1
|
Herron ICT, Laws TR, Nelson M. Marmosets as models of infectious diseases. Front Cell Infect Microbiol 2024; 14:1340017. [PMID: 38465237 PMCID: PMC10921895 DOI: 10.3389/fcimb.2024.1340017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/29/2024] [Indexed: 03/12/2024] Open
Abstract
Animal models of infectious disease often serve a crucial purpose in obtaining licensure of therapeutics and medical countermeasures, particularly in situations where human trials are not feasible, i.e., for those diseases that occur infrequently in the human population. The common marmoset (Callithrix jacchus), a Neotropical new-world (platyrrhines) non-human primate, has gained increasing attention as an animal model for a number of diseases given its small size, availability and evolutionary proximity to humans. This review aims to (i) discuss the pros and cons of the common marmoset as an animal model by providing a brief snapshot of how marmosets are currently utilized in biomedical research, (ii) summarize and evaluate relevant aspects of the marmoset immune system to the study of infectious diseases, (iii) provide a historical backdrop, outlining the significance of infectious diseases and the importance of developing reliable animal models to test novel therapeutics, and (iv) provide a summary of infectious diseases for which a marmoset model exists, followed by an in-depth discussion of the marmoset models of two studied bacterial infectious diseases (tularemia and melioidosis) and one viral infectious disease (viral hepatitis C).
Collapse
Affiliation(s)
- Ian C. T. Herron
- CBR Division, Defence Science and Technology Laboratory (Dstl), Salisbury, United Kingdom
| | | | | |
Collapse
|
2
|
Isidro J, Escudero R, Luque-Larena JJ, Pinto M, Borges V, González-Martín-Niño R, Duarte S, Vieira L, Mougeot F, Vidal D, Herrera-Rodríguez D, Rodríguez-Pastor R, Herrero-Cófreces S, Jubete-Tazo F, Gomes JP, Lopes de Carvalho I. Strengthening the genomic surveillance of Francisella tularensis by using culture-free whole-genome sequencing from biological samples. Front Microbiol 2024; 14:1277468. [PMID: 38249473 PMCID: PMC10797068 DOI: 10.3389/fmicb.2023.1277468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Accepted: 11/23/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Francisella tularensis is a highly infectious bacterium that causes the zoonotic disease tularemia. The development of genotyping methods, especially those based on whole-genome sequencing (WGS), has recently increased the knowledge on the epidemiology of this disease. However, due to the difficulties associated with the growth and isolation of this fastidious pathogen in culture, the availability of strains and subsequently WGS data is still limited. Methods To surpass these constraints, we aimed to implement a culture-free approach to capture and sequence F. tularensis genomes directly from complex samples. Biological samples obtained from 50 common voles and 13 Iberian hares collected in Spain were confirmed as positive for F. tularensis subsp. holarctica and subjected to a WGS target capture and enrichment protocol, using RNA oligonucleotide baits designed to cover F. tularensis genomic diversity. Results We obtained full genome sequences of F. tularensis from 13 animals (20.6%), two of which had mixed infections with distinct genotypes, and achieved a higher success rate when compared with culture-dependent WGS (only successful for two animals). The new genomes belonged to different clades commonly identified in Europe (B.49, B.51 and B.262) and subclades. Despite being phylogenetically closely related to other genomes from Spain, the detected clusters were often found in other countries. A comprehensive phylogenetic analysis, integrating 599 F. tularensis subsp. holarctica genomes, showed that most (sub)clades are found in both humans and animals and that closely related strains are found in different, and often geographically distant, countries. Discussion Overall, we show that the implemented culture-free WGS methodology yields timely, complete and high-quality genomic data of F. tularensis, being a highly valuable approach to promote and potentiate the genomic surveillance of F. tularensis and ultimately increase the knowledge on the genomics, ecology and epidemiology of this highly infectious pathogen.
