1
|
Hota S, Kumar M. ErpY-like Protein Interaction with Host Thrombin and Fibrinogen Intervenes the Plasma Coagulation through Extrinsic and Intrinsic Pathways. ACS Infect Dis 2024; 10:3256-3272. [PMID: 39231002 DOI: 10.1021/acsinfecdis.4c00266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The survival and proliferation of pathogenic Leptospira within a host are complex phenomena that require careful consideration. The ErpY-like lipoprotein, found on the outer membrane surface of Leptospira, plays a crucial role in enhancing the bacterium's pathogenicity. The rErpY-like protein, in its recombinant form, contributes significantly to spirochete virulence by interacting with various host factors, including host complement regulators. This interaction facilitates the bacterium's evasion of the host complement system, thereby augmenting its overall pathogenicity. The rErpY-like protein exhibits a robust binding affinity to soluble fibrinogen, a vital component of the host coagulation system. In this study, we demonstrate that the rErpY-like protein intervenes in the clotting process of the platelet-poor citrated plasma of bovines and humans in a concentration-dependent manner. It significantly reduces clot density, alters the viscoelastic properties of the clot, and diminishes the average clotting rate in plasma. Furthermore, the ErpY-like protein inhibits thrombin-catalyzed fibrin formation in a dose-dependent manner and exhibits saturable binding to thrombin, suggesting its significant role in leptospiral infection. These findings provide compelling evidence for the anticoagulant effect of the ErpY-like lipoprotein and its significant role in leptospiral infection.
Collapse
Affiliation(s)
- Saswat Hota
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| |
Collapse
|
2
|
Nascimento Filho EG, Vieira ML, Dias M, Mendes MA, Sanchez FB, Setubal JC, Heinemann MB, Souza GO, Pimenta DC, Nascimento ALTO. Global proteome of the saprophytic strain Leptospira biflexa and comparative analysis with pathogenic strain Leptospira interrogans uncover new pathogenesis mechanisms. J Proteomics 2024; 297:105125. [PMID: 38364905 DOI: 10.1016/j.jprot.2024.105125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 01/08/2024] [Accepted: 02/05/2024] [Indexed: 02/18/2024]
Abstract
Leptospira is a genus of bacteria that includes free-living saprophytic species found in water or soil, and pathogenic species, which are the etiologic agents of leptospirosis. Besides all the efforts, there are only a few proteins described as virulence factors in the pathogenic strain L. interrogans. This work aims to perform L. biflexa serovar Patoc1 strain Paris global proteome and to compare with the proteome database of pathogenic L. interrogans serovar Copenhageni strain Fiocruz L1-130. We identified a total of 2327 expressed proteins of L. biflexa by mass spectrometry. Using the Get Homologues software with the global proteome of L. biflexa and L. interrogans, we found orthologous proteins classified into conserved, low conserved, and specific proteins. Comparative bioinformatic analyses were performed to understand the biological functions of the proteins, subcellular localization, the presence of signal peptide, structural domains, and motifs using public softwares. These results lead to the selection of 182 low conserved within the saprophyte, and 176 specific proteins of L. interrogans. It is anticipated that these findings will indicate further studies to uncover virulence factors in the pathogenic strain. This work presents for the first time the global proteome of saprophytic strain L. biflexa serovar Patoc, strain Patoc1. SIGNIFICANCE: The comparative analysis established an array of specific proteins in pathogenic strain that will narrow down the identification of immune protective proteins that will help fight leptospirosis.
Collapse
Affiliation(s)
- Edson G Nascimento Filho
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, SP, Brazil; Programa de Pos-Graduacao em Biotecnologia, USP-IBU-IPT, SP, Brazil
| | - Mônica L Vieira
- Departmento de Microbiologia, Instituto de Ciências Biológicas, UFMG, MG, Brazil
| | - Meriellen Dias
- Laboratorio Dempster, Departamento de Engenharia Química, Escola Politécnica, USP, SP, Brazil
| | - Maria A Mendes
- Laboratorio Dempster, Departamento de Engenharia Química, Escola Politécnica, USP, SP, Brazil
| | | | | | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, SP, Brazil
| | - Gisele O Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, SP, Brazil
| | | | - Ana L T O Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, SP, Brazil; Programa de Pos-Graduacao em Biotecnologia, USP-IBU-IPT, SP, Brazil.
| |
Collapse
|
3
|
Phukan H, Sarma A, Rex DAB, Christie SAD, Sabu SK, Hariharan S, Prasad TSK, Madanan MG. Physiological Temperature and Osmotic Changes Drive Dynamic Proteome Alterations in the Leptospiral Outer Membrane and Enhance Protein Export Systems. J Proteome Res 2023; 22:3447-3463. [PMID: 37877620 DOI: 10.1021/acs.jproteome.3c00295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Leptospirosis, a remerging zoonosis, has no effective vaccine or an unambiguous early diagnostic reagent. Proteins differentially expressed (DE) under pathogenic conditions will be useful candidates for antileptospiral measures. We employed a multipronged approach comprising high-resolution TMT-labeled LC-MS/MS-based proteome analysis coupled with bioinformatics on leptospiral proteins following Triton X-114 subcellular fractionation of leptospires treated under physiological temperature and osmolarity that mimic infection. Although there were significant changes in the DE proteins at the level of the entire cell, there were notable changes in proteins at the subcellular level, particularly on the outer membrane (OM), that show the significance of subcellular proteome analysis. The detergent-enriched proteins, representing outer membrane proteins (OMPs), exhibited a dynamic nature and upregulation under various physiological conditions. It was found that pathogenic proteins showed a higher proportion of upregulation compared to the nonpathogenic proteins in the OM. Further analysis identified 17 virulent proteins exclusively upregulated in the outer membrane during infection that could be useful for vaccine and diagnostic targets. The DE proteins may aid in metabolic adaptation and are enriched in pathways related to signal transduction and antibiotic biosynthesis. Many upregulated proteins belong to protein export systems such as SEC translocase, T2SSs, and T1SSs, indicating their sequential participation in protein transport to the outer leaflet of the OM. Further studies on OM-localized proteins may shed light on the pathogenesis of leptospirosis and serve as the basis for effective countermeasures.
Collapse
Affiliation(s)
- Homen Phukan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Abhijit Sarma
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Devasahayam Arokia Balaya Rex
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | | | - Sarath Kizhakkemuriyil Sabu
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | - Suneetha Hariharan
- Department of Biochemistry, ICMR - Regional Medical Research Centre, Port Blair 744103, Andaman and Nicobar Islands, India
| | | | | |
Collapse
|
4
|
Zhu W, Passalia FJ, Hamond C, Abe CM, Ko AI, Barbosa AS, Wunder EA. MPL36, a major plasminogen (PLG) receptor in pathogenic Leptospira, has an essential role during infection. PLoS Pathog 2023; 19:e1011313. [PMID: 37486929 PMCID: PMC10399853 DOI: 10.1371/journal.ppat.1011313] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/03/2023] [Accepted: 07/10/2023] [Indexed: 07/26/2023] Open
Abstract
Leptospirosis, a zoonosis with worldwide distribution, is caused by pathogenic spirochetes belonging to the genus Leptospira. Bacterial outer membrane proteins (OMPs), particularly those with surface-exposed regions, play crucial roles in pathogen dissemination and virulence mechanisms. Here we characterized the leptospiral Membrane Protein L36 (MPL36), a rare lipoprotein A (RlpA) homolog with a C-terminal Sporulation related (SPOR) domain, as an important virulence factor in pathogenic Leptospira. Our results confirmed that MPL36 is surface exposed and expressed during infection. Using recombinant MPL36 (rMPL36) we also confirmed previous findings of its high plasminogen (PLG)-binding ability determined by lysine residues of the C-terminal region of the protein, with ability to convert bound-PLG to active plasmin. Using Koch's molecular postulates, we determined that a mutant of mpl36 has a reduced PLG-binding ability, leading to a decreased capacity to adhere and translocate MDCK cell monolayers. Using recombinant protein and mutant strains, we determined that the MPL36-bound plasmin (PLA) can degrade fibrinogen. Finally, our mpl36 mutant had a significant attenuated phenotype in the hamster model for acute leptospirosis. Our data indicates that MPL36 is the major PLG binding protein in pathogenic Leptospira, and crucial to the pathogen's ability to attach and interact with host tissues during infection. The MPL36 characterization contributes to the expanding field of bacterial pathogens that explore PLG for their virulence, advancing the goal to close the knowledge gap regarding leptospiral pathogenesis while offering a novel potential candidate to improve diagnostic and prevention of this important zoonotic neglected disease.
Collapse
Affiliation(s)
- Weinan Zhu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Felipe J. Passalia
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Laboratory of Vaccine Development, Instituto Butantan, São Paulo, Brazil
| | - Camila Hamond
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
| | - Cecília M. Abe
- Laboratory of Bacteriology, Instituto Butantan, São Paulo, Brazil
| | - Albert I. Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of Health; Salvador, Brazil
| | | | - Elsio A. Wunder
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, Connecticut, United States of America
- Gonçalo Moniz Institute, Oswaldo Cruz Foundation; Brazilian Ministry of Health; Salvador, Brazil
| |
Collapse
|
5
|
Fernandes LGV, Teixeira AF, Nascimento ALTO. Evaluation of Leptospira interrogans knockdown mutants for LipL32, LipL41, LipL21, and OmpL1 proteins. Front Microbiol 2023; 14:1199660. [PMID: 37426019 PMCID: PMC10326724 DOI: 10.3389/fmicb.2023.1199660] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/11/2023] Open
Abstract
Introduction Leptospirosis is a worldwide zoonosis caused by pathogenic and virulent species of the genus Leptospira, whose pathophysiology and virulence factors remain widely unexplored. Recently, the application of CRISPR interference (CRISPRi) has allowed the specific and rapid gene silencing of major leptospiral proteins, favoring the elucidation of their role in bacterial basic biology, host-pathogen interaction and virulence. Episomally expressed dead Cas9 from the Streptococcus pyogenes CRISPR/Cas system (dCas9) and single-guide RNA recognize and block transcription of the target gene by base pairing, dictated by the sequence contained in the 5' 20-nt sequence of the sgRNA. Methods In this work, we tailored plasmids for silencing the major proteins of L. interrogans serovar Copenhageni strain Fiocruz L1-130, namely LipL32, LipL41, LipL21 and OmpL1. Double- and triple-gene silencing by in tandem sgRNA cassettes were also achieved, despite plasmid instability. Results OmpL1 silencing resulted in a lethal phenotype, in both L. interrogans and saprophyte L. biflexa, suggesting its essential role in leptospiral biology. Mutants were confirmed and evaluated regarding interaction with host molecules, including extracellular matrix (ECM) and plasma components, and despite the dominant abundance of the studied proteins in the leptospiral membrane, protein silencing mostly resulted in unaltered interactions, either because they intrinsically display low affinity to the molecules assayed or by a compensation mechanism, where other proteins could be upregulated to fill the niche left by protein silencing, a feature previously described for the LipL32 mutant. Evaluation of the mutants in the hamster model confirms the augmented virulence of the LipL32 mutant, as hinted previously. The essential role of LipL21 in acute disease was demonstrated, since the LipL21 knockdown mutants were avirulent in the animal model, and even though mutants could still colonize the kidneys, they were found in markedly lower numbers in the animals' liver. Taking advantage of higher bacterial burden in LipL32 mutant-infected organs, protein silencing was demonstrated in vivo directly in leptospires present in organ homogenates. Discussion CRISPRi is now a well-established, attractive genetic tool that can be applied for exploring leptospiral virulence factors, leading to the rational for designing more effective subunit or even chimeric recombinant vaccines.
