1
|
da Silveira BP, Cohen ND, Lawhon SD, Watson RO, Bordin AI. Protective immune response against Rhodococcus equi: An innate immunity-focused review. Equine Vet J 2024. [PMID: 39258739 DOI: 10.1111/evj.14214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/30/2024] [Indexed: 09/12/2024]
Abstract
Rhodococcus equi causes pyogranulomatous pneumonia in foals and immunocompromised people. Despite decades of research efforts, no vaccine is available against this common cause of disease and death in foals. The purpose of this narrative review is to summarise the current understanding of interactions between R. equi and the host innate immune system, to describe features of the immune response that are associated with resistance or susceptibility to R. equi infection, and help guide strategies for developing novel approaches for preventing R. equi infections. Virulence of R. equi in foals has been attributed to the virulence associated protein A which allows intracellular survival in macrophages by preventing acidification of R. equi-containing vacuole. Additionally, foal susceptibility to R. equi infection is associated with immaturity and naivety of innate and adaptive immune systems, while adult horses with fully functional immune system are resistant to pneumonia. Specific interaction between R. equi and innate immune cells can result in bacterial survival or death; learning how to manipulate these responses to control infection is critical to prevent pneumonia in foals. Administration of live vaccines and stimulation of innate immune responses appears to improve foals' immune response and has the potential to overcome the challenges of foal active vaccination and elicit protection against pneumonia.
Collapse
Affiliation(s)
- Bibiana Petri da Silveira
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Sara D Lawhon
- Department of Veterinary Pathobiology, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| | - Robert O Watson
- Department of Microbial Pathogenesis & Immunology, Texas A&M University, School of Medicine, College Station, Texas, USA
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, Texas A&M University, School of Veterinary Medicine & Biomedical Sciences, College Station, Texas, USA
| |
Collapse
|
2
|
Hu B, Gao S, Zhang H, Li Q, Li G, Zhang S, Xing Y, Huang Y, Han S, Tian Y, Zhang W, He H. Whole-genome sequencing and pathogenicity analysis of Rhodococcus equi isolated in horses. BMC Vet Res 2024; 20:362. [PMID: 39129003 PMCID: PMC11318318 DOI: 10.1186/s12917-024-04167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Rhodococcus equi (R. equi) is a Gram-positive zoonotic pathogen that frequently leads to illness and death in young horses (foals). This study presents the complete genome sequence of R. equi strain BJ13, which was isolated from a thoroughbred racehorse breeding farm in Beijing, China. RESULTS The BJ13 genome has a length of 5.30 Mb and consists of a complete chromosome and a plasmid measuring 5.22 Mb and 0.08 Mb, respectively. We predicted 4,929 coding gene open reading frames, along with 52 tRNAs and 12 rRNAs. Through analysis of mobile genetic elements, we identified 6 gene islands and 1 prophage gene. Pathogenic system analysis predicted the presence of 418 virulence factors and 225 drug resistance genes. Secretion system analysis revealed the prediction of 297 secreted proteins and 1,106 transmembrane proteins. BJ13 exhibits genomic features, virulence-associated genes, potential drug resistance, and a virulence plasmid structure that may contribute to the evolution of its pathogenicity. Lastly, the pathogenicity of the isolated strain was assessed through animal experiments, which resulted in inflammatory reactions or damage in the lungs, liver, and spleen of mice. Moreover, by the 7th day post-infection, the mortality rate of the mice reached 50.0%, indicating complex immune regulatory mechanisms, including overexpression of IL-10 and increased production of pro-inflammatory cytokines like TNF-α. These findings validate the strong pathogenicity of the isolated strain and provide insights for studying the pathogenic mechanisms of Rhodococcus equi infection. CONCLUSIONS The complete genome sequence of R. equi strain BJ13 provides valuable insights into its genomic characteristics, virulence potential, drug resistance, and secretion systems. The strong pathogenicity observed in animal experiments underscores the need for further investigation into the pathogenic mechanisms of R. equi infection.
Collapse
Affiliation(s)
- Bin Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sichao Gao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Anhui University of Science and Technology, Huainan, China
| | - Hao Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoqiao Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Anhui University of Science and Technology, Huainan, China
| | - Gaojian Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuairan Zhang
- College of Shenyang Institute of Technology, Shenyang, Liaoning, China
| | - Yanan Xing
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Tian
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China
| | - Wei Zhang
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China
| | - Hongxuan He
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
3
|
Suzuki Y, Takahashi K, Ishitsuka T, Sugiyama M, Sasaki Y, Kakuda T, Takai S, Naito I, Kohara J. Experimental infection of goats with pVAPN-harboring Rhodococcus equi causes latent infection in the lymph nodes. Vet Microbiol 2024; 295:110132. [PMID: 38838383 DOI: 10.1016/j.vetmic.2024.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/15/2024] [Accepted: 05/23/2024] [Indexed: 06/07/2024]
Abstract
Rhodococcus equi has recently been identified in various animals, including ruminants. Several studies have highlighted the emergence of pVAPN-harboring strains, isolated from multiple abscesses, in the liver and lungs of ruminants. Epidemiological evidence strongly suggests that pVAPN-harboring strains are pathogenic in ruminants. This study aims to replicate the disease in goats through experimental infection. Intravenous administration of the pVAPN-harboring strain (Yokkaichi), pVAPA-harboring strain (ATCC33701), and pVAPN-cured strain (Yokkaichi_P-), each at 1.0 × 107 CFU/head, was conducted in 24-month-old goats (n = 1 per group). During the observation period, goats treated with Yokkaichi or ATCC33701 exhibited transient increases in body temperature and white blood cell count, alongside a decrease in body weight from the administration day. Conversely, goats treated with Yokkaichi_P- displayed no significant changes in these values. The Yokkaichi-treated goat demonstrated a >10-fold increase in anti-VapN antibody titers from 11 to 14 days postadministration, whereas the other two goats exhibited no variation in anti-VapA and VapN antibody titers. Pathological autopsy analysis of organs harvested 28 days postadministration revealed no characteristic lesions on gross examination. However, the inoculated strain (vapN-positive R. equi) was exclusively recovered from the tracheobronchial lymph node in the Yokkaichi-treated goat. Immunohistochemistry detected a VapN-positive reaction in the tracheobronchial lymph node, confirming latent infection despite the absence of dramatic suppurative lesions seen in ruminants. Overall, this study highlights the latent infection in lymph nodes induced by the pVAPN-harboring strain, despite the absence of overt pathological manifestations.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan.
| | - Kei Takahashi
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Toko Ishitsuka
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Ikunori Naito
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Hokkaido, Japan
| | - Junko Kohara
- Animal Health Group, Animal Research Center, Hokkaido Research Organization, Hokkaido, Japan
| |
Collapse
|
4
|
MATSUOKA M, KOBAYASHI A, MATSUOKA M, HONDA Y, HASHIMOTO R, SASAKI Y, KAKUDA T, SUZUKI Y, TAKAI S. Isolation of vapB-positive Rhodococcus equi from submaxillary lymph nodes with or without granulomatous lesions in growing-finishing pigs in Japan. J Vet Med Sci 2024; 86:600-605. [PMID: 38631887 PMCID: PMC11187592 DOI: 10.1292/jvms.24-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
To investigate the etiological role of vapB-positive Rhodococcus equi in pigs, R. equi was isolated from the submaxillary lymph nodes with or without macroscopically detectable lesions of apparently healthy growing-finishing pigs at a slaughterhouse in Toyama Prefecture, Japan. R. equi was isolated from 57 (24.6%) of 232 pigs with macroscopically detectable lymph node lesions, and 56 (98.2%) of the 57 isolates were vapB-positive. R. equi was isolated from 10 (2.4%) of 420 pigs without lymph node lesions, and six (60%) of the 10 isolates were vapB-positive. Plasmid DNA was isolated from the 62 vapB-positive isolates and digested with EcoRI and NsiI to obtain the plasmid profile. Fifty-two (83.9%), three (4.8%), and four (6.5%) isolates contained pVAPB subtypes 1, 2, and 3, respectively, while the remaining three isolates were of pVAPB subtypes 9, 13, and 14, respectively. Twelve specimens from lymph nodes with macroscopically detectable lesions were randomly selected for histopathological staining. Granulomatous lesions resembling tuberculosis were found in 11 of the 12 specimens, and the remaining specimen showed typical foci of malakoplakia in the lymph node. The isolation rates of R. equi and vapB-positive R. equi from lymph nodes with macroscopically detectable lesions were significantly higher (P<0.05) than those of lymph nodes without lesions, suggesting an etiologic association between vapB-positive R. equi and macroscopically detectable granulomatous lesions in porcine submaxillary lymph nodes. Previous reports on the prevalence of vapB-positive R. equi in pigs are reviewed and discussed.
Collapse
Affiliation(s)
| | - Ayumi KOBAYASHI
- Department of Animal Hygiene, School of Veterinary Medicine,
Kitasato University, Aomori, Japan
| | - Misa MATSUOKA
- Department of Animal Hygiene, School of Veterinary Medicine,
Kitasato University, Aomori, Japan
| | - Yayoi HONDA
- Department of Animal Hygiene, School of Veterinary Medicine,
Kitasato University, Aomori, Japan
| | - Riri HASHIMOTO
- Department of Animal Hygiene, School of Veterinary Medicine,
Kitasato University, Aomori, Japan
| | - Yukako SASAKI
- Department of Animal Hygiene, School of Veterinary Medicine,
Kitasato University, Aomori, Japan
| | - Tsutomu KAKUDA
- Department of Animal Hygiene, School of Veterinary Medicine,
Kitasato University, Aomori, Japan
| | - Yasunori SUZUKI
- Department of Animal Hygiene, School of Veterinary Medicine,
Kitasato University, Aomori, Japan
| | - Shinji TAKAI
- Department of Animal Hygiene, School of Veterinary Medicine,
Kitasato University, Aomori, Japan
| |
Collapse
|
5
|
Takai S, Mizuno Y, Suzuki Y, Sasaki Y, Kakuda T, Kirikae T. [Rhodococcus equi infections in humans: an emerging zoonotic pathogen]. Nihon Saikingaku Zasshi 2024; 79:15-24. [PMID: 38382971 DOI: 10.3412/jsb.79.15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Rhodococcus equi is a facultative intracellular gram-positive coccobacillus which is a well-known cause of foal pneumonia and/or enteritis in equine veterinary medicine. More than 300 cases of R. equi infection have been reported since the first description of human disease in 1968. Most patients who become infected with R equi are immunocompromised, such as those infected with human immunodeficiency virus (HIV), recipients of organ transplantation, and patients receiving cancer treatment. However, there are increasing reports of the immunocompetent hosts. The pathogenicity of R. equi has been attributed to the presence of plasmid-encoded virulence-associated proteins (Vap). To date, three host-associated virulence plasmid types of R. equi have been identified as follows: the circular pVAPA and pVAPB, related, respectively, to equine and porcine isolates in 1991 and 1995, and a recently described linear pVAPN plasmid associated with bovine and caprine strains in 2015. More recently, these three plasmid types have been re-found in the human isolates which were isolated during 1980s to 1990s. Not only horses, but also pigs, goats, cattle and their environment should be considered as a potential source of R. equi for humans. In this review, we shed light on the current understanding of R. equi as an emerging zoonotic pathogen.
Collapse
Affiliation(s)
- Shinji Takai
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | | | - Yasunori Suzuki
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Yukako Sasaki
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Tsutomu Kakuda
- Laboratory of Veterinary Hygiene, School of Veterinary Medicine, Kitasato University
| | - Teruo Kirikae
- Department of Microbiome Research, Department of Microbiology, Juntendo University School of Medicine
| |
Collapse
|
6
|
Suzuki Y, Takai S, Morizane Y, Yasuda K, Takahashi K, Ishitsuka T, Sasaki Y, Otsuka M, Kato S, Madarame H, Sugiyama M, Kawaguchi H, Kakuda T. Development of monoclonal antibodies against Rhodococcus equi virulence-associated protein N and their application to pathological diagnosis. Microbiol Spectr 2023; 11:e0072923. [PMID: 37800907 PMCID: PMC10714782 DOI: 10.1128/spectrum.00729-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 08/02/2023] [Indexed: 10/07/2023] Open
Abstract
IMPORTANCE Rhodococcus equi can cause infection in ruminants, and its pathogenicity is suggested to be associated with VapN. Despite its wide distribution, no immunological diagnostic method has been developed for VapN-producing R. equi. Against this background, we attempted to develop monoclonal antibodies targeting VapN and assess their application in immunostaining. In the study, mice were immunized with recombinant VapN, and cell fusion and cloning by limiting dilution permitted the generation of three antibody-producing hybridomas. The utility of the antibodies produced from the hybridomas in immunostaining was demonstrated using an infected mouse model, and the antibodies were further applied to previously reported cases of R. equi infection in goats and cattle. Although the 4H4 antibody induced the strongest reactions, the reactivity of two other antibodies was improved by antigen retrieval. Our monoclonal antibodies will be utilized to support the definitive diagnosis of suspected R. equi infection, including cases that were previously missed.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yuri Morizane
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Kentaro Yasuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Kei Takahashi
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Toko Ishitsuka
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Mikihiro Otsuka
- The Gifu Central Livestock Hygiene Service Center, Gifu, Japan
| | - Satoru Kato
- The Gifu Central Livestock Hygiene Service Center, Gifu, Japan
| | - Hiroo Madarame
- Laboratory of Small Animal Clinics, Veterinary Teaching Hospital, Azabu University, Kanagawa, Japan
| | - Makoto Sugiyama
- Laboratory of Veterinary Anatomy, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Hiroaki Kawaguchi
- Laboratory of Veterinary Pathology, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| |
Collapse
|
7
|
Takai S, Suzuki Y, Sasaki Y, Kakuda T, Ribeiro MG, Makrai L, Witkowski L, Cohen N, Sekizaki T. Short review: Geographical distribution of equine-associated pVAPA plasmids in Rhodococcus equi in the world. Vet Microbiol 2023; 287:109919. [PMID: 38000208 DOI: 10.1016/j.vetmic.2023.109919] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/25/2023] [Accepted: 11/19/2023] [Indexed: 11/26/2023]
Abstract
Virulent Rhodococcus equi strains expressing virulence-associated 15-17 kDa protein (VapA) and having a large virulence plasmid (pVAPA) of 85-90 kb containing vapA gene are pathogenic for horses. In the last two decades, following pVAPA, two host-associated virulence plasmid types of R. equi have been discovered: a circular plasmid, pVAPB, associated with porcine isolates in 1995, and a recently detected linear plasmid, pVAPN, related to bovine and caprine isolates. Molecular epidemiological studies of R. equi infection in foals on horse-breeding farms in Japan and many countries around the world have been conducted in the last three decades, and the epidemiological studies using restriction enzyme digestion patterns of plasmid DNAs from virulent isolates have shown 14 distinct pVAPA subtypes and their geographical preference. This short review summarizes previous reports regarding equine-associated pVAPA subtypes in the world and discusses their geographic distribution from the standpoint of horse movements.