Collapse
Affiliation(s)
- Joana Isidro
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Raquel Escudero
- Reference and Research Laboratory on Special Pathogens, National Centre for Microbiology (CNM), Carlos II Health Institute (ISCIII), Madrid, Spain
| | - Juan José Luque-Larena
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - Miguel Pinto
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Vítor Borges
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Rosa González-Martín-Niño
- Reference and Research Laboratory on Special Pathogens, National Centre for Microbiology (CNM), Carlos II Health Institute (ISCIII), Madrid, Spain
| | - Sílvia Duarte
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Luís Vieira
- Technology and Innovation Unit, Department of Human Genetics, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - François Mougeot
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ciudad Real, Spain
| | - Dolors Vidal
- Área de Microbiología, Facultad de Medicina, Universidad de Catilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Daniel Herrera-Rodríguez
- Instituto de Investigación en Recursos Cinegéticos (IREC-CSIC, UCLM, JCCM), Ciudad Real, Spain
- Área de Microbiología, Facultad de Medicina, Universidad de Catilla-La Mancha (UCLM), Ciudad Real, Spain
| | - Ruth Rodríguez-Pastor
- Department of Parasitology, Veterinary Faculty, University of Zaragoza, Zaragoza, Spain, Zaragoza, Spain
- Departamento de Parasitología, Facultad de Veterinaria, Universidad de Zaragoza, Instituto Agroalimentario de Aragón-IA2 (Universidad de Zaragoza-CITA), Zaragoza, Spain
| | - Silvia Herrero-Cófreces
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - Fernando Jubete-Tazo
- Departamento de Ciencias Agroforestales, Instituto Universitario de Investigación en Gestión Forestal Sostenible (iuFOR), E.T.S. Ingenierías Agrarias, Universidad de Valladolid, Palencia, Spain
| | - João Paulo Gomes
- Genomics and Bioinformatics Unit, National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
- Veterinary and Animal Research Center (CECAV), Faculty of Veterinary Medicine, Lusófona University, Lisbon, Portugal
| | - Isabel Lopes de Carvalho
- Emergency and Biopreparedness Unit, National Institute of Health Doutor Ricardo Jorge, Lisbon, Portugal
| |
Collapse
|
3
|
Linde J, Homeier-Bachmann T, Dangel A, Riehm JM, Sundell D, Öhrman C, Forsman M, Tomaso H. Genotyping of Francisella tularensis subsp. holarctica from Hares in Germany. Microorganisms 2020; 8:microorganisms8121932. [PMID: 33291395 PMCID: PMC7761992 DOI: 10.3390/microorganisms8121932] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 02/04/2023] Open
Abstract
Francisella tularensis is the causative agent of the zoonotic disease tularemia. In Germany, most human infections are caused by contact with infected hares. The aim of this study was to characterize Francisella tularensis subsp. holarctica strains isolated from hares in Germany and to develop bioinformatics tools to analyze their genetic relatedness. In total, 257 German isolates-obtained mainly from hares (n = 233), other vertebrate animals, and ticks, but also from humans (n = 3)-were analyzed within this study. Publically available sequence data from 49 isolates were used to put our isolates into an epidemiological context and to compare isolates from natural foci and humans. Whole-genome sequences were analyzed using core-genome Multi-Locus-Sequence-Typing, canonical Single Nucleotide Polymorphism (SNP) typing and whole-genome SNP typing. An overall conformity of genotype clustering between the typing methods was found, albeit with a lower resolution for canonical single SNP typing. The subclade distribution, both on local and national levels, among strains from humans and hares was similar, suggesting circulation of the same genotypes both in animals and humans. Whilst close to identical isolates of the same subclade were found distributed over large areas, small geographical foci often harbored members of different subclades. In conclusion, although genomic high-resolution typing was shown to be robust, reproducible and allowed the identification of highly closely related strains, genetic profiling alone is not always conclusive for epidemiological linkage of F. tularensis strains.
