1
|
Xu N, Jiang J, Jiang F, Dong G, Meng L, Wang M, Chen J, Li C, Shi Y, He S, Li R. CircCDC42-encoded CDC42-165aa regulates macrophage pyroptosis in Klebsiella pneumoniae infection through Pyrin inflammasome activation. Nat Commun 2024; 15:5730. [PMID: 38977695 PMCID: PMC11231140 DOI: 10.1038/s41467-024-50154-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 07/02/2024] [Indexed: 07/10/2024] Open
Abstract
The circular RNA (circRNA) family is a group of endogenous non-coding RNAs (ncRNAs) that have critical functions in multiple physiological and pathological processes, including inflammation, cancer, and cardiovascular diseases. However, their roles in regulating innate immune responses remain unclear. Here, we define Cell division cycle 42 (CDC42)-165aa, a protein encoded by circRNA circCDC42, which is overexpressed in Klebsiella pneumoniae (KP)-infected alveolar macrophages. High levels of CDC42-165aa induces the hyperactivation of Pyrin inflammasomes and aggravates alveolar macrophage pyroptosis, while the inhibition of CDC42-165aa reduces lung injury in mice after KP infection by inhibiting Pyrin inflammasome-mediated pyroptosis. Overall, these results demonstrate that CDC42-165aa stimulates Pyrin inflammasome by inhibiting CDC42 GTPase activation and provides a potential clinical target for pathogenic bacterial infection in clinical practice.
Collapse
Affiliation(s)
- Nana Xu
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Jiebang Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Fei Jiang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Department of Laboratory Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Guokai Dong
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Li Meng
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Meng Wang
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
- Laboratory of Morphology, Xuzhou Medical University, Xuzhou, China
| | - Jing Chen
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China
| | - Cong Li
- Xuzhou Key Laboratory of Emergency Medicine, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yongping Shi
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| | - Sisi He
- Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.
| | - Rongpeng Li
- Jiangsu Province Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, School of Life Sciences, Jiangsu Normal University, Xuzhou, China.
| |
Collapse
|
2
|
Hua KF, Lin YB, Chiu HW, Wong WT, Ka SM, Wu CH, Lin WY, Wang CC, Hsu CH, Hsu HT, Ho CL, Li LH. Cinnamaldehyde inhibits the NLRP3 inflammasome by preserving mitochondrial integrity and augmenting autophagy in Shigella sonnei-infected macrophages. J Inflamm (Lond) 2024; 21:18. [PMID: 38840105 PMCID: PMC11151564 DOI: 10.1186/s12950-024-00395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 05/22/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Worldwide, more than 125 million people are infected with Shigella each year and develop shigellosis. In our previous study, we provided evidence that Shigella sonnei infection triggers activation of the NACHT, LRR, and PYD domain-containing protein 3 (NLRP3) inflammasome in macrophages. NLRP3 inflammasome is responsible for regulating the release of the proinflammatory cytokines interleukin (IL)-1β and IL-18 through the protease caspase-1. Researchers and biotech companies have shown great interest in developing inhibitors of the NLRP3 inflammasome, recognizing it as a promising therapeutic target for several diseases. The leaves of Cinnamomum osmophloeum kaneh, an indigenous tree species in Taiwan, are rich in cinnamaldehyde (CA), a compound present in significant amounts. Our aim is to investigate how CA affects the activation of the NLRP3 inflammasome in S. sonnei-infected macrophages. METHODS Macrophages were infected with S. sonnei, with or without CA. ELISA and Western blotting were employed to detect protein expression or phosphorylation levels. Flow cytometry was utilized to assess H2O2 production and mitochondrial damage. Fluorescent microscopy was used to detect cathepsin B activity and mitochondrial ROS production. Additionally, colony-forming units were employed to measure macrophage phagocytosis and bactericidal activity. RESULTS CA inhibited the NLRP3 inflammasome in S. sonnei-infected macrophages by suppressing caspase-1 activation and reducing IL-1β and IL-18 expression. CA also inhibited pyroptosis by decreasing caspase-11 and Gasdermin D activation. Mechanistically, CA reduced lysosomal damage and enhanced autophagy, while leaving mitochondrial damage, mitogen-activated protein kinase phosphorylation, and NF-κB activation unaffected. Furthermore, CA significantly boosted phagocytosis and the bactericidal activity of macrophages against S. sonnei, while reducing secretion of IL-6 and tumour necrosis factor following infection. CONCLUSION CA shows promise as a nutraceutical for mitigating S. sonnei infection by diminishing inflammation and enhancing phagocytosis and the bactericidal activity of macrophages against S. sonnei.
Collapse
Affiliation(s)
- Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| | - Yu-Bei Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Hsiao-Wen Chiu
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Ting Wong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Taiwan Autoantibody Biobank Initiative, Hualien Tzu Chi Hospital, Hualien, Taiwan
| | - Shuk-Man Ka
- Graduate Institute of Aerospace and Undersea Medicine, Department of Medicine, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Hsien Wu
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Wen-Yu Lin
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Division of Cardiology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Chun Wang
- Infectious Disease Division, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Kunming Prevention and Control Center, Taipei City Hospital, Taipei, Taiwan
| | - Chung-Hua Hsu
- Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
- Institute of Traditional Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Hsien-Ta Hsu
- Division of Neurosurgery, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan
- School of Medicine, Buddhist Tzu Chi University, Hualien, Taiwan
| | - Chen-Lung Ho
- Division of Wood Cellulose, Taiwan Forestry Research Institute, Taipei, Taiwan
| | - Lan-Hui Li
- Department of Laboratory Medicine, Linsen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan.
| |
Collapse
|
3
|
Bai R, Guo J. Interactions and Implications of Klebsiella pneumoniae with Human Immune Responses and Metabolic Pathways: A Comprehensive Review. Infect Drug Resist 2024; 17:449-462. [PMID: 38333568 PMCID: PMC10849896 DOI: 10.2147/idr.s451013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/26/2024] [Indexed: 02/10/2024] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae), a significant contributor to the global challenge of antibiotic resistance, is not only a ubiquitous component of the human microbiome but also a potent pathogen capable of causing a spectrum of diseases. This review provides a thorough analysis of the intricate interactions between K. pneumoniae and the human immune system, elucidating its substantial impact on metabolic processes. We explore the mechanisms employed by K. pneumoniae to evade and manipulate immune responses, including molecular mimicry, immune modulation, and biofilm formation. The review further investigates the bacterium's influence on metabolic pathways, particularly glycolysis, highlighting how these interactions exacerbate disease severity. The emergence of multidrug-resistant and extremely drug-resistant strains within the Enterobacteriaceae family has heightened the public health crisis, underscoring the urgency for comprehensive research. We investigate the roles of the host's complement system, autophagy, cell death mechanisms, and various cytokines in combating K. pneumoniae infections, shedding light on areas that warrant further academic investigation. Additionally, the review discusses the challenges posed by K1- and K2-capsule polysaccharides in vaccine development due to their complex molecular structures and adhesive properties. Acknowledging the limited availability of effective antimicrobials, this review advocates for exploring alternative approaches such as immunotherapeutics, vaccinations, and phage therapy. We consolidate current knowledge on K. pneumoniae, covering classical and non-classical subtypes, antimicrobial resistance-mediated genes, virulence factors, and epidemiological trends in isolation and antibiotic resistance rates. This comprehensive review not only advances our understanding of K. pneumoniae but also underscores the imperative for ongoing research and collaborative efforts to develop new prevention and treatment strategies against this formidable pathogen.
