. Fluconazole induces ROS in Cryptococcus neoformans and contributes to DNA damage in vitro. PLoS One 2018; 13:e0208471. [PMID: 30532246 PMCID: PMC6286144 DOI: 10.1371/journal.pone.0208471] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 11/16/2018] [Indexed: 11/24/2022] Open
Abstract
Pathogenic basidiomycetous yeast, Cryptococcus neoformans, causes fatal meningitis in immunocompromised individuals. Fluconazole (FLC) is a fungistatic drug commonly administered to treat cryptococcosis. Unfortunately, FLC-resistant strains characterized by various degree of chromosomal instability were isolated from clinical patients. Importantly, the underlying mechanisms that lead to chromosomal instability in FLC-treated C. neoformans remain elusive. Previous studies in fungal and mammalian cells link chromosomal instability to the reactive oxygen species (ROS). This study provides the evidence that exposure of C. neoformans to FLC induces accumulation of intracellular ROS, which correlates with plasma membrane damage. FLC caused transcription changes of oxidative stress related genes encoding superoxide dismutase (SOD1), catalase (CAT3), and thioredoxin reductase (TRR1). Strikingly, FLC contributed to an increase of the DNA damage in vitro, when complexed with iron or copper in the presence of hydrogen peroxide. Strains with isogenic deletion of copper response protein metallothionein were more susceptible to FLC. Addition of ascorbic acid (AA), an anti-oxidant at 10 mM, reduced the inhibitory effects of FLC. Consistent with potential effects of FLC on DNA integrity and chromosomal segregation, FLC treatment led to elevated transcription of RAD54 and repression of cohesin-encoding gene SCC1. We propose that FLC forms complexes with metals and contributes to elevated ROS, which may lead to chromosomal instability in C. neoformans.
Collapse
Affiliation(s)
- Congyue Annie Peng
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Andrea A. E. Gaertner
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Sarah Ana Henriquez
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Diana Fang
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Rodney J. Colon-Reyes
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Julia L. Brumaghim
- Department of Chemistry, Clemson University, Clemson, South Carolina, United States of America
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina, United States of America
- * E-mail:
| |
Collapse
|
15
|
Brown HE, Ost KS, Esher SK, Pianalto KM, Saelens JW, Guan Z, Andrew Alspaugh J. Identifying a novel connection between the fungal plasma membrane and pH-sensing. Mol Microbiol 2018; 109:474-493. [PMID: 29885030 PMCID: PMC6173979 DOI: 10.1111/mmi.13998] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2018] [Indexed: 01/11/2023]
Abstract
The mechanisms by which micro-organisms sense and internalize extracellular pH signals are not completely understood. One example of a known external pH-sensing process is the fungal-specific Rim/Pal signal transduction pathway. Fungi, such as the opportunistic pathogen Cryptococcus neoformans, use Rim signaling to sense and respond to changes in environmental pH. Mutations in this pathway result in strains that are attenuated for survival at alkaline pH, and often for survival within the host. Here, we used an insertional mutagenesis screen to identify novel genes required for C. neoformans growth at host pH. We discovered altered alkaline pH growth in several strains with specific defects in plasma membrane composition and maintenance of phospholipid assembly. Among these, loss of function of the Cdc50 lipid flippase regulatory subunit affected the temporal dynamics of Rim pathway activation. We defined distinct and overlapping cellular processes regulated by Rim101 and Cdc50 through analysis of the transcriptome in these mutant strains. We further explored how pH-induced membrane changes affect membrane-bound pH-sensing proteins, specifically the C-terminal domain of the Rra1 protein, an upstream Rim pathway activator and pH sensor. These results suggest both broadly applicable and phylum-specific molecular interactions that drive microbial environmental sensing.
Collapse
Affiliation(s)
- Hannah E Brown
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kyla S Ost
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Shannon K Esher
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Kaila M Pianalto
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Joseph W Saelens
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University School of Medicine, Durham, NC, USA
| | - J Andrew Alspaugh
- Departments of Molecular Genetics and Microbiology/Medicine, Duke University School of Medicine, Durham, NC, USA
| |
Collapse
|
16
|
Camacho E, Casadevall A. Cryptococcal Traits Mediating Adherence to Biotic and Abiotic Surfaces. J Fungi (Basel) 2018; 4:jof4030088. [PMID: 30060601 PMCID: PMC6162697 DOI: 10.3390/jof4030088] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 01/22/2023] Open
Abstract
Several species in the genus Cryptococcus are facultative intracellular pathogens capable of causing disease associated with high mortality and morbidity in humans. These fungi interact with other organisms in the soil, and these interactions may contribute to the development of adaptation mechanisms that function in virulence by promoting fungal survival in animal hosts. Fungal adhesion molecules, also known as adhesins, have been classically considered as cell-surface or secreted proteins that play critical roles in microbial pathogenesis or in biofilm formation as structural components. Pathogenic Cryptococcus spp. differ from other pathogenic yeasts in having a polysaccharide capsule that covers the cell wall surface and precludes interactions of those structures with host cell receptors. Hence, pathogenic Cryptococcus spp. use unconventional tools for surface attachment. In this essay, we review the unique traits and mechanisms favoring adhesion of Cryptococcus spp. to biotic and abiotic surfaces. Knowledge of the traits that mediate adherence could be exploited in the development of therapeutic, biomedical, and/or industrial products.
Collapse
Affiliation(s)
- Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, 615 N Wolfe St Room E5132, Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Altamirano S, Simmons C, Kozubowski L. Colony and Single Cell Level Analysis of the Heterogeneous Response of Cryptococcus neoformans to Fluconazole. Front Cell Infect Microbiol 2018; 8:203. [PMID: 29971221 PMCID: PMC6018158 DOI: 10.3389/fcimb.2018.00203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/31/2018] [Indexed: 12/16/2022] Open
Abstract
Cryptococcus neoformans is a human fungal pathogen that can cause fatal meningitis in immunocompromised individuals. Fluconazole (FLC) is a fungistatic drug administered to treat cryptococcosis. When exposed to the inhibitory concentration of FLC, C. neoformans exhibits heteroresistance where a small subpopulation of cells develops into FLC-resistant colonies. FLC-resistant cells are aneuploids with regard to specific beneficial chromosomal regions. Factors underlying the potential for only certain C. neoformans cells in a genetically isogenic population to become FLC-resistant are unknown. In this study, we systematically examine the heterogeneous response of C. neoformans to FLC at a colony and individual cell level. We find that the heterogeneity in response to FLC is reflected by variable diminishment of the ergosterol at the plasma membrane. A population of C. neoformans spread on a semi-solid medium displays two types of outcomes following FLC exposure. The first outcome is colonies consisting of non-resistant cells (survivors). The size of colonies consisting of survivors ranges from a few cells to visible colonies, which reflects intrinsic phenotypic heterogeneity of the C. neoformans population. The second outcome is FLC-resistant cells forming colonies of sizes significantly larger as compared to colonies made of survivors. We propose a model that describes how a distribution of these types of cellular responses within a population changes depending on FLC concentration and factors that influence the rate of cellular growth including temperature, media type, growth phase, and the age of cells. Our findings highlight a complex nature of the response to a fungistatic drug and provide insights that may help to optimize FLC therapy.
Collapse
Affiliation(s)
- Sophie Altamirano
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Charles Simmons
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| | - Lukasz Kozubowski
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, United States
| |
Collapse
|
18
|
Schatzman SS, Culotta VC. Chemical Warfare at the Microorganismal Level: A Closer Look at the Superoxide Dismutase Enzymes of Pathogens. ACS Infect Dis 2018. [PMID: 29517910 DOI: 10.1021/acsinfecdis.8b00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Superoxide anion radical is generated as a natural byproduct of aerobic metabolism but is also produced as part of the oxidative burst of the innate immune response design to kill pathogens. In living systems, superoxide is largely managed through superoxide dismutases (SODs), families of metalloenzymes that use Fe, Mn, Ni, or Cu cofactors to catalyze the disproportionation of superoxide to oxygen and hydrogen peroxide. Given the bursts of superoxide faced by microbial pathogens, it comes as no surprise that SOD enzymes play important roles in microbial survival and virulence. Interestingly, microbial SOD enzymes not only detoxify host superoxide but also may participate in signaling pathways that involve reactive oxygen species derived from the microbe itself, particularly in the case of eukaryotic pathogens. In this Review, we will discuss the chemistry of superoxide radicals and the role of diverse SOD metalloenzymes in bacterial, fungal, and protozoan pathogens. We will highlight the unique features of microbial SOD enzymes that have evolved to accommodate the harsh lifestyle at the host-pathogen interface. Lastly, we will discuss key non-SOD superoxide scavengers that specific pathogens employ for defense against host superoxide.