Collapse
Affiliation(s)
- Jörg Linde
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
- Correspondence: ; Tel.: +49-3641-804-2320
| | - Timo Homeier-Bachmann
- Institute of Epidemiology, Friedrich-Loeffler-Institut, 17493 Greifswald-Insel Riems, Germany;
| | - Alexandra Dangel
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, 85764 Oberschleißheim, Germany; (A.D.); (J.M.R.)
| | - Julia M. Riehm
- Bayerisches Landesamt für Gesundheit und Lebensmittelsicherheit, 85764 Oberschleißheim, Germany; (A.D.); (J.M.R.)
| | - David Sundell
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), SE-901 82 Umeå, Sweden; (D.S.); (C.Ö.); (M.F.)
| | - Caroline Öhrman
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), SE-901 82 Umeå, Sweden; (D.S.); (C.Ö.); (M.F.)
| | - Mats Forsman
- CBRN Defence and Security, Swedish Defence Research Agency (FOI), SE-901 82 Umeå, Sweden; (D.S.); (C.Ö.); (M.F.)
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, 07743 Jena, Germany;
| |
Collapse
|
4
|
He L, Luo D, Yang F, Li C, Zhang X, Deng H, Zhang JR. Multiple domains of bacterial and human Lon proteases define substrate selectivity. Emerg Microbes Infect 2018; 7:149. [PMID: 30120231 PMCID: PMC6098112 DOI: 10.1038/s41426-018-0148-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Revised: 06/16/2018] [Accepted: 06/23/2018] [Indexed: 02/05/2023]
Abstract
The Lon protease selectively degrades abnormal proteins or certain normal proteins in response to environmental and cellular conditions in many prokaryotic and eukaryotic organisms. However, the mechanism(s) behind the substrate selection of normal proteins remains largely unknown. In this study, we identified 10 new substrates of F. tularensis Lon from a total of 21 candidate substrates identified in our previous work, the largest number of novel Lon substrates from a single study. Cross-species degradation of these and other known Lon substrates revealed that human Lon is unable to degrade many bacterial Lon substrates, suggestive of a “organism-adapted” substrate selection mechanism for the natural Lon variants. However, individually replacing the N, A, and P domains of human Lon with the counterparts of bacterial Lon did not enable the human protease to degrade the same bacterial Lon substrates. This result showed that the “organism-adapted” substrate selection depends on multiple domains of the Lon proteases. Further in vitro proteolysis and mass spectrometry analysis revealed a similar substrate cleavage pattern between the bacterial and human Lon variants, which was exemplified by predominant representation of leucine, alanine, and other hydrophobic amino acids at the P(−1) site within the substrates. These observations suggest that the Lon proteases select their substrates at least in part by fine structural matching with the proteins in the same organisms.
Collapse
Affiliation(s)
- Lihong He
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Dongyang Luo
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Fan Yang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Chunhao Li
- Philip Research Institute for Oral Health, School of Dentistry, Virginia Commonwealth University, Richmond, VA, USA
| | - Xuegong Zhang
- MOE Key Laboratory of Bioinformatics, Bioinformatics Division, TNLIST and Department of Automation, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, 10084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China. .,Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, China.
| |
Collapse
|
5
|
Busch A, Thomas P, Zuchantke E, Brendebach H, Neubert K, Gruetzke J, Al Dahouk S, Peters M, Hotzel H, Neubauer H, Tomaso H. Revisiting Francisella tularensis subsp. holarctica, Causative Agent of Tularemia in Germany With Bioinformatics: New Insights in Genome Structure, DNA Methylation and Comparative Phylogenetic Analysis. Front Microbiol 2018; 9:344. [PMID: 29593661 PMCID: PMC5859110 DOI: 10.3389/fmicb.2018.00344] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 02/12/2018] [Indexed: 12/30/2022] Open
Abstract
Francisella (F.) tularensis is a highly virulent, Gram-negative bacterial pathogen and the causative agent of the zoonotic disease tularemia. Here, we generated, analyzed and characterized a high quality circular genome sequence of the F. tularensis subsp. holarctica strain 12T0050 that caused fatal tularemia in a hare. Besides the genomic structure, we focused on the analysis of oriC, unique to the Francisella genus and regulating replication in and outside hosts and the first report on genomic DNA methylation of a Francisella strain. The high quality genome was used to establish and evaluate a diagnostic whole genome sequencing pipeline. A genotyping strategy for F. tularensis was developed using various bioinformatics tools for genotyping. Additionally, whole genome sequences of F. tularensis subsp. holarctica isolates isolated in the years 2008–2015 in Germany were generated. A phylogenetic analysis allowed to determine the genetic relatedness of these isolates and confirmed the highly conserved nature of F. tularensis subsp. holarctica.