Collapse
Affiliation(s)
- Shinji Takai
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan.
| | - Yasunori Suzuki
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Yukako Sasaki
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Tsutomu Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Márcio Garcia Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, UNESP-São Paulo State University, Botucatu, SP, Brazil
| | - László Makrai
- Department of Microbiology and Infectious Diseases, Faculty of Veterinary Science, Szent István University, Hungária krt. 23-25, H-1143 Budapest, Hungary
| | - Lucjan Witkowski
- Laboratory of Veterinary Epidemiology and Economics, Faculty of Veterinary Medicine, Warsaw University of Life Sciences, Nowoursynowska 159c, 02-776, Warsaw, Poland
| | - Noah Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, USA
| | - Tsutomu Sekizaki
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan; Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
8
|
Alvarez Narvaez S, Sanchez S. Exploring the Accessory Genome of Multidrug-Resistant Rhodococcus equi Clone 2287. Antibiotics (Basel) 2023; 12:1631. [PMID: 37998833 PMCID: PMC10669575 DOI: 10.3390/antibiotics12111631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/15/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023] Open
Abstract
Decades of antimicrobial overuse to treat respiratory disease in foals have promoted the emergence and spread of zoonotic multidrug-resistant (MDR) Rhodococcus equi worldwide. Three main R. equi MDR clonal populations-2287, G2106, and G2017-have been identified so far. However, only clones 2287 and G2016 have been isolated from sick animals, with clone 2287 being the main MDR R. equi recovered. The genetic mechanisms that make this MDR clone superior to the others at infecting foals are still unknown. Here, we performed a deep genetic characterization of the accessory genomes of 207 R. equi isolates, and we describe IME2287, a novel genetic element in the accessory genome of clone 2287, potentially involved in the maintenance and spread of this MDR population over time. IME2287 is a putative self-replicative integrative mobilizable element (IME) carrying a DNA replication and partitioning operon and genes encoding its excision and integration from the R. equi genome via a serine recombinase. Additionally, IME2287 encodes a protein containing a Toll/interleukin-1 receptor (TIR) domain that may inhibit TLR-mediated NF-kB signaling in the host and a toxin-antitoxin (TA) system, whose orthologs have been associated with antibiotic resistance/tolerance, virulence, pathogenicity islands, bacterial persistence, and pathogen trafficking. This new set of genes may explain the success of clone 2287 over the other MDR R. equi clones.
Collapse
Affiliation(s)
- Sonsiray Alvarez Narvaez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| | - Susan Sanchez
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
9
|
Liu L, Yu W, Cai K, Ma S, Wang Y, Ma Y, Zhao H. Identification of vaccine candidates against rhodococcus equi by combining pangenome analysis with a reverse vaccinology approach. Heliyon 2023; 9:e18623. [PMID: 37576287 PMCID: PMC10413060 DOI: 10.1016/j.heliyon.2023.e18623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/15/2023] Open
Abstract
Rhodococcus equi (R. equi) is a zoonotic opportunistic pathogen that can cause life-threatening infections. The rapid evolution of multidrug-resistant R. equi and the fact that there is no currently licensed effective vaccine against R. equi warrant the need for vaccine development. Reverse vaccinology (RV), which involves screening a pathogen's entire genome and proteome using various web-based prediction tools, is considered one of the most effective approaches for identifying vaccine candidates. Here, we performed a pangenome analysis to determine the core proteins of R. equi. We then used the RV approach to examine the subcellular localization, host and gut flora homology, antigenicity, transmembrane helices, physicochemical properties, and immunogenicity of the core proteins to select potential vaccine candidates. The vaccine candidates were then subjected to epitope mapping to predict the exposed antigenic epitopes that possess the ability to bind with major histocompatibility complex I/II (MHC I/II) molecules. These vaccine candidates and epitopes will form a library of elements for the development of a polyvalent or universal vaccine against R. equi. Sixteen R. equi complete proteomes were found to contain 6,238 protein families, and the core proteins consisted of 3,969 protein families (∼63.63% of the pangenome), reflecting a low degree of intraspecies genomic variability. From the pool of core proteins, 483 nonhost homologous membrane and extracellular proteins were screened, and 12 vaccine candidates were finally identified according to their antigenicity, physicochemical properties and other factors. These included four cell wall/membrane/envelope biogenesis proteins; four amino acid transport and metabolism proteins; one cell cycle control, cell division and chromosome partitioning protein; one carbohydrate transport and metabolism protein; one secondary metabolite biosynthesis, transport and catabolism protein; and one defense mechanism protein. All 12 vaccine candidates have an experimentally validated 3D structure available in the protein data bank (PDB). Epitope mapping of the candidates showed that 16 MHC I epitopes and 13 MHC II epitopes with the strongest immunogenicity were exposed on the protein surface, indicating that they could be used to develop a polypeptide vaccine. Thus, we utilized an analytical strategy that combines pangenome analysis and RV to generate a peptide antigen library that simplifies the development of multivalent or universal vaccines against R. equi and can be applied to the development of other vaccines.
Collapse
Affiliation(s)
- Lu Liu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Wanli Yu
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Kuojun Cai
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Siyuan Ma
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yanfeng Wang
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| | - Yuhui Ma
- Zhaosu Xiyu Horse Industry Co., Ltd. Zhaosu County 835699, Yili Prefecture, Xinjiang, China
| | - Hongqiong Zhao
- College of Veterinary Medicine, Xinjiang Agricultural University, Urumqi 830052, Xinjiang, China
| |
Collapse
|
10
|
Hansen P, Haubenthal T, Reiter C, Kniewel J, Bosse-Plois K, Niemann HH, von Bargen K, Haas A. Differential Effects of Rhodococcus equi Virulence-Associated Proteins on Macrophages and Artificial Lipid Membranes. Microbiol Spectr 2023; 11:e0341722. [PMID: 36786596 PMCID: PMC10100859 DOI: 10.1128/spectrum.03417-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/06/2023] [Indexed: 02/15/2023] Open
Abstract
Virulence-associated protein A (VapA) of Rhodococcus equi is a pathogenicity factor required for the multiplication of virulent R. equi strains within spacious macrophage vacuoles. The production of VapA is characteristic for R. equi isolates from pneumonic foals. VapB and VapN proteins in R. equi isolates from infected pig (VapB) and cattle (VapN) have amino acid sequences very similar to VapA and consequently have been assumed to be its functional correlates. Using model membrane experiments, phagosome pH acidification analysis, lysosome size measurements, protein partitioning, and degradation assays, we provide support for the view that VapA and VapN promote intracellular multiplication of R. equi by neutralizing the pH of the R. equi-containing vacuole. VapB does not neutralize vacuole pH, is not as membrane active as VapA, and does not support intracellular multiplication. This study also shows that the size of the sometimes enormous R. equi-containing vacuoles or the partitioning of purified Vaps into organic phases are not features that have predictive value for virulence of R. equi, whereas the ability of Vaps to increase phagosome pH is coupled to virulence. IMPORTANCE Rhodococcus equi is a major cause of life-threatening pneumonia in foals and occasionally in immunocompromised persons. Virulence-associated protein A (VapA) promotes R. equi multiplication in lung macrophages, which are the major host cells during foal infection. In this study, we compare cellular, biochemical, and biophysical phenotypes associated with VapA to those of VapB (typically produced by isolates from pigs) or VapN (isolates from cattle). Our data support the hypothesis that only some Vaps support multiplication in macrophages by pH neutralization of the phagosomes that R. equi inhabit.
Collapse
Affiliation(s)
- Philipp Hansen
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | - Caroline Reiter
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | - Jana Kniewel
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| | | | | | | | - Albert Haas
- Institute for Cell Biology, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
An Autobioluminescent Method for Evaluating In Vitro and In Vivo Growth of Rhodococcus equi. Microbiol Spectr 2022; 10:e0075822. [PMID: 35638814 PMCID: PMC9241598 DOI: 10.1128/spectrum.00758-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A previously reported method for evaluating the intracellular growth of Rhodococcus equi using enhanced green fluorescent protein is unsuitable for the quantitative evaluation of the entire sample because the signal can be detected only in the excitation region. Therefore, we created an autobioluminescent R. equi using luciferase (luxABCDE). First, we connected luxABCDE to the functional promoter PaphII and introduced it into the chromosomes of ATCC33701 and ATCC33701_P-. Luminescence was detected in both transformants, and a correlation between the bacterial number and luminescence intensity in the logarithmic phase was observed, indicating that luxABCDE is functionally and quantitatively expressed in R. equi. The luminescence of ATCC33701 was significantly higher than that of ATCC33701_P- at 24 h after infection with J774A.1. Next, RNA-Seq analysis of ATCC33701 to search for endogenous high-expression promoters resulted in the upstream sequences of RS29370, RS41760, and vapA being selected as candidates. Luminescence was detected in each transformant expressing the luxABCDE using these upstream sequences. We examined the luminescence intensity by coexpressing the frp gene, an enhancer of the luciferase reaction, with luxABCDE. The luminescence intensity of the coexpressing transformant was significantly enhanced in J774A.1 compared with the non-coexpressing transformant. Finally, we examined the luminescence in vivo. The luminescence signals in the organs peaked on the third day following the administration of ATCC33701 derivatives in mice, but no luminescence signal was detected when the ATCC33701_P- derivative was administered. The autologous bioluminescent method described herein will enhance the in vitro and in vivo quantitative analysis of R. equi proliferation. IMPORTANCE We established an autologous bioluminescent strain of R. equi and a method to evaluate its proliferation in vitro and in vivo quantitatively. This method overcomes the weakness of the fluorescence detection system that only measures the site of excitation light irradiation. It is expected to be used as an in vitro and in vivo growth evaluation method with excellent quantitative properties. In addition, it was suggested that the selection of a promoter that expresses luxABCDE could produce a luminescence with high intensity. Although this method needs further improvement, such as creating transformants that can maintain high luminescence intensity regardless of environmental changes such as temperature fluctuations, it is possible to observe bacterial growth over time in mice without killing them. Therefore, this method can be used to not only evaluate the pathogenicity of various wild and gene-deficient strains but also to screen preventive and therapeutic methods such as vaccines.
Collapse
|
12
|
Takai S, Ohashi M, Suzuki Y, Sasaki Y, Kakuda T, Broens EM, Wagenaar JA, van Duijkeren E. Virulence plasmids in clinical isolates of Rhodococcus equi from sick foals in the Netherlands. Lett Appl Microbiol 2022; 75:908-912. [PMID: 35707941 DOI: 10.1111/lam.13769] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/01/2022] [Accepted: 06/10/2022] [Indexed: 11/30/2022]
Abstract
Clinical samples from 123 foals with suspected rhodococcosis submitted to the Veterinary Microbiological Diagnostic Centre of the Faculty of Veterinary Medicine between 1993 and 2006 were tested for the presence of the virulence gene vapA. Of the 123 samples, 120 were vapA-positive and 3 vapA-negative Rhodococcus equi were isolated. The 120 vapA-positive R. equi were isolated from 70 tracheal wash, 19 lung tissues, 7 lymph nodes, 6 synovial fluids, 13 abscesses or pus and single isolates from the uterus, gut, cerebrospinal fluid, abdomen fluid and faeces. Of the 120 isolates, 46 were from Dutch warmblood horses, 23 from Friesian horses, 14 from Trotters, 4 from Holsteiners, 3 from Arab breed, 2 from ponies, 1 from a Welsh pony and 27 from undefined breed horses. Using plasmid profile analysis of the 120 isolates, 117 isolates contained the 85-kb type I plasmid, 2 contained the 87-kb type I plasmid and 1 contained the novel 52-kb non-mobilizable virulence plasmid reported recently. These results showed that the virulent R. equi strains harbouring a virulence plasmid of 85-kb type I or 87-kb type I, which have been detected in clinical isolates from five European countries, are widespread in the Netherlands. This is the first report of plasmid types of clinical R. equi isolates in the Netherlands.
