1
|
Nygaard TK, Borgogna TR, Pallister KB, Predtechenskaya M, Burroughs OS, Gao A, Lubick EG, Voyich JM. The Relative Importance of Cytotoxins Produced by Methicillin-Resistant Staphylococcus aureus Strain USA300 for Causing Human PMN Destruction. Microorganisms 2024; 12:1782. [PMID: 39338457 PMCID: PMC11434515 DOI: 10.3390/microorganisms12091782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/20/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Staphylococcus aureus (S. aureus) is a prominent Gram-positive bacterial pathogen that expresses numerous cytotoxins known to target human polymorphonuclear leukocytes (PMNs or neutrophils). These include leukocidin G/H (LukGH, also known as LukAB), the Panton-Valentine leukocidin (PVL), γ-hemolysin A/B (HlgAB), γ-hemolysin B/C (HlgBC), leukocidin E/D (LukED), α-hemolysin (Hla), and the phenol-soluble modulin-α peptides (PSMα). However, the relative contribution of each of these cytotoxins in causing human PMN lysis is not clear. In this study, we used a library of cytotoxin deletion mutants in the clinically relevant methicillin-resistant S. aureus (MRSA) isolate LAC (strain ST8:USA300) to determine the relative importance of each for causing human PMN lysis upon exposure to extracellular components as well as following phagocytosis. Using flow cytometry to examine plasma membrane permeability and assays quantifying lactose dehydrogenase release, we found that PVL was the dominant extracellular factor causing human PMN lysis produced by USA300. In contrast, LukGH was the most important cytotoxin causing human PMN lysis immediately following phagocytosis with contributions from the other bicomponent leukocidins only observed at later time points. These results not only clarify the relative importance of different USA300 cytotoxins for causing human PMN destruction but also demonstrate how two apparently redundant virulence factors play distinctive roles in promoting S. aureus pathogenesis.
Collapse
Affiliation(s)
- Tyler K Nygaard
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Timothy R Borgogna
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Kyler B Pallister
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Maria Predtechenskaya
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Owen S Burroughs
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Annika Gao
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Evan G Lubick
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| | - Jovanka M Voyich
- Department of Microbiology Cell Biology, Montana State University, Bozeman, MT 59718, USA
| |
Collapse
|
2
|
Núñez D, Jiménez P, Cortez-San Martín M, Cortés C, Cárdenas M, Michelson S, Garay T, Vecchiola M, Céspedes A, Maldonado JE, Vásquez-Martínez Y. Molecular and Phylogenomic Analysis of a Vancomycin Intermediate Resistance USA300LV Strain in Chile. Microorganisms 2024; 12:1284. [PMID: 39065053 PMCID: PMC11278659 DOI: 10.3390/microorganisms12071284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Antimicrobial resistance is a major global health problem, and, among Gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) represents a serious threat. MRSA causes a wide range of infections, including bacteremia, which, due to the limited use of β-lactams, is difficult to treat. This study aimed to analyze 51 MRSA isolates collected in 2018 from samples of patients with bacteremia from two hospitals of the Metropolitan Health Service of Santiago, Chile, both in their resistance profile and in the identification of virulence factors. In addition, genomic characterization was carried out by the WGS of an isolate that was shown to be the one of greatest concern (N°. 42) due to its intermediate resistance to vancomycin, multiple virulence factors and being classified as ST8 PVL-positive. In our study, most of the isolates turned out to be multidrug-resistant, but there are still therapeutic options, such as tetracycline, rifampicin, chloramphenicol and vancomycin, which are currently used for MRSA infections; however, 18% were PVL positive, which suggests greater virulence of these isolates. It was determined that isolate N°42 is grouped within the USA300-LV strains (ST8, PVL+, COMER+); however, it has been suggested that, in Chile, a complete displacement of the PVL-negative ST5 clone has not occurred.
Collapse
Affiliation(s)
- Daniela Núñez
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Pablo Jiménez
- Laboratorio de Multiómica Vegetal y Bioinformática, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile;
| | - Marcelo Cortez-San Martín
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Carolina Cortés
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Matías Cárdenas
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Sofia Michelson
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
| | - Tamara Garay
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (T.G.); (M.V.); (A.C.)
| | - Maggie Vecchiola
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (T.G.); (M.V.); (A.C.)
| | - Alejandra Céspedes
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (T.G.); (M.V.); (A.C.)
| | - Jonathan E. Maldonado
- Laboratorio de Multiómica Vegetal y Bioinformática, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile;
- Millennium Institute for Integrative Biology (iBio), Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago 8380000, Chile
| | - Yesseny Vásquez-Martínez
- Molecular Virology and Pathogen Control Laboratory, Departamento de Biología, Facultad de Química y Biología, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (D.N.); (M.C.-S.M.); (C.C.); (M.C.); (S.M.)