Collapse
Affiliation(s)
- Anne Busch
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Prasad Thomas
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Eric Zuchantke
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Holger Brendebach
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Kerstin Neubert
- Algorithmic Bioinformatics, Department of Mathematics and Computer Science, Institute of Computer Science, Freie Universität Berlin, Berlin, Germany
| | - Josephine Gruetzke
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Sascha Al Dahouk
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Martin Peters
- Standort Arnsberg, Chemisches und Veterinäruntersuchungsamt Westfalen, Arnsberg, Germany
| | - Helmut Hotzel
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Heinrich Neubauer
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses, Friedrich-Loeffler-Institut, Jena, Germany
| |
Collapse
|
6
|
Kreizinger Z, Erdélyi K, Felde O, Fabbi M, Sulyok KM, Magyar T, Gyuranecz M. Comparison of virulence of Francisella tularensis ssp. holarctica genotypes B.12 and B.FTNF002-00. BMC Vet Res 2017; 13:46. [PMID: 28183313 PMCID: PMC5301346 DOI: 10.1186/s12917-017-0968-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Accepted: 02/07/2017] [Indexed: 11/10/2022] Open
Abstract
Background Two main genetic groups (B.12 and B.FTNF002-00) of Francisella tularensis ssp. holarctica are endemic in Europe. The B.FTNF002-00 group proved to be dominant in Western European countries, while strains of the B.12 group were isolated mainly in Northern, Central and Eastern Europe. The clinical course of tularemia in the European brown hare (Lepus europaeus) also shows distinct patterns according to the geographical area. Acute course of the disease is observed in hares in Western European countries, while signs of sub-acute or chronic infection are more frequently detected in the eastern part of the continent. The aim of the present study was to examine whether there is any difference in the virulence of the strains belonging to the B.FTNF002-00 and B.12 genetic clades. Results Experimental infection of Fischer 344 rats was performed by intra-peritoneal injection of three dilutions of a Hungarian (B.12 genotype) and an Italian (B.FTNF002-00 genotype) F. tularensis ssp. holarctica strain. Moderate difference was observed in the virulence of the two genotypes. Significant differences were observed in total weight loss values and scores of clinical signs between the two genotypes with more rats succumbing to tularemia in groups infected with the B.FTNF002-00 genotype. Conclusions Results of the experimental infection are consistent with previous clinical observations and pathological studies suggesting that F. tularensis ssp. holarctica genotype B.FTNF002-00 has higher pathogenic potential than the B.12 genotype. Electronic supplementary material The online version of this article (doi:10.1186/s12917-017-0968-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zsuzsa Kreizinger
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary
| | - Károly Erdélyi
- Veterinary Diagnostic Directorate, National Food Chain Safety Office, P.O. Box 21581, Budapest, Hungary
| | - Orsolya Felde
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary
| | - Massimo Fabbi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna Bruno Ubertini, National Reference Laboratory for Tularemia, Pavia, 27100, Italy
| | - Kinga M Sulyok
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary
| | - Tibor Magyar
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary
| | - Miklós Gyuranecz
- Institute for Veterinary Medical Research, Centre for Agricultural Research, Hungarian Academy of Sciences, Hungária körút 21, H-1143, Budapest, Hungary.