Collapse
Affiliation(s)
- Ruojing Bai
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| | - Jun Guo
- Department of Geriatric Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Guo M, Gao B, Su J, Zeng Y, Cui Z, Liu H, Guo X, Zhu Y, Wei B, Zhao Y, Qin J, Lu X, Li Q. Phenotypic and genetic characterization of hypervirulent Klebsiella pneumoniae in patients with liver abscess and ventilator-associated pneumonia. BMC Microbiol 2023; 23:338. [PMID: 37957579 PMCID: PMC10644596 DOI: 10.1186/s12866-023-03022-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/14/2023] [Indexed: 11/15/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) and pyogenic liver abscess (PLA) due to Klebsiella pneumoniae infection can trigger life-threatening malignant consequences, however, there are few studies on the strain-associated clinical pathogenic mechanisms between VAP and PLA. A total of 266 patients consist of 129 VAP and 137 PLA were included for analysis in this study. We conducted a comprehensive survey for the two groups of K. pneumoniae isolates, including phenotypic experiments, clinical epidemiology, genomic analysis, and instrumental analysis, i.e., to obtain the genomic differential profile of K. pneumoniae strains responsible for two distinct infection outcomes. We found that PLA group had a propensity for specific underlying diseases, especially diabetes and cholelithiasis. The resistance level of VAP was significantly higher than that of PLA (78.57% vs. 36%, P < 0.001), while the virulence results were opposite. There were also some differences in key signaling pathways of biochemical processes between the two groups. The combination of iucA, rmpA, hypermucoviscous phenotype, and ST23 presented in K. pneumoniae infection is more important and highly prudent for timely treatment. The present study may contribute a benchmark for the K. pneumoniae clinical screening, epidemiological surveillance, and effective therapeutic strategies.
Collapse
Affiliation(s)
- Mingquan Guo
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
- Shanghai Institute of Phage, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Bo Gao
- Department of Critical Care Medicine, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jun Su
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Yigang Zeng
- Department of Laboratory Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Zelin Cui
- Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haodong Liu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - XiaoKui Guo
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Beiwen Wei
- Department of Laboratory Medicine, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanan Zhao
- Department of Laboratory Medicine, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Juanxiu Qin
- Department of Laboratory Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Xiaoye Lu
- Department of Emergency Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qingtian Li
- Department of Laboratory Medicine, College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Kim JK, Jung HJ, Hyun M, Lee JY, Park JH, Suh SI, Baek WK, Kim HA. Resistance of hypervirulent Klebsiella pneumoniae to cathepsin B-mediated pyroptosis in murine macrophages. Front Immunol 2023; 14:1207121. [PMID: 37457695 PMCID: PMC10342201 DOI: 10.3389/fimmu.2023.1207121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 05/31/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Hypervirulent Klebsiella pneumoniae (hvKp) has emerged as a clinically significant global pathogen in the last decade. However, the host immune responses of the macrophages during hvKp infection are largely unknown. In the present study, we aimed to compare the cytotoxic effects of hvKp and classical K. pneumoniae (cKp) in murine macrophages. Results We found that the activation of caspase-1 -dependent pyroptosis was higher in cKp-infected macrophages compared with that in hvKp-infected macrophages. In Caspase-1 deficiency macrophages, pyroptosis diminished during infection. Both hvKp and cKp strains led to nucleotide-binding and oligomerization domain-like receptor protein 3 (NLRP3) inflammasome formation and lysosomal cathepsin B activation, thus resulting in pyroptosis. Compared with the cKp strain, the hvKp strain inhibited these phenomena in murine macrophages. Conclusion HvKp infection resulted in different levels of pyroptosis via the activation of cathepsin B-NLRP3-caspase-1 in murine macrophages. Therefore, the manipulation of pyroptotic cell death is a potential target for host response during hvKp infection in macrophages.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hui-Jung Jung
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Miri Hyun
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Ji Yeon Lee
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine and Brain Korea 21 Plus Project Team, Chonnam National University, Gwangju, Republic of Korea
| | - Seong-Il Suh
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Won-Ki Baek
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Hyun ah Kim
- Department of Infectious Diseases, Keimyung University Dongsan Hospital, Keimyung University School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
6
|
Wei S, Xu T, Chen Y, Zhou K. Autophagy, cell death, and cytokines in K. pneumoniae infection: Therapeutic Perspectives. Emerg Microbes Infect 2022; 12:2140607. [DOI: 10.1080/22221751.2022.2140607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Sha Wei
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Tingting Xu
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| | - Yuxin Chen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, Jiangsu, China
| | - Kai Zhou
- Shenzhen Institute of Respiratory Diseases, Second Clinical Medical College (Shenzhen People’s Hospital), Jinan University; the First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
7
|
Riwu KHP, Effendi MH, Rantam FA, Khairullah AR, Widodo A. A review: Virulence factors of Klebsiella pneumonia as emerging infection on the food chain. Vet World 2022; 15:2172-2179. [PMID: 36341059 PMCID: PMC9631384 DOI: 10.14202/vetworld.2022.2172-2179] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/27/2022] [Indexed: 11/28/2022] Open
Abstract
Health problems can be caused by consuming foods that have been processed in unsanitary conditions; hence, the study of the impact of contamination on food and its prevention has become critical. The disease caused by Klebsiella pneumoniae in food is increasing significantly every year across the world. The main factors that are essential for the virulence of K. pneumoniae are lipopolysaccharide and polysaccharide capsules. Furthermore, K. pneumoniae is capable of forming biofilms. Capsule polysaccharides, fimbriae types 1 and 3, are crucial virulence factors contributing to biofilm formation in K. pneumoniae. The food contamination by K. pneumoniae may not directly pose a public health risk; however, the presence of K. pneumoniae refers to unhygienic practices in food handling. This article aims to demonstrate that K. pneumoniae should be considered as a potential pathogen that spreads through the food chain and that necessary precautions should be taken in the future.
Collapse
Affiliation(s)
- Katty Hendriana Priscilia Riwu
- Doctoral Prgram in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Mustofa Helmi Effendi
- Department of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Fedik Abdul Rantam
- Department of Veterinary Microbiology, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Aswin Rafif Khairullah
- Doctoral Prgram in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| | - Agus Widodo
- Doctoral Prgram in Veterinary Science, Faculty of Veterinary Medicine, Universitas Airlangga, Surabaya, East Java, Indonesia
| |
Collapse
|
8
|
Feriotti C, Sá-Pessoa J, Calderón-González R, Gu L, Morris B, Sugisawa R, Insua JL, Carty M, Dumigan A, Ingram RJ, Kissenpfening A, Bowie AG, Bengoechea JA. Klebsiella pneumoniae hijacks the Toll-IL-1R protein SARM1 in a type I IFN-dependent manner to antagonize host immunity. Cell Rep 2022; 40:111167. [PMID: 35947948 PMCID: PMC9638020 DOI: 10.1016/j.celrep.2022.111167] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 05/18/2022] [Accepted: 07/14/2022] [Indexed: 02/06/2023] Open
Abstract
Many bacterial pathogens antagonize host defense responses by translocating effector proteins into cells. It remains an open question how those pathogens not encoding effectors counteract anti-bacterial immunity. Here, we show that Klebsiella pneumoniae exploits the evolutionary conserved innate protein SARM1 to regulate negatively MyD88- and TRIF-governed inflammation, and the activation of the MAP kinases ERK and JNK. SARM1 is required for Klebsiella induction of interleukin-10 (IL-10) by fine-tuning the p38-type I interferon (IFN) axis. SARM1 inhibits the activation of Klebsiella-induced absent in melanoma 2 inflammasome to limit IL-1β production, suppressing further inflammation. Klebsiella exploits type I IFNs to induce SARM1 in a capsule and lipopolysaccharide O-polysaccharide-dependent manner via the TLR4-TRAM-TRIF-IRF3-IFNAR1 pathway. Absence of SARM1 reduces the intracellular survival of K. pneumoniae in macrophages, whereas sarm1-deficient mice control the infection. Altogether, our results illustrate an anti-immunology strategy deployed by a human pathogen. SARM1 inhibition will show a beneficial effect to treat Klebsiella infections.