Collapse
Affiliation(s)
- Luis G. V. Fernandes
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Aline F. Teixeira
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| | - Ana L. T. O. Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, São Paulo, Brazil
| |
Collapse
|
6
|
MB T, AF T, ALTO N. The leptospiral LipL21 and LipL41 proteins exhibit a broad spectrum of interactions with host cell components. Virulence 2021; 12:2798-2813. [PMID: 34719356 PMCID: PMC8632080 DOI: 10.1080/21505594.2021.1993427] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 09/08/2021] [Accepted: 10/08/2021] [Indexed: 01/09/2023] Open
Abstract
Leptospirosis is a globally prevalent zoonotic disease, and is caused by pathogenic spirochetes from the genus Leptospira. LipL21 and LipL41 are lipoproteins expressed strongly on the outer membrane of pathogenic Leptospira spp. Many studies have shown that both proteins are interesting targets for vaccines and diagnosis. However, their role in host-pathogen interactions remains underexplored. Therefore, we evaluated the capacity of LipL21 and LipL41 to bind with glycosaminoglycans (GAGs), the cell receptors and extracellular matrix, and plasma components by ELISA. Both proteins interacted with collagen IV, laminin, E-cadherin, and elastin dose-dependently. A broad-spectrum binding to plasma components was also observed. Only LipL21 interacted with all the GAG components tested, whereas LipL41 presented a concentration-dependent binding only for chondroitin 4 sulfate. Although, both proteins have the ability to interact with fibrinogen, only LipL21 inhibited fibrin clot formation partially. Both proteins exhibited a decrease in plasminogen binding in the presence of amino caproic acid (ACA), a competitive inhibitor of lysine residues, suggesting that their binding occurs via the kringle domains of plasminogen. LipL41, but not LipL21, was able to convert plasminogen to plasmin, and recruit plasminogen from normal human serum, suggesting that the interaction of this protein with plasminogen may occur in physiological conditions. This work provides the first report demonstrating the capacity of LipL21 and LipL41 to interact with a broad range of host components, highlighting their importance in host-Leptospira interactions.
Collapse
Affiliation(s)
- Takahashi MB
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades Em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Teixeira AF
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Nascimento ALTO
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| |
Collapse
|
7
|
Passalia FJ, Heinemann MB, Vieira ML, Nascimento ALTO. A Novel Leptospira interrogans Protein LIC13086 Inhibits Fibrin Clot Formation and Interacts With Host Components. Front Cell Infect Microbiol 2021; 11:708739. [PMID: 34277477 PMCID: PMC8280789 DOI: 10.3389/fcimb.2021.708739] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Leptospirosis is a neglected zoonosis, caused by pathogenic spirochetes bacteria of the genus Leptospira. The molecular mechanisms of leptospirosis infection are complex, and it is becoming clear that leptospires express several functionally redundant proteins to invade, disseminate, and escape the host’s immune response. Here, we describe a novel leptospiral protein encoded by the gene LIC13086 as an outer membrane protein. The recombinant protein LIC13086 can interact with the extracellular matrix component laminin and bind plasminogen, thus possibly participating during the adhesion process and dissemination. Also, by interacting with fibrinogen and plasma fibronectin, the protein LIC13086 probably has an inhibitory effect in the fibrin clot formation during the infection process. The newly characterized protein can also bind molecules of the complement system and the regulator C4BP and, thus, might have a role in the evasion mechanism of Leptospira. Taken together, our results suggest that the protein LIC13086 may have a multifunctional role in leptospiral pathogenesis, participating in host invasion, dissemination, and immune evasion processes.
Collapse
Affiliation(s)
- Felipe José Passalia
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | - Mônica Larucci Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | |
Collapse
|
8
|
In Vitro Study of the Fibrinolytic Activity via Single Chain Urokinase-Type Plasminogen Activator and Molecular Docking of FGFC1. Molecules 2021; 26:molecules26071816. [PMID: 33804930 PMCID: PMC8036777 DOI: 10.3390/molecules26071816] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 03/18/2021] [Accepted: 03/20/2021] [Indexed: 11/26/2022] Open
Abstract
Fungi fibrinolytic compound 1 (FGFC1) is a rare marine-derived compound that can enhance fibrinolysis both in vitro and in vivo. The fibrinolytic activity characterization of FGFC1 mediated by plasminogen (Glu-/Lys-) and a single-chain urokinase-type plasminogen activator (pro-uPA) was further evaluated. The binding sites and mode of binding between FGFC1 and plasminogen were investigated by means of a combination of in vitro experiments and molecular docking. A 2.2-fold enhancement of fibrinolytic activity was achieved at 0.096 mM FGFC1, whereas the inhibition of fibrinolytic activity occurred when the FGFC1 concentration was above 0.24 mM. The inhibition of fibrinolytic activity of FGFC1 by 6-aminohexanoic acid (EACA) and tranexamic acid (TXA) together with the docking results revealed that the lysine-binding sites (LBSs) play a crucial role in the process of FGFC1 binding to plasminogen. The action mechanism of FGFC1 binding to plasminogen was inferred, and FGFC1 was able to induce plasminogen to exhibit an open conformation by binding through the LBSs. The molecular docking results showed that docking of ligands (EACA, FGFC1) with receptors (KR1–KR5) mainly occurred through hydrophilic and hydrophobic interactions. In addition, the binding affinity values of EACA to KR1–KR5 were −5.2, −4.3, −3.7, −4.5, and −4.3 kcal/moL, respectively, and those of FGFC1 to KR1–KR5 were −7.4, −9.0, −6.3, −8.3, and −6.7 kcal/moL, respectively. The findings demonstrate that both EACA and FGFC1 bound to KR1–KR5 with moderately high affinity. This study could provide a theoretical basis for the clinical pharmacology of FGFC1 and establish a foundation for practical applications of FGFC1.
Collapse
|
9
|
Samrot AV, Sean TC, Bhavya KS, Sahithya CS, Chan-drasekaran S, Palanisamy R, Robinson ER, Subbiah SK, Mok PL. Leptospiral Infection, Pathogenesis and Its Diagnosis-A Review. Pathogens 2021; 10:pathogens10020145. [PMID: 33535649 PMCID: PMC7912936 DOI: 10.3390/pathogens10020145] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/05/2020] [Accepted: 12/09/2020] [Indexed: 12/22/2022] Open
Abstract
Leptospirosis is a perplexing conundrum for many. In the existing literature, the pathophysiological mechanisms pertaining to leptospirosis is still not understood in full. Considered as a neglected tropical zoonotic disease, leptospirosis is culminating as a serious problem worldwide, seemingly existing as co-infections with various other unrelated diseases, including dengue and malaria. Misdiagnosis is also common as non-specific symptoms are documented extensively in the literature. This can easily lead to death, as the severe form of leptospirosis (Weil's disease) manifests as a complex of systemic complications, especially renal failure. The virulence of Leptospira sp. is usually attributed to the outer membrane proteins, including LipL32. With an armament of virulence factors at their disposal, their ability to easily adhere, invade and replicate within cells calls for a swift refinement in research progress to establish their exact pathophysiological framework. As an effort to reconstitute the current knowledge on leptospirosis, the basis of leptospiral infection, including its risk factors, classification, morphology, transmission, pathogenesis, co-infections and clinical manifestations are highlighted in this review. The various diagnostic techniques are also outlined with emphasis on their respective pros and cons.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
- Correspondence: (A.V.S.); (P.L.M.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom, Selangor 42610, Malaysia;
| | - Karanam Sai Bhavya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Chamarthy Sai Sahithya
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - SaiPriya Chan-drasekaran
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Raji Palanisamy
- Department of Biotechnology, School of Bio and Chemical Engineering, Sathyabama Institute of Science and Technology, Jeppiaar Nagar, Chennai, Tamil Nadu 627 011, India; (K.S.B.); (C.S.S.); (S.C.); (R.P.)
| | - Emilin Renitta Robinson
- Department of Food Processing Technology, Karunya Institute of Technology and Science, Coimbatore, Tamil Nadu 641 114, India;
| | - Suresh Kumar Subbiah
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia;
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
| | - Pooi Ling Mok
- Department of Biotechnology, Bharath Institute of Higher Education and Research (BIHER), Selaiyur, Tamil Nadu 600 073, India
- Genetics and Regenerative Medicine Research Centre, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor 43400, Malaysia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka P.O. Box 2014, Aljouf Province, Saudi Arabia
- Correspondence: (A.V.S.); (P.L.M.)
| |
Collapse
|
10
|
Haake DA, Matsunaga J. Leptospiral Immunoglobulin-Like Domain Proteins: Roles in Virulence and Immunity. Front Immunol 2021; 11:579907. [PMID: 33488581 PMCID: PMC7821625 DOI: 10.3389/fimmu.2020.579907] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 11/05/2020] [Indexed: 02/03/2023] Open
Abstract
The virulence mechanisms required for infection and evasion of immunity by pathogenic Leptospira species remain poorly understood. A number of L. interrogans surface proteins have been discovered, lying at the interface between the pathogen and host. Among these proteins, the functional properties of the Lig (leptospiral immunoglobulin-like domain) proteins have been examined most thoroughly. LigA, LigB, and LigC contain a series of, 13, 12, and 12 closely related domains, respectively, each containing a bacterial immunoglobulin (Big) -like fold. The multidomain region forms a mostly elongated structure that exposes a large surface area. Leptospires wield the Lig proteins to promote interactions with a range of specific host proteins, including those that aid evasion of innate immune mechanisms. These diverse binding events mediate adhesion of L. interrogans to the extracellular matrix, inhibit hemostasis, and inactivate key complement proteins. These interactions may help L. interrogans overcome the physical, hematological, and immunological barriers that would otherwise prevent the spirochete from establishing a systemic infection. Despite significant differences in the affinities of the LigA and LigB proteins for host targets, their functions overlap during lethal infection of hamsters; virulence is lost only when both ligA and ligB transcription is knocked down simultaneously. Lig proteins have been shown to be promising vaccine antigens through evaluation of a variety of different adjuvant strategies. This review serves to summarize current knowledge of Lig protein roles in virulence and immunity and to identify directions needed to better understand the precise functions of the Lig proteins during infection.
Collapse
Affiliation(s)
- David A. Haake
- Division of Infectious Diseases, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Departments of Medicine, and Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| | - James Matsunaga
- Research Service, VA Greater Los Angeles Healthcare System, Los Angeles, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, CA, United States
| |
Collapse
|
11
|
Satala D, Satala G, Karkowska-Kuleta J, Bukowski M, Kluza A, Rapala-Kozik M, Kozik A. Structural Insights into the Interactions of Candidal Enolase with Human Vitronectin, Fibronectin and Plasminogen. Int J Mol Sci 2020; 21:ijms21217843. [PMID: 33105833 PMCID: PMC7660097 DOI: 10.3390/ijms21217843] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/17/2020] [Accepted: 10/19/2020] [Indexed: 12/16/2022] Open
Abstract
Significant amounts of enolase—a cytosolic enzyme involved in the glycolysis pathway—are exposed on the cell surface of Candida yeast. It has been hypothesized that this exposed enolase form contributes to infection-related phenomena such as fungal adhesion to human tissues, and the activation of fibrinolysis and extracellular matrix degradation. The aim of the present study was to characterize, in structural terms, the protein-protein interactions underlying these moonlighting functions of enolase. The tight binding of human vitronectin, fibronectin and plasminogen by purified C. albicans and C. tropicalis enolases was quantitatively analyzed by surface plasmon resonance measurements, and the dissociation constants of the formed complexes were determined to be in the 10−7–10−8 M range. In contrast, the binding of human proteins by the S.cerevisiae enzyme was much weaker. The chemical cross-linking method was used to map the sites on enolase molecules that come into direct contact with human proteins. An internal motif 235DKAGYKGKVGIAMDVASSEFYKDGK259 in C. albicans enolase was suggested to contribute to the binding of all three human proteins tested. Models for these interactions were developed and revealed the sites on the enolase molecule that bind human proteins, extensively overlap for these ligands, and are well-separated from the catalytic activity center.
Collapse
Affiliation(s)
- Dorota Satala
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (D.S.); (M.B.)
| | - Grzegorz Satala
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Kraków, Poland;
| | - Justyna Karkowska-Kuleta
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (J.K.-K.); (A.K.); (M.R.-K.)
| | - Michal Bukowski
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (D.S.); (M.B.)
| | - Anna Kluza
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (J.K.-K.); (A.K.); (M.R.-K.)
| | - Maria Rapala-Kozik
- Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (J.K.-K.); (A.K.); (M.R.-K.)
| | - Andrzej Kozik
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University in Krakow, 30-387 Kraków, Poland; (D.S.); (M.B.)