Collapse
Affiliation(s)
- S Takai
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori, Japan
| | - M Ohashi
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori, Japan
| | - Y Suzuki
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori, Japan
| | - Y Sasaki
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori, Japan
| | - T Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori, Japan
| | - E M Broens
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - J A Wagenaar
- Faculty of Veterinary Medicine, Department of Infectious Diseases and Immunology, Utrecht University, Utrecht, the Netherlands
| | - E van Duijkeren
- National Institute for Public Health and the Environment, Bilthoven, the Netherlands
| |
Collapse
|
13
|
Suzuki Y, Takai S, Kubota H, Hasegawa N, Ito S, Yabuuchi Y, Sasaki Y, van Duijkeren E, Kakuda T. Rhodococcus equi U19 strain harbors a nonmobilizable virulence plasmid. Microbiol Immunol 2022; 66:307-316. [PMID: 35274358 DOI: 10.1111/1348-0421.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/08/2022] [Accepted: 03/09/2022] [Indexed: 11/26/2022]
Abstract
Rhodococcus equi is the causative agent of pyogenic pneumonia in foals, and a virulence-associated protein A (VapA) encoded on the pVAPA virulence plasmid is important for its pathogenicity. In this study, we analyzed the virulence of R. equi strain U19, originally isolated in the Netherlands in 1997 and the genetic characteristics of the pVAPA_U19 plasmid. U19 expressed VapA that was regulated by temperature and pH and underwent significant intracellular proliferation in macrophages. The restriction fragment length polymorphism of pVAPA_U19 digested with EcoRI was similar to that of pREAT701 (85-kb type I) harbored by R. equi ATCC33701, although the band pattern at 10-20 kb differed. Whole-genome sequencing showed that pVAPA_U19 was 51,684 bp in length and that the vapA pathogenicity island region and the replication/participation were almost identical to those in pREAT701. In contrast, the ORF26 to ORF45 genes of pREAT701 (approximately 29,000 bp) were absent from pVAPA_U19. In this lacking region, mobility (MOB) genes, such as relaxase, which allows conjugative DNA processing, and the mating pair formation (MPF) genes, which are a form of the type IV secretion system and provides the mating channel, were present. Co-culture between U19 and five different recipient strains (two plasmid-cured strains and three cryptic plasmid-harboring strains) demonstrated that pVAPA_U19 could not support conjugation. Therefore, pVAPA_U19 does not differ significantly from the previously reported pVAPA in terms of virulence and plasmid replication and maintenance but is a nonmobilizable plasmid unable to cause conjugation because of the absence of genes related to MOB and MPF. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Noeru Hasegawa
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Shino Ito
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yoshino Yabuuchi
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Engeline van Duijkeren
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| |
Collapse
|
14
|
Song Y, Xu X, Huang Z, Xiao Y, Yu K, Jiang M, Yin S, Zheng M, Meng H, Han Y, Wang Y, Wang D, Wei Q. Genomic Characteristics Revealed Plasmid-Mediated Pathogenicity and Ubiquitous Rifamycin Resistance of Rhodococcus equi. Front Cell Infect Microbiol 2022; 12:807610. [PMID: 35252029 PMCID: PMC8891757 DOI: 10.3389/fcimb.2022.807610] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/27/2022] [Indexed: 11/22/2022] Open
Abstract
Rhodococcus equi is a zoonotic pathogen that can cause fatal disease in patients who are immunocompromised. At present, the epidemiology and pathogenic mechanisms of R. equi infection are not clear. This study characterized the genomes of 53 R. equi strains from different sources. Pan-genome analysis showed that all R. equi strains contained 11481 pan genes, including 3690 core genes and 602 ~ 1079 accessory genes. Functional annotation of pan genome focused on the genes related to basic lifestyle, such as the storage and expression of metabolic and genetic information. Phylogenetic analysis based on pan-genome showed that the R. equi strains were clustered into six clades, which was not directly related to the isolation location and host source. Also, a total of 84 virulence genes were predicted in 53 R. equi strains. These virulence factors can be divided into 20 categories related to substance metabolism, secreted protein and immune escape. Meanwhile, six antibiotic resistance genes (RbpA, tetA (33), erm (46), sul1, qacEdelta 1 and aadA9) were detected, and all strains carried RbpA related to rifamycin resistance. In addition, 28 plasmids were found in the 53 R. equi strains, belonging to Type-A (n = 14), Type-B (n = 8) and Type-N (n = 6), respectively. The genetic structures of the same type of plasmid were highly similar. In conclusion, R. equi strains show different genomic characteristics, virulence-related genes, potential drug resistance and virulence plasmid structures, which may be conducive to the evolution of its pathogenesis.
Collapse
Affiliation(s)
- Yang Song
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Xinmin Xu
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Zhenzhou Huang
- Center for human Pathogenic Culture Collection, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Yue Xiao
- Center for human Pathogenic Culture Collection, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Keyi Yu
- Center for human Pathogenic Culture Collection, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
| | - Mengnan Jiang
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
| | - Shangqi Yin
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Mei Zheng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Huan Meng
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Ying Han
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yajie Wang
- Department of Clinical Laboratory, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Qiang Wei, ; Duochun Wang, ; Yajie Wang,
| | - Duochun Wang
- Center for human Pathogenic Culture Collection, National Institute for Communicable Disease Control and Prevention, China CDC, Beijing, China
- *Correspondence: Qiang Wei, ; Duochun Wang, ; Yajie Wang,
| | - Qiang Wei
- National Pathogen Resource Center, Chinese Center for Disease Control and Prevention (China CDC), Beijing, China
- *Correspondence: Qiang Wei, ; Duochun Wang, ; Yajie Wang,
| |
Collapse
|
15
|
Takai S, Sudo M, Sakai M, Suzuki K, Sasaki Y, Kakuda T, Suzuki Y. Isolation of Rhodococcus equi from the gastrointestinal contents of earthworms (family Megascolecidae). Lett Appl Microbiol 2021; 74:27-31. [PMID: 34608644 DOI: 10.1111/lam.13577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 11/27/2022]
Abstract
Rhodococcus equi was isolated from the gastrointestinal contents of earthworms (family Megascolecidae) and their surrounding soil collected from pastures of two horse-breeding farms in Aomori Prefecture, outdoor pig pens, forest in Towada campus, orange groves and forest where wild boars (Sus scrofa) are established in Tanabe, Wakayama Prefecture. The number of R. equi in the lower gastrointestinal contents of 23 earthworms collected from our campus was significantly larger than that of the upper gastrointestinal content. The mean numbers of R. equi from the gastrointestinal contents of earthworms collected from the various places were 2·3-fold to 39·7-fold more than those of the surrounding soil samples. In all, 1771 isolates from the earthworms and 489 isolates from the soil samples were tested for the presence of vapA and vapB genes using polymerase chain reaction. At the horse-breeding farm N, 9 of the 109 isolates (8·3%) from the earthworms and 7 of the 106 isolates (6·6%) from the soil samples were positive for the vapA gene. At the University's forest, one of the 250 isolates (0·4%) from the gastrointestinal contents of the earthworm was positive for the vapB gene. These results revealed that R. equi can be found in significant quantities in the gastrointestinal contents of earthworms, suggesting that they act as an accumulator of R. equi in the soil environment and as a source or reservoir of animal infection.
Collapse
Affiliation(s)
- S Takai
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan
| | - M Sudo
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan
| | - M Sakai
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan
| | - K Suzuki
- Hikiiwa Park Center, Tanabe, Japan
| | - Y Sasaki
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan
| | - T Kakuda
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan
| | - Y Suzuki
- Department of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Japan
| |
Collapse
|
16
|
Rocha BZLL, Portilho FVR, Garino Júnior F, Monti FDS, de Almeida BO, de Souza AAL, Morizane Y, Sakaizawa N, Suzuki Y, Kakuda T, Takai S, de Farias MR, Ribeiro MG. Cellulitis-related Rhodococcus equi in a cat harboring VAPA-type plasmid pattern. Microb Pathog 2021; 160:105186. [PMID: 34509529 DOI: 10.1016/j.micpath.2021.105186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/09/2021] [Accepted: 09/06/2021] [Indexed: 10/20/2022]
Abstract
Rhodococcus equi is a well-known intracellular facultative bacterium that is opportunistic in nature, and a contagious disease-causing agent of pyogranulomatous infections in humans and multihost animals. Feline rhodococcosis is an uncommon or unnoticed clinical condition, in which the organism is usually refractory to conventional antimicrobial therapy. The pathogenicity of the agent is intimately associated with plasmid-governed infectivity, which is attributed to the presence of plasmid-encoded virulence-associated proteins (Vap). Three host-adapted virulence plasmid types (VAPs) have been distinguished to date: pVAPA, pVAPB, and pVAPN, whose infections are related to equine, pig, and bovine or caprine origin, respectively, while humans are infected by all three VAP types. Most virulence studies with R. equi plasmid types in animals involve livestock species. Conversely, data on the pathogenicity and human relevance of the virulence plasmid profile of R. equi isolated from cats remains unclear. This report describes a case of cellulitis-related R. equi that harbors the pVAPA-type in a cat with cutaneous lesion. Long-term therapy of the cat using marbofloxacin, a broad-spectrum third-generation fluoroquinolone, resulted effectiveness. pVAPA is a host-adapted virulent type that has been associated predominantly with pulmonary foal infections. Our cat had a history of contact with other cats, livestock (including horses), and farm environment that could have favored the transmission of the pathogen. Besides no clear evidence of cat-to-humans transmission of the pathogen, the identification of R. equi harboring pVAPA-type in a cat with cutaneous abscessed lesion represent relevance in human health because this virulent type has been described in people worldwide with clinical rhodococcal disorders.
Collapse
Affiliation(s)
| | - Fábio Vinícius Ramos Portilho
- UNESP-São Paulo State University, Department of Animal Production and Preventive Veterinary Medicine, Botucatu, SP, Brazil.
| | | | - Fabiana Dos Santos Monti
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brazil.
| | - Beatriz Oliveira de Almeida
- UNESP-São Paulo State University, Department of Animal Production and Preventive Veterinary Medicine, Botucatu, SP, Brazil.
| | | | - Yuri Morizane
- Kitasato University, Department of Animal Hygiene, Towada, Aomori, Japan.
| | - Naho Sakaizawa
- Kitasato University, Department of Animal Hygiene, Towada, Aomori, Japan.
| | - Yasunori Suzuki
- Kitasato University, Department of Animal Hygiene, Towada, Aomori, Japan.
| | - Tsutomu Kakuda
- Kitasato University, Department of Animal Hygiene, Towada, Aomori, Japan.
| | - Shinji Takai
- Kitasato University, Department of Animal Hygiene, Towada, Aomori, Japan.
| | - Marconi Rodrigues de Farias
- Graduate Program in Animal Science, School of Life Sciences, Pontifícia Universidade Católica do Paraná - PUCPR, Curitiba, PR, Brazil.
| | - Márcio Garcia Ribeiro
- UNESP-São Paulo State University, Department of Animal Production and Preventive Veterinary Medicine, Botucatu, SP, Brazil.
| |
Collapse
|
17
|
Ivshina IB, Kuyukina MS, Krivoruchko AV, Tyumina EA. Responses to Ecopollutants and Pathogenization Risks of Saprotrophic Rhodococcus Species. Pathogens 2021; 10:974. [PMID: 34451438 PMCID: PMC8398200 DOI: 10.3390/pathogens10080974] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 11/17/2022] Open
Abstract
Under conditions of increasing environmental pollution, true saprophytes are capable of changing their survival strategies and demonstrating certain pathogenicity factors. Actinobacteria of the genus Rhodococcus, typical soil and aquatic biotope inhabitants, are characterized by high ecological plasticity and a wide range of oxidized organic substrates, including hydrocarbons and their derivatives. Their cell adaptations, such as the ability of adhering and colonizing surfaces, a complex life cycle, formation of resting cells and capsule-like structures, diauxotrophy, and a rigid cell wall, developed against the negative effects of anthropogenic pollutants are discussed and the risks of possible pathogenization of free-living saprotrophic Rhodococcus species are proposed. Due to universal adaptation features, Rhodococcus species are among the candidates, if further anthropogenic pressure increases, to move into the group of potentially pathogenic organisms with "unprofessional" parasitism, and to join an expanding list of infectious agents as facultative or occasional parasites.
Collapse
Affiliation(s)
- Irina B. Ivshina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Maria S. Kuyukina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Anastasiia V. Krivoruchko
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| | - Elena A. Tyumina
- Perm Federal Research Center UB RAS, Institute of Ecology and Genetics of Microorganisms UB RAS, 13 Golev Str., 614081 Perm, Russia; (M.S.K.); (A.V.K.); (E.A.T.)