Collapse
Affiliation(s)
- Claudia Feriotti
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Ricardo Calderón-González
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Lili Gu
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Brenda Morris
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Ryoichi Sugisawa
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Jose L Insua
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Michael Carty
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Adrien Kissenpfening
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK
| | - Andrew G Bowie
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, 97 Lisburn Road, Belfast, UK.
| |
Collapse
|
9
|
Lee IM, Huang TY, Yang FL, Johansson V, Hsu CR, Hsieh PF, Chen ST, Yang YJ, Konradsson P, Sheu JH, Wang JT, Wu SH. A hexasaccharide from capsular polysaccharide of carbapenem-resistant Klebsiella pneumoniae KN2 is a ligand of Toll-like receptor 4. Carbohydr Polym 2022; 278:118944. [PMID: 34973762 DOI: 10.1016/j.carbpol.2021.118944] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 11/19/2022]
Abstract
Klebsiella pneumoniae serotype KN2 is a carbapenem-resistant strain and leads to the health care-associated infections, such as bloodstream infections. Its capsular polysaccharide (CPS) was isolated and cleaved by a specific enzyme from a bacteriophage into a hexasaccharide-repeating unit. With GC-MS, NMR, and Mass analyses, the structure of KN2 CPS was determined to be {→3)-β-D-Glcp-(1→3)-[α-D-GlcpA-(1→4)-β-D-Glcp-(1→6)]-α-D-Galp-(1→6)-β-D-Galp-(1→3)-β-D-Galp-(1→}n. We demonstrated that 1 μg/mL CPS could stimulate J774A.1 murine macrophages to release tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in vitro. Also, we proved that KN2 CPS induced the immune response through Toll-like receptor 4 (TLR4) in the human embryonic kidney (HEK)-293 cells. Strikingly, the hexasaccharide alone shows the same immune response as the CPS, suggesting that the hexasaccharide can shape the adaptive immunity to be a potential vaccine adjuvant. The glucuronic acid (GlcA) on other polysaccharides can affect the immune response, but the GlcA-reduced KN2 CPS and hexasaccharide still maintain their immunomodulatory activities.
Collapse
Affiliation(s)
- I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Tzu-Yin Huang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Victor Johansson
- Department of Physics, Chemistry, and Biology, Linköping University, Sweden
| | - Chun-Ru Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Keelung, Taiwan
| | - Pei-Fang Hsieh
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Shin-Tai Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Yen-Ju Yang
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan
| | - Peter Konradsson
- Department of Physics, Chemistry, and Biology, Linköping University, Sweden
| | - Jyh-Horng Sheu
- Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan; Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung 804, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University College of Medicine, Taipei, Taiwan; Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, Taipei, Taiwan; Doctoral Degree Program in Marine Biotechnology, National Sun Yat-sen University, Kaohsiung, Taiwan.
| |
Collapse
|
10
|
Nicolò S, Mattiuz G, Antonelli A, Arena F, Di Pilato V, Giani T, Baccani I, Clemente AM, Castronovo G, Tanturli M, Cozzolino F, Rossolini GM, Torcia MG. Hypervirulent Klebsiella pneumoniae Strains Modulate Human Dendritic Cell Functions and Affect TH1/TH17 Response. Microorganisms 2022; 10:microorganisms10020384. [PMID: 35208839 PMCID: PMC8877041 DOI: 10.3390/microorganisms10020384] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Hypervirulent Klebsiella pneumoniae (Hv-Kp) strains have emerged as pathogens causing life-threatening, invasive disease even in immunocompetent hosts. Systemic dissemination usually occurs following perturbations of the gut microbiota and is facilitated by Hv-Kp resistance to phagocytosis and complement activity. Hv-Kp are usually associated with K1 or K2 capsular types, produce several iron uptake systems (e.g., aerobactin and salmochelin) and are often but not invariably, capsular material hyper-producers (hypermucoviscous phenotype: HMV). Whether Hv-Kp escape the immune response at mucosal site is unknown. In this work, we studied the effects of Hv-Kp on human dendritic cells (DCs), central players of the IL-23/IL-17 and IL-12/IFN-γ axis at mucosal sites, essential for pathogen clearance. Four Hv-Kp and HMV strains were selected and their activity on DC maturation and cytokine production was compared to that of non-virulent Kp strains with classic or HMV phenotypes. While the maturation process was equally induced by all Kp strains, significant differences between virulent and non-virulent strains were found in the expression of genes for cytokines involved in T-cell activation and differentiation. The non-virulent KP04C62 and the classic Kp, KPC157 induced high expression of TH1 (IL-12p70 and TNFα) and TH17 cytokines (IL-23, IL-1β and IL-6), while Hv-Kp poorly activated these cytokine genes. Moreover, conditioned media from DCs cultured with non-virulent Kp, either classical or hypercapsulated, induced the activation of IL-17 and IFN-γ genes in preactivated CD4+-cells suggesting their TH17/TH1 differentiation. Conditioned media from Hv-Kp poorly activated IL-17 and IFN-γ genes. In summary, our data indicate that Hv-Kp interfere with DC functions and T-cell differentiation and suggest that the escape from the IL-23/IL-17 and IL-12/IFN-γ axes may contribute to pathogen dissemination in immunocompetent hosts.
Collapse
Affiliation(s)
- Sabrina Nicolò
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
| | - Giorgio Mattiuz
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, 50143 Florence, Italy
| | - Vincenzo Di Pilato
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
- Department of Surgical Sciences and Integrated Diagnostics, University of Genoa, 16132 Genoa, Italy
| | - Tommaso Giani
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Ilaria Baccani
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Ann Maria Clemente
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
| | - Giuseppe Castronovo
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (M.T.); (F.C.)
| | - Michele Tanturli
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (M.T.); (F.C.)
| | - Federico Cozzolino
- Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50139 Florence, Italy; (G.C.); (M.T.); (F.C.)
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Clinical Microbiology and Virology Unit, Careggi University Hospital, 50134 Florence, Italy;
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy; (S.N.); (G.M.); (A.A.); (T.G.); (I.B.); (A.M.C.); (G.M.R.)
- Correspondence:
| |
Collapse
|
11
|
Tu IF, Lin TL, Yang FL, Lee IM, Tu WL, Liao JH, Ko TP, Wu WJ, Jan JT, Ho MR, Chou CY, Wang AHJ, Wu CY, Wang JT, Huang KF, Wu SH. Structural and biological insights into Klebsiella pneumoniae surface polysaccharide degradation by a bacteriophage K1 lyase: implications for clinical use. J Biomed Sci 2022; 29:9. [PMID: 35130876 PMCID: PMC8822698 DOI: 10.1186/s12929-022-00792-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 11/18/2022] Open
Abstract
Background K1 capsular polysaccharide (CPS)-associated Klebsiella pneumoniae is the primary cause of pyogenic liver abscesses (PLA) in Asia. Patients with PLA often have serious complications, ultimately leading to a mortality of ~ 5%. This K1 CPS has been reported as a promising target for development of glycoconjugate vaccines against K. pneumoniae infection. The pyruvylation and O-acetylation modifications on the K1 CPS are essential to the immune response induced by the CPS. To date, however, obtaining the fragments of K1 CPS that contain the pyruvylation and O-acetylation for generating glycoconjugate vaccines still remains a challenge. Methods We analyzed the digested CPS products with NMR spectroscopy and mass spectrometry to reveal a bacteriophage-derived polysaccharide depolymerase specific to K1 CPS. The biochemical and biophysical properties of the enzyme were characterized and its crystal structures containing bound CPS products were determined. We also performed site-directed mutagenesis, enzyme kinetic analysis, phage absorption and infectivity studies, and treatment of the K. pneumoniae-infected mice with the wild-type and mutant enzymes. Results We found a bacteriophage-derived polysaccharide lyase that depolymerizes the K1 CPS into fragments of 1–3 repeating trisaccharide units with the retention of the pyruvylation and O-acetylation, and thus the important antigenic determinants of intact K1 CPS. We also determined the 1.46-Å-resolution, product-bound crystal structure of the enzyme, revealing two distinct carbohydrate-binding sites in a trimeric β-helix architecture, which provide the first direct evidence for a second, non-catalytic, carbohydrate-binding site in bacteriophage-derived polysaccharide depolymerases. We demonstrate the tight interaction between the pyruvate moiety of K1 CPS and the enzyme in this second carbohydrate-binding site to be crucial to CPS depolymerization of the enzyme as well as phage absorption and infectivity. We also demonstrate that the enzyme is capable of protecting mice from K1 K. pneumoniae infection, even against a high challenge dose. Conclusions Our results provide insights into how the enzyme recognizes and depolymerizes the K1 CPS, and demonstrate the potential use of the protein not only as a therapeutic agent against K. pneumoniae, but also as a tool to prepare structurally-defined oligosaccharides for the generation of glycoconjugate vaccines against infections caused by this organism. Supplementary Information The online version contains supplementary material available at 10.1186/s12929-022-00792-4.