- Correspondence:
| |
Collapse
|
12
|
Kędzierska-Mieszkowska S, Arent Z. AAA+ Molecular Chaperone ClpB in Leptospira interrogans: Its Role and Significance in Leptospiral Virulence and Pathogenesis of Leptospirosis. Int J Mol Sci 2020; 21:E6645. [PMID: 32932775 PMCID: PMC7555560 DOI: 10.3390/ijms21186645] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023] Open
Abstract
Bacterial ClpB is an ATP-dependent disaggregase that belongs to the Hsp100/Clp subfamily of the AAA+ ATPases and cooperates with the DnaK chaperone system in the reactivation of aggregated proteins, as well as promotes bacterial survival under adverse environmental conditions, including thermal and oxidative stresses. In addition, extensive evidence indicates that ClpB supports the virulence of numerous bacteria, including pathogenic spirochaete Leptospira interrogans responsible for leptospirosis in animals and humans. However, the specific function of ClpB in leptospiral virulence still remains to be fully elucidated. Interestingly, ClpB was predicted as one of the L. interrogans hub proteins interacting with human proteins, and pathogen-host protein interactions are fundamental for successful invasion of the host immune system by bacteria. The aim of this review is to discuss the most important aspects of ClpB's function in L. interrogans, including contribution of ClpB to leptospiral virulence and pathogenesis of leptospirosis, a zoonotic disease with a significant impact on public health worldwide.
Collapse
Affiliation(s)
| | - Zbigniew Arent
- University Centre of Veterinary Medicine, University of Agriculture in Krakow, 30-059 Krakow, Poland;
| |
Collapse
|
13
|
Kochi LT, Fernandes LGV, Souza GO, Vasconcellos SA, Heinemann MB, Romero EC, Kirchgatter K, Nascimento ALTO. The interaction of two novel putative proteins of Leptospira interrogans with E-cadherin, plasminogen and complement components with potential role in bacterial infection. Virulence 2020; 10:734-753. [PMID: 31422744 PMCID: PMC6735628 DOI: 10.1080/21505594.2019.1650613] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Leptospirosis is a worldwide zoonosis caused by pathogenic species of Leptospira. Leptospires are able to adhere to exposed extracellular matrix in injured tissues and, once in the bloodstream, can survive the attack of the immune system and spread to colonize target organs. In this work, we report that two novel putative proteins, coded by the genes LIC11711 and LIC12587 of L. interrogans serovar Copenhageni are conserved among pathogenic strains, and probably exposed in the bacterial surface. Soluble recombinant proteins were expressed in Escherichia coli, purified and characterized. Both recombinant proteins bound to laminin and E-cadherin, suggesting an initial adhesion function in host epithelial cells. The recombinant protein LIC11711 (rLIC11711) was able to capture plasminogen (PLG) from normal human serum and convert to enzymatically active plasmin (PLA), in the presence of PLG activator. rLIC12587 (recombinant protein LIC12587) displayed a dose dependent and saturable interaction with components C7, C8, and C9 of the complement system, reducing the bactericidal effect of the complement. Binding to C9 may have consequences such as C9 polymerization inhibition, interfering with the membrane attack complex formation. Blocking LIC11711 and LIC12587 on bacterial cells by the respective antiserum reduced leptospiral cell viability when exposed to normal human serum (NHS). Both recombinant proteins could be recognized by serum samples of confirmed leptospirosis, but not of unrelated diseases, suggesting that the native proteins are immunogenic and expressed during leptospirosis. Taken together, our data suggest that these proteins may have a role in leptospiral pathogenesis, participating in immune evasion strategies.
Collapse
Affiliation(s)
- Leandro T Kochi
- a Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan , São Paulo , Brazil.,b Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas , São Paulo , Brazil
| | - Luis G V Fernandes
- a Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan , São Paulo , Brazil
| | - Gisele O Souza
- c Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia , São Paulo , Brazil
| | - Silvio A Vasconcellos
- c Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia , São Paulo , Brazil
| | - Marcos B Heinemann
- c Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia , São Paulo , Brazil
| | - Eliete C Romero
- d Centro de Bacteriologia, Instituto Adolfo Lutz , Sao Paulo , Brazil
| | - Karin Kirchgatter
- e Núcleo de Estudos em Malária, Superintendência de Controle de Endemias -SUCEN/IMT-SP, USP , Sao Paulo , Brazil
| | - Ana L T O Nascimento
- a Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan , São Paulo , Brazil
| |
Collapse
|
14
|
Alves da Silva PYO, Midon LM, Heinemann MB, de Moraes Vasconcelos D, Barbosa AS, Isaac L. Contribution of Complement System pathways to the killing of Leptospira spp. Microbes Infect 2020; 22:550-557. [PMID: 32730816 DOI: 10.1016/j.micinf.2020.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 06/23/2020] [Accepted: 07/19/2020] [Indexed: 01/26/2023]
Abstract
The Complement System (CS) plays an important role in the immune response against leptospirosis and can be activated by the Alternative and Lectin Pathways (Innate Immunity) and by the Classical Pathway (Acquired Immunity). Here we analyzed a broad range of nonpathogenic and pathogenic Leptospira strains considering their interaction with each CS pathway. We determined bacterial survival rate and CS protein deposition in the presence of purified proteins, specific component depleted sera and NHS treated with the chelating agents EDTA (inhibits all three activation pathways) or EGTA (inhibits the Classical and Lectin Pathways). We suggest that the Lectin and the Alternative Pathways have an important role to eliminate saprophytic leptospires since i) approximately 50% survival of both saprophytic strains was observed in the presence of MBL-deficient serum; ii) approximately 50% survival of Leptospira biflexa Patoc I was observed in the presence of NHS - EGTA and iii) C1q-depleted serum caused significant bacterial lysis. In all serovars investigated the deposition of C5-C9 proteins on saprophytic Leptospira strains was more pronounced when compared to pathogenic species confirming previous studies in the literature. No difference on C3 deposition was observed between nonpathogenic and pathogenic strains. In conclusion, Leptospira strains interact to different degrees with CS proteins, especially those necessary to form MAC, indicating that some strains and specific ligands could favor the binding of certain CS proteins.
Collapse
Affiliation(s)
| | - Leonardo Moura Midon
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| | | | | | | | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil.
| |
Collapse
|
15
|
Heterologous Expression of the Pathogen-Specific LIC11711 Gene in the Saprophyte L. biflexa Increases Bacterial Binding to Laminin and Plasminogen. Pathogens 2020; 9:pathogens9080599. [PMID: 32707797 PMCID: PMC7460275 DOI: 10.3390/pathogens9080599] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
Leptospirosis is a febrile disease and the etiological agents are pathogenic bacteria of the genus Leptospira. The leptospiral virulence mechanisms are not fully understood and the application of genetic tools is still limited, despite advances in molecular biology techniques. The leptospiral recombinant protein LIC11711 has shown interaction with several host components, indicating a potential function in virulence. This study describes a system for heterologous expression of the L. interrogans gene lic11711 using the saprophyte L. biflexa serovar Patoc as a surrogate, aiming to investigate its possible activity in bacterial virulence. Heterologous expression of LIC11711 was performed using the pMaOri vector under regulation of the lipL32 promoter. The protein was found mainly on the leptospiral outer surface, confirming its location. The lipL32 promoter enhanced the expression of LIC11711 in L. biflexa compared to the pathogenic strain, indicating that this strategy may be used to overexpress low-copy proteins. The presence of LIC11711 enhanced the capacity of L. biflexa to adhere to laminin (Lam) and plasminogen (Plg)/plasmin (Pla) in vitro, suggesting the involvement of this protein in bacterial pathogenesis. We show for the first time that the expression of LIC11711 protein of L. interrogans confers a virulence-associated phenotype on L. biflexa, pointing out possible mechanisms used by pathogenic leptospires.
Collapse
|
16
|
A Modified ELISA Method to Evaluate the Interaction of Schistosoma mansoni Proteins with Plasminogen. Methods Mol Biol 2020. [PMID: 32452005 DOI: 10.1007/978-1-0716-0635-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
An important aspect of host-pathogen interactions is the interference of secreted proteins with the fibrinolytic system. Herein, we describe a modified ELISA method used to evaluate the interaction of a recombinant Schistosoma mansoni protein with plasminogen (PLG). Using this protocol, we demonstrated that a secreted protein, recombinant venom allergen-like protein 18 (rSmVAL18) acts as a plasminogen receptor increasing its activation into plasmin in the presence of the urokinase-type plasminogen activator (uPA). PLG binding was determined by immobilizing human PLG in the plate and incubating with the recombinant protein; competitive binding with a lysine analog demonstrated the interaction of the protein lysine residues with PLG Kringle domains. To assess the activation of S. mansoni recombinant protein-bound PLG, the amidolytic activity of generated plasmin was measured using the D-Val-Leu-Lys 4-nitroanilide dihydrochloride substrate.
Collapse
|
17
|
Barbosa AS, Isaac L. Strategies used by Leptospira spirochetes to evade the host complement system. FEBS Lett 2020; 594:2633-2644. [PMID: 32153015 DOI: 10.1002/1873-3468.13768] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 02/28/2020] [Indexed: 12/19/2022]
Abstract
Leptospires are highly invasive spirochetes equipped with efficient strategies for dissemination in the host. The Leptospira genus currently comprises 64 species divided into two major clades: the saprophytes composed of nonpathogenic, free-living organisms, and the pathogens encompassing all the species that cause mild or severe infections in humans and animals. While saprophytes are highly susceptible to the lytic action of the complement system, pathogenic (virulent) strains have evolved virulence strategies that allow efficient colonization of a variety of hosts and target organs, including mechanisms to circumvent hosts' innate and acquired immune responses. Pathogenic Leptospira avoid complement-mediated killing by recruiting host complement regulatory proteins and by targeting complement proteins using own and host-expressed proteases. This review outlines the role of complement in eradicating saprophytic Leptospira and the stratagems adopted by pathogenic Leptospira to maneuver the host complement system for their benefit.
Collapse
Affiliation(s)
| | - Lourdes Isaac
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, Brazil
| |
Collapse
|
18
|
Passalia FJ, Carvalho E, Heinemann MB, Vieira ML, Nascimento ALTO. The Leptospira interrogans LIC10774 is a multifunctional surface protein that binds calcium and interacts with host components. Microbiol Res 2020; 235:126470. [PMID: 32247916 DOI: 10.1016/j.micres.2020.126470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 02/06/2023]
Abstract
Leptospirosis is a global re-emerging zoonosis, caused by pathogenic bacteria of the genus Leptospira. Humans are infected mainly through contact with contaminated water or soil. The understanding of the molecular mechanisms of leptospirosis through the characterization of unknown outer membrane proteins may contribute to the development of new treatments, diagnostic methods and vaccines. We have identified using bioinformatics analysis a protein that is encoded by the gene LIC10774, predicted to be localized at the leptospiral outer membrane and exhibit beta-roll folding. Surface exposure was confirmed by flow cytometry, ELISA and immunofluorescence-based confocal microscopy. Through circular dichroism spectroscopy and hydrophobic dye binding we have shown that rLIC10774 binds calcium ions, which imposes changes to secondary and tertiary structures. The recombinant protein was capable of binding to several host extracellular matrix and serum components. Therefore, we describe LIC10774 as a calcium-binding protein exposed in the outer surface of pathogenic leptospires with possible multifunctional roles in adhesion to host tissues, evasion of the immune system and participation in dissemination processes during leptospirosis. In addition, we hypothesize that the calcium binding is important for temperature-dependent functional roles during leptospirosis.