| |
Collapse
|
7
|
Whole-Genome Relationships among Francisella Bacteria of Diverse Origins Define New Species and Provide Specific Regions for Detection. Appl Environ Microbiol 2017; 83:AEM.02589-16. [PMID: 27881415 DOI: 10.1128/aem.02589-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/16/2016] [Indexed: 02/06/2023] Open
Abstract
Francisella tularensis is a highly virulent zoonotic pathogen that causes tularemia and, because of weaponization efforts in past world wars, is considered a tier 1 biothreat agent. Detection and surveillance of F. tularensis may be confounded by the presence of uncharacterized, closely related organisms. Through DNA-based diagnostics and environmental surveys, novel clinical and environmental Francisella isolates have been obtained in recent years. Here we present 7 new Francisella genomes and a comparison of their characteristics to each other and to 24 publicly available genomes as well as a comparative analysis of 16S rRNA and sdhA genes from over 90 Francisella strains. Delineation of new species in bacteria is challenging, especially when isolates having very close genomic characteristics exhibit different physiological features-for example, when some are virulent pathogens in humans and animals while others are nonpathogenic or are opportunistic pathogens. Species resolution within Francisella varies with analyses of single genes, multiple gene or protein sets, or whole-genome comparisons of nucleic acid and amino acid sequences. Analyses focusing on single genes (16S rRNA, sdhA), multiple gene sets (virulence genes, lipopolysaccharide [LPS] biosynthesis genes, pathogenicity island), and whole-genome comparisons (nucleotide and protein) gave congruent results, but with different levels of discrimination confidence. We designate four new species within the genus; Francisella opportunistica sp. nov. (MA06-7296), Francisella salina sp. nov. (TX07-7308), Francisella uliginis sp. nov. (TX07-7310), and Francisella frigiditurris sp. nov. (CA97-1460). This study provides a robust comparative framework to discern species and virulence features of newly detected Francisella bacteria. IMPORTANCE DNA-based detection and sequencing methods have identified thousands of new bacteria in the human body and the environment. In most cases, there are no cultured isolates that correspond to these sequences. While DNA-based approaches are highly sensitive, accurately assigning species is difficult without known near relatives for comparison. This ambiguity poses challenges for clinical cases, disease epidemics, and environmental surveillance, for which response times must be short. Many new Francisella isolates have been identified globally. However, their species designations and potential for causing human disease remain ambiguous. Through detailed genome comparisons, we identified features that differentiate F. tularensis from clinical and environmental Francisella isolates and provide a knowledge base for future comparison of Francisella organisms identified in clinical samples or environmental surveys.
Collapse
|
8
|
Dwibedi C, Birdsell D, Lärkeryd A, Myrtennäs K, Öhrman C, Nilsson E, Karlsson E, Hochhalter C, Rivera A, Maltinsky S, Bayer B, Keim P, Scholz HC, Tomaso H, Wittwer M, Beuret C, Schuerch N, Pilo P, Hernández Pérez M, Rodriguez-Lazaro D, Escudero R, Anda P, Forsman M, Wagner DM, Larsson P, Johansson A. Long-range dispersal moved Francisella tularensis into Western Europe from the East. Microb Genom 2016; 2:e000100. [PMID: 28348839 PMCID: PMC5359409 DOI: 10.1099/mgen.0.000100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 11/22/2016] [Indexed: 01/31/2023] Open
Abstract
For many infections transmitting to humans from reservoirs in nature, disease dispersal patterns over space and time are largely unknown. Here, a reversed genomics approach helped us understand disease dispersal and yielded insight into evolution and biological properties of Francisella tularensis, the bacterium causing tularemia. We whole-genome sequenced 67 strains and characterized by single-nucleotide polymorphism assays 138 strains, collected from individuals infected 1947-2012 across Western Europe. We used the data for phylogenetic, population genetic and geographical network analyses. All strains (n=205) belonged to a monophyletic population of recent ancestry not found outside Western Europe. Most strains (n=195) throughout the study area were assigned to a star-like phylogenetic pattern indicating that colonization of Western Europe occurred via clonal expansion. In the East of the study area, strains were more diverse, consistent with a founder population spreading from east to west. The relationship of genetic and geographic distance within the F. tularensis population was complex and indicated multiple long-distance dispersal events. Mutation rate estimates based on year of isolation indicated null rates; in outbreak hotspots only, there was a rate of 0.4 mutations/genome/year. Patterns of nucleotide substitution showed marked AT mutational bias suggestive of genetic drift. These results demonstrate that tularemia has moved from east to west in Europe and that F. tularensis has a biology characterized by long-range geographical dispersal events and mostly slow, but variable, replication rates. The results indicate that mutation-driven evolution, a resting survival phase, genetic drift and long-distance geographical dispersal events have interacted to generate genetic diversity within this species.