Collapse
Affiliation(s)
- I-Fan Tu
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Tzu-Lung Lin
- Department of Microbiology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Feng-Ling Yang
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - I-Ming Lee
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Wei-Lin Tu
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Jiahn-Haur Liao
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Tzu-Ping Ko
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Wen-Jin Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Jia-Tsrong Jan
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Meng-Ru Ho
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Ching-Yi Chou
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Andrew H-J Wang
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan
| | - Chung-Yi Wu
- Genomics Research Center, Academia Sinica, Taipei, 115, Taiwan
| | - Jin-Town Wang
- Department of Microbiology, National Taiwan University Hospital, Taipei, 100, Taiwan
| | - Kai-Fa Huang
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan.
| | - Shih-Hsiung Wu
- Institute of Biological Chemistry, Academia Sinica, No. 128 Academia Road Section 2, Nan‑Kang, Taipei, 115, Taiwan. .,Department of Chemistry, National Taiwan University, Taipei, 106, Taiwan.
| |
Collapse
|
12
|
Immunomodulatory Properties of Polysaccharides from the Coral Pseudopterogorgia americana in Macrophages. Cells 2021; 10:cells10123531. [PMID: 34944043 PMCID: PMC8700520 DOI: 10.3390/cells10123531] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/04/2021] [Accepted: 12/09/2021] [Indexed: 12/19/2022] Open
Abstract
Polysaccharides from marine organisms produce an important regulatory effect on the mammalian immune system. In this study, the immunomodulatory properties of a polysaccharide that was isolated from the coral Pseudopterogorgia americana (PPA) were investigated. PPA increased the expression levels of tumour necrosis factor-α (TNF-α), interleukin-6 (IL-6) and cyclooxygenase-2 (COX-2), but not inducible nitric oxide synthase and nitric oxide, in macrophages. A mechanistic study revealed that PPA activated macrophages through the toll-like receptor-4 and induced the generation of reactive oxygen species (ROS), increased the phosphorylation levels of protein kinase C (PKC)-α, PKC-δ and mitogen-activated protein kinases (MAPK), and activated NF-κB. The inhibition of ROS and knockdown of PKC-α reduced PPA-mediated TNF-α and IL-6 expression; however, the knockdown of PKC-δ significantly increased PPA-mediated TNF-α expression. In addition, the inhibition of c-Jun N-terminal kinase-1/2 and NF-κB reduced PPA-mediated TNF-α, IL-6 and COX-2 expression. Furthermore, the inhibition of ROS, MAPK and PKC-α/δ reduced PPA-mediated NF-κB activation, indicating that ROS, MAPK and PKC-α/δ function as upstream signals of NF-κB. Finally, PPA treatment decreased the phagocytosis activity of macrophages and reduced cytokine expression in bacteria-infected macrophages. Taken together, our current findings suggest that PPA can potentially play a role in the development of immune modulators in the future.
Collapse
|
13
|
Root-Bernstein R. Innate Receptor Activation Patterns Involving TLR and NLR Synergisms in COVID-19, ALI/ARDS and Sepsis Cytokine Storms: A Review and Model Making Novel Predictions and Therapeutic Suggestions. Int J Mol Sci 2021; 22:ijms22042108. [PMID: 33672738 PMCID: PMC7924650 DOI: 10.3390/ijms22042108] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/12/2021] [Accepted: 02/14/2021] [Indexed: 01/08/2023] Open
Abstract
Severe COVID-19 is characterized by a “cytokine storm”, the mechanism of which is not yet understood. I propose that cytokine storms result from synergistic interactions among Toll-like receptors (TLR) and nucleotide-binding oligomerization domain-like receptors (NLR) due to combined infections of SARS-CoV-2 with other microbes, mainly bacterial and fungal. This proposition is based on eight linked types of evidence and their logical connections. (1) Severe cases of COVID-19 differ from healthy controls and mild COVID-19 patients in exhibiting increased TLR4, TLR7, TLR9 and NLRP3 activity. (2) SARS-CoV-2 and related coronaviruses activate TLR3, TLR7, RIG1 and NLRP3. (3) SARS-CoV-2 cannot, therefore, account for the innate receptor activation pattern (IRAP) found in severe COVID-19 patients. (4) Severe COVID-19 also differs from its mild form in being characterized by bacterial and fungal infections. (5) Respiratory bacterial and fungal infections activate TLR2, TLR4, TLR9 and NLRP3. (6) A combination of SARS-CoV-2 with bacterial/fungal coinfections accounts for the IRAP found in severe COVID-19 and why it differs from mild cases. (7) Notably, TLR7 (viral) and TLR4 (bacterial/fungal) synergize, TLR9 and TLR4 (both bacterial/fungal) synergize and TLR2 and TLR4 (both bacterial/fungal) synergize with NLRP3 (viral and bacterial). (8) Thus, a SARS-CoV-2-bacterium/fungus coinfection produces synergistic innate activation, resulting in the hyperinflammation characteristic of a cytokine storm. Unique clinical, experimental and therapeutic predictions (such as why melatonin is effective in treating COVID-19) are discussed, and broader implications are outlined for understanding why other syndromes such as acute lung injury, acute respiratory distress syndrome and sepsis display varied cytokine storm symptoms.
Collapse
|
14
|
Galactosaminogalactan activates the inflammasome to provide host protection. Nature 2020; 588:688-692. [PMID: 33268895 PMCID: PMC8086055 DOI: 10.1038/s41586-020-2996-z] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 09/23/2020] [Indexed: 01/18/2023]
Abstract
Inflammasomes are important sentinels of innate immune defense activated in response to diverse stimuli, including pathogen-associated molecular patterns (PAMPs)1. Activation of the inflammasome provides host defense against aspergillosis2,3, a major health concern for immunocompromised patients; however, the Aspergillus fumigatus PAMPs responsible for inflammasome activation are not known. Here we discovered that A. fumigatus galactosaminogalactan (GAG) is a novel PAMP that activates the NLRP3 inflammasome. Binding of GAG to ribosomal proteins inhibited cellular translation machinery, thereby activating the NLRP3 inflammasome. The galactosamine moiety bound to ribosomal proteins and blocked cellular translation, triggering NLRP3 inflammasome activation. In mice, a GAG-deficient Aspergillus mutant Δgt4c failed to elicit protective inflammasome activation and exhibited enhanced virulence. Moreover, administration of GAG protected mice from DSS-induced colitis in an inflammasome-dependent manner. Thus, ribosomes connect sensing of this fungal PAMP to activation of an innate immune response.
Collapse
|
15
|
Immunomodulatory effects of colistin on host responses against carbapenem-resistant Klebsiella pneumoniae biofilms. Int J Antimicrob Agents 2020; 56:106182. [PMID: 33045355 DOI: 10.1016/j.ijantimicag.2020.106182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 07/04/2020] [Accepted: 10/03/2020] [Indexed: 12/17/2022]
Abstract
Colistin (CST) is a last-resort therapeutic option for carbapenem-resistant Klebsiella pneumoniae (CR-Kp) infections in critically ill patients. The effect of subinhibitory CST concentrations (sub-MICs) on biofilm formation is organism-dependent. We investigated the interactions between CST and innate immune cells against CR-Kp biofilms (CR-KpBF) by studying the effect of biofilm sub-MICs of CST on (i) damage induced by human polymorphonuclear neutrophils (PMNs) on CR-KpBF and (ii) the immunomodulatory potential on human mononuclear cells (MNCs) exposed to CR-KpBF. The impact of CST on PMN-induced biofilm damage was assessed by XTT reduction assay. Signal transduction and gene expression profiles in response to CST sub-MICs of MNCs exposed to CR-KpBF were studied by RT-PCR and multiplex ELISA. Pre-exposure of CR-Kp to 0.06 mg/L CST led to subsequent increased PMN-mediated biofilm damage against CR-KpBF in the presence of CST biofilm sub-MICs: there was an additive effect at 2, 4, 8 and 16 mg/L. However, the overall biofilm damage was not >52%. MNCs responded to CR-KpBF through Toll-like receptor 2 (TLR2) by 2.5-fold upregulation and NLRP3 inflammasome activation. CR-KpBF stimulated increased production of interleukin 1-beta (IL-1β), tumour necrosis factor-alpha (TNFα), IL-8 and IL-6. In the combination treatment, 0.5 mg/L CST reduced IL-1β, TNFα and IL-8 levels, whereas at 2 mg/L and 8 mg/L it increased the anti-inflammatory cytokine IL-10 (P < 0.05). Biofilm sub-MICs of CST enhance PMN killing capacity and attenuate production of inflammatory cytokines by MNCs exposed to CR-KpBF, playing a potentially important immunotherapeutic role especially for patients with cytokine deregulation.