Collapse
Affiliation(s)
- Sabrina S. Schatzman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| | - Valeria C. Culotta
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Pubic Health, Johns Hopkins University, 615 N. Wolfe Street, Baltimore, Maryland 21205, United States
| |
Collapse
|
19
|
Agustinho DP, Miller LC, Li LX, Doering TL. Peeling the onion: the outer layers of Cryptococcus neoformans. Mem Inst Oswaldo Cruz 2018; 113:e180040. [PMID: 29742198 PMCID: PMC5951675 DOI: 10.1590/0074-02760180040] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 02/27/2018] [Indexed: 12/20/2022] Open
Abstract
Cryptococcus neoformans is an opportunistic fungal pathogen
that is ubiquitous in the environment. It causes a deadly meningitis that is
responsible for over 180,000 deaths worldwide each year, including 15% of all
AIDS-related deaths. The high mortality rates for this infection, even with
treatment, suggest a need for improved therapy. Unique characteristics of
C. neoformans may suggest directions for drug discovery.
These include features of three structures that surround the cell: the plasma
membrane, the cell wall around it, and the outermost polysaccharide capsule. We
review current knowledge of the fundamental biology of these fascinating
structures and highlight open questions in the field, with the goal of
stimulating further investigation that will advance basic knowledge and human
health.
Collapse
Affiliation(s)
- Daniel P Agustinho
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Liza C Miller
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Lucy X Li
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Li C, Lev S, Desmarini D, Kaufman-Francis K, Saiardi A, Silva APG, Mackay JP, Thompson PE, Sorrell TC, Djordjevic JT. IP 3-4 kinase Arg1 regulates cell wall homeostasis and surface architecture to promote clearance of Cryptococcus neoformans infection in a mouse model. Virulence 2017; 8:1833-1848. [PMID: 28976803 DOI: 10.1080/21505594.2017.1385692] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
We previously identified a series of inositol polyphosphate kinases (IPKs), Arg1, Ipk1, Kcs1 and Asp1, in the opportunistic fungal pathogen Cryptococcus neoformans. Using gene deletion analysis, we characterized Arg1, Ipk1 and Kcs1 and showed that they act sequentially to convert IP3 to PP-IP5 (IP7), a key metabolite promoting stress tolerance, metabolic adaptation and fungal dissemination to the brain. We have now directly characterized the enzymatic activity of Arg1, demonstrating that it is a dual specificity (IP3/IP4) kinase producing IP5. We showed previously that IP5 is further phosphorylated by Ipk1 to produce IP6, which is a substrate for the synthesis of PP-IP5 by Kcs1. Phenotypic comparison of the arg1Δ and kcs1Δ deletion mutants (both PP-IP5-deficient) reveals that arg1Δ has the most deleterious phenotype: while PP-IP5 is essential for metabolic and stress adaptation in both mutant strains, PP-IP5 is dispensable for virulence-associated functions such as capsule production, cell wall organization, and normal N-linked mannosylation of the virulence factor, phospholipase B1, as these phenotypes were defective only in arg1Δ. The more deleterious arg1Δ phenotype correlated with a higher rate of arg1Δ phagocytosis by human peripheral blood monocytes and rapid arg1Δ clearance from lung in a mouse model. This observation is in contrast to kcs1Δ, which we previously reported establishes a chronic, confined lung infection. In summary, we show that Arg1 is the most crucial IPK for cryptococcal virulence, conveying PP-IP5-dependent and novel PP-IP5-independent functions.
Collapse
Affiliation(s)
- Cecilia Li
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,b Sydney Medical School-Westmead, The University of Sydney , Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia
| | - Sophie Lev
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,b Sydney Medical School-Westmead, The University of Sydney , Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia
| | - Desmarini Desmarini
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia
| | - Keren Kaufman-Francis
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia
| | - Adolfo Saiardi
- d Medical Research Council Laboratory for Molecular Cell Biology, University College London , Gower street, London WC1E 6BT , UK
| | - Ana P G Silva
- e School of Life and Environmental Sciences, The University of Sydney , Camperdown , NSW 2006 , Australia
| | - Joel P Mackay
- e School of Life and Environmental Sciences, The University of Sydney , Camperdown , NSW 2006 , Australia
| | - Philip E Thompson
- f Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences , Monash University , 381 Royal Parade, Parkville , VIC 3052 , Australia
| | - Tania C Sorrell
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,b Sydney Medical School-Westmead, The University of Sydney , Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia.,g Westmead Hospital , Westmead , NSW 2145 , Australia
| | - Julianne T Djordjevic
- a Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research , 176 Hawkesbury road, Westmead NSW 2145 , Australia.,b Sydney Medical School-Westmead, The University of Sydney , Westmead NSW 2145 , Australia.,c Marie Bashir Institute for Infectious Diseases and Biosecurity, University of Sydney , NSW Australia.,g Westmead Hospital , Westmead , NSW 2145 , Australia
| |
Collapse
|
21
|
Nolan SJ, Fu MS, Coppens I, Casadevall A. Lipids Affect the Cryptococcus neoformans-Macrophage Interaction and Promote Nonlytic Exocytosis. Infect Immun 2017; 85:e00564-17. [PMID: 28947642 PMCID: PMC5695111 DOI: 10.1128/iai.00564-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022] Open
Abstract
Many microbes exploit host cellular lipid droplets during the host-microbe interaction, but this phenomenon has not been extensively studied for fungal pathogens. In this study, we analyzed the role of lipid droplets during the interaction of Cryptococcus neoformans with macrophages in the presence and the absence of exogenous lipids, in particular, oleate. The addition of oleic acid increased the frequency of lipid droplets in both C. neoformans and macrophages. C. neoformans responded to oleic acid supplementation by faster growth inside and outside macrophages. Fungal cells were able to harvest lipids from macrophage lipid droplets. Supplementation of C. neoformans and macrophages with oleic acid significantly increased the rate of nonlytic exocytosis while having no effect on lytic exocytosis. The process for lipid modulation of nonlytic exocytosis was associated with actin changes in macrophages. In summary, C. neoformans harvests lipids from macrophages, and the C. neoformans-macrophage interaction is modulated by exogenous lipids, providing a new tool for studying nonlytic exocytosis.
Collapse
Affiliation(s)
- Sabrina J Nolan
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Man Shun Fu
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| |
Collapse
|
22
|
Bagam P, Singh DP, Inda ME, Batra S. Unraveling the role of membrane microdomains during microbial infections. Cell Biol Toxicol 2017; 33:429-455. [PMID: 28275881 PMCID: PMC7088210 DOI: 10.1007/s10565-017-9386-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 02/06/2017] [Indexed: 01/06/2023]
Abstract
Infectious diseases pose major socioeconomic and health-related threats to millions of people across the globe. Strategies to combat infectious diseases derive from our understanding of the complex interactions between the host and specific bacterial, viral, and fungal pathogens. Lipid rafts are membrane microdomains that play important role in life cycle of microbes. Interaction of microbial pathogens with host membrane rafts influences not only their initial colonization but also their spread and the induction of inflammation. Therefore, intervention strategies aimed at modulating the assembly of membrane rafts and/or regulating raft-directed signaling pathways are attractive approaches for the. management of infectious diseases. The current review discusses the latest advances in terms of techniques used to study the role of membrane microdomains in various pathological conditions and provides updated information regarding the role of membrane rafts during bacterial, viral and fungal infections.