Collapse
Affiliation(s)
- Felipe José Passalia
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil
| | - Eneas Carvalho
- Laboratório de Bacteriologia, Instituto Butantan, 05503-900, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Brazil
| | - Mônica Larucci Vieira
- Departamento de Microbiologia, Instituto de Ciências Biológicas (ICB), Universidade Federal de Minas Gerais (UFMG), Minas Gerais, Brazil.
| | - Ana Lucia T O Nascimento
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, 05503-900, São Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, 05508-900, São Paulo, Brazil.
| |
Collapse
|
19
|
Vieira ML, Herwald H, Nascimento ALTO. The interplay between host haemostatic systems and Leptospira spp. infections. Crit Rev Microbiol 2020; 46:121-135. [PMID: 32141788 DOI: 10.1080/1040841x.2020.1735299] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hemostasis is a defence mechanism that protects the integrity of the vascular system and is comprised of the coagulation cascade, fibrinolysis, platelet aggregation, and vascular endothelium. Besides the primary function in preserving the vascular integrity, the haemostatic system cooperates with immune and inflammatory processes to eliminate invading pathogens during microbial infections. Under pathological manifestations, hemostasis must therefore interact in a coordinated manner with inflammatory responses and immune reactions. Several pathogens can modulate these host-derived countermeasures by specifically targeting certain haemostatic components for their own benefit. Thus, the ability to modulate host defence systems has to be considered as an essential bacterial virulence mechanism. Complications that bacterial pathogens can induce are therefore often the consequence of evoked host responses. A comprehensive understanding of the molecular mechanisms triggered in infectious processes may help to develop prophylactic methods and novel therapies for the patients suffering from a particular infectious disease. This review aims to provide a critical updated compiling of recent studies on how the pathogenic Leptospira can interact with and manipulate the host haemostatic systems and the consequences for leptospirosis pathogenesis.
Collapse
Affiliation(s)
- Monica L Vieira
- Department of Microbiology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Heiko Herwald
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | | |
Collapse
|
20
|
Passalia FJ, Heinemann MB, de Andrade SA, Nascimento ALTO, Vieira ML. Leptospira interrogans Bat proteins impair host hemostasis by fibrinogen cleavage and platelet aggregation inhibition. Med Microbiol Immunol 2020; 209:201-213. [PMID: 32078713 DOI: 10.1007/s00430-020-00664-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/10/2020] [Indexed: 01/21/2023]
Abstract
Leptospirosis is a worldwide spread zoonosis, caused by pathogenic Leptospira. Evidences suggest that compromised hemostasis might be involved in the leptospirosis pathophysiology. In the genome of L. interrogans serovar Copenhageni, we found two genes coding for proteins which comprise von Willebrand factor (VWF) A domains (BatA and BatB). As VWF A domains exhibit multiple binding sites which contributes to human VWF hemostatic functions, we hypothesized that the L. interrogans BatA and BatB proteins could be involved in the hemostatic impairment during leptospirosis. We have cloned, expressed in Escherichia coli, and purified recombinant BatA and BatB. The influence of recombinant BatA and BatB on different in vitro hemostatic assays evaluating the enzymatic activity, platelet aggregation and fibrinogen integrity was investigated. We describe BatB as a new serine protease which is able to cleave thrombin chromogenic substrate, fibrin, fibrinogen, gelatin and casein; while BatA is active only towards fibrinogen. BatA and BatB interfere with the platelet aggregation induced by VWF/ristocetin and thrombin. Our results suggest an important role of the L. interrogans serovar Copenhageni Bat proteins in the hemostasis dysfunction observed during leptospirosis and contribute to the understanding of the leptospirosis pathophysiological mechanisms.
Collapse
Affiliation(s)
- Felipe José Passalia
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Marcos Bryan Heinemann
- Lab. de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, Brazil
| | | | - Ana Lucia T O Nascimento
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mônica Larucci Vieira
- Lab. Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil.
| |
Collapse
|
21
|
Vieira ML, Persson S, Lopes-Ferreira M, Romero EC, Kirchgatter K, Nascimento ALTO, Herwald H. Heparin-Binding Protein Release Is Strongly Induced by Leptospira Species and Is a Candidate for an Early Diagnostic Marker of Human Leptospirosis. J Infect Dis 2020; 219:996-1006. [PMID: 30299510 DOI: 10.1093/infdis/jiy589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 10/06/2018] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Leptospirosis, caused by spirochetes of the genus Leptospira, is one of the most widespread zoonoses worldwide. Efficient diagnostic methods for early diagnosis of leptospirosis are still lacking, and acute disease presents with nonspecific symptomatology and is often misdiagnosed. The leptospires pathogenic processes and virulence mechanisms remain virtually unknown. In severe infections, hemostatic impairment is frequently observed, and pathophysiological complications often develop when the host response is modulated by the pathogen. The neutrophil heparin-binding protein (HBP) is an inflammatory mediator and potent inducer of vascular leakage. RESULTS In this study, we found that leptospires and their secreted products induce the release of HBP from stimulated neutrophils through a controlled degranulation mechanism. We acknowledged 2 leptospiral proteins as able to induce HBP degranulation. These findings have clinical implications, as high levels of HBP were detected in serum from patients with leptospirosis, especially at the early phase of the disease. CONCLUSION In conclusion, we describe a new mechanism by which the leptospirosis pathophysiological complications may arise, such as vascular leakage and edema formation. We also propose HBP as a new early screening biomarker for human leptospirosis.
Collapse
Affiliation(s)
- Mônica L Vieira
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden.,Laboratório Especial de Desenvolvimento de Vacinas
| | - Sandra Persson
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | | | | | - Karin Kirchgatter
- Nucleo de Estudos em Malária, Superintendência de Controle de Endemias, Instituto de Medicina Tropical de São Paulo, Universidade de São Paulo, São Paulo, Brazil
| | | | - Heiko Herwald
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| |
Collapse
|
22
|
Chin VK, Basir R, Nordin SA, Abdullah M, Sekawi Z. Pathology and Host Immune Evasion During Human Leptospirosis: a Review. Int Microbiol 2019; 23:127-136. [DOI: 10.1007/s10123-019-00067-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 02/08/2019] [Accepted: 02/19/2019] [Indexed: 12/21/2022]
|
23
|
Rossini AD, Teixeira AF, Souza Filho A, Souza GO, Vasconcellos SA, Heinemann MB, Romero EC, Nascimento ALTO. Identification of a novel protein in the genome sequences of Leptospira interrogans with the ability to interact with host's components. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2019; 53:163-175. [PMID: 30713004 DOI: 10.1016/j.jmii.2018.12.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 12/24/2018] [Indexed: 12/22/2022]
Abstract
BACKGROUND Leptospirosis is an infectious disease that affects humans and animals worldwide. The etiological agents of this disease are the pathogenic species of the genus Leptospira. The mechanisms involved in the leptospiral pathogenesis are not full understood. The elucidation of novel mediators of host-pathogen interaction is important in the detection of virulence factors involved in the pathogenesis of leptospirosis. OBJECTIVE This work focused on identification and characterization of a hypothetical protein of Leptospira encoded by the gene LIC10920. METHODS The protein of unknown function was predicted to be surface exposed. Therefore, the LIC10920 gene was cloned and the protein expressed in Escherichia coli BL21 (DE3) Star pLysS strain. The recombinant protein was purified by metal affinity chromatography and evaluated with leptospirosis human serum samples. The interaction with host components was also performed. RESULTS The recombinant protein was recognized by antibodies present in leptopsirosis human serum, suggesting its expression during infection. Immunofluorescence and intact bacteria assays indicated that the bacterial protein is surface-exposed. The recombinant protein interacted with human laminin, in a dose-dependent and saturable manner and was named Lsa24.9, for Leptospiral surface adhesin, followed by its molecular mass. Lsa24.9 also binds plasminogen (PLG) in a dose-dependent and saturable fashion, fulfilling receptor ligand interaction. Moreover, Lsa24.9 has the ability to acquire PLG from normal human serum, exhibiting similar profile as observed with the human purified component. PLG bound Lsa24.9 was able of generating plasmin, which could increase the proteolytic power of the bacteria. CONCLUSIONS This novel leptospiral protein may function as an adhesin at the colonization steps and may help the invasion process by plasmin generation at the bacterial cell surface.
Collapse
Affiliation(s)
- A D Rossini
- Laboratorio Especial de Desenvolvimento de Vacinas-Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, Sao Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, ICB, USP, Avenida Prof. LineuPrestes, 1730, 05508-900, Sao Paulo, SP, Brazil
| | - A F Teixeira
- Laboratorio Especial de Desenvolvimento de Vacinas-Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, Sao Paulo, SP, Brazil
| | - A Souza Filho
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - G O Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - S A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - M B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - E C Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 355, CEP 01246-902, Sao Paulo, Brazil
| | - A L T O Nascimento
- Laboratorio Especial de Desenvolvimento de Vacinas-Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, Sao Paulo, SP, Brazil.
| |
Collapse
|
24
|
Cavenague MF, Teixeira AF, Filho AS, Souza GO, Vasconcellos SA, Heinemann MB, Nascimento ALTO. Characterization of a novel protein of Leptospira interrogans exhibiting plasminogen, vitronectin and complement binding properties. Int J Med Microbiol 2019; 309:116-129. [PMID: 30638770 DOI: 10.1016/j.ijmm.2018.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 10/16/2018] [Accepted: 12/28/2018] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is a severe zoonosis caused by pathogenic species of the genus Leptospira. This work focuses on a hypothetical protein of unknown function, encoded by the gene LIC13259, and predicted to be a surface protein, widely distributed among pathogenic leptospiral strain. The gene was amplified from L. interrogans serovar Copenhageni, strain Fiocruz L1-130, cloned and the protein expressed using Escherichia coli as a host system. Immunofluorescence assay showed that the protein is surface-exposed. The recombinant protein LIC13259 (rLIC13259) has the ability to interact with the extracellular matrix (ECM) laminin, in a dose-dependent manner but saturation was not reach. The rLIC13259 protein is a plasminogen (PLG)-binding protein, generating plasmin, in the presence of urokinase PLG-activator uPA. The recombinant protein is able to mediate the binding to human purified terminal complement route vitronectin, C7, C8 and C9, and to recruit and interact with these components from normal human serum (NHS). These interactions are dose-dependent on NHS increased concentration. The binding of rLIC13259 to C8 and vitronectin was slight and pronounced inhibited in the presence of increasing heparin concentration, respectively, suggesting that the interaction with vitronectin occurs via heparin domain. Most interesting, the interaction of rLIC13259 with C9 protein was capable of preventing C9 polymerization, suggesting that the membrane attack complex (MAC) formation was inhibited. Thus, we tentatively assign the coding sequence (CDS) LIC13259, previously annotated as unknown function, as a novel protein that may play an important role in the host's invasion and immune evasion processes, contributing to the establishment of the leptospiral infection.