Collapse
|
16
|
Wang G, Zhao G, Chao X, Xie L, Wang H. The Characteristic of Virulence, Biofilm and Antibiotic Resistance of Klebsiella pneumoniae. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17176278. [PMID: 32872324 PMCID: PMC7503635 DOI: 10.3390/ijerph17176278] [Citation(s) in RCA: 172] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 08/18/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
Klebsiella pneumoniae is an important gram-negative opportunistic pathogen that causes a variety of infectious diseases, including urinary tract infections, bacteremia, pneumonia, and liver abscesses. With the emergence of multidrug-resistant (MDR) and hypervirulent K. pneumoniae (hvKP) strains, the rapid spread of these clinical strains in geography is particularly worrying. However, the detailed mechanisms of virulence and antibiotic resistance in K. pneumoniae are still not very clear. Therefore, studying and elucidating the pathogenic mechanisms and drug resistance mechanism of K. pneumoniae infection are important parts of current medical research. In this paper, we systematically summarized the virulence, biofilm, and antibiotic tolerance mechanisms of K. pneumoniae, and explored the application of whole genome sequencing and global proteomics, which will provide new clues for clinical treatment of K. pneumoniae.
Collapse
Affiliation(s)
| | | | | | - Longxiang Xie
- Correspondence: (L.X.); (H.W.); Tel.: +86-0371-22892960 (L.X.)
| | - Hongju Wang
- Correspondence: (L.X.); (H.W.); Tel.: +86-0371-22892960 (L.X.)
| |
Collapse
|
17
|
Poli G, Fabi C, Bellet MM, Costantini C, Nunziangeli L, Romani L, Brancorsini S. Epigenetic Mechanisms of Inflammasome Regulation. Int J Mol Sci 2020; 21:E5758. [PMID: 32796686 PMCID: PMC7460952 DOI: 10.3390/ijms21165758] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 02/07/2023] Open
Abstract
The innate immune system represents the host's first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating complexes called inflammasomes. Different types of inflammasomes have been identified that can respond to distinct bacterial, viral or fungal infections; sterile cell damage or other stressors, such as metabolic imbalances. Epigenetic regulation has been recently suggested to provide a complementary mechanism to control inflammasome activity. This regulation can be exerted through at least three main mechanisms, including CpG DNA methylation, histones post-translational modifications and noncoding RNA expression. The repression or promotion of expression of different inflammasomes (NLRP1, NLRP2, NLRP3, NLRP4, NLRP6, NLRP7, NLRP12 and AIM2) through epigenetic mechanisms determines the development of pathologies with variable severity. For example, our team recently explored the role of microRNAs (miRNAs) targeting and modulating the components of the inflammasome as potential biomarkers in bladder cancer and during therapy. This suggests that the epigenetic control of inflammasome-related genes could represent a potential target for further investigations of molecular mechanisms regulating inflammatory pathways.
Collapse
Affiliation(s)
- Giulia Poli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Consuelo Fabi
- Department of Surgical and Biomedical Sciences, Urology and Andrology Clinic, University of Perugia, 05100 Terni, Italy;
| | - Marina Maria Bellet
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Claudio Costantini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Luisa Nunziangeli
- Polo d’Innovazione di Genomica, Genetica e Biologia, 05100 Terni, Italy;
| | - Luigina Romani
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| | - Stefano Brancorsini
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy; (M.M.B.); (C.C.); (L.R.); (S.B.)
| |
Collapse
|
18
|
Kannian P, Ashwini V, Suchithra SB, Sindu KB. Elevated urinary IL-1β levels in multidrug resistant Escherichia coli and Klebsiella infections. Inflamm Res 2019; 69:11-13. [PMID: 31820023 DOI: 10.1007/s00011-019-01304-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Multidrug resistant (MDR) E. coli and Klebsiella infections are rising. IL-1β has been implicated in the differentiation of symptomatic and asymptomatic urinary tract infections, but its role in MDR infections has not been elucidated. MATERIAL AND METHODS Urinary IL-1β levels were analysed by ELISA. RESULTS Urinary IL-1β levels were statistically higher in patients with bacterial burden compared to controls and also in patients with MDR bacterial infections compared to those with multidrug-sensitive bacterial infections. CONCLUSIONS Urinary IL-1β levels might be a useful tool to identify patients with challenging MDR bacterial infections.
Collapse
Affiliation(s)
- Priya Kannian
- Department of Clinical Research, VHS Hospital, Rajiv Gandhi Salai, Taramani, Chennai, 600113, Tamil Nadu, India.
| | - Veeraraghavan Ashwini
- Department of Clinical Research, VHS Hospital, Rajiv Gandhi Salai, Taramani, Chennai, 600113, Tamil Nadu, India
| | | | | |
Collapse
|
19
|
Zhang B, Swamy S, Balijepalli S, Panicker S, Mooliyil J, Sherman MA, Parkkinen J, Raghavendran K, Suresh MV. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia. FASEB J 2019; 33:13294-13309. [PMID: 31530014 DOI: 10.1096/fj.201901047rr] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Acute respiratory distress syndrome (ARDS), the most severe form of acute lung injury, is associated with reduced lung compliance and hypoxemia. Curcumin exhibits potent anti-inflammatory properties but has poor solubility and rapid plasma clearance. To overcome these physiochemical limitations and uncover the full therapeutic potential of curcumin in lung inflammation, in this study we utilized a novel water-soluble curcumin formulation (CDC) and delivered it directly into the lungs of C57BL/6 mice inoculated with a lethal dose of Klebsiella pneumoniae (KP). Administration of CDC led to a significant reduction in mortality, in bacterial presence within blood and lungs, as well as in lung injury, inflammation, and oxidative stress. The expression of Klebsiella hemolysin gene; TNF-α; IFN-β; nucleotide-binding domain, leucine-rich-containing family, pyrin domain-containing-3; hypoxia-inducible factor 1/2α; and NF-κB were also decreased following CDC treatment, suggesting modulation of the inflammasome complex and hypoxia signaling pathways as an underlying mechanism by which CDC reduces the severity of pneumonia. On a cellular level, CDC led to diminished cell death, improved viability, and protection of human lung epithelial cells in vitro. Overall, our studies demonstrate that CDC administration improves cell survival and reduces injury, inflammation, and mortality in a murine model of lethal gram-negative pneumonia. CDC, therefore, has promising anti-inflammatory potential in pneumonia and likely other inflammatory lung diseases, demonstrating the importance of optimizing the physicochemical properties of active natural products to optimize their clinical application.-Zhang, B., Swamy, S., Balijepalli, S., Panicker, S., Mooliyil, J., Sherman, M. A., Parkkinen, J., Raghavendran, K., Suresh, M. V. Direct pulmonary delivery of solubilized curcumin reduces severity of lethal pneumonia.
Collapse
Affiliation(s)
- Boya Zhang
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Samantha Swamy
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sreehari Panicker
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Jashitha Mooliyil
- Department of Surgery, University of Michigan, Ann Arbor, Michigan, USA
| | - Matthew A Sherman
- Department of Pediatrics, Children's National Medical Center, Washington, DC, USA
| | - Jaakko Parkkinen
- Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|
20
|
Hung YL, Wang SC, Suzuki K, Fang SH, Chen CS, Cheng WC, Su CC, Yeh HC, Tu HP, Liu PL, Huang MY, Li CY. Bavachin attenuates LPS-induced inflammatory response and inhibits the activation of NLRP3 inflammasome in macrophages. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152785. [PMID: 31009850 DOI: 10.1016/j.phymed.2018.12.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 10/22/2018] [Accepted: 12/09/2018] [Indexed: 05/10/2023]
Abstract
BACKGROUND Bavachin is a natural product isolated from Psoralea corylifolia L. that has been applied as a traditional medicine in Asian countries. However, the anti-inflammatory effects of bavachin on LPS-induced inflammation and NLRP3 inflammasome activation by macrophages remain unclear. PURPOSE We investigated the anti-inflammatory effects of bavachin on LPS-activated murine macrophage cell line J774A.1 cells and murine peritoneal macrophages. METHODS J774A.1 cells and murine peritoneal macrophages were pre-treated with bavachin following LPS treatment. The concentrations of NO, PGE2, IL-6 and IL-12p40 in cell culture supernatant were analyzed. The expressions of iNOS, COX-2, mPGES-1 and MAPKs were analyzed using Western blotting, while NF-κB activity was detected using promoter reporter assay. To examine the activation of NLRP3 inflammasome, J774A.1 cells were incubated with LPS, and then treated with bavachin following treatment with ATP. The concentration of IL-1β in the cell culture supernatant was measured. The expressions of NLRP3, ASC, caspase-1 and IL-1β were analyzed using Western blotting. The formation of inflammasome complex was observed by immunofluorescence microscopy. RESULTS Bavachin suppressed LPS-induced NO and PGE2 production, and decreased iNOS and mPGES-1 expression. Bavachin also reduced LPS-induced IL-6 and IL-12p40 production and decreased the activation of MAPKs and NF-κB. Additionally, bavachin suppressed NLRP3 inflammasome-derived IL-1β secretion, decreased caspase-1 activation, repressed mature IL-1β expression, and inhibited inflammasome complex formation. Furthermore, bavachin also suppressed the production of NO, IL-6 and IL-12p40 by LPS-stimulated murine peritoneal macrophages. CONCLUSION Our experimental results indicated anti-inflammatory effects of bavachin exhibit attenuation of LPS-induced inflammation and inhibit activation of NLRP3 inflammasome in macrophages. These results suggest that bavachin might have potential in treating inflammatory and autoimmune diseases.