Collapse
Affiliation(s)
- Prathyusha Bagam
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Dhirendra P Singh
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA
| | - Maria Eugenia Inda
- Departamento de Microbiología, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Suipacha, Rosario, Argentina
| | - Sanjay Batra
- Laboratory of Pulmonary Immuno-Toxicology, Department of Environmental Toxicology, Health Research Center, Southern University and A&M College, Baton Rouge, LA, 70813, USA.
| |
Collapse
|
23
|
The Lipid Raft Proteome of African Trypanosomes Contains Many Flagellar Proteins. Pathogens 2017; 6:pathogens6030039. [PMID: 28837104 PMCID: PMC5617996 DOI: 10.3390/pathogens6030039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 08/22/2017] [Accepted: 08/22/2017] [Indexed: 12/20/2022] Open
Abstract
Lipid rafts are liquid-ordered membrane microdomains that form by preferential association of 3-β-hydroxysterols, sphingolipids and raft-associated proteins often having acyl modifications. We isolated lipid rafts of the protozoan parasite Trypanosoma brucei and determined the protein composition of lipid rafts in the cell. This analysis revealed a striking enrichment of flagellar proteins and several putative signaling proteins in the lipid raft proteome. Calpains and intraflagellar transport proteins, in particular, were found to be abundant in the lipid raft proteome. These findings provide additional evidence supporting the notion that the eukaryotic cilium/flagellum is a lipid raft-enriched specialized structure with high concentrations of sterols, sphingolipids and palmitoylated proteins involved in environmental sensing and cell signaling.
Collapse
|
24
|
Filipuzzi I, Cotesta S, Perruccio F, Knapp B, Fu Y, Studer C, Pries V, Riedl R, Helliwell SB, Petrovic KT, Movva NR, Sanglard D, Tao J, Hoepfner D. High-Resolution Genetics Identifies the Lipid Transfer Protein Sec14p as Target for Antifungal Ergolines. PLoS Genet 2016; 12:e1006374. [PMID: 27855158 PMCID: PMC5147771 DOI: 10.1371/journal.pgen.1006374] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 09/20/2016] [Indexed: 12/25/2022] Open
Abstract
Invasive infections by fungal pathogens cause more deaths than malaria worldwide. We found the ergoline compound NGx04 in an antifungal screen, with selectivity over mammalian cells. High-resolution chemogenomics identified the lipid transfer protein Sec14p as the target of NGx04 and compound-resistant mutations in Sec14p define compound-target interactions in the substrate binding pocket of the protein. Beyond its essential lipid transfer function in a variety of pathogenic fungi, Sec14p is also involved in secretion of virulence determinants essential for the pathogenicity of fungi such as Cryptococcus neoformans, making Sec14p an attractive antifungal target. Consistent with this dual function, we demonstrate that NGx04 inhibits the growth of two clinical isolates of C. neoformans and that NGx04-related compounds have equal and even higher potency against C. neoformans. Furthermore NGx04 analogues showed fungicidal activity against a fluconazole resistant C. neoformans strain. In summary, we present genetic evidence that NGx04 inhibits fungal Sec14p and initial data supporting NGx04 as a novel antifungal starting point. Emerging resistance to antibiotics led to an inglorious revival of infectious diseases. Furthermore, in the past 30 years, only one novel anti-fungal target has been discovered which was used to develop therapies against. Therefore pathogen-selective targets and knowledge about possible resistance determinants are of utmost importance to successfully develop new medicines. Here we describe the identification of anti-fungal ergolines, targeting the lipid transfer protein Sec14p, and inhibiting the growth of two clinical isolates of the pathogenic fungus Cryptococcus neoformans. Both, compound and target represent attractive points for further investigations: Sec14p as it differs significantly from the human homolog and as it has been implicated in fungal viability and pathogenicity, and, ergolines as they are used in the clinic against a variety of diseases demonstrating both efficacy and safety.
Collapse
Affiliation(s)
- Ireos Filipuzzi
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
- * E-mail:
| | - Simona Cotesta
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Francesca Perruccio
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Britta Knapp
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Yue Fu
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Christian Studer
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Verena Pries
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Ralph Riedl
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Stephen B. Helliwell
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Katarina T. Petrovic
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - N. Rao Movva
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| | - Dominique Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Jianshi Tao
- Genomics Institute of the Novartis Research Foundation, San Diego, California, United States of America
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Campus, Basel, Switzerland
| |
Collapse
|
25
|
Bito T, Misaki T, Yabuta Y, Ishikawa T, Kawano T, Watanabe F. Vitamin B 12 deficiency results in severe oxidative stress, leading to memory retention impairment in Caenorhabditis elegans. Redox Biol 2016; 11:21-29. [PMID: 27840283 PMCID: PMC5107735 DOI: 10.1016/j.redox.2016.10.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/21/2016] [Accepted: 10/21/2016] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is implicated in various human diseases and conditions, such as a neurodegeneration, which is the major symptom of vitamin B12 deficiency, although the underlying disease mechanisms associated with vitamin B12 deficiency are poorly understood. Vitamin B12 deficiency was found to significantly increase cellular H2O2 and NO content in Caenorhabditis elegans and significantly decrease low molecular antioxidant [reduced glutathione (GSH) and L-ascorbic acid] levels and antioxidant enzyme (superoxide dismutase and catalase) activities, indicating that vitamin B12 deficiency induces severe oxidative stress leading to oxidative damage of various cellular components in worms. An NaCl chemotaxis associative learning assay indicated that vitamin B12 deficiency did not affect learning ability but impaired memory retention ability, which decreased to approximately 58% of the control value. When worms were treated with 1 mmol/L GSH, L-ascorbic acid, or vitamin E for three generations during vitamin B12 deficiency, cellular malondialdehyde content as an index of oxidative stress decreased to the control level, but the impairment of memory retention ability was not completely reversed (up to approximately 50%). These results suggest that memory retention impairment formed during vitamin B12 deficiency is partially attributable to oxidative stress.
Collapse
Affiliation(s)
- Tomohiro Bito
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Taihei Misaki
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Yukinori Yabuta
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Takahiro Ishikawa
- Department of Life Science and Biotechnology, Faculty of Life and Environmental Science, Shimane University, Shimane 690-8504, Japan
| | - Tsuyoshi Kawano
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan
| | - Fumio Watanabe
- The School of Agricultural, Biological and Environmental sciences, Faculty of Agriculture, Tottori University, Tottori 680-8533, Japan.
| |
Collapse
|
26
|
Oliveira-Garcia E, Deising HB. The Glycosylphosphatidylinositol Anchor Biosynthesis Genes GPI12, GAA1, and GPI8 Are Essential for Cell-Wall Integrity and Pathogenicity of the Maize Anthracnose Fungus Colletotrichum graminicola. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:889-901. [PMID: 27937175 DOI: 10.1094/mpmi-09-16-0175-r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Glycosylphosphatidylinositol (GPI) anchoring of proteins is one of the most common posttranslational modifications of proteins in eukaryotic cells and is important for associating proteins with the cell surface. In fungi, GPI-anchored proteins play essential roles in cross-linking of β-glucan cell-wall polymers and cell-wall rigidity. GPI-anchor synthesis is successively performed at the cytoplasmic and the luminal face of the ER membrane and involves approximately 25 proteins. While mutagenesis of auxiliary genes of this pathway suggested roles of GPI-anchored proteins in hyphal growth and virulence, essential genes of this pathway have not been characterized. Taking advantage of RNA interference (RNAi) we analyzed the function of the three essential genes GPI12, GAA1 and GPI8, encoding a cytoplasmic N-acetylglucosaminylphosphatidylinositol deacetylase, a metallo-peptide-synthetase and a cystein protease, the latter two representing catalytic components of the GPI transamidase complex. RNAi strains showed drastic cell-wall defects, resulting in exploding infection cells on the plant surface and severe distortion of in planta-differentiated infection hyphae, including formation of intrahyphal hyphae. Reduction of transcript abundance of the genes analyzed resulted in nonpathogenicity. We show here for the first time that the GPI synthesis genes GPI12, GAA1, and GPI8 are indispensable for vegetative development and pathogenicity of the causal agent of maize anthracnose, Colletotrichum graminicola.