- Department of Microbiology and Immunology, Perm State University, 15 Bukirev Str., 614990 Perm, Russia
| |
Collapse
|
18
|
Suzuki Y, Kubota H, Madarame H, Takase F, Takahashi K, Sasaki Y, Kakuda T, Takai S. Pathogenicity and genomic features of vapN-harboring Rhodococcus equi isolated from human patients. Int J Med Microbiol 2021; 311:151519. [PMID: 34280738 DOI: 10.1016/j.ijmm.2021.151519] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/20/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Rhodococcus equi is a saprophytic soil bacterium and intracellular pathogen that causes refractory suppurative pneumonia in foals and has emerged as a pathogenic cause of zoonotic disease. Several studies have reported human infections caused by R. equi harboring a recently described third type of virulence plasmid, the ruminant-associated pVAPN, which carries the vapN virulence determinant. Herein, we analyzed pathogenicity and genomic features of nine vapN-harboring R. equi isolated from human patients with and without HIV/AIDS. Four of these strains showed significant VapN production and proliferation in cultured macrophages. These strains were lethally pathogenic after inoculation with 1.0 × 108 CFU in mice and reproduced a necrotizing granulomatous inflammation in the liver and spleen similar to that observed in humans. Additionally, we determined entire genome sequences of all nine strains. Lengths of sequences were 5.0-5.3 Mbp, and GC contents were 68.7 %-68.8 %. All strains harbored a 120- or 125-kbp linear plasmid carrying vapN (Type I or Type II pVAPN) classified on the basis of differences in the distal sequences on the 3' side. Interestingly, VapN production differed significantly among strains harboring nearly identical types of pVAPN with variation limited to several SNPs and short base pair indels. The pVAPN sequences possessed by the VapN-producing strains did not retain any common genetic characteristics, and more detailed analyses, including chromosomal genes, are needed to further elucidate the VapN expression mechanism.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan.
| | - Hiroaki Kubota
- Department of Microbiology, Tokyo Metropolitan Institute of Public Health, Tokyo, Japan
| | - Hiroo Madarame
- Laboratory of Small Animal Clinics, Veterinary Teaching Hospital, Azabu University, Kanagawa, Japan
| | - Fumiaki Takase
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Kei Takahashi
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Aomori, Japan
| |
Collapse
|
19
|
Horizontal Gene Transfer of Genes Encoding Copper-Containing Membrane-Bound Monooxygenase (CuMMO) and Soluble Di-iron Monooxygenase (SDIMO) in Ethane- and Propane-Oxidizing Rhodococcus Bacteria. Appl Environ Microbiol 2021; 87:e0022721. [PMID: 33962978 DOI: 10.1128/aem.00227-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The families of copper-containing membrane-bound monooxygenases (CuMMOs) and soluble di-iron monooxygenases (SDIMOs) are involved not only in methane oxidation but also in short-chain alkane oxidation. Here, we describe Rhodococcus sp. strain ZPP, a bacterium able to grow with ethane or propane as the sole carbon and energy source, and report on the horizontal gene transfer (HGT) of actinobacterial hydrocarbon monooxygenases (HMOs) of the CuMMO family and the sMMO (soluble methane monooxygenase)-like SDIMO in the genus Rhodococcus. The key function of HMO in strain ZPP for propane oxidation was verified by allylthiourea inhibition. The HMO genes (designated hmoCAB) and those encoding sMMO-like SDIMO (designated smoXYB1C1Z) are located on a linear megaplasmid (pRZP1) of strain ZPP. Comparative genomic analysis of similar plasmids indicated the mobility of these plasmids within the genus Rhodococcus. The plasmid pRZP1 in strain ZPP could be conjugatively transferred to a recipient Rhodococcus erythropolis strain in a mating experiment and showed similar ethane- and propane-consuming activities. Finally, our findings demonstrate that the horizontal transfer of plasmid-based CuMMO and SDIMO genes confers the ability to use ethane and propane on the recipient. IMPORTANCE CuMMOs and SDIMOs initiate the aerobic oxidation of alkanes in bacteria. Here, the supposition that horizontally transferred plasmid-based CuMMO and SDIMO genes confer on the recipient similar abilities to use ethane and propane was proposed and confirmed in Rhodococcus. This study is a living example of HGT of CuMMOs and SDIMOs and outlines the plasmid-borne properties responsible for gaseous alkane degradation. Our results indicate that plasmids can support the rapid evolution of enzyme-mediated biogeochemical processes.
Collapse
|
20
|
Epidemiology and Molecular Basis of Multidrug Resistance in Rhodococcus equi. Microbiol Mol Biol Rev 2021; 85:85/2/e00011-21. [PMID: 33853933 DOI: 10.1128/mmbr.00011-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The development and spread of antimicrobial resistance are major concerns for human and animal health. The effects of the overuse of antimicrobials in domestic animals on the dissemination of resistant microbes to humans and the environment are of concern worldwide. Rhodococcus equi is an ideal model to illustrate the spread of antimicrobial resistance at the animal-human-environment interface because it is a natural soil saprophyte that is an intracellular zoonotic pathogen that produces severe bronchopneumonia in many animal species and humans. Globally, R. equi is most often recognized as causing severe pneumonia in foals that results in animal suffering and increased production costs for the many horse-breeding farms where the disease occurs. Because highly effective preventive measures for R. equi are lacking, thoracic ultrasonographic screening and antimicrobial chemotherapy of subclinically affected foals have been used for controlling this disease during the last 20 years. The resultant increase in antimicrobial use attributable to this "screen-and-treat" approach at farms where the disease is endemic has likely driven the emergence of multidrug-resistant (MDR) R. equi in foals and their environment. This review summarizes the factors that contributed to the development and spread of MDR R. equi, the molecular epidemiology of the emergence of MDR R. equi, the repercussions of MDR R. equi for veterinary and human medicine, and measures that might mitigate antimicrobial resistance at horse-breeding farms, such as alternative treatments to traditional antibiotics. Knowledge of the emergence and spread of MDR R. equi is of broad importance for understanding how antimicrobial use in domestic animals can impact the health of animals, their environment, and human beings.
Collapse
|
21
|
Allegro AR, Barhoumi R, Bordin AI, Bray JM, Cohen ND. Uptake and replication in Acanthamoeba castellanii of a virulent (pVAPA-positive) strain of Rhodococcus equi and its isogenic, plasmid-cured strain. Vet Microbiol 2021; 257:109069. [PMID: 33862330 DOI: 10.1016/j.vetmic.2021.109069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 04/07/2021] [Indexed: 11/16/2022]
Abstract
Rhodococcus equi is a soil saprophytic bacterium and intracellular pathogen that causes pneumonia in foals. Strains of R. equi that are virulent in foals contain a plasmid that encodes a virulence-associated protein A (VapA) necessary for replication in macrophages. Because other intracellular pathogens survive and replicate inside amoebae, we postulated that the VapA-bearing plasmid (pVAPA) confers a survival advantage for R. equi against environmental predators like amoebae. To test this hypothesis, we compared phagocytosis by and survival in Acanthamoeba castellanii of isogenic strains of pVAPA-positive and pVAPA-negative R. equi. Phagocytosis of the pVAPA-negative strain by A. castellanii was significantly (P < 0.0001) greater than the pVAPA-positive strain. Intracellular replication of the pVAPA-positive strain in A. castellanii was significantly (P < 0.0001) greater than the pVAPA-negative strain during both 48 h and 9 days. These results indicate that the presence of the VapA plasmid reduces uptake and aids replication of R. equi in A. castellanii.
Collapse
Affiliation(s)
- Angelica R Allegro
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4475, United States
| | - Rola Barhoumi
- Image Analysis Laboratory, Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4458, United States
| | - Angela I Bordin
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4475, United States
| | - Jocelyne M Bray
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4475, United States
| | - Noah D Cohen
- Equine Infectious Disease Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843-4475, United States.
| |
Collapse
|
22
|
Salazar-Rodríguez D, Aleaga-Santiesteban Y, Iglesias E, Plascencia-Hernández A, Pérez-Gómez HR, Calderón EJ, Vázquez-Boland JA, de Armas Y. Virulence Plasmids of Rhodococcus equi Isolates From Cuban Patients With AIDS. Front Vet Sci 2021; 8:628239. [PMID: 33718470 PMCID: PMC7947234 DOI: 10.3389/fvets.2021.628239] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Rhodococcus equi is an animal pathogen and zoonotic human opportunistic pathogen associated with immunosuppressive conditions. The pathogenicity of R. equi is linked to three animal host-associated virulence plasmids encoding a family of “Virulence Associated Proteins” (VAPs). Here, the PCR-based TRAVAP molecular typing system for the R. equi virulence plasmids was applied to 26 R. equi strains isolated between 2010 and 2016 at the Institute of Tropical Medicine “Pedro Kourí,” Cuba, from individuals living with HIV/AIDS. TRAVAP detects 4 gene markers, traA common to the three virulence plasmids, and vapA, vapB, and vapN specific to each of the host-associated plasmid types (equine pVAPA, porcine pVAPB, and ruminant pVAPN). Of the 26 isolates, six were positive to the vapB (porcine-type) marker, 4 (15.4%) to the vapA (equine-type) marker, and 1 (3.8%) to the vapN (ruminant-type) marker. Most of the isolates 14 (53.8%) were negative to all TRAVAP markers, suggesting they lacked a virulence plasmid. To our knowledge, this work is the first to report the molecular characterization of R. equi isolates from Cuba. Our findings provide insight into the zoonotic origin of R. equi infections in people and the potential dispensability of the virulence plasmid in immunosuppressed patients.
Collapse
Affiliation(s)
- Daniel Salazar-Rodríguez
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine "Pedro Kourí," Havana, Cuba
| | - Yamilé Aleaga-Santiesteban
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine "Pedro Kourí," Havana, Cuba
| | - Enrique Iglesias
- Departamento de Vacunas, Centro de Ingeniería Genética y Biotecnología, Havana, Cuba
| | | | - Héctor R Pérez-Gómez
- Centro Universitario de Ciencias de la Salud de la Universidad de Guadalajara, Guadalajara, Mexico
| | - Enrique J Calderón
- Instituto de Biomedicina de Sevilla, Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas/Universidad de Sevilla, Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Seville, Spain
| | - José A Vázquez-Boland
- Microbial Pathogenesis Group, Edinburgh Medical School (Biomedical Sciences - Infection Medicine), University of Edinburgh, Edinburgh, United Kingdom
| | - Yaxsier de Armas
- Department of Clinical Microbiology Diagnostic, Hospital Center of Institute of Tropical Medicine "Pedro Kourí," Havana, Cuba.,Pathology Department, Hospital Center of Institute of Tropical Medicine "Pedro Kourí," Havana, Cuba
| |
Collapse
|
23
|
NAKAO S, ISHIZUKA S, KAWASHIMA G, NAKAGAWA R, SASAKI Y, KAKUDA T, SUZUKI Y, TAKAI S. Re-examination of Virulence of Rhodococcus equi Isolates from an Infected Goat and Its Environmental Soil in Okinawa Reported in 2015. ACTA ACUST UNITED AC 2020. [DOI: 10.12935/jvma.73.582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
| | | | - Go KAWASHIMA
- Kitasato University, School of Veterinary Medicine
| | | | | | | | | | - Shinji TAKAI
- Kitasato University, School of Veterinary Medicine
| |
Collapse
|
24
|
Takai S, Sawada N, Nakayama Y, Ishizuka S, Nakagawa R, Kawashima G, Sangkanjanavanich N, Sasaki Y, Kakuda T, Suzuki Y. Reinvestigation of the virulence of Rhodococcus equi isolates from patients with and without AIDS. Lett Appl Microbiol 2020; 71:679-683. [PMID: 32920889 DOI: 10.1111/lam.13386] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 11/29/2022]
Abstract
Rhodococcus equi emerged as a zoonotic pathogen of human immunodeficiency virus-infected patients over the last three decades. Two virulence plasmid types of R. equi, pVAPA and pVAPB associated with equine and porcine isolates, have been recognized, and more recently, pVAPN, a novel host-associated virulence plasmid in R. equi, was found in bovine and caprine isolates. We reinvestigated 39 previously reported isolates of R. equi from patients with and without acquired immunodeficiency syndrome (AIDS) by detecting vapA, vapB and vapN using PCR and plasmid profiling. After excluding one isolate that could not be cultured from frozen storage, eight isolates carried a virulence plasmid encoding vapA (pVAPA), 10 carried a virulence plasmid encoding vapB (pVAPB), seven carried a virulence plasmid encoding vapN (pVAPN) and 13 were negative for those genes. Of the 29 isolates from patients with AIDS, 7, 10 and 5 harboured pVAPA, pVAPB and pVAPN respectively. Among nine isolates from patients without AIDS, one and two harboured pVAPA and pVAPN respectively. This study demonstrated that pVAPN-positive R. equi existed in human isolates before 1994 and reaffirmed that equine-associated pVAPA-positive, porcine-associated pVAPB-positive and bovine- or caprine-associated pVAPN-positive R. equi are widely spread globally. Because domestic animals might be major sources of human infection, further research is needed to reveal the prevalence of pVAPN-positive R. equi infection in cattle and goats.