Collapse
Affiliation(s)
- Maria F Cavenague
- Laboratorio Especial de Desenvolvimento de Vacinas - Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Aline F Teixeira
- Laboratorio Especial de Desenvolvimento de Vacinas - Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
| | - Antonio S Filho
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Gisele O Souza
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Laboratorio Especial de Desenvolvimento de Vacinas - Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil.
| |
Collapse
|
25
|
Nascimento Filho EG, Vieira ML, Teixeira AF, Santos JC, Fernandes LGV, Passalia FJ, Daroz BB, Rossini A, Kochi LT, Cavenague MF, Pimenta DC, Nascimento ALTO. Proteomics as a tool to understand Leptospira physiology and virulence: Recent advances, challenges and clinical implications. J Proteomics 2018; 180:80-87. [PMID: 29501847 DOI: 10.1016/j.jprot.2018.02.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 02/14/2018] [Accepted: 02/22/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Edson G Nascimento Filho
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Monica L Vieira
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Aline F Teixeira
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Jademilson C Santos
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Luis G V Fernandes
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Felipe J Passalia
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Brenda B Daroz
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Amanda Rossini
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Leandro T Kochi
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Maria F Cavenague
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil; Programa de Pos-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de Sao Paulo, Sao Paulo, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Laboratório Especial de Desenvolvimento de Vacinas, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900 Sao Paulo, SP, Brazil.
| |
Collapse
|
26
|
Fernandes RS, Fernandes LGV, de Godoy AS, Miyasato PA, Nakano E, Farias LP, Nascimento ALTO, Leite LCC. Schistosoma mansoni venom allergen-like protein 18 (SmVAL18) is a plasminogen-binding protein secreted during the early stages of mammalian-host infection. Mol Biochem Parasitol 2018; 221:23-31. [PMID: 29477861 DOI: 10.1016/j.molbiopara.2018.02.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 02/16/2018] [Accepted: 02/20/2018] [Indexed: 11/27/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma which have a complex life cycle characterized by an asexual multiplication phase in the snail intermediate host and a sexual reproduction phase in the mammalian definitive host. The initial steps of the human host infection involve the secretion of proteins contained in the acetabular glands of cercariae that promote parasite adhesion and proteolysis of the skin layers. Herein, we performed a functional analysis of SmVAL18, identified as one of the three SCP/TAPS proteins constituent of cercarial secretions. We evaluated the SmVAL18 binding to immobilized macromolecules of the extracellular matrix (ECM) and to plasma components. Recombinant protein, expressed in E. coli, was found to maintain an ordered secondary structure typical of the SCP/TAPS domain after purification. Expression of native SmVAL18 protein was verified to be restricted to cercariae and 3-h schistosomula stages; furthermore, the protein was observed in the corresponding secretions, confirming that SmVAL18 is secreted during the first 3 h of in vitro culture. rSmVAL18 was able to interact specifically with plasminogen (PLG) and enhance its conversion into plasmin in the presence of the urokinase-type plasminogen activator (uPA). Protein homology modelling suggested that the PLG-rSmVAL18 interaction was mediated by lysine residues of the protein. This was supported by in vitro data using the lysine analogue, 6-aminocaproic acid (ACA), which abolished the interaction. Finally, our results showed that both cercariae and 3-h schistosomula, as well as their corresponding secretions, exhibited the capacity to bind PLG and enhance its conversion into plasmin in vitro in the same way as observed for the recombinant protein. In conclusion, our findings show that SmVAL18 is a novel PLG-binding protein secreted during the early stages of the mammalian-host infection.
Collapse
Affiliation(s)
- Rafaela S Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Luis G V Fernandes
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andre S de Godoy
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Patrícia A Miyasato
- Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil
| | - Eliana Nakano
- Laboratório de Parasitologia, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil
| | - Leonardo P Farias
- IGM - Fundação Oswaldo Cruz-FIOCRUZ, Rua Waldemar Falcão, 121, 40296-710 Salvador, BA, Brazil.
| | - Ana L T O Nascimento
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil
| | - Luciana C C Leite
- Laboratorio de Desenvolvimento de Vacinas, Instituto Butantan, Av. Vital Brasil, 1500, São Paulo, SP, Brazil.
| |
Collapse
|
27
|
Binding of human plasminogen by the lipoprotein LipL46 of Leptospira interrogans. Mol Cell Probes 2017; 37:12-21. [PMID: 29108931 DOI: 10.1016/j.mcp.2017.10.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/30/2017] [Accepted: 10/30/2017] [Indexed: 11/22/2022]
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira. Bacteria disseminate via the bloodstream and colonize the renal tubules of reservoir hosts. Leptospiral surface-exposed proteins are important targets, because due to their location they can elicit immune response and mediate adhesion and invasion processes. LipL46 has been previously reported to be located at the leptospiral outer membrane and recognized by antibodies present in serum of infected hamsters. In this study, we have confirmed the cellular location of this protein by immunofluorescence and FACS. We have cloned and expressed the recombinant protein LipL46 in its soluble form. LipL46 was recognized by confirmed leptospirosis human serum, suggesting its expression during infection. Binding screening of LipL46 with extracellular matrix (ECM) and plasma components showed that this protein interacts with plasminogen. The binding is dose-dependent on protein concentration, but saturation was not reached with the range of protein concentration used. Kringle domains of plasminogen and lysine residues of the recombinant protein are involved in the binding because the lysine analog, amino caproic acid (ACA) almost totally inhibited the reaction. The interaction of LipL46 with plasminogen generates plasmin in the presence of plasminogen activator uPA. Because plasmin generated at the leptospiral surface can degrade ECM molecules and decrease opsonophagocytosis, we tentatively infer that Lip46 has a role in helping the invasion process of pathogenic Leptospira.
Collapse
|
28
|
Figueredo JM, Siqueira GH, de Souza GO, Heinemann MB, Vasconcellos SA, Chapola EGB, Nascimento ALTO. Characterization of two new putative adhesins of Leptospira interrogans. MICROBIOLOGY-SGM 2017; 163:37-51. [PMID: 28198346 DOI: 10.1099/mic.0.000411] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
We here report the characterization of two novel proteins encoded by the genes LIC11122 and LIC12287, identified in the genome sequences of Leptospira interrogans, annotated, respectively, as a putative sigma factor and a hypothetical protein. The CDSs LIC11122 and LIC12287 have signal peptide SPII and SPI and are predicted to be located mainly at the cytoplasmic membrane of the bacteria. The genes were cloned and the proteins expressed using Escherichia coli. Proteinase K digestion showed that both proteins are surface exposed. Evaluation of interaction of recombinant proteins with extracellular matrix components revealed that they are laminin binding and they were called Lsa19 (LIC11122) and Lsa14 (LIC12287), for Leptospiral-surface adhesin of 19 and 14 kDa, respectively. The bindings were dose-dependent on protein concentration, reaching saturation, fulfilling the ligand-binding criteria. Reactivity of the recombinant proteins with leptospirosis human sera has shown that Lsa19 and, to a lesser extent, Lsa14, are recognized by antibodies, suggesting that, most probably, Lsa19 is expressed during infection. The proteins interact with plasminogen and generate plasmin in the presence of urokinase-type plasminogen activator. Plasmin generation in Leptospira has been associated with tissue penetration and immune evasion strategies. The presence of a sigma factor on the cell surface playing a secondary role, probably mediating host -pathogen interaction, suggests that LIC11122 is a moonlighting protein candidate. Although the biological significance of these putative adhesins will require the generation of mutants, our data suggest that Lsa19 is a potential candidate for future evaluation of its role in adhesion/colonization activities during L. interrogans infection.
Collapse
Affiliation(s)
- Jupciana M Figueredo
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, São Paulo, SP 05508-900, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| | - Gabriela H Siqueira
- Present address: Laboratorios de Investigação Medica, Hospital das Clínicas da FMUSP, Avenida Doutor Arnaldo, 455, São Paulo, SP 01246-903, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP 05508-270, Brazil
| | - Erica G B Chapola
- Centro de Controle de Zoonoses, R. Santa Eulália, 86 Santana, São Paulo, SP 02031-020, Brazil
| | - Ana L T O Nascimento
- Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, São Paulo, SP 05508-900, Brazil.,Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil
| |
Collapse
|
29
|
Multifunctional and Redundant Roles of Leptospira interrogans Proteins in Bacterial-Adhesion and fibrin clotting inhibition. Int J Med Microbiol 2017; 307:297-310. [PMID: 28600123 DOI: 10.1016/j.ijmm.2017.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 05/16/2017] [Accepted: 05/28/2017] [Indexed: 02/01/2023] Open
Abstract
Pathogenic Leptopira is the etiological agent of leptospirosis, the most widespread zoonotic infection in the world. The disease represents a major public health problem, especially in tropical countries. The present work focused on two hypothetical proteins of unknown function, encoded by the genes LIC13059 and LIC10879, and predicted to be surface-exposed proteins. The genes were cloned and the proteins expressed using E. coli as a host system. We report that the recombinant proteins interacted with extracellular matrix (ECM) laminin, in a dose-dependent fashion and are novel potential adhesins. The recombinant proteins were called Lsa25.6 (rLIC13059) and Lsa16 (rLIC10879), for Leptospiral surface adhesins, followed by the respective molecular masses. The proteins attached to plasminogen (PLG), generating plasmin, in the presence of PLG-activator uPA. Both proteins bind to fibrinogen (Fg), but only Lsa25.6 inhibited fibrin clotting by thrombin-catalyzed reaction. Moreover, Lsa16 interacts with the mammalian cell receptor E-cadherin, and could contribute to bacterial attachment to epithelial cells. The proteins were recognized by confirmed leptospirosis serum samples, suggesting that they are expressed during infection. The corresponding leptospiral proteins are surface exposed based on proteinase K accessibility assay, being LIC10879 most probably exposed in its dimer form. The data of this study extend the spectrum of surface-exposed proteins of L. interrogans and indicate a possible role of the originally annotated hypothetical proteins in infection processes.
Collapse
|
30
|
Fraser T, Brown PD. Temperature and Oxidative Stress as Triggers for Virulence Gene Expression in Pathogenic Leptospira spp. Front Microbiol 2017; 8:783. [PMID: 28536558 PMCID: PMC5423269 DOI: 10.3389/fmicb.2017.00783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/18/2017] [Indexed: 01/21/2023] Open
Abstract
Leptospirosis is a zooanthroponosis aetiologically caused by pathogenic bacteria belonging to the genus, Leptospira. Environmental signals such as increases in temperatures or oxidative stress can trigger response regulatory modes of virulence genes during infection. This study sought to determine the effect of temperature and oxidative stress on virulence associated genes in highly passaged Leptospira borgpeterseneii Jules and L. interrogans Portlandvere. Bacteria were grown in EMJH at 30°C, 37°C, or at 30°C before being transferred to 37°C. A total of 14 virulence-associated genes (fliY, invA, lenA, ligB, lipL32, lipL36, lipL41, lipL45, loa22, lsa21, mce, ompL1, sph2, and tlyC) were assessed using endpoint PCR. Transcriptional analyses of lenA, lipL32, lipL41, loa22, sph2 were assessed by quantitative real-time RT-PCR at the temperature conditions. To assess oxidative stress, bacteria were exposed to H2O2 for 30 and 60 min with or without the temperature stress. All genes except ligB (for Portlandvere) and ligB and mce (for Jules) were detectable in the strains. Quantitatively, temperature stress resulted in significant changes in gene expression within species or between species. Temperature changes were more influential in gene expression for Jules, particularly at 30°C and upshift conditions; at 37°C, expression levels were higher for Portlandvere. However, compared to Jules, where temperature was influential in two of five genes, temperature was an essential element in four of five genes in Portlandvere exposed to oxidative stress. At both low and high oxidative stress levels, the interplay between genetic predisposition (larger genome size) and temperature was biased towards Portlandvere particularly at 30°C and upshift conditions. While it is clear that expression of many virulence genes in highly passaged strains of Leptospira are attenuated or lost, genetic predisposition, changes in growth temperature and/or oxidative intensity and/or duration were factors which acted in isolation or together with other regulatory cues to contribute to the variable gene expression observed in this study. Overall, differential gene expression in serovar Portlandvere was more responsive to temperature and oxidative stress.
Collapse
Affiliation(s)
- Tricia Fraser
- Department of Basic Medical Sciences, Biochemistry Section, University of the West IndiesMona, Jamaica.,Veterinary Services Division, Ministry of AgricultureHope Gardens, Jamaica
| | - Paul D Brown
- Department of Basic Medical Sciences, Biochemistry Section, University of the West IndiesMona, Jamaica
| |
Collapse
|
31
|
Hagemann L, Gründel A, Jacobs E, Dumke R. The surface-displayed chaperones GroEL and DnaK of Mycoplasma pneumoniae interact with human plasminogen and components of the extracellular matrix. Pathog Dis 2017; 75:2996644. [PMID: 28204467 DOI: 10.1093/femspd/ftx017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/09/2017] [Indexed: 11/13/2022] Open
Abstract
Mycoplasma pneumoniae is a common cause of community-acquired infections of the human respiratory tract. The strongly reduced genome of the cell wall-less bacteria results in limited metabolic pathways and a small number of known virulence factors. In addition to the well-characterized adhesion apparatus and the expression of tissue-damaging substances, surface-exposed proteins with a primary function in cytosol-located processes such as glycolysis have been attracting attention in recent years. Due to interactions with host factors, it has been suggested that these bacterial proteins contribute to pathogenesis. Here, we investigated the chaperones GroEL and DnaK of M. pneumoniae as candidates for such moonlighting proteins. After successful expression in Escherichia coli and production of polyclonal antisera, the localization of both chaperones on the surface of bacteria was confirmed. Binding of recombinant GroEL and DnaK to human A549 cells, to plasminogen as well as to vitronectin, fibronectin, fibrinogen, lactoferrin and laminin was demonstrated. In the presence of both recombinant proteins and host activators, plasminogen can be activated to the protease plasmin, which is able to degrade vitronectin and fibrinogen. The results of the study extend the spectrum of surface-exposed proteins in M. pneumoniae and indicate an additional role of both chaperones in infection processes.