Collapse
Affiliation(s)
- Ely Oliveira-Garcia
- 1 Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III, Institut für Agrar- und Ernährungswissenschaften, Phytopathologie und Pflanzenschutz, and
| | - Holger B Deising
- 1 Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III, Institut für Agrar- und Ernährungswissenschaften, Phytopathologie und Pflanzenschutz, and
- 2 Interdisziplinäres Zentrum für Nutzpflanzenforschung; Betty-Heimann-Str. 3. D-06120 Halle/Saale, Germany
| |
Collapse
|
27
|
Malachowski AN, Yosri M, Park G, Bahn YS, He Y, Olszewski MA. Systemic Approach to Virulence Gene Network Analysis for Gaining New Insight into Cryptococcal Virulence. Front Microbiol 2016; 7:1652. [PMID: 27833589 PMCID: PMC5081415 DOI: 10.3389/fmicb.2016.01652] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/04/2016] [Indexed: 11/13/2022] Open
Abstract
Cryptococcus neoformans is pathogenic yeast, responsible for highly lethal infections in compromised patients around the globe. C. neoformans typically initiates infections in mammalian lung tissue and subsequently disseminates to the central nervous system where it causes significant pathologies. Virulence genes of C. neoformans are being characterized at an increasing rate, however, we are far from a comprehensive understanding of their roles and genetic interactions. Some of these reported virulence genes are scattered throughout different databases, while others are not yet included. This study gathered and analyzed 150 reported virulence associated factors (VAFs) of C. neoformans. Using the web resource STRING database, our study identified different interactions between the total VAFs and those involved specifically in lung and brain infections and identified a new strain specific virulence gene, SHO1, involved in the mitogen-activated protein kinase signaling pathway. As predicted by our analysis, SHO1 expression enhanced C. neoformans virulence in a mouse model of pulmonary infection, contributing to enhanced non-protective immune Th2 bias and progressively enhancing fungal growth in the infected lungs. Sequence analysis indicated 77.4% (116) of total studied VAFs are soluble proteins, and 22.7% (34) are transmembrane proteins. Motifs involved in regulation and signaling such as protein kinases and transcription factors are highly enriched in Cryptococcus VAFs. Altogether, this study represents a pioneering effort in analysis of the virulence composite network of C. neoformans using a systems biology approach.
Collapse
Affiliation(s)
- Antoni N Malachowski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| | - Mohamed Yosri
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA; The Regional Center for Mycology and Biotechnology, Al-Azhar UniversityCairo, Egypt
| | - Goun Park
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yong-Sun Bahn
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University Seoul, South Korea
| | - Yongqun He
- Unit for Laboratory Animal Medicine, University of Michigan Medical School, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann ArborMI, USA
| | - Michal A Olszewski
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical School, Ann ArborMI, USA; VA Ann Arbor Healthcare System Research Service (11R), Ann ArborMI, USA
| |
Collapse
|
28
|
Abstract
Invasive fungal infections have significantly increased in the last few decades. Three classes of drugs are commonly used to treat these infections: polyenes, azoles and echinocandins. Unfortunately each of these drugs has drawbacks; polyenes are toxic, resistance against azoles is emerging and echinocandins have narrow spectrum of activity. Thus, the development of new antifungals is urgently needed. In this context, fungal sphingolipids have emerged as a potential target for new antifungals, because their biosynthesis in fungi is structurally different than in mammals. Besides, some fungal sphingolipids play an important role in the regulation of virulence in a variety of fungi. This review aims to highlight the diverse strategies that could be used to block the synthesis or/and function of fungal sphingolipids.
Collapse
|
29
|
All about that fat: Lipid modification of proteins in Cryptococcus neoformans. J Microbiol 2016; 54:212-22. [PMID: 26920881 DOI: 10.1007/s12275-016-5626-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 02/01/2016] [Accepted: 02/01/2016] [Indexed: 12/17/2022]
Abstract
Lipid modification of proteins is a widespread, essential process whereby fatty acids, cholesterol, isoprenoids, phospholipids, or glycosylphospholipids are attached to polypeptides. These hydrophobic groups may affect protein structure, function, localization, and/or stability; as a consequence such modifications play critical regulatory roles in cellular systems. Recent advances in chemical biology and proteomics have allowed the profiling of modified proteins, enabling dissection of the functional consequences of lipid addition. The enzymes that mediate lipid modification are specific for both the lipid and protein substrates, and are conserved from fungi to humans. In this article we review these enzymes, their substrates, and the processes involved in eukaryotic lipid modification of proteins. We further focus on its occurrence in the fungal pathogen Cryptococcus neoformans, highlighting unique features that are both relevant for the biology of the organism and potentially important in the search for new therapies.
Collapse
|
30
|
Cohen R, Mukai C, Travis AJ. Lipid Regulation of Acrosome Exocytosis. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2016; 220:107-27. [PMID: 27194352 DOI: 10.1007/978-3-319-30567-7_6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Lipids are critical regulators of mammalian sperm function, first helping prevent premature acrosome exocytosis, then enabling sperm to become competent to fertilize at the right place/time through the process of capacitation, and ultimately triggering acrosome exocytosis. Yet because they do not fit neatly into the "DNA--RNA-protein" synthetic pathway, they are understudied and poorly understood. Here, we focus on three lipids or lipid classes-cholesterol, phospholipids, and the ganglioside G(M1)--in context of the modern paradigm of acrosome exocytosis. We describe how these various- species are precisely segregated into membrane macrodomains and microdomains, simultaneously preventing premature exocytosis while acting as foci for organizing regulatory and effector molecules that will enable exocytosis. Although the mechanisms responsible for these domains are poorly defined, there is substantial evidence for their composition and functions. We present diverse ways that lipids and lipid modifications regulate capacitation and acrosome exocytosis, describing in more detail how removal of cholesterol plays a master regulatory role in enabling exocytosis through at least two complementary pathways. First, cholesterol efflux leads to proteolytic activation of phospholipase B, which cleaves both phospholipid tails. The resultant changes in membrane curvature provide a mechanism for the point fusions now known to occur far before a sperm physically interacts with the zona pellucida. Cholesterol efflux also enables G(M1) to regulate the voltage-dependent cation channel, Ca(V)2.3, triggering focal calcium transients required for acrosome exocytosis in response to subsequent whole-cell calcium rises. We close with a model integrating functions for lipids in regulating acrosome exocytosis.
Collapse
Affiliation(s)
- Roy Cohen
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Chinatsu Mukai
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA
| | - Alexander J Travis
- Baker Institute for Animal Health, Cornell University, Ithaca, NY, 14853, USA. .,Atkinson Center for a Sustainable Future, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Rella A, Farnoud AM, Del Poeta M. Plasma membrane lipids and their role in fungal virulence. Prog Lipid Res 2015; 61:63-72. [PMID: 26703191 DOI: 10.1016/j.plipres.2015.11.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/24/2022]
Abstract
There has been considerable evidence in recent years suggesting that plasma membrane lipids are important regulators of fungal pathogenicity. Various glycolipids have been shown to impart virulent properties in several fungal species, while others have been shown to play a role in host defense. In addition to their role as virulence factors, lipids also contribute to other virulence mechanisms such as drug resistance, biofilm formation, and release of extracellular vesicles. In addition, lipids also affect the mechanical properties of the plasma membrane through the formation of packed microdomains composed mainly of sphingolipids and sterols. Changes in the composition of lipid microdomains have been shown to disrupt the localization of virulence factors and affect fungal pathogenicity. This review gathers evidence on the various roles of plasma membrane lipids in fungal virulence and how lipids might contribute to the different processes that occur during infection and treatment. Insight into the role of lipids in fungal virulence can lead to an improved understanding of the process of fungal pathogenesis and the development of new lipid-mediated therapeutic strategies.