Collapse
Affiliation(s)
- S Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - N Sawada
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - Y Nakayama
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - S Ishizuka
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - R Nakagawa
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - G Kawashima
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - N Sangkanjanavanich
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan.,Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Y Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - T Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| | - Y Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Towada, Aomori, Japan
| |
Collapse
|
25
|
Petry S, Sévin C, Kozak S, Foucher N, Laugier C, Linster M, Breuil MF, Dupuis MC, Hans A, Duquesne F, Tapprest J. Relationship between rifampicin resistance and RpoB substitutions of Rhodococcus equi strains isolated in France. J Glob Antimicrob Resist 2020; 23:137-144. [PMID: 32992034 DOI: 10.1016/j.jgar.2020.08.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/05/2020] [Accepted: 08/14/2020] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVES Study of the rifampicin resistance of Rhodococcus equi strains isolated from French horses over a 20-year period. METHODS Rifampicin susceptibility was tested by disk diffusion (DD) and broth macrodilution methods, and rpoB gene sequencing and MLST were performed on 40 R. equi strains, 50.0% of which were non-susceptible to rifampicin. RESULTS Consistency of results was observed between rifampicin susceptibility testing and rpoB sequencing. Strains non-susceptible to rifampicin by DD had a substitution at one of the sites (Asp516, His526 and Ser531) frequently encountered and conferring rifampicin resistance. High-level resistance was correlated with His526Asp or Ser531Leu substitutions; low-level resistance was correlated with Asp516Tyr substitution, a novel substitution for R. equi. Strains susceptible to rifampicin by DD showed no substitution in the three sites, except for two strains carrying, respectively, the His526Asn and Asp516Val substitutions (previously correlated with low-level rifampicin resistance). Both strains were isolated from an animal from which ten other strains were also isolated and found to be rifampicin-non-susceptible by DD. MLST showed the presence of 10 STs (including the novel ST43), but no association was observed with rifampicin resistance. CONCLUSIONS This study confirms that certain substitutions in RpoB are more likely to confer high- or low-level rifampicin resistance, describes a new substitution conferring rifampicin resistance in R. equi and suggests non-clonal dissemination of rifampicin-resistant strains in France. Standard DD may miss strains with a low-level rifampicin-resistant substitution; further studies are needed to remedy the absence of R. equi-specific clinical breakpoints.
Collapse
Affiliation(s)
- Sandrine Petry
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France.
| | - Corinne Sévin
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Sofia Kozak
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Nathalie Foucher
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Claire Laugier
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Maud Linster
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Marie-France Breuil
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | | | - Aymeric Hans
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Fabien Duquesne
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| | - Jackie Tapprest
- ANSES, Laboratory for Animal Health in Normandy, Physiopathology and Epidemiology of Equine Diseases Unit, Goustranville, France
| |
Collapse
|
26
|
Suzuki Y, Takahashi K, Takase F, Sawada N, Nakao S, Toda A, Sasaki Y, Kakuda T, Takai S. Serological epidemiological surveillance for vapN-harboring Rhodococcus equi infection in goats. Comp Immunol Microbiol Infect Dis 2020; 73:101540. [PMID: 32911379 DOI: 10.1016/j.cimid.2020.101540] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/17/2020] [Accepted: 08/28/2020] [Indexed: 11/26/2022]
Abstract
Rhodococcus equi causes suppurative pneumonia in foals aged 1-3 months; moreover, it has emerged as a pathogenic cause of zoonotic diseases. After the initial report of the ruminant-pathogenic factor VapN encoded by the novel virulence plasmid pVAPN, several reports have described ruminant infections caused by vapN-harboring R. equi. Herein, we conducted a serological epidemiological surveillance in goats at a breeding farm (Farm A) and characterized the vapN-harboring R. equi isolates from this farm. First, we established a simple screening enzyme-linked immunosorbent assay (ELISA) using recombinant glutathione S-transferase-tagged VapN as an immobilized antigen. This method revealed that the VapN antibody titers were elevated in 12 of 42 goats. Subsequently, we attempted to isolate R. equi from the goat feces and soil of Farm A. choE+/vapN+R. equi was isolated from the feces of Goat No. 27 and a soil sample near the shed. The pulsed-field gel electrophoresis (PFGE) patterns of five vapN-harboring R. equi strains isolated from Farm A in 2013 and 2019 were investigated and found to be the same except for the strain (OKI2019F1). However, no difference was observed in VapN expression and growth in macrophages among these vapN-harboring R. equi isolates. Our results revealed that some goats had histories of vapN-harboring R. equi infections, and two genomic types of vapN-harboring R. equi were found in isolates from Farm A. Ruminant-specific (pVAPN-carrying) R. equi might be an unrecognized pathogen in Japan and further studies are required to determine its prevalence and distribution.
Collapse
Affiliation(s)
- Yasunori Suzuki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan.
| | - Kei Takahashi
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Fumiaki Takase
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Nozomi Sawada
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Satoko Nakao
- Okinawa Prefectural Institute of Animal Health, 3-1 Kanekadan, Uruma, Okinawa, 904-2241, Japan
| | - Ayako Toda
- Okinawa Yaeyama Livestock Hygiene Service Center, 1-2 Miyara, Ishigaki, Okinawa, 907-0243, Japan
| | - Yukako Sasaki
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, Kitasato University School of Veterinary Medicine, Higashi 23-35-1, Towada, Aomori, 034-8628, Japan
| |
Collapse
|
27
|
Vázquez-Boland JA, Scortti M, Meijer WG. Conservation of Rhodococcus equi (Magnusson 1923) Goodfellow and Alderson 1977 and rejection of Rhodococcus hoagii (Morse 1912) Kämpfer et al. 2014. Int J Syst Evol Microbiol 2020; 70:3572-3576. [PMID: 32375930 PMCID: PMC7395624 DOI: 10.1099/ijsem.0.004090] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 01/07/2020] [Accepted: 02/18/2020] [Indexed: 01/07/2023] Open
Abstract
A recent taxonomic study confirmed the synonymy of Rhodococcus equi (Magnusson 1923) Goodfellow and Alderson 1977 and Corynebacterium hoagii (Morse 1912) Eberson 1918. As a result, both R. equi and C. hoagii were reclassified as Rhodococcus hoagii comb. nov. in application of the principle of priority of the Prokaryotic Code. Because R. equi is a well-known animal and zoonotic human pathogen, and a bacterial name solidly established in the veterinary and medical literature, we and others argued that the nomenclatural change may cause error and confusion and be potentially perilous. We have now additionally found that the nomenclatural type of the basonym C. hoagii, ATCC 7005T, does not correspond with the original description of the species C. hoagii in the early literature. Its inclusion as the C. hoagii type on the Approved Lists 1980 results in a change in the characters of the taxon and in C. hoagii designating two different bacteria. Moreover, ATCC 7005, the only strain in circulation under the name C. hoagii, does not have a well documented history; it is unclear why it was deposited as C. hoagii and a possible mix-up with a Corynebacterium (Rhodococcus) equi isolate is a reasonable assumption. We therefore request the rejection of Rhodococcus hoagii as a nomen ambiguum, nomen dubium and nomen perplexum in addition to nomen periculosum, and conservation of the name Rhodococcus equi, according to Rules 56ab of the Code.
Collapse
Affiliation(s)
- José A. Vázquez-Boland
- Microbial Pathogenesis Group, Edinburgh Medical School (Biomedical Sciences - Infection Medicine), University of Edinburgh, Chancellor’s Building, Little France campus, Edinburgh EH16 4SB, UK
| | - Mariela Scortti
- Microbial Pathogenesis Group, Edinburgh Medical School (Biomedical Sciences - Infection Medicine), University of Edinburgh, Chancellor’s Building, Little France campus, Edinburgh EH16 4SB, UK
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical Science, University College Dublin, Dublin 4, Ireland
| |
Collapse
|
28
|
Horizontal Spread of Rhodococcus equi Macrolide Resistance Plasmid pRErm46 across Environmental Actinobacteria. Appl Environ Microbiol 2020; 86:AEM.00108-20. [PMID: 32169935 DOI: 10.1128/aem.00108-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 02/27/2020] [Indexed: 12/26/2022] Open
Abstract
Conjugation is one of the main mechanisms involved in the spread and maintenance of antibiotic resistance in bacterial populations. We recently showed that the emerging macrolide resistance in the soilborne equine and zoonotic pathogen Rhodococcus equi is conferred by the erm(46) gene carried on the 87-kb conjugative plasmid pRErm46. Here, we investigated the conjugal transferability of pRErm46 to 14 representative bacteria likely encountered by R. equi in the environmental habitat. In vitro mating experiments demonstrated conjugation to different members of the genus Rhodococcus as well as to Nocardia and Arthrobacter spp. at frequencies ranging from ∼10-2 to 10-6 pRErm46 transfer was also observed in mating experiments in soil and horse manure, albeit at a low frequency and after prolonged incubation at 22 to 30°C (environmental temperatures), not 37°C. All transconjugants were able to transfer pRErm46 back to R. equi Conjugation could not be detected with Mycobacterium or Corynebacterium spp. or several members of the more distant phylum Firmicutes such as Enterococcus, Streptococcus, or Staphylococcus Thus, the pRErm46 host range appears to span several actinobacterial orders with certain host restriction within the Corynebacteriales All bacterial species that acquired pRErm46 expressed increased macrolide resistance with no significant deleterious impact on fitness, except in the case of Rhodococcus rhodnii Our results indicate that actinobacterial members of the environmental microbiota can both acquire and transmit the R. equi pRErm46 plasmid and thus potentially contribute to the maintenance and spread of erm(46)-mediated macrolide resistance in equine farms.IMPORTANCE This study demonstrates the efficient horizontal transfer of the Rhodococcus equi conjugative plasmid pRErm46, recently identified as the cause of the emerging macrolide resistance among equine isolates of this pathogen, to and from different environmental Actinobacteria, including a variety of rhodococci as well as Nocardia and Arthrobacter spp. The reported data support the notion that environmental microbiotas may act as reservoirs for the endemic maintenance of antimicrobial resistance in an antibiotic pressurized farm habitat.
Collapse
|
29
|
Garrido-Sanz D, Sansegundo-Lobato P, Redondo-Nieto M, Suman J, Cajthaml T, Blanco-Romero E, Martin M, Uhlik O, Rivilla R. Analysis of the biodegradative and adaptive potential of the novel polychlorinated biphenyl degrader Rhodococcus sp. WAY2 revealed by its complete genome sequence. Microb Genom 2020; 6. [PMID: 32238227 PMCID: PMC7276702 DOI: 10.1099/mgen.0.000363] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The complete genome sequence of Rhodococcus sp. WAY2 (WAY2) consists of a circular chromosome, three linear replicons and a small circular plasmid. The linear replicons contain typical actinobacterial invertron-type telomeres with the central CGTXCGC motif. Comparative phylogenetic analysis of the 16S rRNA gene along with phylogenomic analysis based on the genome-to-genome blast distance phylogeny (GBDP) algorithm and digital DNA–DNA hybridization (dDDH) with other Rhodococcus type strains resulted in a clear differentiation of WAY2, which is likely a new species. The genome of WAY2 contains five distinct clusters of bph, etb and nah genes, putatively involved in the degradation of several aromatic compounds. These clusters are distributed throughout the linear plasmids. The high sequence homology of the ring-hydroxylating subunits of these systems with other known enzymes has allowed us to model the range of aromatic substrates they could degrade. Further functional characterization revealed that WAY2 was able to grow with biphenyl, naphthalene and xylene as sole carbon and energy sources, and could oxidize multiple aromatic compounds, including ethylbenzene, phenanthrene, dibenzofuran and toluene. In addition, WAY2 was able to co-metabolize 23 polychlorinated biphenyl congeners, consistent with the five different ring-hydroxylating systems encoded by its genome. WAY2 could also use n-alkanes of various chain-lengths as a sole carbon source, probably due to the presence of alkB and ladA gene copies, which are only found in its chromosome. These results show that WAY2 has a potential to be used for the biodegradation of multiple organic compounds.
Collapse
Affiliation(s)
- Daniel Garrido-Sanz
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Paula Sansegundo-Lobato
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Miguel Redondo-Nieto
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Jachym Suman
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technika 3, 16628 Prague, Czech Republic
| | - Tomas Cajthaml
- Laboratory of Environmental Biotechnology, Institute of Microbiology, Czech Academy of Sciences v.v.i., Vídeňská 1083, 14200 Prague, Czech Republic
| | - Esther Blanco-Romero
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Marta Martin
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| | - Ondrej Uhlik
- Department of Biochemistry and Microbiology, Faculty of Food and Biochemical Technology, University of Chemistry and Technology Prague, Technika 3, 16628 Prague, Czech Republic
| | - Rafael Rivilla
- Departamento de Biología, Facultad de Ciencias, Universidad Autónoma de Madrid, C/ Darwin 2, 28049 Madrid, Spain
| |
Collapse
|
30
|
Mourenza Á, Collado C, Bravo-Santano N, Gil JA, Mateos LM, Letek M. The extracellular thioredoxin Etrx3 is required for macrophage infection in Rhodococcus equi. Vet Res 2020; 51:38. [PMID: 32156317 PMCID: PMC7063783 DOI: 10.1186/s13567-020-00763-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 02/18/2020] [Indexed: 01/19/2023] Open
Abstract
Rhodococcus equi is an intracellular veterinary pathogen that is becoming resistant to current antibiotherapy. Genes involved in preserving redox homeostasis could be promising targets for the development of novel anti-infectives. Here, we studied the role of an extracellular thioredoxin (Etrx3/REQ_13520) in the resistance to phagocytosis. An etrx3-null mutant strain was unable to survive within macrophages, whereas the complementation with the etrx3 gene restored its intracellular survival rate. In addition, the deletion of etrx3 conferred to R. equi a high susceptibility to sodium hypochlorite. Our results suggest that Etrx3 is essential for the resistance of R. equi to specific oxidative agents.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | - Cristina Collado
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | | | - José A Gil
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain
| | - Luís M Mateos
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain.
| | - Michal Letek
- Department of Molecular Biology, Area of Microbiology, University of León, León, Spain.
| |
Collapse
|
31
|
Comparative Genomic Analysis of Rhodococcus equi: An Insight into Genomic Diversity and Genome Evolution. Int J Genomics 2019; 2019:8987436. [PMID: 31950028 PMCID: PMC6948317 DOI: 10.1155/2019/8987436] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 07/24/2019] [Accepted: 08/11/2019] [Indexed: 12/03/2022] Open
Abstract
Rhodococcus equi, a member of the Rhodococcus genus, is a gram-positive pathogenic bacterium. Rhodococcus possesses an open pan-genome that constitutes the basis of its high genomic diversity and allows for adaptation to specific niche conditions and the changing host environments. Our analysis further showed that the core genome of R. equi contributes to the pathogenicity and niche adaptation of R. equi. Comparative genomic analysis revealed that the genomes of R. equi shared identical collinearity relationship, and heterogeneity was mainly acquired by means of genomic islands and prophages. Moreover, genomic islands in R. equi were always involved in virulence, resistance, or niche adaptation and possibly working with prophages to cause the majority of genome expansion. These findings provide an insight into the genomic diversity, evolution, and structural variation of R. equi and a valuable resource for functional genomic studies.