Collapse
Affiliation(s)
- Yung-Li Hung
- Graduate School of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shu-Chi Wang
- Department of Medical Laboratory Science and Biotechnology, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Katsuhiko Suzuki
- Faculty of Sport Sciences, Waseda University, Tokorozawa 359-1192, Japan
| | - Shih-Hua Fang
- Institute of Athletics, National Taiwan University of Sport, Taichung 40404, Taiwan
| | - Chi-Shuo Chen
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Chung Cheng
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Chia-Cheng Su
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Division of Urology, Department of Surgery, Chi-Mei Medical Center, Tainan 71004, Taiwan; Department of Senior Citizen Service Management, Chia Nan University of Pharmacy and Science, Tainan 71710, Taiwan
| | - Hsin-Chih Yeh
- Department of Urology, Kaohsiung Medical University Hospital and Department of Urology, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Urology, Kaohsiung Municipal Ta-Tung Hospital, Kaohsiung 80145, Taiwan
| | - Hung-Pin Tu
- Department of Public Health and Environmental Medicine, School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Po-Len Liu
- Department of Respiratory Therapy, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Ming-Yii Huang
- Department of Radiation Oncology, Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Chia-Yang Li
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80756, Taiwan; Center for Infectious Disease and Cancer Research, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| |
Collapse
|
21
|
Cai R, Wang G, Le S, Wu M, Cheng M, Guo Z, Ji Y, Xi H, Zhao C, Wang X, Xue Y, Wang Z, Zhang H, Fu Y, Sun C, Feng X, Lei L, Yang Y, Ur Rahman S, Liu X, Han W, Gu J. Three Capsular Polysaccharide Synthesis-Related Glucosyltransferases, GT-1, GT-2 and WcaJ, Are Associated With Virulence and Phage Sensitivity of Klebsiella pneumoniae. Front Microbiol 2019; 10:1189. [PMID: 31191500 PMCID: PMC6546894 DOI: 10.3389/fmicb.2019.01189] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 05/10/2019] [Indexed: 01/18/2023] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) spp. are important nosocomial and community-acquired opportunistic pathogens, which cause various infections. We observed that K. pneumoniae strain K7 abruptly mutates to rough-type phage-resistant phenotype upon treatment with phage GH-K3. In the present study, the rough-type phage-resistant mutant named K7RR showed much lower virulence than K7. Liquid chromatography-tandem mass spectrometry (LC-MS-MS) analysis indicated that WcaJ and two undefined glycosyltransferases (GTs)- named GT-1, GT-2- were found to be down-regulated drastically in K7RR as compared to K7 strain. GT-1, GT-2, and wcaJ are all located in the gene cluster of capsular polysaccharide (CPS). Upon deletion, even of single component, of GT-1, GT-2, and wcaJ resulted clearly in significant decline of CPS synthesis with concomitant development of GH-K3 resistance and decline of virulence of K. pneumoniae, indicating that all these three GTs are more likely involved in maintenance of phage sensitivity and bacterial virulence. Additionally, K7RR and GT-deficient strains were found sensitive to endocytosis of macrophages. Mitogen-activated protein kinase (MAPK) signaling pathway of macrophages was significantly activated by K7RR and GT-deficient strains comparing with that of K7. Interestingly, in the presence of macromolecular CPS residues (>250 KD), K7(ΔGT-1) and K7(ΔwcaJ) could still be bounded by GH-K3, though with a modest adsorption efficiency, and showed minor virulence, suggesting that the CPS residues accumulated upon deletion of GT-1 or wcaJ did retain phage binding sites as well maintain mild virulence. In brief, our study defines, for the first time, the potential roles of GT-1, GT-2, and WcaJ in K. pneumoniae in bacterial virulence and generation of rough-type mutation under the pressure of bacteriophage.
Collapse
Affiliation(s)
- Ruopeng Cai
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Gang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Shuai Le
- Department of Microbiology, Army Medical University, Chongqing, China
| | - Mei Wu
- Institute of Analytical Chemistry and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, China
| | - Mengjun Cheng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhimin Guo
- Department of Clinical Laboratory, The First Hospital of Jilin University, Changchun, China
| | - Yalu Ji
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hengyu Xi
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Caijun Zhao
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xinwu Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yibing Xue
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zijing Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Hao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Changjiang Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Feng
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Liancheng Lei
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongjun Yang
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Sadeeq Ur Rahman
- College of Veterinary Sciences and Animal Husbandry, Abdul Wali Khan University, Mardan, Pakistan
| | - Xiaoyun Liu
- Department of Microbiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Wenyu Han
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonose, Yangzhou University, Yangzhou, China
| | - Jingmin Gu
- Key Laboratory of Zoonosis Research, Ministry of Education, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
22
|
Discovery of 2-Substituted 3-Arylquinoline Derivatives as Potential Anti-Inflammatory Agents Through Inhibition of LPS-Induced Inflammatory Responses in Macrophages. Molecules 2019; 24:molecules24061162. [PMID: 30909606 PMCID: PMC6472047 DOI: 10.3390/molecules24061162] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/21/2022] Open
Abstract
We describe herein the preparation of certain 2-substituted 3-arylquinoline derivatives and the evaluation of their anti-inflammatory effects in LPS-activated murine J774A.1 macrophage cells. Among these newly synthesized 2-substituted 3-arylquinoline derivatives, 2-(4-methoxy- benzoyl)-3-(3,4,5-trimethoxyphenyl)quinoline (18a) and 2-(4-fluorobenzoyl)-3-(3,4,5-trimethoxy- phenyl)quinoline (18b) are two of the most active compounds which can inhibit the production of NO at non-cytotoxic concentrations. Our results have also indicated that compounds 18a and 18b significantly decrease the secretion of pro-inflammatory cytokines (TNF-á and IL-6), inhibit the expression of iNOS, suppress the phosphorylation of MAPKs, and attenuate the activity of NF-êB by LPS-activated macrophages. Through molecular docking analysis, we found that 18b could fit into the middle of the TNF-á dimer and form hydrophobic interactions with Leu55, Leu57 chain A and B, Tyr59, Val123 chain B and D, Ile 155. These results suggest that both 18a and 18b are potential lead compounds in inhibiting LPS-induced inflammatory responses. Further structural optimization to discover novel anti-inflammatory agents is ongoing.