Collapse
Affiliation(s)
- Antonella Rella
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| | - Amir M Farnoud
- Department of Chemical and Biomolecular Engineering, Ohio University, Athens, Ohio 45701, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY 11794-5215, USA
| |
Collapse
|
32
|
Abstract
Enzymes play key roles in fungal pathogenesis. Manipulation of enzyme expression or activity can significantly alter the infection process, and enzyme expression profiles can be a hallmark of disease. Hence, enzymes are worthy targets for better understanding pathogenesis and identifying new options for combatting fungal infections. Advances in genomics, proteomics, transcriptomics, and mass spectrometry have enabled the identification and characterization of new fungal enzymes. This review focuses on recent developments in the virulence-associated enzymes from Cryptococcus neoformans. The enzymatic suite of C. neoformans has evolved for environmental survival, but several of these enzymes play a dual role in colonizing the mammalian host. We also discuss new therapeutic and diagnostic strategies that could be based on the underlying enzymology.
Collapse
|
33
|
Farnoud AM, Toledo AM, Konopka JB, Del Poeta M, London E. Raft-like membrane domains in pathogenic microorganisms. CURRENT TOPICS IN MEMBRANES 2015; 75:233-68. [PMID: 26015285 DOI: 10.1016/bs.ctm.2015.03.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The lipid bilayer of the plasma membrane is thought to be compartmentalized by the presence of lipid-protein microdomains. In eukaryotic cells, microdomains composed of sterols and sphingolipids, commonly known as lipid rafts, are believed to exist, and reports on the presence of sterol- or protein-mediated microdomains in bacterial cell membranes are also appearing. Despite increasing attention, little is known about microdomains in the plasma membrane of pathogenic microorganisms. This review attempts to provide an overview of the current state of knowledge of lipid rafts in pathogenic fungi and bacteria. The current literature on characterization of microdomains in pathogens is reviewed, and their potential role in growth, pathogenesis, and drug resistance is discussed. Better insight into the structure and function of membrane microdomains in pathogenic microorganisms might lead to a better understanding of their pathogenesis and development of raft-mediated approaches for therapy.
Collapse
Affiliation(s)
- Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Alvaro M Toledo
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - James B Konopka
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, NY, USA
| | - Erwin London
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY, USA
| |
Collapse
|
34
|
Glucosylceramides are required for mycelial growth and full virulence in Penicillium digitatum. Biochem Biophys Res Commun 2014; 455:165-71. [PMID: 25449268 DOI: 10.1016/j.bbrc.2014.10.142] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 10/28/2014] [Indexed: 01/05/2023]
Abstract
Glucosylceramides (GlcCers) are important lipid components of the membrane systems of eukaryotes. Recent studies have suggested the roles for GlcCers in regulating fungal growth and pathogenesis. In this study, we report the identification and functional characterization of PdGcs1, a gene encoding GlcCer synthase (GCS) essential for the biosynthesis of GlcCers, in Penicilliumdigitatum genome. We demonstrated that the deletion of PdGcs1 in P. digitatum resulted in the complete loss of production of GlcCer (d18:1/18:0 h) and GlcCer (d18:2/18:0 h), a decrease in vegetation growth and sporulation, and a delay in spore germination. The virulence of the PdGcs1 deletion mutant on citrus fruits was also impaired, as evidenced by the delayed occurrence of water soaking lesion and the formation of smaller size of lesion. These results suggest that PdGcs1 is a bona fide GCS that plays an important role in regulating cell growth, differentiation, and virulence of P. digitatum by controlling the biosynthesis of GlcCers.
Collapse
|
35
|
Farnoud AM, Mor V, Singh A, Del Poeta M. Inositol phosphosphingolipid phospholipase C1 regulates plasma membrane ATPase (Pma1) stability in Cryptococcus neoformans. FEBS Lett 2014; 588:3932-8. [PMID: 25240197 PMCID: PMC4254033 DOI: 10.1016/j.febslet.2014.09.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 11/24/2022]
Abstract
Cryptococcus neoformans is a facultative intracellular pathogen, which can replicate in the acidic environment inside phagolysosomes. Deletion of the enzyme inositol-phosphosphingolipid-phospholipase-C (Isc1) makes C. neoformans hypersensitive to acidic pH likely by inhibiting the function of the proton pump, plasma membrane ATPase (Pma1). In this work, we examined the role of Isc1 on Pma1 transport and oligomerization. Our studies showed that Isc1 deletion did not affect Pma1 synthesis or transport, but significantly inhibited Pma1 oligomerization. Interestingly, Pma1 oligomerization could be restored by supplementing the medium with phytoceramide. These results offer insight into the mechanism of intracellular survival of C. neoformans.
Collapse
Affiliation(s)
- Amir M Farnoud
- Department of Molecular Genetics and Microbiology, Stony Brook University, 145 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Visesato Mor
- Department of Molecular Genetics and Microbiology, Stony Brook University, 145 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Ashutosh Singh
- Department of Molecular Genetics and Microbiology, Stony Brook University, 145 Life Sciences Building, Stony Brook, NY 11794, USA
| | - Maurizio Del Poeta
- Department of Molecular Genetics and Microbiology, Stony Brook University, 145 Life Sciences Building, Stony Brook, NY 11794, USA.
| |
Collapse
|
36
|
Identification of Aph1, a phosphate-regulated, secreted, and vacuolar acid phosphatase in Cryptococcus neoformans. mBio 2014; 5:e01649-14. [PMID: 25227465 PMCID: PMC4172073 DOI: 10.1128/mbio.01649-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cryptococcus neoformans strains isolated from patients with AIDS secrete acid phosphatase, but the identity and role of the enzyme(s) responsible have not been elucidated. By combining a one-dimensional electrophoresis step with mass spectrometry, a canonically secreted acid phosphatase, CNAG_02944 (Aph1), was identified in the secretome of the highly virulent serotype A strain H99. We created an APH1 deletion mutant (Δaph1) and showed that Δaph1-infected Galleria mellonella and mice survived longer than those infected with the wild type (WT), demonstrating that Aph1 contributes to cryptococcal virulence. Phosphate starvation induced APH1 expression and secretion of catalytically active acid phosphatase in the WT, but not in the Δaph1 mutant, indicating that Aph1 is the major extracellular acid phosphatase in C. neoformans and that it is phosphate repressible. DsRed-tagged Aph1 was transported to the fungal cell periphery and vacuoles via endosome-like structures and was enriched in bud necks. A similar pattern of Aph1 localization was observed in cryptococci cocultured with THP-1 monocytes, suggesting that Aph1 is produced during host infection. In contrast to Aph1, but consistent with our previous biochemical data, green fluorescent protein (GFP)-tagged phospholipase B1 (Plb1) was predominantly localized at the cell periphery, with no evidence of endosome-mediated export. Despite use of different intracellular transport routes by Plb1 and Aph1, secretion of both proteins was compromised in a Δsec14-1 mutant. Secretions from the WT, but not from Δaph1, hydrolyzed a range of physiological substrates, including phosphotyrosine, glucose-1-phosphate, β-glycerol phosphate, AMP, and mannose-6-phosphate, suggesting that the role of Aph1 is to recycle phosphate from macromolecules in cryptococcal vacuoles and to scavenge phosphate from the extracellular environment. Infections with the AIDS-related fungal pathogen Cryptococcus neoformans cause more than 600,000 deaths per year worldwide. Strains of Cryptococcus neoformans isolated from patients with AIDS secrete acid phosphatase; however, the identity and role of the enzyme(s) are unknown. We have analyzed the secretome of the highly virulent serotype A strain H99 and identified Aph1, a canonically secreted acid phosphatase. By creating an APH1 deletion mutant and an Aph1-DsRed-expressing strain, we demonstrate that Aph1 is the major extracellular and vacuolar acid phosphatase in C. neoformans and that it is phosphate repressible. Furthermore, we show that Aph1 is produced in cryptococci during coculture with THP-1 monocytes and contributes to fungal virulence in Galleria mellonella and mouse models of cryptococcosis. Our findings suggest that Aph1 is secreted to the environment to scavenge phosphate from a wide range of physiological substrates and is targeted to vacuoles to recycle phosphate from the expendable macromolecules.