Collapse
|
32
|
Cosate MR, Siqueira GH, de Souza GO, Vasconcellos SA, Nascimento ALTO. Mammalian cell entry (Mce) protein of Leptospira interrogans binds extracellular matrix components, plasminogen and β2 integrin. Microbiol Immunol 2017; 60:586-98. [PMID: 27468683 DOI: 10.1111/1348-0421.12406] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 07/12/2016] [Accepted: 07/24/2016] [Indexed: 01/09/2023]
Abstract
A severe re-emergingzoonosis, leptospirosis, is caused by pathogenic spirochetes of the genus Leptospira. Several studies have identified leptospiral surface proteins with the ability to bind ECM and plasma components, which could mediate adhesion and invasion through the hosts. It has been shown that Mce of pathogenic Leptospira spp. is an RGD (Arg-Gly-Asp)-motif-dependent virulence factor, responsible for infection of cells and animals. In the present article, we decided to further study the repertoire of the Mce activities in leptospiral biological properties. We report that the recombinant Mce is a broad-spectrum ECM-binding protein, capable of interacting with laminin, cellular and plasma fibronectin and collagen IV. Dose--r-esponse interaction was observed for all the components, fulfilling ligand--receptor requirements. Mce is a PLG binding protein capable to recruit this component from NHS, generating PLA in the presence of PLG activator. Binding of Mce was also observed with the leukocyte cell receptors αLβ2 [(CD11a/CD18)-LFA-1] and αMβ2 [(CD11b/CD18)-Mac-1], suggesting the involvement of this protein in the host immune response. Indeed, virulent Leptospira L1-130 was capable of binding both integrins, whereas culture-attenuated M-20 strain only bind to αMβ2 [(CD11b/CD18)-Mac-1]. To the best of our knowledge, this is the first work to describe that Mce surface protein could mediate the attachment of Leptospira interrogans to human cell receptors αLβ2(CD11a/CD18) and αMβ2(CD11b/CD18).
Collapse
Affiliation(s)
| | | | - Gisele Oliveira de Souza
- School of Veterinary Medicine and Animal Science, University of Sao Paulo, 05508-270 Sao Paulo, Brazil
| | | | - Ana Lucia T O Nascimento
- Biotechnology Center, Butantan Institute, 05503-900 Sao Paulo, Brazil. .,Post-Graduation Program in Biotechnology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo 05508-900, Brazil.
| |
Collapse
|
33
|
Vieira ML, de Andrade SA, Morais ZM, Vasconcellos SA, Dagli MLZ, Nascimento ALTO. Leptospira Infection Interferes with the Prothrombinase Complex Assembly during Experimental Leptospirosis. Front Microbiol 2017; 8:500. [PMID: 28400758 PMCID: PMC5368274 DOI: 10.3389/fmicb.2017.00500] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/10/2017] [Indexed: 01/18/2023] Open
Abstract
Leptospirosis is a worldwide zoonotic and neglected infectious disease of human and veterinary concern, caused by pathogenic Leptospira species. Although bleeding is a common symptom of severe leptospirosis, the cause of hemorrhage is not completely understood. In severe infections, modulation of hemostasis by pathogens is an important virulence mechanism, and hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. Here, we analyze the coagulation status of experimentally infected hamsters in an attempt to determine coagulation interferences and the origin of leptospirosis hemorrhagic symptomatology. Hamsters were experimentally infected with L. interrogans. The lungs, kidneys, and livers were collected for culture, histopathology, and coagulation assays. L. interrogans infection disturbs normal coagulation in the organs of animals. Our results suggest the presence of a thrombin-like factor or FX activator, which is able to activate FII in the leptospirosis organ extracts. The activity of those factors is accelerated in the prothrombinase complex. Additionally, we show for the first time that live leptospires act as a surface for the prothrombinase complex assembly. Our results contribute to the understanding of leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments in the severe manifestations of the disease.
Collapse
Affiliation(s)
- Monica L Vieira
- Laboratorio Especial de Desenvolvimento de Vacinas, Instituto Butantan São Paulo, Brazil
| | - Sonia A de Andrade
- Laboratório de Síntese Orgânica - Laboratório Especial de Toxinologia Aplicada São Paulo, Brazil
| | - Zenaide M Morais
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo São Paulo, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo São Paulo, Brazil
| | - Maria Lucia Z Dagli
- Departmento de Patologia, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo São Paulo, Brazil
| | - Ana Lucia T O Nascimento
- Laboratorio Especial de Desenvolvimento de Vacinas, Instituto ButantanSão Paulo, Brazil; Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, Universidade de São PauloSão Paulo, Brazil
| |
Collapse
|
34
|
Fraga TR, Isaac L, Barbosa AS. Complement Evasion by Pathogenic Leptospira. Front Immunol 2016; 7:623. [PMID: 28066433 PMCID: PMC5174078 DOI: 10.3389/fimmu.2016.00623] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 12/08/2016] [Indexed: 11/25/2022] Open
Abstract
Leptospirosis is a neglected infectious disease caused by spirochetes from the genus Leptospira. Pathogenic microorganisms, notably those which reach the blood circulation such as Leptospira, have evolved multiple strategies to escape the host complement system, which is important for innate and acquired immunity. Leptospira avoid complement-mediated killing through: (i) recruitment of host complement regulators; (ii) acquisition of host proteases that cleave complement proteins on the bacterial surface; and, (iii) secretion of proteases that inactivate complement proteins in the Leptospira surroundings. The recruitment of host soluble complement regulatory proteins includes the acquisition of Factor H (FH) and FH-like-1 (alternative pathway), C4b-binding protein (C4BP) (classical and lectin pathways), and vitronectin (Vn) (terminal pathway). Once bound to the leptospiral surface, FH and C4BP retain cofactor activity of Factor I in the cleavage of C3b and C4b, respectively. Vn acquisition by leptospires may result in terminal pathway inhibition by blocking C9 polymerization. The second evasion mechanism lies in plasminogen (PLG) binding to the leptospiral surface. In the presence of host activators, PLG is converted to enzymatically active plasmin, which is able to degrade C3b, C4b, and C5 at the surface of the pathogen. A third strategy used by leptospires to escape from complement system is the active secretion of proteases. Pathogenic, but not saprophytic leptospires, are able to secrete metalloproteases that cleave C3 (central complement molecule), Factor B (alternative pathway), and C4 and C2 (classical and lectin pathways). The purpose of this review is to fully explore these complement evasion mechanisms, which act together to favor Leptospira survival and multiplication in the host.
Collapse
Affiliation(s)
- Tatiana Rodrigues Fraga
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Lourdes Isaac
- Laboratory of Complement, Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | |
Collapse
|
35
|
Salazar N, Souza MCLD, Biasioli AG, Silva LBD, Barbosa AS. The multifaceted roles of Leptospira enolase. Res Microbiol 2016; 168:157-164. [PMID: 27989763 DOI: 10.1016/j.resmic.2016.10.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 09/30/2016] [Accepted: 10/18/2016] [Indexed: 12/21/2022]
Abstract
A previous study had demonstrated that Leptospira enolase is secreted extracellularly by a yet unknown mechanism and reassociates with the bacterial membrane. Surface-anchored leptospiral enolase displays plasminogen binding activity. In this work, we explored the consequences of this interaction and also assessed whether Leptospira enolase might display additional moonlighting functions by interacting with other host effector proteins. We first demonstrated that enolase-bound plasminogen is converted to its active form, plasmin. The protease plasmin targets human fibrinogen and vitronectin, but not the complement proteins C3b and C5. Leptospira enolase also acts as an immune evasion protein by interacting with the negative complement regulators C4b binding protein and factor H. Once bound to enolase, both regulators remain functional as cofactors of factor I, mediating cleavage of C4b and C3b. In conclusion, enolase may facilitate leptospiral survival and dissemination, thus contributing to bacterial virulence. The identification and characterization of moonlighting proteins is a growing field of bacterial pathogenesis, as these multifaceted proteins may represent potential future therapeutic targets to fight bacterial infections.
Collapse
Affiliation(s)
- Natália Salazar
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil.
| | | | - Amanda Gameiro Biasioli
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil.
| | - Ludmila Bezerra da Silva
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil.
| | - Angela Silva Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brasil 1500, 05503-900 São Paulo, SP, Brazil.
| |
Collapse
|
36
|
Interactions of surface-displayed glycolytic enzymes of Mycoplasma pneumoniae with components of the human extracellular matrix. Int J Med Microbiol 2016; 306:675-685. [PMID: 27616280 DOI: 10.1016/j.ijmm.2016.09.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 11/24/2022] Open
Abstract
Mycoplasma pneumoniae is a major cause of community-acquired respiratory infections worldwide. Due to the strongly reduced genome, the number of virulence factors expressed by this cell wall-less pathogen is limited. To further understand the processes during host colonization, we investigated the interactions of the previously confirmed surface-located glycolytic enzymes of M. pneumoniae (pyruvate dehydrogenase A-C [PdhA-C], glyceraldehyde-3-phosphate dehydrogenase [GapA], lactate dehydrogenase [Ldh], phosphoglycerate mutase [Pgm], pyruvate kinase [Pyk] and transketolase [Tkt]) to the human extracellular matrix (ECM) proteins fibrinogen (Fn), fibronectin (Fc), lactoferrin (Lf), laminin (Ln) and vitronectin (Vc), respectively. Concentration-dependent interactions between Fn and Vc and all eight recombinant proteins derived from glycolytic enzymes, between Ln and PdhB-C, GapA, Ldh, Pgm, Pyk and Tkt, between Lf and PdhA-C, GapA and Pyk, and between Fc and PdhC and GapA were demonstrated. In most cases, these associations are significantly influenced by ionic forces and by polyclonal sera against recombinant proteins. In immunoblotting, the complex of human plasminogen, activator (tissue-type or urokinase plasminogen activator) and glycolytic enzyme was not able to degrade Fc, Lf and Ln, respectively. In contrast, degradation of Vc was confirmed in the presence of all eight enzymes tested. Our data suggest that the multifaceted associations of surface-localized glycolytic enzymes play a potential role in the adhesion and invasion processes during infection of human respiratory mucosa by M. pneumoniae.