- Escuela de Medicina, Facultad de Ciencias Médicas, Universidad de Santiago de Chile (USACH), Santiago 9170022, Chile; (T.G.); (M.V.); (A.C.)
| |
Collapse
|
3
|
Kerro Dego O, Vidlund J. Staphylococcal mastitis in dairy cows. Front Vet Sci 2024; 11:1356259. [PMID: 38863450 PMCID: PMC11165426 DOI: 10.3389/fvets.2024.1356259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 05/06/2024] [Indexed: 06/13/2024] Open
Abstract
Bovine mastitis is one of the most common diseases of dairy cattle. Even though different infectious microorganisms and mechanical injury can cause mastitis, bacteria are the most common cause of mastitis in dairy cows. Staphylococci, streptococci, and coliforms are the most frequently diagnosed etiological agents of mastitis in dairy cows. Staphylococci that cause mastitis are broadly divided into Staphylococcus aureus and non-aureus staphylococci (NAS). NAS is mainly comprised of coagulase-negative Staphylococcus species (CNS) and some coagulase-positive and coagulase-variable staphylococci. Current staphylococcal mastitis control measures are ineffective, and dependence on antimicrobial drugs is not sustainable because of the low cure rate with antimicrobial treatment and the development of resistance. Non-antimicrobial effective and sustainable control tools are critically needed. This review describes the current status of S. aureus and NAS mastitis in dairy cows and flags areas of knowledge gaps.
Collapse
Affiliation(s)
- Oudessa Kerro Dego
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
| | - Jessica Vidlund
- Department of Animal Science, University of Tennessee, Knoxville, TN, United States
- East Tennessee AgResearch and Education Center-Little River Animal and Environmental Unit, University of Tennessee, Walland, TN, United States
| |
Collapse
|
4
|
Zhu F, Ma S, Wen H, Rao M, Zhang P, Peng W, Cui Y, Yang H, Tan C, Chen J, Pan P. Development of a novel circular mRNA vaccine of six protein combinations against Staphylococcus aureus. J Biomol Struct Dyn 2023; 41:10525-10545. [PMID: 36533395 DOI: 10.1080/07391102.2022.2154846] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022]
Abstract
Staphylococcus aureus is an extraordinarily versatile pathogen, which is currently the most common cause of nosocomial and community infections. Considering that increased antibiotic resistance may hasten the spread of S. aureus, developing an effective vaccine can possibly aid in its control. The RNA vaccine coding immunodominance epitopes from bacteria provide a potential method to induce T and B cell immune responses by translating them into cells. Furthermore, using bioinformatics to create circular RNA vaccines can ensure that the translation of the vaccine is potent and durable. In this study, 7 cytotoxic T lymphocyte (CTL) epitopes, 4 helper T lymphocyte (HTL) epitopes, and 15 B cell epitopes from 6 proteins that are closely associated with the S. aureus virulence and invasion and critical to natural immune responses were mapped. To verify their interactions, all epitopes were docked with the corresponding MHC alleles. The final vaccine was composed of 26 epitopes and the adjuvant β-defencin, and a disulfide bond was also introduced to improve its stability. After the prediction of structure and characteristics, the developed vaccine was docked with TLR2 and TLR4, which induce immunological responses in S. aureus infection. According to the molecular dynamic simulation, the vaccine might interact strongly with TLRs. Meanwhile, it performed well in immunological simulation and population coverage prediction. Finally, the vaccine was converted into a circular RNA using a series of helper sequences to aid in vaccine circulation translation. Hopefully, this proposed structure will be proven to serve a viable vaccine against S. aureus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fei Zhu
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Shiyang Ma
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Haicheng Wen
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Mingjun Rao
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Peipei Zhang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Wenzhong Peng
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Yanhui Cui
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Hang Yang
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Caixia Tan
- Department of Infection Control Center of Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jie Chen
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| | - Pinhua Pan
- Department of Respiratory Medicine, National Key Clinical Specialty, Branch of National Clinical Research Center for Respiratory Disease, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Center of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Clinical Research Center for Respiratory Diseases in Hunan Province, Changsha, Hunan, China
- Hunan Engineering Research Center for Intelligent Diagnosis and Treatment of Respiratory Disease, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, Hunan, P.R. China
| |
Collapse
|
5
|
Patel H, Rawat S. A genetic regulatory see-saw of biofilm and virulence in MRSA pathogenesis. Front Microbiol 2023; 14:1204428. [PMID: 37434702 PMCID: PMC10332168 DOI: 10.3389/fmicb.2023.1204428] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/30/2023] [Indexed: 07/13/2023] Open
Abstract
Staphylococcus aureus is one of the most common opportunistic human pathogens causing several infectious diseases. Ever since the emergence of the first methicillin-resistant Staphylococcus aureus (MRSA) strain decades back, the organism has been a major cause of hospital-acquired infections (HA-MRSA). The spread of this pathogen across the community led to the emergence of a more virulent subtype of the strain, i.e., Community acquired Methicillin resistant Staphylococcus aureus (CA-MRSA). Hence, WHO has declared Staphylococcus aureus as a high-priority pathogen. MRSA pathogenesis is remarkable because of the ability of this "superbug" to form robust biofilm both in vivo and in vitro by the formation of polysaccharide intercellular adhesin (PIA), extracellular DNA (eDNA), wall teichoic acids (WTAs), and capsule (CP), which are major components that impart stability to a biofilm. On the other hand, secretion of a diverse array of virulence factors such as hemolysins, leukotoxins, enterotoxins, and Protein A regulated by agr and sae two-component systems (TCS) aids in combating host immune response. The up- and downregulation of adhesion genes involved in biofilm formation and genes responsible for synthesizing virulence factors during different stages of infection act as a genetic regulatory see-saw in the pathogenesis of MRSA. This review provides insight into the evolution and pathogenesis of MRSA infections with a focus on genetic regulation of biofilm formation and virulence factors secretion.