Collapse
|
37
|
An B, Chen Y, Li B, Qin G, Tian S. Ca(2+)-CaM regulating viability of Candida guilliermondii under oxidative stress by acting on detergent resistant membrane proteins. J Proteomics 2014; 109:38-49. [PMID: 24998432 DOI: 10.1016/j.jprot.2014.06.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 06/10/2014] [Accepted: 06/26/2014] [Indexed: 11/18/2022]
Abstract
UNLABELLED Reactive oxygen species (ROS) play a vital role in reducing viability of yeast cells. The Ca(2+)-CaM signaling pathways are involved in regulating the intracellular ROS level in yeast cells under stress. Detergent resistant membranes (DRMs), the sterol-rich microdomains, participate in a wide range of cellular processes including growth, trafficking and death in yeast cells. In the present study, we found that Trifluoperazine (TFP), an antagonist of CaM, could increase the viability of Candida guilliermondii cells under H2O2 stress. Based on comparative analysis of DRM sub proteomics, a total number of 29 differentially expressed protein spots were identified, among which 8 protein spots belong to the electron transport chain and 7 protein spots belong to transporters. It is suggested that TFP treatment could modulate the intracellular ROS generation in yeast cells. We additionally ascertained that TFP treatment could effectively alleviate the ROS accumulation and protein damage in C. guilliermondii cells under H2O2 stress, via investigating the intracellular ROS levels and protein oxidative damage in yeast cells. These findings firstly revealed that the Ca(2+)-CaM signaling pathway is related to the viability of yeast cells under H2O2 stress, and provide novel evidences for exploring Ca(2+)-CaM's role in regulating this viability via acting on DRM proteins. BIOLOGICAL SIGNIFICANCE Detergent-resistant membranes (DRMs), which are more resistant to extraction with cold non-ionic detergents, have been considered the functional microdomains in the plasma membrane. In yeast, DRMs are involved in a wide range of additional cellular processes including cell growth and death. The Ca(2+)-CaM signaling pathways could regulate the stress tolerance of yeast cells by modulating the intracellular ROS generation. In this study, we found that trifluoperazine (TFP), a calmodulin antagonist, could increase the viability of C. guilliermondii under H2O2 stress. Based on comparative analysis of DRM sub proteomics, electron transport chain proteins and transporters were identified to be associated with the Ca(2+)-CaM transduction. We proved that TFP treatment decreases the intracellular ROS accumulation and alleviates oxidative damage to cellular proteins. These results ascertain that Ca(2+)-CaM is involved in regulating the viability of C. guilliermondii under oxidative stress via acting on the DRM proteins.
Collapse
Affiliation(s)
- Bang An
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Chen
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boqiang Li
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Guozheng Qin
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Shiping Tian
- Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
38
|
Sadat MA, Jeon J, Mir AA, Choi J, Choi J, Lee YH. Regulation of cellular diacylglycerol through lipid phosphate phosphatases is required for pathogenesis of the rice blast fungus, Magnaporthe oryzae. PLoS One 2014; 9:e100726. [PMID: 24959955 PMCID: PMC4069076 DOI: 10.1371/journal.pone.0100726] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 05/26/2014] [Indexed: 11/18/2022] Open
Abstract
Considering implication of diacylglycerol in both metabolism and signaling pathways, maintaining proper levels of diacylglycerol (DAG) is critical to cellular homeostasis and development. Except the PIP2-PLC mediated pathway, metabolic pathways leading to generation of DAG converge on dephosphorylation of phosphatidic acid catalyzed by lipid phosphate phosphatases. Here we report the role of such enzymes in a model plant pathogenic fungus, Magnaporthe oryzae. We identified five genes encoding putative lipid phosphate phosphatases (MoLPP1 to MoLPP5). Targeted disruption of four genes (except MoLPP4) showed that MoLPP3 and MoLPP5 are required for normal progression of infection-specific development and proliferation within host plants, whereas MoLPP1 and MoLPP2 are indispensable for fungal pathogenicity. Reintroduction of MoLPP3 and MoLPP5 into individual deletion mutants restored all the defects. Furthermore, exogenous addition of saturated DAG not only restored defect in appressorium formation but also complemented reduced virulence in both mutants. Taken together, our data indicate differential roles of lipid phosphate phosphatase genes and requirement of proper regulation of cellular DAGs for fungal development and pathogenesis.
Collapse
Affiliation(s)
- Md. Abu Sadat
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Junhyun Jeon
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Albely Afifa Mir
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jaeyoung Choi
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Jaehyuk Choi
- Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| | - Yong-Hwan Lee
- Department of Agricultural Biotechnology, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Center for Fungal Pathogenesis, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
- Center for Fungal Genetic Resources, Plant Genomics and Breeding Institute, and Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
39
|
Ariga T. Pathogenic role of ganglioside metabolism in neurodegenerative diseases. J Neurosci Res 2014; 92:1227-42. [PMID: 24903509 DOI: 10.1002/jnr.23411] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 04/09/2014] [Accepted: 04/09/2014] [Indexed: 12/13/2022]
Abstract
Ganglioside metabolism is altered in several neurodegenerative diseases, and this may participate in several events related to the pathogenesis of these diseases. Most changes occur in specific areas of the brain and their distinct membrane microdomains or lipid rafts. Antiganglioside antibodies may be involved in dysfunction of the blood-brain barrier and disease progression in these diseases. In lipid rafts, interactions of glycosphingolipids, including ganglioside, with proteins may be responsible for the misfolding events that cause the fibril and/or aggregate processing of disease-specific proteins, such as α-synuclein, in Parkinson's disease, huntingtin protein in Huntington's disease, and copper-zinc superoxide dismutase in amyotrophic lateral sclerosis. Targeting ganglioside metabolism may represent an underexploited opportunity to design novel therapeutic strategies for neurodegeneration in these diseases.
Collapse
Affiliation(s)
- Toshio Ariga
- Institute of Molecular Medicine and Genetics, Institute of Neuroscience, Medical College of Georgia, Georgia Regents University, Augusta, Georgia
| |
Collapse
|
40
|
Asano A, Nelson-Harrington JL, Travis AJ. Phospholipase B is activated in response to sterol removal and stimulates acrosome exocytosis in murine sperm. J Biol Chem 2013; 288:28104-15. [PMID: 23943622 DOI: 10.1074/jbc.m113.450981] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite a strict requirement for sterol removal for sperm to undergo acrosome exocytosis (AE), the mechanisms by which changes in membrane sterols are transduced into changes in sperm fertilization competence are poorly understood. We have previously shown in live murine sperm that the plasma membrane overlying the acrosome (APM) contains several types of microdomains known as membrane rafts. When characterizing the membrane raft-associated proteomes, we identified phospholipase B (PLB), a calcium-independent enzyme exhibiting multiple activities. Here, we show that sperm surface PLB is activated in response to sterol removal. Both biochemical activity assays and immunoblots of subcellular fractions of sperm incubated with the sterol acceptor 2-hydroxypropyl-β-cyclodextrin (2-OHCD) confirmed the release of an active PLB fragment. Specific protease inhibitors prevented PLB activation, revealing a mechanistic requirement for proteolytic cleavage. Competitive inhibitors of PLB reduced the ability of sperm both to undergo AE and to fertilize oocytes in vitro, suggesting an important role in fertilization. This was reinforced by our finding that incubation either with protein concentrate released from 2-OHCD-treated sperm or with recombinant PLB peptide corresponding to the catalytic domain was able to induce AE in the absence of other stimuli. Together, these results lead us to propose a novel mechanism by which sterol removal promotes membrane fusogenicity and AE, helping confer fertilization competence. Importantly, this mechanism provides a basis for the newly emerging model of AE in which membrane fusions occur during capacitation/transit through the cumulus, prior to any physical contact between the sperm and the oocyte's zona pellucida.