Collapse
|
32
|
Mourenza Á, Bravo-Santano N, Pradal I, Gil JA, Mateos LM, Letek M. Mycoredoxins Are Required for Redox Homeostasis and Intracellular Survival in the Actinobacterial Pathogen Rhodococcus equi. Antioxidants (Basel) 2019; 8:antiox8110558. [PMID: 31731720 PMCID: PMC6912445 DOI: 10.3390/antiox8110558] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/11/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular pathogen that can survive within macrophages of a wide variety of hosts, including immunosuppressed humans. Current antibiotherapy is often ineffective, and novel therapeutic strategies are urgently needed to tackle infections caused by this pathogen. In this study, we identified three mycoredoxin-encoding genes (mrx) in the genome of R. equi, and we investigated their role in virulence. Importantly, the intracellular survival of a triple mrx-null mutant (Δmrx1Δmrx2Δmrx3) in murine macrophages was fully impaired. However, each mycoredoxin alone could restore the intracellular proliferation rate of R. equi Δmrx1Δmrx2Δmrx3 to wild type levels, suggesting that these proteins could have overlapping functions during host cell infection. Experiments with the reduction-oxidation sensitive green fluorescent protein 2 (roGFP2) biosensor confirmed that R. equi was exposed to redox stress during phagocytosis, and mycoredoxins were involved in preserving the redox homeostasis of the pathogen. Thus, we studied the importance of each mycoredoxin for the resistance of R. equi to different oxidative stressors. Interestingly, all mrx genes did have overlapping roles in the resistance to sodium hypochlorite. In contrast, only mrx1 was essential for the survival against high concentrations of nitric oxide, while mrx3 was not required for the resistance to hydrogen peroxide. Our results suggest that all mycoredoxins have important roles in redox homeostasis, contributing to the pathogenesis of R. equi and, therefore, these proteins may be considered interesting targets for the development of new anti-infectives.
Collapse
Affiliation(s)
- Álvaro Mourenza
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain; (Á.M.); (I.P.); (J.A.G.)
| | | | - Inés Pradal
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain; (Á.M.); (I.P.); (J.A.G.)
| | - Jose A. Gil
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain; (Á.M.); (I.P.); (J.A.G.)
| | - Luis M. Mateos
- Department of Molecular Biology, Area of Microbiology, University of León, 24071 León, Spain; (Á.M.); (I.P.); (J.A.G.)
- Correspondence: (L.M.M.); (M.L.)
| | - Michal Letek
- Health Sciences Research Centre, University of Roehampton, London SW15 4JD, UK;
- Correspondence: (L.M.M.); (M.L.)
| |
Collapse
|
33
|
Clonal Confinement of a Highly Mobile Resistance Element Driven by Combination Therapy in Rhodococcus equi. mBio 2019; 10:mBio.02260-19. [PMID: 31615959 PMCID: PMC6794481 DOI: 10.1128/mbio.02260-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
MDR clades arise upon acquisition of resistance traits, but the determinants of their clonal expansion remain largely undefined. Taking advantage of the unique features of Rhodococcus equi infection control in equine farms, involving the same dual antibiotic treatment since the 1980s (a macrolide and rifampin), this study sheds light into the determinants of multiresistance clonality and the importance of combination therapy in limiting the dissemination of mobile resistance elements. Clinically effective therapeutic alternatives against R. equi foal pneumonia are currently lacking, and the identified macrolide-rifampin MDR clone 2287 has serious implications. Still at early stages of evolution and local spread, R. equi 2287 may disseminate globally, posing a significant threat to the equine industry and, also, public health due to the risk of zoonotic transmission. The characterization of the 2287 clone and its resistance determinants will enable targeted surveillance and control interventions to tackle the emergence of MDR R. equi. Antibiotic use has been linked to changes in the population structure of human pathogens and the clonal expansion of multidrug-resistant (MDR) strains among healthcare- and community-acquired infections. Here we present a compelling example in a veterinary pathogen, Rhodococcus equi, the causative agent of a severe pulmonary infection affecting foals worldwide. We show that the erm(46) gene responsible for emerging macrolide resistance among equine R. equi isolates in the United States is part of a 6.9-kb transposable element, TnRErm46, actively mobilized by an IS481 family transposase. TnRErm46 is carried on an 87-kb conjugative plasmid, pRErm46, transferable between R. equi strains at frequencies up to 10−3. The erm(46) gene becomes stabilized in R. equi by pRErm46’s apparent fitness neutrality and wholesale TnRErm46 transposition onto the host genome. This includes the conjugally exchangeable pVAPA virulence plasmid, enabling the possibility of cotransfer of two essential traits for survival in macrolide-treated foals in a single mating event. Despite its high horizontal transfer potential, phylogenomic analyses show that erm(46) is paradoxically confined to a specific R. equi clone, 2287. R. equi 2287 also carries a unique rpoBS531F mutation conferring high-level resistance to rifampin, systematically administered together with macrolides against rhodococcal pneumonia on equine farms. Our data illustrate that under sustained combination therapy, several independent “founder” genetic events are concurrently required for resistance, limiting not only its emergence but also, crucially, horizontal spread, ultimately determining multiresistance clonality.
Collapse
|
34
|
Saied AA, Bryan LK, Bolin DC. Ulcerative, granulomatous glossitis and enteritis caused by Rhodococcus equi in a heifer. J Vet Diagn Invest 2019; 31:783-787. [PMID: 31347467 DOI: 10.1177/1040638719867120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Rhodococcus equi infection in horses is common and is characterized by pyogranulomatous pneumonia and ulcerative enterocolitis. R. equi clinical disease in cattle, however, is rare and typically manifests as granulomatous lymphadenitis discovered in the abattoir. A 19-mo-old female Santa Gertrudis had a history of intermittent inappetence and weight loss for a 3-mo period before euthanasia. Gross and histologic examination revealed severe, chronic, ulcerative, and granulomatous inflammation in the tongue, pharynx, and small intestine. Also, the heifer had severe, granulomatous pharyngeal and mesenteric lymphadenitis. Bacterial cultures from the ileum, tongue, and liver yielded numerous-to-moderate numbers of R. equi. PCR analysis of the isolate detected the linear virulence plasmid vapN, which is often identified in bovine isolates (traA- and vapN-positive). The bacteria also lack the circular plasmids vapA and vapB that are associated with virulence in horses and swine, respectively. We report herein an atypical and unusual clinical presentation of R. equi infection in cattle, which has zoonotic potential.
Collapse
Affiliation(s)
- Ahmad A Saied
- Veterinary Diagnostic Laboratory, Department of Veterinary Sciences, College of Agriculture Food & Environment, University of Kentucky, Lexington KY (Saied, Bolin)
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX (Bryan)
| | - Laura K Bryan
- Veterinary Diagnostic Laboratory, Department of Veterinary Sciences, College of Agriculture Food & Environment, University of Kentucky, Lexington KY (Saied, Bolin)
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX (Bryan)
| | - David C Bolin
- Veterinary Diagnostic Laboratory, Department of Veterinary Sciences, College of Agriculture Food & Environment, University of Kentucky, Lexington KY (Saied, Bolin)
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX (Bryan)
| |
Collapse
|
35
|
Paterson ML, Ranasinghe D, Blom J, Dover LG, Sutcliffe IC, Lopes B, Sangal V. Genomic analysis of a novel Rhodococcus (Prescottella) equi isolate from a bovine host. Arch Microbiol 2019; 201:1317-1321. [PMID: 31302711 PMCID: PMC6790187 DOI: 10.1007/s00203-019-01695-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/06/2019] [Accepted: 06/20/2019] [Indexed: 01/02/2023]
Abstract
Rhodococcus (Prescottella) equi causes pneumonia-like infections in foals with high mortality rates and can also infect a number of other animals. R. equi is also emerging as an opportunistic human pathogen. In this study, we have sequenced the genome of a novel R. equi isolate, B0269, isolated from the faeces of a bovine host. Comparative genomic analyses with seven other published R. equi genomes, including those from equine or human sources, revealed a pangenome comprising of 6876 genes with 4141 genes in the core genome. Two hundred and 75 genes were specific to the bovine isolate, mostly encoding hypothetical proteins of unknown function. However, these genes include four copies of terA and five copies of terD genes that may be involved in responding to chemical stress. Virulence characteristics in R. equi are associated with the presence of large plasmids carrying a pathogenicity island, including genes from the vap multigene family. A BLAST search of the protein sequences from known virulence-associated plasmids (pVAPA, pVAPB and pVAPN) revealed a similar plasmid backbone on two contigs in bovine isolate B0269; however, no homologues of the main virulence-associated genes, vapA, vapB or vapN, were identified. In summary, this study confirms that R. equi genomes are highly conserved and reports the presence of an apparently novel plasmid in the bovine isolate B0269 that needs further characterisation to understand its potential involvement in virulence properties.
Collapse
Affiliation(s)
- Megan L Paterson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Diyanath Ranasinghe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-Universität, Giessen, Germany
| | - Lynn G Dover
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Iain C Sutcliffe
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK
| | - Bruno Lopes
- School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Foresterhill, Aberdeen, AB25 2ZD, UK
| | - Vartul Sangal
- Faculty of Health and Life Sciences, Northumbria University, Newcastle upon Tyne, NE1 8ST, UK.
| |
Collapse
|
36
|
First Microbiological and Molecular Identification of Rhodococcus equi in Feces of Nondiarrheic Cats. BIOMED RESEARCH INTERNATIONAL 2019; 2019:4278598. [PMID: 31380423 PMCID: PMC6652081 DOI: 10.1155/2019/4278598] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 06/16/2019] [Indexed: 12/28/2022]
Abstract
Rhodococcus equi is responsible for infections in multiple-host animals. In humans, the prevalence of rhodococcus has increased worldwide and represents an emergent risk. R. equi is a soil-borne opportunistic bacterium isolated from feces of a wide variety of domestic species, except cats; thus, there is no known potential risk of its transmission from humans. Here, the mono- and cooccurrence of Rhodococcus equi and other bacteria and selected virulence markers were investigated in feces of nondiarrheic cats from urban (n=100) and rural (n=100) areas. Seven (7/200=3.5%) R. equi isolates were recovered in ceftazidime, novobiocin, and cycloheximide (CAZ-NB) selective media, exclusively of cats from three distinct farms (p=0.01), and these cats had a history of contact with horses and their environment (p=0.0002). None of the R. equi isolates harbored hosted-adapted plasmid types associated with virulence (pVAPA, pVAPB, and pVAPN). One hundred seventy-five E. coli isolates were identified, and 23 atypical enteropathogenic E. coli (aEPEC), 1 STEC (Shiga-toxin producing E. coli), and 1 EAEC (enteroaggregative E. coli) were detected. Eighty-six C. perfringens type A isolates were identified, and beta-2 and enterotoxin were detected in 21 and 1 isolates, respectively. Five C. difficile isolates were identified, one of which was toxigenic and ribotype 106. The main cooccurring isolates in cats from urban areas were E. coli and C. perfringens A (26/100=26%), E. coli and C. perfringens type A cpb2+ (8/100=8%), and aEPEC (eae+/escN+) and C. perfringens type A (5/100=5%). In cats from farms, the main cooccurring isolates were E. coli and C. perfringens type A (21/100=21%), E. coli and C. perfringens type A cpb2+ 8/100=8%), and E. coli and R. equi (4/100=4%). We identified, for the first time, R. equi in nondiarrheic cats, a finding that represents a public health issue because rhodococcus has been reported in both immunosuppressed and immunocompetent humans, particularly people living with HIV/AIDS.