Collapse
|
23
|
Bengoechea JA, Sa Pessoa J. Klebsiella pneumoniae infection biology: living to counteract host defences. FEMS Microbiol Rev 2019; 43:123-144. [PMID: 30452654 PMCID: PMC6435446 DOI: 10.1093/femsre/fuy043] [Citation(s) in RCA: 292] [Impact Index Per Article: 58.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 11/16/2018] [Indexed: 12/26/2022] Open
Abstract
Klebsiella species cause a wide range of diseases including pneumonia, urinary tract infections (UTIs), bloodstream infections and sepsis. These infections are particularly a problem among neonates, elderly and immunocompromised individuals. Klebsiella is also responsible for a significant number of community-acquired infections. A defining feature of these infections is their morbidity and mortality, and the Klebsiella strains associated with them are considered hypervirulent. The increasing isolation of multidrug-resistant strains has significantly narrowed, or in some settings completely removed, the therapeutic options for the treatment of Klebsiella infections. Not surprisingly, this pathogen has then been singled out as an 'urgent threat to human health' by several organisations. This review summarises the tremendous progress that has been made to uncover the sophisticated immune evasion strategies of K. pneumoniae. The co-evolution of Klebsiella in response to the challenge of an activated immune has made Klebsiella a formidable pathogen exploiting stealth strategies and actively suppressing innate immune defences to overcome host responses to survive in the tissues. A better understanding of Klebsiella immune evasion strategies in the context of the host-pathogen interactions is pivotal to develop new therapeutics, which can be based on antagonising the anti-immune strategies of this pathogen.
Collapse
Affiliation(s)
- José A Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Joana Sa Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| |
Collapse
|
24
|
Inhibition of inflammasome activation by a clinical strain of Klebsiella pneumoniae impairs efferocytosis and leads to bacterial dissemination. Cell Death Dis 2018; 9:1182. [PMID: 30518854 PMCID: PMC6281591 DOI: 10.1038/s41419-018-1214-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 08/27/2018] [Accepted: 08/28/2018] [Indexed: 01/11/2023]
Abstract
Klebsiella pneumoniae is a Gram-negative bacterium responsible for severe cases of nosocomial pneumonia. During the infectious process, both neutrophils and monocytes migrate to the site of infection, where they carry out their effector functions and can be affected by different patterns of cell death. Our data show that clinical strains of K. pneumoniae have dissimilar mechanisms for surviving within macrophages; these mechanisms include modulation of microbicidal mediators and cell death. The A28006 strain induced high IL-1β production and pyroptotic cell death in macrophages; by contrast, the A54970 strain induced high IL-10 production and low IL-1β production by macrophages. Pyroptotic cell death induced by the A28006 strain leads to a significant increase in bacterial sensitivity to hydrogen peroxide, and efferocytosis of the pyroptotic cells results in efficient bacterial clearance both in vitro and in vivo. In addition, the A54970 strain was able to inhibit inflammasome activation and pyroptotic cell death by inducing IL-10 production. Here, for the first time, we present a K. pneumoniae strain able to inhibit inflammasome activation, leading to bacterial survival and dissemination in the host. The understanding of possible escape mechanisms is essential in the search for alternative treatments against multidrug-resistant bacteria.
Collapse
|
25
|
Sun Z, Ma Y, Chen F, Wang S, Chen B, Shi J. Artesunate ameliorates high glucose-induced rat glomerular mesangial cell injury by suppressing the TLR4/NF-κB/NLRP3 inflammasome pathway. Chem Biol Interact 2018; 293:11-19. [PMID: 30031708 DOI: 10.1016/j.cbi.2018.07.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 07/11/2018] [Accepted: 07/16/2018] [Indexed: 01/01/2023]
Abstract
Inflammatory response is important for the development and progression of diabetic nephropathy (DN). Artesunate (ART), an antimalarial drug, possesses anti-inflammatory effect and exhibits protective effect on chronic kidney diseases. However, the effect of ART on DN is unknown. The aim of the present study was to evaluate the effect and the molecular mechanism of ART on DN in an in vitro model. The rat mesangial cell line, HBZY-1, was induced by high glucose (HG; 30 mM d-glucose) in the presence or absence of ART (15 and 30 μg/ml) and incubated for 24 h. We found that HG induced the proliferation of HBZY-1 cells, while treatment with ART inhibited the cell proliferation. Treatment with ART inhibited HG-induced inflammatory cytokines production and expression of extracellular matrix (ECM). Besides, HG induced reactive oxygen species (ROS) and malondialdehyde (MDA) levels, and inhibited the superoxide dismutase (SOD) activity of HBZY-1 cells, and the effects were attenuated by ART treatment. ART decreased HG-induced the expression levels of toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), nuclear factor κB (NF-κB) p-p65, and nod-like receptor protein 3 (NLRP3). Inhibition of the TLR4/NF-κB pathway suppressed NLRP3 inflammasome in HBZY-1 cells. In conclusion, ART exhibited protective effect on HG-induced HBZY-1 cells by inhibiting the inflammatory response, oxidative stress and ECM accumulation. The TLR4/NF-κB/NLRP3 inflammasome pathway was involved in the protective effect of ART. The results suggested that ART might be a potential therapy agent for the DN treatment.
Collapse
Affiliation(s)
- Zhiqiang Sun
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Yali Ma
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Fang Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Shiying Wang
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Baoping Chen
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China
| | - Jun Shi
- Department of Nephrology, Huaihe Hospital of Henan University, Kaifeng, 475000, Henan, PR China.
| |
Collapse
|
26
|
|
27
|
Li LH, Ju TC, Hsieh CY, Dong WC, Chen WT, Hua KF, Chen WJ. A synthetic cationic antimicrobial peptide inhibits inflammatory response and the NLRP3 inflammasome by neutralizing LPS and ATP. PLoS One 2017; 12:e0182057. [PMID: 28750089 PMCID: PMC5531531 DOI: 10.1371/journal.pone.0182057] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Accepted: 07/11/2017] [Indexed: 11/18/2022] Open
Abstract
Antimicrobial peptides (AMPs) are one of the most important defense mechanisms against bacterial infections in insects, plants, non-mammalian vertebrates, and mammals. In the present study, a class of synthetic AMPs was evaluated for anti-inflammatory activity. One cationic AMP, GW-A2, demonstrated the ability to inhibit the expression levels of nitric oxide (NO), inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in lipopolysaccharide (LPS)-activated macrophages. GW-A2 reduced LPS-induced increases in the phosphorylation of mitogen-activated protein kinase and protein kinase C-α/δ and the activation of NF-κB. GW-A2 also inhibited NLRP3 inflammasome activation induced by LPS and ATP. Furthermore, in the mice injected with LPS, GW-A2 reduced (1) the concentration of IL-1β, IL-6 and TNF-α in the serum; (2) the concentration of TNF-α in the peritoneal lavage; (3) the expression levels of iNOS, COX-2 and NLRP3 in the liver and lung; (4) the infiltration of polymorphonuclear neutrophils in the liver and lung. The underlying mechanisms for the anti-inflammatory activity of GW-A2 were found to be partially due to LPS and ATP neutralization. These results provide insights into how GW-A2 inhibits inflammation and the NLRP3 inflammasome and provide a foundation for the design of rational therapeutics for inflammation-related diseases.
Collapse
Affiliation(s)
- Lan-Hui Li
- Department of Laboratory Medicine, Lisen, Chinese Medicine and Kunming Branch, Taipei City Hospital, Taipei, Taiwan
| | - Tz-Chuen Ju
- Department of Nursing, St. Mary's Junior College of Medicine, Nursing and Management, Ilan, Taiwan
| | - Chih-Yu Hsieh
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wei-Chih Dong
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Wan-Tze Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
| | - Kuo-Feng Hua
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
- * E-mail: (KFH); (WJC)
| | - Wei-Jung Chen
- Department of Biotechnology and Animal Science, National Ilan University, Ilan, Taiwan
- * E-mail: (KFH); (WJC)
| |
Collapse
|
28
|
A GalNAc/Gal-specific lectin from the sea mussel Crenomytilus grayanus modulates immune response in macrophages and in mice. Sci Rep 2017; 7:6315. [PMID: 28740170 PMCID: PMC5524719 DOI: 10.1038/s41598-017-06647-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 06/15/2017] [Indexed: 01/27/2023] Open
Abstract
A GalNAc/Gal-specific lectin (CGL) from the edible mussel Crenomytilus grayanus has been demonstrated to exhibit antibacterial properties. However, the mechanism of immune modulation by CGL in mammalian cells remains unclear. Here, we demonstrated that CGL can activate immune responses in macrophages and in mice. In the in vitro cell models, CGL induced tumour necrosis factor-α and interleukin-6 secretion in mouse RAW264.7 macrophages, mouse bone marrow-derived macrophages, human THP-1 macrophages, human peripheral blood mononuclear cells and human blood monocyte-derived macrophages. The CGL-mediated cytokine production was regulated by reactive oxygen species, mitogen-activated protein kinases, protein kinase C-α/δ and NF-κB. Interestingly, in lipopolysaccharide-activated macrophages, CGL induced endotoxin tolerance (characterized by the downregulation of nitric oxide, inducible nitric oxide synthase, interleukin-6 and cyclooxygenase II) via the downregulation of IRAK2 expression, JNK1/2 phosphorylation and NF-κB activation. CGL also slightly increased the bactericidal activity of macrophages and induced cytokine production in mouse models. Overall, our data indicate that CGL has the potential to be used as an immune modulator in mammals.