Collapse
Affiliation(s)
- Atsushi Asano
- From the Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, New York 14853
| | | | | |
Collapse
|
41
|
Li PL, Zhang Y. Cross talk between ceramide and redox signaling: implications for endothelial dysfunction and renal disease. Handb Exp Pharmacol 2013:171-97. [PMID: 23563657 DOI: 10.1007/978-3-7091-1511-4_9] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Recent studies have demonstrated that cross talk between ceramide and redox signaling modulates various cell activities and functions and contributes to the development of cardiovascular diseases and renal dysfunctions. Ceramide triggers the generation of reactive oxygen species (ROS) and increases oxidative stress in many mammalian cells and animal models. On the other hand, inhibition of ROS-generating enzymes or treatment of antioxidants impairs sphingomyelinase activation and ceramide production. As a mechanism, ceramide-enriched signaling platforms, special cell membrane rafts (MR) (formerly lipid rafts), provide an important microenvironment to mediate the cross talk of ceramide and redox signaling to exert a corresponding regulatory role on cell and organ functions. In this regard, activation of acid sphingomyelinase and generation of ceramide mediate the formation of ceramide-enriched membrane platforms, where transmembrane signals are transmitted or amplified through recruitment, clustering, assembling, or integration of various signaling molecules. A typical such signaling platform is MR redox signaling platform that is centered on ceramide production and aggregation leading to recruitment and assembling of NADPH oxidase to form an active complex in the cell plasma membrane. This redox signaling platform not only conducts redox signaling or regulation but also facilitates a feedforward amplification of both ceramide and redox signaling. In addition to this membrane MR redox signaling platform, the cross talk between ceramide and redox signaling may occur in other cell compartments. This book chapter focuses on the molecular mechanisms, spatial-temporal regulations, and implications of this cross talk between ceramide and redox signaling, which may provide novel insights into the understanding of both ceramide and redox signaling pathways.
Collapse
Affiliation(s)
- Pin-Lan Li
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | | |
Collapse
|
42
|
Cryptococcus neoformans phosphoinositide-dependent kinase 1 (PDK1) ortholog is required for stress tolerance and survival in murine phagocytes. EUKARYOTIC CELL 2012; 12:12-22. [PMID: 23087368 DOI: 10.1128/ec.00235-12] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cryptococcus neoformans PKH2-01 and PKH2-02 are orthologous to mammalian PDK1 kinase genes. Although orthologs of these kinases have been extensively studied in S. cerevisiae, little is known about their function in pathogenic fungi. In this study, we show that PKH2-02 but not PKH2-01 is required for C. neoformans to tolerate cell wall, oxidative, nitrosative, and antifungal drug stress. Deletion of PKH2-02 leads to decreased basal levels of Pkc1 activity and, consequently, reduced activation of the cell wall integrity mitogen-activated protein kinase (MAPK) pathway in response to cell wall, oxidative, and nitrosative stress. PKH2-02 function also is required for tolerance of fluconazole and amphotericin B, two important drugs for the treatment of cryptococcosis. Furthermore, OSU-03012, an inhibitor of human PDK1, is synergistic and fungicidal in combination with fluconazole. Using a Galleria mellonella model of low-temperature cryptococcosis, we found that PKH2-02 is also required for virulence in a temperature-independent manner. Consistent with the hypersensitivity of the pkh2-02Δ mutant to oxidative and nitrosative stress, this mutant shows decreased survival in murine phagocytes compared to that of wild-type (WT) cells. In addition, we show that deletion of PKH2-02 affects the interaction between C. neoformans and phagocytes by decreasing its ability to suppress production of tumor necrosis factor alpha (TNF-α) and reactive oxygen species. Taken together, our studies demonstrate that Pkh2-02-mediated signaling in C. neoformans is crucial for stress tolerance, host-pathogen interactions, and both temperature-dependent and -independent virulence.
Collapse
|
43
|
Mollinedo F. Lipid raft involvement in yeast cell growth and death. Front Oncol 2012; 2:140. [PMID: 23087902 PMCID: PMC3467458 DOI: 10.3389/fonc.2012.00140] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 09/25/2012] [Indexed: 01/04/2023] Open
Abstract
The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na+, K+, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.
Collapse
Affiliation(s)
- Faustino Mollinedo
- Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
44
|
Singh A, Wang H, Silva LC, Na C, Prieto M, Futerman AH, Luberto C, Del Poeta M. Methylation of glycosylated sphingolipid modulates membrane lipid topography and pathogenicity of Cryptococcus neoformans. Cell Microbiol 2012; 14:500-16. [PMID: 22151739 DOI: 10.1111/j.1462-5822.2011.01735.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In previous studies we showed that the replication of Cryptococcus neoformans in the lung environment is controlled by the glucosylceramide (GlcCer) synthase gene (GCS1), which synthesizes the membrane sphingolipid GlcCer from the C9-methyl ceramide. Here, we studied the effect of the mutation of the sphingolipid C9 methyltransferase gene (SMT1), which adds a methyl group to position 9 of the sphingosine backbone of ceramide. The C. neoformans Δsmt1 mutant does not make C9-methyl ceramide and, thus, any methylated GlcCer. However, it accumulates demethylated ceramide and demethylated GlcCer. The Δsmt1 mutant loses more than 80% of its virulence compared with the wild type and the reconstituted strain. Interestingly, growth of C. neoformans Δsmt1 in the lung was decreased and C. neoformans cells were contained in lung granulomas, which significantly reduced the rate of their dissemination to the brain reducing the onset of meningoencephalitis. Thus, using fluorescent spectroscopy and atomic force microscopy we compared the wild type and Δsmt1 mutant and found that the altered membrane composition and GlcCer structure affects fungal membrane rigidity, suggesting that specific sphingolipid structures are required for proper fungal membrane organization and integrity. Therefore, we propose that the physical structure of the plasma membrane imparted by specific classes of sphingolipids represents a critical factor for the ability of the fungus to establish virulence.
Collapse
Affiliation(s)
- Arpita Singh
- Biochemistry & Molecular Biology, Medical University of South Carolina, Charleston, South Carolina, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Tagliari L, Toledo MS, Lacerda TG, Suzuki E, Straus AH, Takahashi HK. Membrane microdomain components of Histoplasma capsulatum yeast forms, and their role in alveolar macrophage infectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1818:458-66. [PMID: 22197503 DOI: 10.1016/j.bbamem.2011.12.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Revised: 12/02/2011] [Accepted: 12/05/2011] [Indexed: 01/08/2023]
Abstract
Analysis of membrane lipids of Histoplasma capsulatum showed that ~40% of fungal ergosterol is present in membrane microdomain fractions resistant to treatment with non-ionic detergent at 4°C. Specific proteins were also enriched in these fractions, particularly Pma1p a yeast microdomain protein marker (a plasma membrane proton ATPase), a 30kDa laminin-binding protein, and a 50kDa protein recognized by anti-α5-integrin antibody. To better understand the role of ergosterol-dependent microdomains in fungal biology and pathogenicity, H. capsulatum yeast forms were treated with a sterol chelator, methyl-beta-cyclodextrin (mβCD). Removal of ergosterol by mβCD incubation led to disorganization of ergosterol-enriched microdomains containing Pma1p and the 30kDa protein, resulting in displacement of these proteins from detergent-insoluble to -soluble fractions in sucrose density gradient ultracentrifugation. mβCD treatment did not displace/remove the 50kDa α5-integrin-like protein nor had effect on the organization of glycosphingolipids present in the detergent-resistant fractions. Ergosterol-enriched membrane microdomains were also shown to be important for infectivity of alveolar macrophages; after treatment of yeasts with mβCD, macrophage infectivity was reduced by 45%. These findings suggest the existence of two populations of detergent-resistant membrane microdomains in H. capsulatum yeast forms: (i) ergosterol-independent microdomains rich in integrin-like proteins and glycosphingolipids, possibly involved in signal transduction; (ii) ergosterol-enriched microdomains containing Pma1p and the 30kDa laminin-binding protein; ergosterol and/or the 30kDa protein may be involved in macrophage infectivity.