Collapse
|
37
|
Vázquez‐Boland JA, Meijer WG. The pathogenic actinobacterium Rhodococcus equi: what's in a name? Mol Microbiol 2019; 112:1-15. [PMID: 31099908 PMCID: PMC6852188 DOI: 10.1111/mmi.14267] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/25/2019] [Indexed: 12/17/2022]
Abstract
Rhodococcus equi is the only recognized animal pathogenic species within an extended genus of metabolically versatile Actinobacteria of considerable biotechnological interest. Best known as a horse pathogen, R. equi is commonly isolated from other animal species, particularly pigs and ruminants, and causes severe opportunistic infections in people. As typical in the rhodococci, R. equi niche specialization is extrachromosomally determined, via a conjugative virulence plasmid that promotes intramacrophage survival. Progress in the molecular understanding of R. equi and its recent rise as a novel paradigm of multihost adaptation has been accompanied by an unusual nomenclatural instability, with a confusing succession of names: "Prescottia equi", "Prescotella equi", Corynebacterium hoagii and Rhodococcus hoagii. This article reviews current advances in the genomics, biology and virulence of this pathogenic actinobacterium with a unique mechanism of plasmid-transferable animal host tropism. It also discusses the taxonomic and nomenclatural issues around R. equi in the light of recent phylogenomic evidence that confirms its membership as a bona fide Rhodococcus.
Collapse
Affiliation(s)
- José A. Vázquez‐Boland
- Microbial Pathogenesis Group, Edinburgh Medical School (Biomedical Sciences – Infection Medicine)University of EdinburghChancellor's Building, Little France campusEdinburghEH16 4SBUK
| | - Wim G. Meijer
- UCD School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
| |
Collapse
|
38
|
Rhodococcus equi pVAPN type causing pneumonia in a dog coinfected with canine morbillivirus (distemper virus) and Toxoplasma gondii. Microb Pathog 2019; 129:112-117. [PMID: 30738176 DOI: 10.1016/j.micpath.2019.01.048] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022]
Abstract
Canine morbillivirus (previously, canine distemper virus, CDV) is a highly contagious infectious disease-causing agent that produces immunosuppressive infections and multiple clinical signs. Canine toxoplasmosis is an opportunistic disease characterized by enteric, pulmonary, and neuromuscular signs that might be confused with CDV-induced infections. Rhodococcus equi is a Gram-positive intracellular facultative bacterium that is also opportunistic in nature, and causes pyogranulomatous infections in humans and multiple host animals, although canine rhodococcosis is rare or unrecognized. The pathogenicity of R. equi is intimately related to the presence of plasmid-encoded virulence-associated proteins (Vap). Three host-adapted virulence plasmid types of R. equi have been recognized: the circular pVAPA and pVAPB are associated with equine and porcine strains, respectively, and the recently detected linear pVAPN virulence plasmid is related to bovine isolates. Nevertheless, data regarding the detection of host-adapted virulence plasmid types of R. equi isolated from companion animals are scarce. This report describes a case of an uncommon coinfection due to R. equi, T. gondii and CDV, which was diagnosed in a pet dog with respiratory distress. In this case, CDV most likely induced immunosuppression, which facilitated opportunistic infections by R. equi and T. gondii. The analysis of the virulence profile of R. equi revealed the novel pVAPN plasmid type, initially related to bovine strains. This is the second report of the bovine-associated pVAPN type in a pet dog, with an unusual coinfection with T. gondii and CDV. These findings represent a public health concern due to the close contact between pet animals and their owners, particularly because the pVAPN plasmid type was recently detected in people with HIV/AIDS from the same geographical region.
Collapse
|
39
|
Bargen K, Scraba M, Krämer I, Ketterer M, Nehls C, Krokowski S, Repnik U, Wittlich M, Maaser A, Zapka P, Bunge M, Schlesinger M, Huth G, Klees A, Hansen P, Jeschke A, Bendas G, Utermöhlen O, Griffiths G, Gutsmann T, Wohlmann J, Haas A. Virulence‐associated protein A fromRhodococcus equiis an intercompartmental pH‐neutralising virulence factor. Cell Microbiol 2018; 21:e12958. [DOI: 10.1111/cmi.12958] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 08/17/2018] [Accepted: 09/04/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Kristine Bargen
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Mirella Scraba
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Ina Krämer
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Maren Ketterer
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | | | - Sina Krokowski
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Urska Repnik
- Department of BiosciencesUniversity of Oslo Oslo Norway
| | - Michaela Wittlich
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Anna Maaser
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Pia Zapka
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Madeleine Bunge
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | | | - Gitta Huth
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Annette Klees
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Philipp Hansen
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Andreas Jeschke
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| | - Gerd Bendas
- Pharmaceutical InstituteUniversity of Bonn Bonn Germany
| | - Olaf Utermöhlen
- Institute for Medical Microbiology, Immunology and Hygiene, University Medical Center, and Center for Molecular Medicine Köln, and German Center for Infection Research (DCIF) Cologne Germany
| | | | | | - Jens Wohlmann
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
- Department of BiosciencesUniversity of Oslo Oslo Norway
| | - Albert Haas
- Division of Biophysics, Cell Biology InstituteUniversity of Bonn Bonn Germany
| |
Collapse
|
40
|
Willingham-Lane JM, Coulson GB, Hondalus MK. Identification of a VapA virulence factor functional homolog in Rhodococcus equi isolates housing the pVAPB plasmid. PLoS One 2018; 13:e0204475. [PMID: 30286098 PMCID: PMC6171844 DOI: 10.1371/journal.pone.0204475] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 09/07/2018] [Indexed: 11/30/2022] Open
Abstract
Rhodococcus equi is a facultative intracellular bacterium of macrophages and is an important pathogen of animals and immunocompromised people wherein disease results in abcessation of the lungs and other sites. Prior work has shown that the presence of the major virulence determinant, VapA, encoded on the pVAPA-type plasmid, disrupts normal phagosome development and is essential for bacterial replication within macrophages. pVAPA- type plasmids are typical of R. equi strains derived from foals while strains from pigs carry plasmids of the pVAPB-type, lacking vapA, and those from humans harbor various types of plasmids including pVAPA and pVAPB. Through the creation and analysis of a series of gene deletion mutants, we found that vapK1 or vapK2 is required for optimal intracellular replication of an R. equi isolate carrying a pVAPB plasmid type. Complementation analysis of a ΔvapA R. equi strain with vapK1 or vapK2 showed the VapK proteins of the pVAPB-type plasmid could restore replication capacity to the macrophage growth-attenuated ΔvapA strain. Additionally, in contrast to the intracellular growth capabilities displayed by an equine R. equi transconjugant strain carrying a pVAPB-type plasmid, a transconjugant strain carrying a pVAPB-type plasmid deleted of vapK1 and vapK2 proved incapable of replication in equine macrophages. Cumulatively, these data indicate that VapK1 and K2 are functionally equivalent to VapA.
Collapse
Affiliation(s)
| | - Garry B. Coulson
- Department of Infectious Disease, University of Georgia, Athens, Georgia, United States of America
| | - Mary K. Hondalus
- Department of Infectious Disease, University of Georgia, Athens, Georgia, United States of America
- * E-mail:
| |
Collapse
|
41
|
Current taxonomy of Rhodococcus species and their role in infections. Eur J Clin Microbiol Infect Dis 2018; 37:2045-2062. [PMID: 30159693 DOI: 10.1007/s10096-018-3364-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 08/20/2018] [Indexed: 10/28/2022]
Abstract
Rhodococcus is a genus of obligate aerobic, Gram-positive, partially acid-fast, catalase-positive, non-motile, and none-endospore bacteria. The genus Rhodococcus was first introduced by Zopf. This bacterium can be isolated from various sources of the environment and can grow well in non-selective medium. A large number of phenotypic characterizations are used to compare different species of the genus Rhodococcus, and these tests are not suitable for accurate identification at the genus and species level. Among nucleic acid-based methods, the most powerful target gene for revealing reliable phylogenetic relationships is 16S ribosomal RNA gene (16S rRNA gene) sequence analysis, but this gene is unable to differentiation some of Rhodococcus species. To date, whole genome sequencing analysis has solved taxonomic complexities in this genus. Rhodococcus equi is the major cause of foal pneumonia, and its implication in human health is related to cases in immunocompromised patients. Macrolide family together with rifampicin is one of the most effective antibiotic agents for treatment rhodococcal infections.
Collapse
|
42
|
Nakagawa R, Moki H, Hayashi K, Ooniwa K, Tokuyama K, Kakuda T, Yoshioka K, Takai S. A case report on disseminated Rhodococcus equi infection in a Japanese black heifer. J Vet Med Sci 2018; 80:819-822. [PMID: 29593168 PMCID: PMC5989029 DOI: 10.1292/jvms.18-0064] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Rhodococcus equi was isolated from the granulomatous lesions of the lung, kidney, liver, and hepatic, mesenteric, and abomasum lymph nodes of a Japanese black heifer.
R. equi isolates were analyzed by polymerase chain reaction for virulence-associated protein genes. The vapN gene was detected in all the isolates
examined. This is the first report in which vapN-positive R. equi was isolated from cattle in Japan.
Collapse
Affiliation(s)
- Ryoko Nakagawa
- Yokkaichi City Health Center Food Sanitation Inspection Station, Yokkaichi, Mie 510-0064, Japan
| | - Hiroaki Moki
- Yokkaichi City Health Center Food Sanitation Inspection Station, Yokkaichi, Mie 510-0064, Japan
| | - Kazuhide Hayashi
- Yokkaichi City Health Center Food Sanitation Inspection Station, Yokkaichi, Mie 510-0064, Japan
| | - Kaname Ooniwa
- Laboratory of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kyori Tokuyama
- Laboratory of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Tsutomu Kakuda
- Laboratory of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Kazuki Yoshioka
- Laboratory of Veterinary Anatomy, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| | - Shinji Takai
- Laboratory of Animal Hygiene, School of Veterinary Medicine and Animal Sciences, Kitasato University, Towada, Aomori 034-8628, Japan
| |
Collapse
|
43
|
Identification of Mycobacterium species and Rhodococcus equi in peccary lymph nodes. Trop Anim Health Prod 2018; 50:1319-1326. [PMID: 29546549 DOI: 10.1007/s11250-018-1562-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/01/2018] [Indexed: 01/07/2023]
Abstract
Mycobacterium species and the virulence-associated proteins (vapA, vapB, and vapN genes) of Rhodococcus equi isolated from 330 lymph nodes of collared peccaries (Tayassu tajacu) and white-lipped peccaries (Tayassu pecari) intended for human consumption were investigated. Thirty-six (10.9%) R. equi strains were isolated; 3.3% (n = 11/330) were from white-lipped peccary lymph nodes, and 7.6% (25/330) were from collared peccary lymph nodes. Among the 11 isolates of R. equi from the white-lipped peccaries, 90.9% (n = 10/11) were obtained from the mesenteric lymph nodes, and only 9.1% (n = 1/10) were obtained from the mediastinal lymph nodes. In the 25 isolates of R. equi obtained from the collared peccaries, 40.0% (n = 10/25) were recovered from the mesenteric lymph nodes, 36% (n = 9/25) from the submandibular lymph nodes, and 24.0% (n = 6/25) from the mediastinal lymph nodes. No vapA, vapB, or vapN genes (plasmidless) or three host-associated types (pVAPA, pVAPB, and pVAPN) were identified among the R. equi isolates. Mycobacterium species were isolated in 3.03% (n = 10/330) of all the lymph nodes analyzed. Among the 10 mycobacterial isolates, 60% (n = 6/10) were from the white-lipped peccary lymph nodes, and 40% (n = 4/10) were from the collared peccary lymph nodes. Ten Mycobacterium species were detected by PCR-PRA with a predominance of M. avium type 1. Sequencing of the hsp65 and rpob genes revealed mycobacteria that were saprophytic (M. sinense and M. kumamotonense) and potentially pathogenic (M. colombiense and M. intracellulare) to humans and animals. To our knowledge, this is the first description of R. equi and/or mycobacterial species identified in the lymph nodes of peccary specimens. R. equi (plasmidless) and the mycobacterial species described here have been reported as causes of pulmonary and extrapulmonary infections in both immunocompetent and immunocompromised humans.
Collapse
|
44
|
Bryan LK, Alexander ER, Lawhon SD, Cohen ND. Detection of vapN in Rhodococcus equi isolates cultured from humans. PLoS One 2018; 13:e0190829. [PMID: 29300774 PMCID: PMC5754133 DOI: 10.1371/journal.pone.0190829] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/20/2017] [Indexed: 11/18/2022] Open
Abstract
Rhodococcus equi can cause severe infections in people, particularly in immunocompromised individuals. The R. equi virulence plasmids (vap) encoding vapA and vapB are linked to development of infections in domestic animals. Recently, a novel virulence plasmid, vapN, was identified in isolates cultured from cattle, but its prevalence or significance in human R. equi infections has not been extensively studied. To determine the prevalence of vapN in a diverse collection of human-derived isolates from different countries, 65 R. equi isolates collected by various institutions from 1984 to 2002 were screened for the presence of vapN and other virulence plasmids through polymerase chain reaction (PCR) using redesigned primer sets. Of the isolates that carried plasmids, 43% (16/37) were vapN-positive and fewer were vapB or vapA-positive (30 and 16%, respectively). This is the first report of vapN carriage in R. equi isolated from human infections. One isolate (H-30) carried vapN but did not amplify the conjugal plasmid transfer gene traA associated with carriage of vap, which could be explained by sequence variation within the traA gene. Another isolate (H-55) amplified traA, but did not amplify vapA, B, or N (traA+vapABN-) with previously described primer sets or those developed for this study. The H-55 traA sequence had 98% identity to traA sequences in vapA plasmids, which suggests that it may carry a variant of previously characterized virulence plasmids or a novel virulence plasmid. Carriage of vapN in R. equi isolates derived from people is not uncommon and more research is needed to determine its significance in the epidemiology and pathogenesis of human R. equi infections.