Collapse
Affiliation(s)
- Chinmay Dwibedi
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Division of CBRN Security and Defence, Swedish Defense Research Agency, Umeå, Sweden
| | - Dawn Birdsell
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff AZ, USA
| | - Adrian Lärkeryd
- Division of CBRN Security and Defence, Swedish Defense Research Agency, Umeå, Sweden
| | - Kerstin Myrtennäs
- Division of CBRN Security and Defence, Swedish Defense Research Agency, Umeå, Sweden
| | - Caroline Öhrman
- Division of CBRN Security and Defence, Swedish Defense Research Agency, Umeå, Sweden
| | - Elin Nilsson
- Division of CBRN Security and Defence, Swedish Defense Research Agency, Umeå, Sweden
| | - Edvin Karlsson
- Division of CBRN Security and Defence, Swedish Defense Research Agency, Umeå, Sweden
| | - Christian Hochhalter
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff AZ, USA
| | - Andrew Rivera
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff AZ, USA
| | - Sara Maltinsky
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff AZ, USA
| | - Brittany Bayer
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff AZ, USA
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff AZ, USA
- Translational Genomics Research Institute North, Flagstaff AZ, USA
| | | | - Herbert Tomaso
- Institute of Bacterial Infections and Zoonoses Friedrich-Loeffler, Institut Federal Research Institute for Animal Health, Jena, Germany
| | - Matthias Wittwer
- Biology Division, Spietz Laboratory, Federal Office for Civil Protection, Spietz, Switzerland
| | - Christian Beuret
- Biology Division, Spietz Laboratory, Federal Office for Civil Protection, Spietz, Switzerland
| | - Nadia Schuerch
- Biology Division, Spietz Laboratory, Federal Office for Civil Protection, Spietz, Switzerland
| | - Paola Pilo
- Institute of Veterinary Bacteriology, University of Bern, Bern, Switzerland
| | - Marta Hernández Pérez
- Laboratory of Molecular Biology and Microbiology, Instituto Tecnológico Agrario de Castilla y León, Valladolid, Spain
- Departamento de Ingeniería Agrícola y Forestal, Universidad de Valladolid, Palencia, Spain
| | | | - Raquel Escudero
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Pedro Anda
- Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Mats Forsman
- Division of CBRN Security and Defence, Swedish Defense Research Agency, Umeå, Sweden
| | - David M. Wagner
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff AZ, USA
| | - Pär Larsson
- Division of CBRN Security and Defence, Swedish Defense Research Agency, Umeå, Sweden
| | - Anders Johansson
- Department of Clinical Microbiology and the Laboratory for Molecular Infection Medicine Sweden, Umeå University, Umeå, Sweden
- Correspondence Anders Johansson ()
| |
Collapse
|
9
|
Gunnell MK, Robison RA, Adams BJ. Natural Selection in Virulence Genes of Francisella tularensis. J Mol Evol 2016; 82:264-78. [PMID: 27177502 DOI: 10.1007/s00239-016-9743-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Accepted: 04/29/2016] [Indexed: 02/06/2023]
Abstract
A fundamental tenet of evolution is that alleles that are under negative selection are often deleterious and confer no evolutionary advantage. Negatively selected alleles are removed from the gene pool and are eventually extinguished from the population. Conversely, alleles under positive selection do confer an evolutionary advantage and lead to an increase in the overall fitness of the organism. These alleles increase in frequency until they eventually become fixed in the population. Francisella tularensis is a zoonotic pathogen and a potential biothreat agent. The most virulent type of F. tularensis, Type A, is distributed across North America with Type A.I occurring mainly in the east and Type A.II appearing mainly in the west. F. tularensis is thought to be a genome in decay (losing genes) because of the relatively large number of pseudogenes present in its genome. We hypothesized that the observed frequency of gene loss/pseudogenes may be an artifact of evolution in response to a changing environment, and that genes involved in virulence should be under strong positive selection. To test this hypothesis, we sequenced and compared whole genomes of Type A.I and A.II isolates. We analyzed a subset of virulence and housekeeping genes from several F. tularensis subspecies genomes to ascertain the presence and extent of positive selection. Eleven previously identified virulence genes were screened for positive selection along with 10 housekeeping genes. Analyses of selection yielded one housekeeping gene and 7 virulence genes which showed significant evidence of positive selection at loci implicated in cell surface structures and membrane proteins, metabolism and biosynthesis, transcription, translation and cell separation, and substrate binding and transport. Our results suggest that while the loss of functional genes through disuse could be accelerated by negative selection, the genome decay in Francisella could also be the byproduct of adaptive evolution driven by complex interactions between host, pathogen, and thier environment, as evidenced by several of its virulence genes which are undergoing strong, positive selection.