Collapse
|
37
|
The Fibrinolytic System in the Interstitial Space. Protein Sci 2016. [DOI: 10.1201/9781315374307-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
38
|
Fernandes LGV, Filho AFS, Souza GO, Vasconcellos SA, Romero EC, Nascimento ALTO. Decrease in antithrombin III and prothrombin serum levels contribute to coagulation disorders during leptospirosis. Microbiology (Reading) 2016; 162:1407-1421. [DOI: 10.1099/mic.0.000318] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Affiliation(s)
- Luis G. V. Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, Sao Paulo, SP, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Sao Paulo, SP, Brazil
| | - Antonio F. S. Filho
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - Gisele O. Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr Orlando Marques de Paiva, 87, 05508-270, Sao Paulo, SP, Brazil
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Avenida Dr Arnaldo, 355, CEP 01246-902, Sao Paulo, SP, Brazil
| | - Ana L. T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, Sao Paulo, SP, Brazil
- Programa de Pos-Graduacao Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Sao Paulo, SP, Brazil
| |
Collapse
|
39
|
Vieira ML, Naudin C, Mörgelin M, Romero EC, Nascimento ALTO, Herwald H. Modulation of Hemostatic and Inflammatory Responses by Leptospira Spp. PLoS Negl Trop Dis 2016; 10:e0004713. [PMID: 27167223 PMCID: PMC4864083 DOI: 10.1371/journal.pntd.0004713] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/24/2016] [Indexed: 12/28/2022] Open
Abstract
Leptospirosis is a worldwide spread zoonotic and neglected infectious disease of human and veterinary concern that is caused by pathogenic Leptospira species. In severe infections, hemostatic impairments such as coagulation/fibrinolysis dysfunction are frequently observed. These complications often occur when the host response is controlled and/or modulated by the bacterial pathogen. In the present investigation, we aimed to analyze the modulation of the hemostatic and inflammatory host responses by the bacterial pathogen Leptospira. The effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation were investigated by means of altered clotting times, assembly and activation of contact system and induction of tissue factor. We show that both extrinsic and intrinsic coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that the pro-inflammatory mediator bradykinin is released following contact activation at the bacterial surface and that pro-coagulant microvesicles are shed from monocytes in response to infection. Also, we show that human leptospirosis patients present higher levels of circulating pro-coagulant microvesicles than healthy individuals. Here we show that both pathways of the coagulation system are modulated by leptospires, possibly leading to altered hemostatic and inflammatory responses during the disease. Our results contribute to the understanding of the leptospirosis pathophysiological mechanisms and may open new routes for the discovery of novel treatments for the severe manifestations of the disease. Leptospirosis is one of the most relevant and spread zoonotic and neglected infectious diseases affecting humans and other mammals, and is caused by pathogenic bacteria of the genus Leptospira. During infectious diseases, when bacterial pathogens control and/or modulate the host response, impaired hemostasis and inflammation are frequently observed. Here we studied the effects of leptospires and their secreted products on stimulation of human intrinsic and extrinsic pathways of coagulation, showing that both coagulation cascades are modulated in response to Leptospira or leptospiral secreted proteins. We further find that activation of the coagulation cascades culminates in the release of the pro-inflammatory mediator bradykinin and noted an induction of pro-coagulant microvesicles. These findings contribute to a better understanding of the local and systemic hemostastic complications during leptospirosis. Collectively, our results show how leptospires can affect host responses, possibly leading to altered host responses during the disease and giving rise to the leptospirosis symptomatology.
Collapse
Affiliation(s)
- Mônica L. Vieira
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, Sao Paulo, Brazil
- * E-mail: ; (MLV); (HH)
| | - Clément Naudin
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Matthias Mörgelin
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Sao Paulo, Sao Paulo, Brazil
| | | | - Heiko Herwald
- Department of Clinical Sciences, Lund, Division of Infection Medicine, Lund University, Lund, Sweden
- * E-mail: ; (MLV); (HH)
| |
Collapse
|
40
|
Silva LP, Fernandes LGV, Vieira ML, de Souza GO, Heinemann MB, Vasconcellos SA, Romero EC, Nascimento ALTO. Evaluation of two novel leptospiral proteins for their interaction with human host components. Pathog Dis 2016; 74:ftw040. [PMID: 27129366 DOI: 10.1093/femspd/ftw040] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2016] [Indexed: 11/12/2022] Open
Abstract
Pathogenic species of the genus Leptospira are the etiological agents of leptospirosis, the most widespread zoonosis. Mechanisms involved in leptospiral pathogenesis are not well understood. By data mining the genome sequences of Leptospira interrogans we have identified two proteins predicted to be surface exposed, LIC10821 and LIC10064. Immunofluorescence and proteinase K assays confirmed that the proteins are exposed. Reactivity of the recombinant proteins with human sera has shown that rLIC10821, but not rLIC10064, is recognized by antibodies in confirmed leptospirosis serum samples, suggesting its expression during infection. The rLIC10821 was able to bind laminin, in a dose-dependent fashion, and was called Lsa37 (leptospiral surface adhesin of 37 kDa). Studies with human plasma components demonstrated that rLIC10821 interacts with plasminogen (PLG) and fibrinogen (Fg). The binding of Lsa37 with PLG generates plasmin when PLG activator was added. Fibrin clotting reduction was observed in a thrombin-catalyzed reaction, when Fg was incubated with Lsa37, suggesting that this protein may interfere in the coagulation cascade during the disease. Although LIC10064 protein is more abundant than the corresponding Lsa37, binding activity with all the components tested was not detected. Thus, Lsa37 is a novel versatile adhesin that may mediate Leptospira-host interactions.
Collapse
Affiliation(s)
- Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Luis G V Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Marcos B Heinemann
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Prof. Dr. Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Eliete C Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Avenida Dr. Arnaldo, 355, CEP 01246-902, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
41
|
Castiblanco-Valencia MM, Fraga TR, Pagotto AH, Serrano SMDT, Abreu PAE, Barbosa AS, Isaac L. Plasmin cleaves fibrinogen and the human complement proteins C3b and C5 in the presence of Leptospira interrogans proteins: A new role of LigA and LigB in invasion and complement immune evasion. Immunobiology 2016; 221:679-89. [PMID: 26822552 DOI: 10.1016/j.imbio.2016.01.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 01/02/2016] [Accepted: 01/03/2016] [Indexed: 12/23/2022]
Abstract
Plasminogen is a single-chain glycoprotein found in human plasma as the inactive precursor of plasmin. When converted to proteolytically active plasmin, plasmin(ogen) regulates both complement and coagulation cascades, thus representing an important target for pathogenic microorganisms. Leptospira interrogans binds plasminogen, which is converted to active plasmin. Leptospiral immunoglobulin-like (Lig) proteins are surface exposed molecules that interact with extracellular matrix components and complement regulators, including proteins of the FH family and C4BP. In this work, we demonstrate that these multifunctional molecules also bind plasminogen through both N- and C-terminal domains. These interactions are dependent on lysine residues and are affected by ionic strength. Competition assays suggest that plasminogen does not share binding sites with C4BP or FH on Lig proteins at physiological molar ratios. Plasminogen bound to Lig proteins is converted to proteolytic active plasmin in the presence of urokinase-type plasminogen activator (uPA). Lig-bound plasmin is able to cleave the physiological substrates fibrinogen and the complement proteins C3b and C5. Taken together, our data point to a new role of LigA and LigB in leptospiral invasion and complement immune evasion. Plasmin(ogen) acquisition by these versatile proteins may contribute to Leptospira infection, favoring bacterial survival and dissemination inside the host.
Collapse
Affiliation(s)
| | - Tatiana Rodrigues Fraga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Ana Helena Pagotto
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | - Solange Maria de Toledo Serrano
- Special Laboratory of Applied Toxinology, Center of Toxins, Immune-Response and Cell Signaling (CeTICS), Butantan Institute, São Paulo, Brazil
| | | | | | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
42
|
Fernandes LG, Siqueira GH, Teixeira ARF, Silva LP, Figueredo JM, Cosate MR, Vieira ML, Nascimento ALTO. Leptospira spp.: Novel insights into host-pathogen interactions. Vet Immunol Immunopathol 2015; 176:50-7. [PMID: 26727033 DOI: 10.1016/j.vetimm.2015.12.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 12/09/2015] [Accepted: 12/10/2015] [Indexed: 01/30/2023]
Abstract
Leptospirosis is a widespread zoonosis caused by pathogenic Leptospira spp. It is an important infectious disease that affects humans and animals. The disease causes economic losses as it affects livestock, with decreased milk production and death. Our group is investigating the genome sequences of L. interrogans targeting surface-exposed proteins because, due to their location, these proteins are capable to interact with several host components that could allow establishment of the infection. These interactions may involve adhesion of the bacteria to extracellular matrix (ECM) components and, hence, help bacterial colonization. The bacteria could also react with the host fibrinolytic system and/or with the coagulation cascade components, such as, plasminogen (PLG) and fibrinogen (Fg), respectively. The binding with the first system generates plasmin (PLA), increasing the proteolytic power of the bacteria, while the second interferes with clotting in a thrombin-catalyzed reaction, which may promote hemorrhage foci and increase bacterial dissemination. Interaction with the complement system negative regulators may help bacteria to evade the host immune system, facilitating the invasion. This work compiles the main described leptospiral proteins that could act as adhesins, as PLG and fibrinogen receptors and as complement regulator binding proteins. We present models in which we suggest possible mechanisms of how leptospires might colonize and invade host tissues, causing the disease. Understanding leptospiral pathogenesis will help to identify antigen candidates that would contribute to the development of more effective vaccines and diagnostic tests.
Collapse
Affiliation(s)
- Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Aline R F Teixeira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Lucas P Silva
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Jupciana M Figueredo
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Maria R Cosate
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Monica L Vieira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil; Programa de Pós Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Prof. Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil.
| |
Collapse
|
43
|
Siqueira GH, Atzingen MV, de Souza GO, Vasconcellos SA, Nascimento ALTO. Leptospira interrogans Lsa23 protein recruits plasminogen, factor H and C4BP from normal human serum and mediates C3b and C4b degradation. MICROBIOLOGY-SGM 2015; 162:295-308. [PMID: 26614523 DOI: 10.1099/mic.0.000217] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been reported that pathogenic Leptospira are resistant to normal human serum (NHS) due to their ability to evade the complement immune system by interacting with factor H (FH) and C4b-binding protein (C4BP) regulators. Moreover, plasmin generation on the leptospiral surface diminishes C3b and IgG deposition, decreasing opsonophagocytosis by immune competent cells. We have previously reported that Lsa23 (LIC11360) is a multipurpose protein capable of binding purified extracellular matrix molecules, FH, C4BP and plasminogen (PLG)/plasmin in the presence of PLG activators. In this work, we provide further evidence that Lsa23 is located at the bacterial surface by using immunofluorescence microscopy. We show that Lsa23 has the ability to acquire FH, C4BP and PLG from NHS, and use these interactions to evade innate immunity. The binding with the complement regulators FH and C4BP preserves factor I (FI) activity, leading to C3b and C4b degradation products, respectively. C3b and C4b alpha-chain cleavage was also observed when Lsa23 bound to PLG generating plasmin, an effect blocked by the protease inhibitor aprotinin. Lsa23 also inhibited lytic activity by NHS mediated by both classical and alternative complement pathways. Thus, Lsa23 has the ability to block both pathways of the complement system, and may help pathogenic Leptospira to escape complement-mediated clearance in human hosts. Indeed, NHS treated with Lsa23 confers a partial serum resistance phenotype to Leptospira biflexa, whereas blocking this protein with anti-Lsa23 renders pathogenic L. interrogans more susceptible to complement-mediated killing. Thus, Lsa23 is a multifunctional protein involved in many pathways, featuring C4b cleavage by plasmin, knowledge that may help in the development of preventive approaches to intervene with human complement escape by this versatile pathogen.
Collapse
Affiliation(s)
- Gabriela H Siqueira
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.,Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Marina V Atzingen
- Instituto Adolfo Lutz, Avenida Doutor Arnaldo, 355, 01246-000, São Paulo, SP, Brazil
| | - Gisele O de Souza
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Avenida Professor Dr Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Avenida Professor Dr Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil.,Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
44
|
Peetermans M, Vanassche T, Liesenborghs L, Lijnen RH, Verhamme P. Bacterial pathogens activate plasminogen to breach tissue barriers and escape from innate immunity. Crit Rev Microbiol 2015; 42:866-82. [PMID: 26485450 DOI: 10.3109/1040841x.2015.1080214] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Both coagulation and fibrinolysis are tightly connected with the innate immune system. Infection and inflammation cause profound alterations in the otherwise well-controlled balance between coagulation and fibrinolysis. Many pathogenic bacteria directly exploit the host's hemostatic system to increase their virulence. Here, we review the capacity of bacteria to activate plasminogen. The resulting proteolytic activity allows them to breach tissue barriers and evade innate immune defense, thus promoting bacterial spreading. Yersinia pestis, streptococci of group A, C and G and Staphylococcus aureus produce a specific bacterial plasminogen activator. Moreover, surface plasminogen receptors play an established role in pneumococcal, borrelial and group B streptococcal infections. This review summarizes the mechanisms of bacterial activation of host plasminogen and the role of the fibrinolytic system in infections caused by these pathogens.