Collapse
|
29
|
Corylin protects LPS-induced sepsis and attenuates LPS-induced inflammatory response. Sci Rep 2017; 7:46299. [PMID: 28397806 PMCID: PMC5387730 DOI: 10.1038/srep46299] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/14/2017] [Indexed: 01/04/2023] Open
Abstract
Corylin is a main compound isolated from Psoralea corylifolia L. (Fabaceae). A variety of pharmacological effects such as antioxidant, anti-proliferation, and anti-inflammatory properties of corylin have been reported. Nevertheless, the effect of corylin in microbial infection and sepsis remains unclear. In the present study, we investigated the anti-inflammatory effects of corylin. Our experimental results demonstrated that corylin inhibited the production of TNF-α, IL-6 and NO by both LPS-activated RAW 264.7 cells and LPS-activated murine peritoneal macrophages. Moreover, corylin suppressed the expression levels of iNOS and COX-2, reduced the production of PGE2 and HMGB1, blocked the translocation of HMGB1 from the nucleus to cytosol, and decreased the phosphorylation of MAPKs in LPS-activated RAW 264.7 cells as well as suppressed the activity of NF-κB in LPS-activated J-Blue cells. In addition, the administration of corylin reduced the production of NO and TNF-α, decreased LPS-induced liver damage markers (AST and ALT) and kidney damage markers (BUN and CRE), attenuated infiltration of inflammatory cells and tissue damage of lung, liver and kidney, and enhanced the survival rate of LPS-challenged mice. Taken together, these results show the anti-inflammatory properties of corylin on LPS-induced inflammation and sepsis. Corylin could potentially be a novel anti-inflammatory and immunosuppressive drug candidate in the treatment of sepsis and septic shock.
Collapse
|
30
|
Castronovo G, Clemente AM, Antonelli A, D’Andrea MM, Tanturli M, Perissi E, Paccosi S, Parenti A, Cozzolino F, Rossolini GM, Torcia MG. Differences in Inflammatory Response Induced by Two Representatives of Clades of the Pandemic ST258 Klebsiella pneumoniae Clonal Lineage Producing KPC-Type Carbapenemases. PLoS One 2017; 12:e0170125. [PMID: 28081233 PMCID: PMC5231394 DOI: 10.1371/journal.pone.0170125] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Accepted: 12/29/2016] [Indexed: 12/20/2022] Open
Abstract
ST258-K. pneumoniae (ST258-KP) strains, the most widespread multidrug-resistant hospital-acquired pathogens, belong to at least two clades differing in a 215 Kb genomic region that includes the cluster of capsule genes. To investigate the effects of the different capsular phenotype on host-pathogen interactions, we studied representatives of ST258-KP clades, KKBO-1 and KK207-1, for their ability to activate monocytes and myeloid dendritic cells from human immune competent hosts. The two ST258-KP strains strongly induced the production of inflammatory cytokines. Significant differences between the strains were found in their ability to induce the production of IL-1β: KK207-1/clade I was much less effective than KKBO-1/clade II in inducing IL-1β production by monocytes and dendritic cells. The activation of NLRP3 inflammasome pathway by live cells and/or purified capsular polysaccharides was studied in monocytes and dendritic cells. We found that glibenclamide, a NLRP3 inhibitor, inhibits more than 90% of the production of mature IL-1β induced by KKBO1 and KK207-1. KK207-1 was always less efficient compared to KKBO-1 in: a) inducing NLRP3 and pro-IL-1β gene and protein expression; b) in inducing caspase-1 activation and pro-IL-1β cleavage. Capsular composition may play a role in the differential inflammatory response induced by the ST258-KP strains since capsular polysaccharides purified from bacterial cells affect NLRP3 and pro-IL-1β gene expression through p38MAPK- and NF-κB-mediated pathways. In each of these functions, capsular polysaccharides from KK207-1 were significantly less efficient compared to those purified from KKBO-1. On the whole, our data suggest that the change in capsular phenotype may help bacterial cells of clade I to partially escape innate immune recognition and IL-1β-mediated inflammation.
Collapse
Affiliation(s)
- Giuseppe Castronovo
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Ann Maria Clemente
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Alberto Antonelli
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Marco Maria D’Andrea
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Michele Tanturli
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Eloisa Perissi
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
| | - Sara Paccosi
- Department of Health Sciences, University of Firenze, Firenze, Italy
| | - Astrid Parenti
- Department of Health Sciences, University of Firenze, Firenze, Italy
| | - Federico Cozzolino
- Department of Experimental and Clinical Biomedical Sciences, University of Firenze, Firenze, Italy
| | - Gian Maria Rossolini
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- Department of Medical Biotechnologies, University of Siena, Siena, Italy
- Clinical Microbiology and Virology Unit, Careggi University Hospital, Firenze, Italy
- IRCCS Don Carlo Gnocchi Foundation, Firenze, Italy
| | - Maria Gabriella Torcia
- Department of Experimental and Clinical Medicine, University of Firenze, Firenze, Italy
- * E-mail:
| |
Collapse
|
31
|
Klebsiella pneumoniae Siderophores Induce Inflammation, Bacterial Dissemination, and HIF-1α Stabilization during Pneumonia. mBio 2016; 7:mBio.01397-16. [PMID: 27624128 PMCID: PMC5021805 DOI: 10.1128/mbio.01397-16] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen responsible for a wide range of infections, including pneumonia and bacteremia, and is rapidly acquiring antibiotic resistance. K. pneumoniae requires secretion of siderophores, low-molecular-weight, high-affinity iron chelators, for bacterial replication and full virulence. The specific combination of siderophores secreted by K. pneumoniae during infection can impact tissue localization, systemic dissemination, and host survival. However, the effect of these potent iron chelators on the host during infection is unknown. In vitro, siderophores deplete epithelial cell iron, induce cytokine secretion, and activate the master transcription factor hypoxia inducible factor-1α (HIF-1α) protein that controls vascular permeability and inflammatory gene expression. Therefore, we hypothesized that siderophore secretion by K. pneumoniae directly contributes to inflammation and bacterial dissemination during pneumonia. To examine the effects of siderophore secretion independently of bacterial growth, we performed infections with tonB mutants that persist in vivo but are deficient in siderophore import. Using a murine model of pneumonia, we found that siderophore secretion by K. pneumoniae induces the secretion of interleukin-6 (IL-6), CXCL1, and CXCL2, as well as bacterial dissemination to the spleen, compared to siderophore-negative mutants at an equivalent bacterial number. Furthermore, we determined that siderophore-secreting K. pneumoniae stabilized HIF-1α in vivo and that bacterial dissemination to the spleen required alveolar epithelial HIF-1α. Our results indicate that siderophores act directly on the host to induce inflammatory cytokines and bacterial dissemination and that HIF-1α is a susceptibility factor for bacterial invasion during pneumonia. Klebsiella pneumoniae causes a wide range of bacterial diseases, including pneumonia, urinary tract infections, and sepsis. To cause infection, K. pneumoniae steals iron from its host by secreting siderophores, small iron-chelating molecules. Classically, siderophores are thought to worsen infections by promoting bacterial growth. In this study, we determined that siderophore-secreting K. pneumoniae causes lung inflammation and bacterial dissemination to the bloodstream independently of bacterial growth. Furthermore, we determined that siderophore-secreting K. pneumoniae activates a host protein, hypoxia inducible factor (HIF)-1α, and requires it for siderophore-dependent bacterial dissemination. Although HIF-1α can protect against some infections, it appears to worsen infection with K. pneumoniae. Together, these results indicate that bacterial siderophores directly alter the host response to pneumonia in addition to providing iron for bacterial growth. Therapies that disrupt production of siderophores could provide a two-pronged attack against K. pneumoniae infection by preventing bacterial growth and preventing bacterial dissemination to the blood.
Collapse
|