Collapse
Affiliation(s)
- Mark K Gunnell
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA. .,Microbiology Branch, Life Sciences Division, Dugway Proving Ground, Dugway, UT, 84022, USA.
| | - Richard A Robison
- Department of Microbiology and Molecular Biology, Brigham Young University, Provo, UT, 84602, USA
| | - Byron J Adams
- Department of Biology, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
10
|
Lamont EA, Wang P, Enomoto S, Borewicz K, Abdallah A, Isaacson RE, Sreevatsan S. A combined enrichment and aptamer pulldown assay for Francisella tularensis detection in food and environmental matrices. PLoS One 2014; 9:e114622. [PMID: 25536105 PMCID: PMC4275185 DOI: 10.1371/journal.pone.0114622] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 11/11/2014] [Indexed: 11/18/2022] Open
Abstract
Francisella tularensis, a Gram-negative bacterium and causative agent of tularemia, is categorized as a Class A select agent by the Centers for Disease Control and Prevention due to its ease of dissemination and ability to cause disease. Oropharyngeal and gastrointestinal tularemia may occur due to ingestion of contaminated food and water. Despite the concern to public health, little research is focused on F. tularensis detection in food and environmental matrices. Current diagnostics rely on host responses and amplification of F. tularensis genetic elements via Polymerase Chain Reaction; however, both tools are limited by development of an antibody response and limit of detection, respectively. During our investigation to develop an improved culture medium to aid F. tularensis diagnostics, we found enhanced F. tularensis growth using the spent culture filtrate. Addition of the spent culture filtrate allowed for increased detection of F. tularensis in mixed cultures of food and environmental matrices. Ultraperformance liquid chromatography (UPLC)/MS analysis identified several unique chemicals within the spent culture supernatant of which carnosine had a matching m/z ratio. Addition of 0.625 mg/mL of carnosine to conventional F. tularensis medium increased the growth of F. tularensis at low inoculums. In order to further enrich F. tularensis cells, we developed a DNA aptamer cocktail to physically separate F. tularensis from other bacteria present in food and environmental matrices. The combined enrichment steps resulted in a detection range of 1-106 CFU/mL (starting inoculums) in both soil and lettuce backgrounds. We propose that the two-step enrichment process may be utilized for easy field diagnostics and subtyping of suspected F. tularensis contamination as well as a tool to aid in basic research of F. tularensis ecology.