Collapse
Affiliation(s)
- Marijke Peetermans
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Thomas Vanassche
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | | | - Roger H Lijnen
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| | - Peter Verhamme
- a Center for Molecular and Vascular Biology, KU Leuven , Leuven , Belgium
| |
Collapse
|
45
|
Vieira ML, Nascimento ALTO. Interaction of spirochetes with the host fibrinolytic system and potential roles in pathogenesis. Crit Rev Microbiol 2015; 42:573-87. [PMID: 25914944 DOI: 10.3109/1040841x.2014.972336] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pathogenic spirochetes Borrelia burgdorferi, B. hermsii, B. recurrentis, Treponema denticola and Leptospira spp. are the etiologic agents of Lyme disease, relapsing fever, periodontitis and leptospirosis, respectively. Lyme borreliosis is a multi-systemic disorder and the most prevalent tick-borne disease in the northern hemisphere. Tick-borne relapsing fever is persistent in endemic areas worldwide, representing a significant burden in some African regions. Periodontal disease, a chronic inflammatory disorder that often leads to tooth loss, is caused by several potential pathogens found in the oral cavity including T. denticola. Leptospirosis is considered the most widespread zoonosis, and the predominant human disease in tropical, undeveloped regions. What these diseases have in common is that they are a significant burden to healthcare costs in the absence of prophylactic measures. This review addresses the interaction of these spirochetes with the fibrinolytic system, plasminogen (Plg) binding to the surface of bacteria and the generation of plasmin (Pla) on their surface. The consequences on host-pathogen interactions when the spirochetes are endowed with this proteolytic activity are discussed on the basis of the results reported in the literature. Spirochetes equipped with Pla activity have been shown to degrade extracellular matrix (ECM) components, in addition to digesting fibrin, facilitating bacterial invasion and dissemination. Pla generation triggers the induction of matrix metalloproteases (MMPs) in a cascade of events that enhances the proteolytic capacity of the spirochetes. These activities in concert with the interference exerted by the Plg/Pla on the complement system - helping the bacteria to evade the immune system - should illuminate our understanding of the mechanisms involved in host infection.
Collapse
|
46
|
Raymond BBA, Djordjevic S. Exploitation of plasmin(ogen) by bacterial pathogens of veterinary significance. Vet Microbiol 2015; 178:1-13. [PMID: 25937317 DOI: 10.1016/j.vetmic.2015.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Revised: 04/07/2015] [Accepted: 04/09/2015] [Indexed: 01/31/2023]
Abstract
The plasminogen (Plg) system plays an important homeostatic role in the degradation of fibrin clots, extracellular matrices and tissue barriers important for cellular migration, as well as the promotion of neurotransmitter release. Plg circulates in plasma at physiologically high concentrations (150-200μg ml(-1)) as an inactive proenzyme. Proteins enriched in lysine and other positively charged residues (histidine and arginine) as well as glycosaminoglycans and gangliosides bind Plg. The binding interaction initiates a structural adjustment to the bound Plg that facilitates cleavage by proteases (plasminogen activators tPA and uPA) that activate Plg to the active serine protease plasmin. Both pathogenic and commensal bacteria capture Plg onto their cell surface and promote its conversion to plasmin. Many microbial Plg-binding proteins have been described underpinning the importance this process plays in how bacteria interact with their hosts. Bacteria exploit the proteolytic capabilities of plasmin by (i) targeting the mammalian fibrinolytic system and degrading fibrin clots, (ii) remodeling the extracellular matrix and generating bioactive cleavage fragments of the ECM that influence signaling pathways, (iii) activating matrix metalloproteinases that assist in the destruction of tissue barriers and promote microbial metastasis and (iv) destroying immune effector molecules. There has been little focus on the exploitation of the fibrinolytic system by veterinary pathogens. Here we describe several pathogens of veterinary significance that possess adhesins that bind plasmin(ogen) onto their cell surface and promote its activation to plasmin. Cumulative data suggests that these attributes provide pathogenic and commensal bacteria with a means to colonize and persist within the host environment.
Collapse
Affiliation(s)
- Benjamin B A Raymond
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Steven Djordjevic
- The ithree Institute, University of Technology, Sydney, PO Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|
47
|
Teixeira AF, de Morais ZM, Kirchgatter K, Romero EC, Vasconcellos SA, Nascimento ALTO. Features of two new proteins with OmpA-like domains identified in the genome sequences of Leptospira interrogans. PLoS One 2015; 10:e0122762. [PMID: 25849456 PMCID: PMC4388678 DOI: 10.1371/journal.pone.0122762] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Accepted: 02/13/2015] [Indexed: 12/12/2022] Open
Abstract
Leptospirosis is an acute febrile disease caused by pathogenic spirochetes of the genus Leptospira. It is considered an important re-emerging infectious disease that affects humans worldwide. The knowledge about the mechanisms by which pathogenic leptospires invade and colonize the host remains limited since very few virulence factors contributing to the pathogenesis of the disease have been identified. Here, we report the identification and characterization of two new leptospiral proteins with OmpA-like domains. The recombinant proteins, which exhibit extracellular matrix-binding properties, are called Lsa46 - LIC13479 and Lsa77 - LIC10050 (Leptospiral surface adhesins of 46 and 77 kDa, respectively). Attachment of Lsa46 and Lsa77 to laminin was specific, dose dependent and saturable, with KD values of 24.3 ± 17.0 and 53.0 ± 17.5 nM, respectively. Lsa46 and Lsa77 also bind plasma fibronectin, and both adhesins are plasminogen (PLG)-interacting proteins, capable of generating plasmin (PLA) and as such, increase the proteolytic ability of leptospires. The proteins corresponding to Lsa46 and Lsa77 are present in virulent L. interrogans L1-130 and in saprophyte L. biflexa Patoc 1 strains, as detected by immunofluorescence. The adhesins are recognized by human leptospirosis serum samples at the onset and convalescent phases of the disease, suggesting that they are expressed during infection. Taken together, our data could offer valuable information to the understanding of leptospiral pathogenesis.
Collapse
Affiliation(s)
- Aline F. Teixeira
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Zenaide M. de Morais
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Karin Kirchgatter
- Nucleo de Estudos em Malária, Superintendência de Controle de Endemias - Instituto de Medicina Tropical, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Eliete C. Romero
- Centro de Bacteriologia, Instituto Adolfo Lutz, Sao Paulo, Brazil
| | - Silvio A. Vasconcellos
- Laboratório de Zoonoses Bacterianas, Faculdade de Medicina Veterinária e Zootecnia, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
| | - Ana Lucia T. O. Nascimento
- Centro de Biotecnologia, Instituto Butantan, Sao Paulo, SP, Brazil
- Programa de Pós-Graduação Interunidades em Biotecnologia,Instituto de Ciencias Biomedicas, Universidade de Sao Paulo, Sao Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
48
|
Fernandes LG, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Leptospira interrogans reduces fibrin clot formation by modulating human thrombin activity via exosite I. Pathog Dis 2015; 73:ftv001. [PMID: 25834144 DOI: 10.1093/femspd/ftv001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2014] [Indexed: 01/08/2023] Open
Abstract
Pathogenic bacteria of the genus Leptospira are the etiological agents of leptospirosis, a disease that affects humans and animals worldwide. Although there are an increasing number of studies on the biology of Leptospira, the mechanisms of pathogenesis are not yet understood. We report in this work that Leptospira interrogans FIOCRUZ L1-130 virulent, M20 culture attenuated and the saprophyte L. biflexa Patoc 1 strains do not bind prothrombin. Leptospiral binding to thrombin was detected with the virulent, followed by culture-attenuated M20, and practically none was observed with the saprophyte strain. The interaction of Leptospira with thrombin mostly occurs via exosite I, with a minor participation of catalytic site, as determined by employing the thrombin inhibitors hirugen, hirudin and argatroban. Leptospira interrogans binding to thrombin inhibits its catalytic activity reducing fibrin clot formation in thrombin-catalyzed reaction of fibrinogen. This inhibition was more efficient with the virulent FIOCRUZ L1-130 than with the M20 culture attenuated, while none was seen with the saprophyte strain, suggesting that this binding might be important for bacterial virulence. This is the first study reporting the binding of pathogenic Leptospira to thrombin promoting a decrease in fibrin clotting that could lead to hemorrhage, helping bacteria dissemination.
Collapse
Affiliation(s)
- Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo 05508-900, Brazil
| | - Zenaide M de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de MedicinaVeterinária e Zootecnia da Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de MedicinaVeterinária e Zootecnia da Universidade de São Paulo, São Paulo 05508-270, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, São Paulo, SP 05503-900, Brazil Programa de Pós-Graduação Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, São Paulo 05508-900, Brazil
| |
Collapse
|
49
|
Domingos RF, Fernandes LG, Romero EC, de Morais ZM, Vasconcellos SA, Nascimento ALTO. Novel Leptospira interrogans protein Lsa32 is expressed during infection and binds laminin and plasminogen. MICROBIOLOGY-SGM 2015; 161:851-64. [PMID: 25627443 DOI: 10.1099/mic.0.000041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 01/19/2015] [Indexed: 11/18/2022]
Abstract
Pathogenic Leptospira is the aetiological agent of leptospirosis, a life-threatening disease of human and veterinary concern. The quest for novel antigens that could mediate host-pathogen interactions is being pursued. Owing to their location, these antigens have the potential to elicit numerous activities, including immune response and adhesion. This study focuses on a hypothetical protein of Leptospira, encoded by the gene LIC11089, and its three derived fragments: the N-terminal, intermediate and C terminus regions. The gene coding for the full-length protein and fragments was cloned and expressed in Escherichia coli BL21(SI) strain by using the expression vector pAE. The recombinant protein and fragments tagged with hexahistidine at the N terminus were purified by metal affinity chromatography. The leptospiral full-length protein, named Lsa32 (leptospiral surface adhesin, 32 kDa), adheres to laminin, with the C terminus region being responsible for this interaction. Lsa32 binds to plasminogen in a dose-dependent fashion, generating plasmin when an activator is provided. Moreover, antibodies present in leptospirosis serum samples were able to recognize Lsa32. Lsa32 is most likely a new surface protein of Leptospira, as revealed by proteinase K susceptibility. Altogether, our data suggest that this multifaceted protein is expressed during infection and may play a role in host-L. interrogans interactions.
Collapse
Affiliation(s)
- Renan F Domingos
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Professor Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Luis G Fernandes
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Professor Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| | - Eliete C Romero
- Divisão de Biologia Medica, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Zenaide M de Morais
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Professor Dr Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Silvio A Vasconcellos
- Laboratório de Zoonoses Bacterianas do VPS, Faculdade de Medicina Veterinária e Zootecnia, USP, Avenida Professor Dr Orlando Marques de Paiva, 87, 05508-270, São Paulo, SP, Brazil
| | - Ana L T O Nascimento
- Centro de Biotecnologia, Instituto Butantan, Avenida Vital Brazil, 1500, 05503-900, São Paulo, SP, Brazil Programa Interunidades em Biotecnologia, Instituto de Ciências Biomédicas, USP, Avenida Professor Lineu Prestes, 1730, 05508-900, São Paulo, SP, Brazil
| |
Collapse
|
50
|
Abstract
The mechanisms of disease pathogenesis in leptospirosis are poorly defined. Recent developments in the application of genetic tools in the study of Leptospira have advanced our understanding by allowing the assessment of mutants in animal models. As a result, a small number of essential virulence factors have been identified, though most do not have a clearly defined function. Significant advances have also been made in the in vitro characterization of leptospiral interaction with host structures, including extracellular matrix proteins (such as laminin, elastin, fibronectin, collagens), proteins related to hemostasis (fibrinogen, plasmin), and soluble mediators of complement resistance (factor H, C4b-binding protein), although none of these in vitro findings has been translated to the host animal. Binding to host structures may permit colonization of the host, prevention of blood clotting may contribute to hemorrhage, while interaction with complement resistance mediators may contribute to survival in serum. While not a classical intracellular pathogen, the interaction of leptospires and phagocytic cells appears complex, with bacteria surviving uptake and promoting apoptosis; mutants relating to these processes (such as cell invasion and oxidative stress resistance) are attenuated in vivo. Another feature of leptospiral biology is the high degree of functional redundancy and the surprising lack of attenuation of mutants in what appear to be certain virulence factors, such as LipL32 and LigB. While many advances have been made, there remains a lack of understanding of how Leptospira causes tissue pathology. It is likely that leptospires have many novel pathogenesis mechanisms that are yet to be identified.
Collapse
|