Collapse
Affiliation(s)
- Loriane Tagliari
- Department of Biochemistry, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | | | | | | | |
Collapse
|
46
|
McQuiston TJ, Williamson PR. Paradoxical roles of alveolar macrophages in the host response to Cryptococcus neoformans. J Infect Chemother 2011; 18:1-9. [PMID: 22045161 DOI: 10.1007/s10156-011-0306-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2011] [Indexed: 12/16/2022]
Abstract
Cryptococcus neoformans (Cn) is a fungal pathogen that is a serious health threat to immunocompromised individuals. Upon environmental exposure, infectious fungal propagules are inhaled into the host's lungs. The anticryptococcal actions of alveolar macrophages (AM), the predominant host phagocyte of the innate immune system in the lungs, are fundamental in determining whether containment and clearance of the pathogen occurs by the development of an adapted immune response or whether infection is established and progresses to disease. However, the fungus is also capable of surviving the antimicrobial actions of AM and exploits these host phagocytes to establish infection and exacerbate disease. In addition, there is evidence suggesting that cryptococcosis may occur following reactivation of latent cryptococcal infection. Currently, the role of AM and the fungal factors contributing to latent cryptococcosis are unknown. This review examines the AM-Cn interaction and how it affects the development of pulmonary disease with a focus on host and pathogen factors enabling latency to occur.
Collapse
Affiliation(s)
- Travis J McQuiston
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | |
Collapse
|
47
|
Lattif AA, Mukherjee PK, Chandra J, Roth MR, Welti R, Rouabhia M, Ghannoum MA. Lipidomics of Candida albicans biofilms reveals phase-dependent production of phospholipid molecular classes and role for lipid rafts in biofilm formation. MICROBIOLOGY (READING, ENGLAND) 2011; 157:3232-3242. [PMID: 21903752 PMCID: PMC3352276 DOI: 10.1099/mic.0.051086-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 08/22/2011] [Accepted: 09/01/2011] [Indexed: 01/08/2023]
Abstract
Candida albicans-associated bloodstream infections are linked to the ability of this yeast to form biofilms. In this study, we used lipidomics to compare the lipid profiles of C. albicans biofilms and planktonic cells, in early and mature developmental phases. Our results showed that significant differences exist in lipid composition in both developmental phases. Biofilms contained higher levels of phospholipid and sphingolipids than planktonic cells (nmol per g biomass, P<0.05 for all comparisons). In the early phase, levels of lipid in most classes were significantly higher in biofilms compared to planktonic cells (P≤0.05). The ratio of phosphatidylcholine to phosphatidylethanolamine was lower in biofilms compared to planktonic cells in both early (1.17 vs 2.52, P≤0.001) and late (2.34 vs 3.81, P≤0.001) developmental phases. The unsaturation index of phospholipids decreased with time, with this effect being particularly strong for biofilms. Inhibition of the biosynthetic pathway for sphingolipid [mannosyl diinositolphosphoryl ceramide, M(IP)₂C] by myriocin or aureobasidin A, and disruption of the gene encoding inositolphosphotransferase (Ipt1p), abrogated the ability of C. albicans to form biofilms. The differences in lipid profiles between biofilms and planktonic Candida cells may have important implications for the biology and antifungal resistance of biofilms.
Collapse
Affiliation(s)
- Ali Abdul Lattif
- Center for Medical Mycology, University Hospitals Case Medical Center, and Department of Dermatology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106-502, USA
| | - Pranab K. Mukherjee
- Center for Medical Mycology, University Hospitals Case Medical Center, and Department of Dermatology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106-502, USA
| | - Jyotsna Chandra
- Center for Medical Mycology, University Hospitals Case Medical Center, and Department of Dermatology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106-502, USA
| | - Mary R. Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, Manhattan, KS 66506-4901, USA
| | - Mahmoud Rouabhia
- Groupe de Recherche en Écologie Buccale, Faculté de Médecine Dentaire, Université Laval, Québec City, Québec, Canada
| | - Mahmoud A. Ghannoum
- Center for Medical Mycology, University Hospitals Case Medical Center, and Department of Dermatology, Case Western Reserve University, 11100 Euclid Ave, Cleveland, OH 44106-502, USA
| |
Collapse
|
48
|
Nimrichter L, Rodrigues ML. Fungal glucosylceramides: from structural components to biologically active targets of new antimicrobials. Front Microbiol 2011; 2:212. [PMID: 22025918 PMCID: PMC3198225 DOI: 10.3389/fmicb.2011.00212] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 09/30/2011] [Indexed: 01/09/2023] Open
Abstract
The first work reporting synthesis of glucosylceramide (cerebrin, GlcCer) by yeasts was published in 1930. During approximately 70 years members of this class of glycosphingolipids (GSL) were considered merely structural components of plasma membrane in fungi. However, in the last decade GlcCer was reported to be involved with fungal growth, differentiation, virulence, immunogenicity, and lipid raft architecture in at least two human pathogens. Fungal GlcCer are structurally distinct from their mammalian counterparts and enriched at the cell wall, which makes this molecule an effective target for antifungal activity of specific ligands (peptides and antibodies to GlcCer). Therefore, GSL are promising targets for new drugs to combat fungal diseases. This review discusses the most recent information on biosynthesis and role of GlcCer in fungal pathogens.
Collapse
Affiliation(s)
- Leonardo Nimrichter
- Laboratório de Estudos Integrados em Bioquímica Microbiana, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro Rio de Janeiro, Brazil
| | | |
Collapse
|
49
|
Unravelling secretion in Cryptococcus neoformans: more than one way to skin a cat. Mycopathologia 2011; 173:407-18. [PMID: 21898146 DOI: 10.1007/s11046-011-9468-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 08/22/2011] [Indexed: 01/10/2023]
Abstract
Secretion pathways in fungi are essential for the maintenance of cell wall architecture and for the export of a number of virulence factors. In the fungal pathogen, Cryptococcus neoformans, much evidence supports the existence of more than one route taken by secreted molecules to reach the cell periphery and extracellular space, and a significant degree of crosstalk between conventional and non-conventional secretion routes. The need for such complexity may be due to differences in the nature of the exported cargo, the spatial and temporal requirements for constitutive and non-constitutive protein secretion, and/or as a means of compensating for the extra burden on the secretion machinery imposed by the elaboration of the polysaccharide capsule. This review focuses on the role of specific components of the C. neoformans secretion machinery in protein and/or polysaccharide export, including Sec4, Sec6, Sec14, Golgi reassembly and stacking protein and extracellular exosome-like vesicles. We also address what is known about traffic of the lipid, glucosylceramide, a target of therapeutic antibodies and an important regulator of C. neoformans pathogenicity, and the role of signalling pathways in the regulation of secretion.
Collapse
|
50
|
Jin S, Zhou F, Katirai F, Li PL. Lipid raft redox signaling: molecular mechanisms in health and disease. Antioxid Redox Signal 2011; 15:1043-83. [PMID: 21294649 PMCID: PMC3135227 DOI: 10.1089/ars.2010.3619] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Lipid rafts, the sphingolipid and cholesterol-enriched membrane microdomains, are able to form different membrane macrodomains or platforms upon stimulations, including redox signaling platforms, which serve as a critical signaling mechanism to mediate or regulate cellular activities or functions. In particular, this raft platform formation provides an important driving force for the assembling of NADPH oxidase subunits and the recruitment of other related receptors, effectors, and regulatory components, resulting, in turn, in the activation of NADPH oxidase and downstream redox regulation of cell functions. This comprehensive review attempts to summarize all basic and advanced information about the formation, regulation, and functions of lipid raft redox signaling platforms as well as their physiological and pathophysiological relevance. Several molecular mechanisms involving the formation of lipid raft redox signaling platforms and the related therapeutic strategies targeting them are discussed. It is hoped that all information and thoughts included in this review could provide more comprehensive insights into the understanding of lipid raft redox signaling, in particular, of their molecular mechanisms, spatial-temporal regulations, and physiological, pathophysiological relevances to human health and diseases.
Collapse
Affiliation(s)
- Si Jin
- Department of Pharmacology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | | | | | | |
Collapse
|