Collapse
Affiliation(s)
- Elise A. Lamont
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Ping Wang
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Shinichiro Enomoto
- Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Klaudyna Borewicz
- Molecular Ecology Group, Wageningen University, Dreijenplen 10, 6703HB, Wageningen, Netherlands
| | - Ahmed Abdallah
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Richard E. Isaacson
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
| | - Srinand Sreevatsan
- Department of Veterinary Population Medicine, University of Minnesota, St. Paul, Minnesota, United States of America
- Department of Veterinary Biomedical Sciences, University of Minnesota, St. Paul, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
11
|
Kingry LC, Petersen JM. Comparative review of Francisella tularensis and Francisella novicida. Front Cell Infect Microbiol 2014; 4:35. [PMID: 24660164 PMCID: PMC3952080 DOI: 10.3389/fcimb.2014.00035] [Citation(s) in RCA: 152] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/22/2014] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is the causative agent of the acute disease tularemia. Due to its extreme infectivity and ability to cause disease upon inhalation, F. tularensis has been classified as a biothreat agent. Two subspecies of F. tularensis, tularensis and holarctica, are responsible for tularemia in humans. In comparison, the closely related species F. novicida very rarely causes human illness and cases that do occur are associated with patients who are immune compromised or have other underlying health problems. Virulence between F. tularensis and F. novicida also differs in laboratory animals. Despite this varying capacity to cause disease, the two species share ~97% nucleotide identity, with F. novicida commonly used as a laboratory surrogate for F. tularensis. As the F. novicida U112 strain is exempt from U.S. select agent regulations, research studies can be carried out in non-registered laboratories lacking specialized containment facilities required for work with virulent F. tularensis strains. This review is designed to highlight phenotypic (clinical, ecological, virulence, and pathogenic) and genomic differences between F. tularensis and F. novicida that warrant maintaining F. novicida and F. tularensis as separate species. Standardized nomenclature for F. novicida is critical for accurate interpretation of experimental results, limiting clinical confusion between F. novicida and F. tularensis and ensuring treatment efficacy studies utilize virulent F. tularensis strains.
Collapse
Affiliation(s)
- Luke C Kingry
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| | - Jeannine M Petersen
- Division of Vector-Borne Diseases, Bacterial Diseases Branch, Centers for Disease Control and Prevention Fort Collins, CO, USA
| |
Collapse
|
12
|
Coolen JPM, Sjödin A, Maraha B, Hajer GF, Forsman M, Verspui E, Frenay HME, Notermans DW, de Vries MC, Reubsaet FAG, Paauw A, Roeselers G. Draft genome sequence of Francisella tularensis subsp. holarctica BD11-00177. Stand Genomic Sci 2013; 8:539-47. [PMID: 24501637 PMCID: PMC3910693 DOI: 10.4056/sigs.4217923] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Francisella tularensis is a facultative intracellular bacterium in the class Gammaproteobacteria. This strain is of interest because it is the etiologic agent of tularemia and a highly virulent category A biothreat agent. Here we describe the draft genome sequence and annotation of Francisella tularensis subsp. holarctica BD11-00177, isolated from the first case of indigenous tularemia detected in The Netherlands since 1953. Whole genome DNA sequence analysis assigned this isolate to the genomic group B.FTNF002–00, which previously has been exclusively reported from Spain, France, Italy, Switzerland and Germany. Automatic annotation of the 1,813,372 bp draft genome revealed 2,103 protein-coding and 46 RNA genes.
Collapse
Affiliation(s)
| | - Andreas Sjödin
- Division for CBRN Defence and Security, FOI - Swedish Defence Research Agency, Umeå, Sweden
| | - Boulos Maraha
- Department of Medical Microbiology, Beatrix Hospital, Gorinchem and Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Gerard F Hajer
- Department of Surgery, Beatrix Hospital, Gorinchem, The Netherlands
| | - Mats Forsman
- Division for CBRN Defence and Security, FOI - Swedish Defence Research Agency, Umeå, Sweden
| | - Ellen Verspui
- Public Health Service Zuid Holland Zuid, Dordrecht, The Netherlands
| | - Hendrina M E Frenay
- Department of Medical Microbiology, Beatrix Hospital, Gorinchem and Albert Schweitzer Hospital, Dordrecht, The Netherlands
| | - Daan W Notermans
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening (LIS), Center for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Maaike C de Vries
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening (LIS), Center for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Frans A G Reubsaet
- Diagnostic Laboratory for Infectious Diseases and Perinatal Screening (LIS), Center for Infectious Disease Control, National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | | | |
Collapse
|