Collapse
Affiliation(s)
- Laura K. Bryan
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| | - Ellen Ruth Alexander
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
45
|
Wright LM, Carpinone EM, Bennett TL, Hondalus MK, Starai VJ. VapA of Rhodococcus equi binds phosphatidic acid. Mol Microbiol 2017; 107:428-444. [PMID: 29205554 DOI: 10.1111/mmi.13892] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 11/28/2017] [Accepted: 12/03/2017] [Indexed: 12/30/2022]
Abstract
Rhodococcus equi is a multihost, facultative intracellular bacterial pathogen that primarily causes pneumonia in foals less than six months in age and immunocompromised people. Previous studies determined that the major virulence determinant of R. equi is the surface bound virulence associated protein A (VapA). The presence of VapA inhibits the maturation of R. equi-containing phagosomes and promotes intracellular bacterial survival, as determined by the inability of vapA deletion mutants to replicate in host macrophages. While the mechanism of action of VapA remains elusive, we show that soluble recombinant VapA32-189 both rescues the intramacrophage replication defect of a wild type R. equi strain lacking the vapA gene and enhances the persistence of nonpathogenic Escherichia coli in macrophages. During macrophage infection, VapA was observed at both the bacterial surface and at the membrane of the host-derived R. equi containing vacuole, thus providing an opportunity for VapA to interact with host constituents and promote alterations in phagolysosomal function. In support of the observed host membrane binding activity of VapA, we also found that rVapA32-189 interacted specifically with liposomes containing phosphatidic acid in vitro. Collectively, these data demonstrate a lipid binding property of VapA, which may be required for its function during intracellular infection.
Collapse
Affiliation(s)
- Lindsay M Wright
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Emily M Carpinone
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Terry L Bennett
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Mary K Hondalus
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA
| | - Vincent J Starai
- Department of Infectious Diseases, University of Georgia, Athens, GA 30602, USA.,Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
46
|
Stranahan LW, Plumlee QD, Lawhon SD, Cohen ND, Bryan LK. Rhodococcus equi Infections in Goats: Characterization of Virulence Plasmids. Vet Pathol 2017; 55:273-276. [DOI: 10.1177/0300985817747327] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Rhodococcus equi is an uncommon cause of systemic pyogranulomatous infections in goats with macroscopic similarities to caseous lymphadenitis caused by Corynebacterium pseudotuberculosis. Caprine cases have previously been reported to be caused by avirulent R. equi strains. Six cases of R. equi infection in goats yielding 8 R. equi isolates were identified from 2000 to 2017. Lesions varied from bronchopneumonia, vertebral and humeral osteomyelitis, and subcutaneous abscesses, to disseminated infection involving the lungs, lymph nodes, and multiple visceral organs. Isolates of R. equi from infected goats were analyzed by polymerase chain reaction for R. equi virulence-associated plasmid ( vap) genes. Seven of 8 isolates carried the VapN plasmid, originally characterized in bovine isolates, while 1 isolate lacked virulence plasmids and was classified as avirulent. The VapN plasmid has not been described in isolates cultured from goats.
Collapse
Affiliation(s)
- Lauren W. Stranahan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Quinci D. Plumlee
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Sara D. Lawhon
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Noah D. Cohen
- Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| | - Laura K. Bryan
- Department of Veterinary Pathobiology, College of Veterinary Medicine, Texas A&M University, College Station, TX, USA
| |
Collapse
|
47
|
Ribeiro MG, Lara GHB, da Silva P, Franco MMJ, de Mattos-Guaraldi AL, de Vargas APC, Sakate RI, Pavan FR, Colhado BS, Portilho FVR, Motta RG, Kakuda T, Takai S. Novel bovine-associated pVAPN plasmid type in Rhodococcus equi identified from lymph nodes of slaughtered cattle and lungs of people living with HIV/AIDS. Transbound Emerg Dis 2017; 65:321-326. [PMID: 29226632 DOI: 10.1111/tbed.12785] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Indexed: 01/21/2023]
Abstract
Rhodococcus equi is a well-recognized Gram-positive intracellular facultative bacterium that is opportunistic in nature, which causes pyogranulomatous infections in humans and multiple host animals. The pathogenicity of the microorganism has been attributed to the presence of plasmid-encoded virulence-associated proteins (Vap). To date, three host-associated virulence plasmid types of R. equi have been identified as follows: the circular pVAPA and pVAPB, related, respectively, to equine and porcine isolates, and a recently described linear pVAPN plasmid associated with bovine strains, although these three types are found in human isolates. Recent phylogenomic studies support the evidence that human R. equi infection is zoonotically acquired. Nevertheless, data regarding distribution and prevalence of the host-adapted virulence plasmid types of R. equi isolated from meat animals are scarce or unnoticed. Here, the three host-associated virulence plasmid types (pVAPA, pVAPB, and pVAPN) were investigated in 154 R. equi isolates recovered from lymph nodes of cattle with lymphadenitis (n = 31), faeces of cattle without enteric signs (n = 49), as well as different clinical specimens from human patients (n = 74). The analysis of virulence profile of 74 R. equi from humans revealed six (8.1%) isolates pVAPB (type 8), two (2.7%) pVAPN, and one (1.3%) pVAPB (type 11), all of which were from lung samples from people living with HIV/AIDS. From the lymph node samples of cattle, 41.9% (13 of 31) isolates revealed pVAPN type, whereas all isolates from faecal samples were negative for three host-associated types. Here, recently described bovine-associated pVAPN type was detected in R. equi isolates recovered from the lungs of people living with HIV/AIDS and lymph nodes from slaughtered cattle intended for human consumption; a finding that represents a public health concern, mainly in countries where undercooked or raw meat are traditionally consumed.
Collapse
Affiliation(s)
- M G Ribeiro
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, UNESP-São Paulo State University, Botucatu, SP, Brazil
| | - G H B Lara
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, UNESP-São Paulo State University, Botucatu, SP, Brazil
| | - P da Silva
- IAL-Adolfo Lutz Institute, Ribeirão Preto, SP, Brazil
| | - M M J Franco
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, UNESP-São Paulo State University, Botucatu, SP, Brazil
| | | | - A P C de Vargas
- UFSM-Federal University of Santa Maria, Santa Maria, RS, Brazil
| | - R I Sakate
- Federal Veterinary Inspection Service, Lençois Paulista, SP, Brazil
| | - F R Pavan
- UNESP-Faculty of Pharmacy, Araraquara, SP, Brazil
| | - B S Colhado
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, UNESP-São Paulo State University, Botucatu, SP, Brazil
| | - F V R Portilho
- Department of Veterinary Hygiene and Public Health, School of Veterinary Medicine and Animal Sciences, UNESP-São Paulo State University, Botucatu, SP, Brazil
| | - R G Motta
- UniRV-University of Rio Verde, Rio Verde, GO, Brazil
| | - T Kakuda
- Kitasato University, Towada, Aomori, Japan
| | - S Takai
- Kitasato University, Towada, Aomori, Japan
| |
Collapse
|
48
|
MacArthur I, Anastasi E, Alvarez S, Scortti M, Vázquez-Boland JA. Comparative Genomics of Rhodococcus equi Virulence Plasmids Indicates Host-Driven Evolution of the vap Pathogenicity Island. Genome Biol Evol 2017; 9:1241-1247. [PMID: 28369330 PMCID: PMC5434932 DOI: 10.1093/gbe/evx057] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2017] [Indexed: 01/16/2023] Open
Abstract
The conjugative virulence plasmid is a key component of the Rhodococcus equi accessory genome essential for pathogenesis. Three host-associated virulence plasmid types have been identified: the equine pVAPA and porcine pVAPB circular variants, and the linear pVAPN found in bovine (ruminant) isolates. We recently characterized the R. equi pangenome (Anastasi E, et al. 2016. Pangenome and phylogenomic analysis of the pathogenic actinobacterium Rhodococcus equi. Genome Biol Evol. 8:3140–3148.) and we report here the comparative analysis of the virulence plasmid genomes. Plasmids within each host-associated type were highly similar despite their diverse origins. Variation was accounted for by scattered single nucleotide polymorphisms and short nucleotide indels, while larger indels—mostly in the plasticity region near the vap pathogencity island (PAI)—defined plasmid genomic subtypes. Only one of the plasmids analyzed, of pVAPN type, was exceptionally divergent due to accumulation of indels in the housekeeping backbone. Each host-associated plasmid type carried a unique PAI differing in vap gene complement, suggesting animal host-specific evolution of the vap multigene family. Complete conservation of the vap PAI was observed within each host-associated plasmid type. Both diversity of host-associated plasmid types and clonality of specific chromosomal-plasmid genomic type combinations were observed within the same R. equi phylogenomic subclade. Our data indicate that the overall strong conservation of the R. equi host-associated virulence plasmids is the combined result of host-driven selection, lateral transfer between strains, and geographical spread due to international livestock exchanges.
Collapse
Affiliation(s)
- Iain MacArthur
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Elisa Anastasi
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sonsiray Alvarez
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Mariela Scortti
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom
| | - José A Vázquez-Boland
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.,Edinburgh Medical School (Biomedical Sciences), University of Edinburgh, Edinburgh, United Kingdom.,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
49
|
Duquesne F, Houssin E, Sévin C, Duytschaever L, Tapprest J, Fretin D, Hébert L, Laugier C, Petry S. Development of a multilocus sequence typing scheme for Rhodococcus equi. Vet Microbiol 2017; 210:64-70. [PMID: 29103698 DOI: 10.1016/j.vetmic.2017.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/30/2017] [Accepted: 08/15/2017] [Indexed: 01/30/2023]
Abstract
Rhodococcus equi causes pulmonary and extrapulmonary infections in animals and humans, with endemic situations and significant young foal mortality in stud farms worldwide. Despite its economic impact in the horse-breeding industry, the broad geographic and host distribution, global diversity and population structure of R. equi remain poorly characterised. In this context, we developed a multilocus sequence typing (MLST) scheme using 89 clinical and environmental R. equi of various origins and eight Rhodococcus sp. Data can be accessed at http://pubmlst.org/rhodococcus/. A clonal R. equi population was observed with 16 out of 37 sequence types (STs) grouped into six clonal complexes (CC) based on single-locus variants. One of the six CCs (CC3) is not host-specific, suggesting potential exchanges between different R. equi reservoirs. Most of the virulent equine R. equi CCs/unlinked STs were plasmid-type-specific. Despite this, marked genetic variability with the circulation of multiple R. equi genotypes was generally observed even within the same animal. Focusing on outbreaks, data indicated (i) the potential contagious transmission of R. equi during the 2012-Mayotte equine outbreak because of the poor genotype diversity of clinical strains; (ii) a potential porcine outbreak among the 30 Belgian farms investigated in 2013. This first Rhodococcus equi MLST is a powerful tool for further epidemiological investigations and population biology studies of R. equi isolates.
Collapse
Affiliation(s)
- Fabien Duquesne
- ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, 14430 Dozulé, France.
| | - Emilie Houssin
- ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, 14430 Dozulé, France
| | - Corinne Sévin
- ANSES, Dozulé Laboratory for Equine Diseases, Epidemiology and Pathology Unit, 14430 Dozulé, France
| | - Lucille Duytschaever
- CODA-CERVA, Veterinary and Agrochemical Research Centre, Bacterial Zoonoses of Production Animals Unit, Groeselenberg, 99, B-1180 Brussels, Belgium
| | - Jackie Tapprest
- ANSES, Dozulé Laboratory for Equine Diseases, Epidemiology and Pathology Unit, 14430 Dozulé, France
| | - David Fretin
- CODA-CERVA, Veterinary and Agrochemical Research Centre, Bacterial Zoonoses of Production Animals Unit, Groeselenberg, 99, B-1180 Brussels, Belgium
| | - Laurent Hébert
- ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, 14430 Dozulé, France
| | - Claire Laugier
- ANSES, Dozulé Laboratory for Equine Diseases, 14430 Dozulé, France
| | - Sandrine Petry
- ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, 14430 Dozulé, France
| |
Collapse
|
50
|
Petry S, Sévin C, Fleury MA, Duquesne F, Foucher N, Laugier C, Henry-Amar M, Tapprest J. Differential distribution of vapA-positive Rhodococcus equi in affected and unaffected horse-breeding farms. Vet Rec 2017. [PMID: 28642343 DOI: 10.1136/vr.104088] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- S Petry
- ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, Goustranville 14430, France
| | - C Sévin
- ANSES, Dozulé Laboratory for Equine Diseases, Epidemiology and Pathology Unit, Goustranville 14430, France
| | - M A Fleury
- ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, Goustranville 14430, France
| | - F Duquesne
- ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, Goustranville 14430, France
| | - N Foucher
- ANSES, Dozulé Laboratory for Equine Diseases, Bacteriology and Parasitology Unit, Goustranville 14430, France
| | - C Laugier
- ANSES, Dozulé Laboratory for Equine Diseases, Goustranville 14430, France
| | - M Henry-Amar
- Centre de lutte contre le cancer François Baclesse, Avenue du Général Harris, Caen cedex 5, 14076, France
| | - J Tapprest
- ANSES, Dozulé Laboratory for Equine Diseases, Epidemiology and Pathology Unit, Goustranville 14430, France
| |
Collapse
|