Collapse
Affiliation(s)
| | - Seema Rawat
- Microbiology Laboratory, School of Life Sciences, Central University of Gujarat, Gandhinagar, Gujarat, India
| |
Collapse
|
6
|
Li G, Wang Q, Feng J, Wang J, Wang Y, Huang X, Shao T, Deng X, Cao Y, Zhou M, Zhao C. Recent insights into the role of defensins in diabetic wound healing. Biomed Pharmacother 2022; 155:113694. [PMID: 36099789 DOI: 10.1016/j.biopha.2022.113694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/07/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
Diabetic wound, one of the most common serious complications of diabetic patients, is an important factor in disability and death. Much of the research on the pathophysiology of diabetic wound healing has long focused on mechanisms mediated by hyperglycemia, chronic inflammation, microcirculatory and macrocirculatory dysfunction. However, recent evidence suggests that defensins may play a crucial role in the development and perpetuation of diabetic wound healing. The available findings suggest that defensins exert a beneficial influence on diabetic wound healing through antimicrobial, immunomodulatory, angiogenic, tissue regenerator effects, and insulin resistance improvement. Therefore, summarizing the existing research progress on defensins in the diabetic wound may present a promising strategy for diabetic patients.
Collapse
Affiliation(s)
- Gen Li
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Qixue Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiawei Feng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jialin Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yuqing Wang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xiaoting Huang
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Graduate School, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tengteng Shao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Xiaofei Deng
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Yemin Cao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China
| | - Mingmei Zhou
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China; Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Cheng Zhao
- Shanghai Traditional Chinese Medicine Integrated Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200082, China.
| |
Collapse
|
7
|
McGuire MK, Randall AZ, Seppo AE, Järvinen KM, Meehan CL, Gindola D, Williams JE, Sellen DW, Kamau-Mbuthia EW, Kamundia EW, Mbugua S, Moore SE, Prentice AM, Foster JA, Otoo GE, Rodríguez JM, Pareja RG, Bode L, McGuire MA, Campo JJ. Multipathogen Analysis of IgA and IgG Antigen Specificity for Selected Pathogens in Milk Produced by Women From Diverse Geographical Regions: The INSPIRE Study. Front Immunol 2021; 11:614372. [PMID: 33643297 PMCID: PMC7905217 DOI: 10.3389/fimmu.2020.614372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/23/2020] [Indexed: 12/22/2022] Open
Abstract
Breastfeeding provides defense against infectious disease during early life. The mechanisms underlying this protection are complex but likely include the vast array of immune cells and components, such as immunoglobulins, in milk. Simply characterizing the concentrations of these bioactives, however, provides only limited information regarding their potential relationships with disease risk in the recipient infant. Rather, understanding pathogen and antigen specificity profiles of milk-borne immunoglobulins might lead to a more complete understanding of how maternal immunity impacts infant health and wellbeing. Milk produced by women living in 11 geographically dispersed populations was applied to a protein microarray containing antigens from 16 pathogens, including diarrheagenic E. coli, Shigella spp., Salmonella enterica serovar Typhi, Staphylococcus aureus, Streptococcus pneumoniae, Mycobacterium tuberculosis and other pathogens of global health concern, and specific IgA and IgG binding was measured. Our analysis identified novel disease-specific antigen responses and suggests that some IgA and IgG responses vary substantially within and among populations. Patterns of antibody reactivity analyzed by principal component analysis and differential reactivity analysis were associated with either lower-to-middle-income countries (LMICs) or high-income countries (HICs). Antibody levels were generally higher in LMICs than HICs, particularly for Shigella and diarrheagenic E. coli antigens, although sets of S. aureus, S. pneumoniae, and some M. tuberculosis antigens were more reactive in HICs. Differential responses were typically specific to canonical immunodominant antigens, but a set of nondifferential but highly reactive antibodies were specific to antigens possibly universally recognized by antibodies in human milk. This approach provides a promising means to understand how breastfeeding and human milk protect (or do not protect) infants from environmentally relevant pathogens. Furthermore, this approach might lead to interventions to boost population-specific immunity in at-risk breastfeeding mothers and their infants.
Collapse
Affiliation(s)
- Michelle K McGuire
- Margaret Ritchie School of Family and Consumer Sciences, University of Idaho, Moscow, ID, United States
| | - Arlo Z Randall
- Antigen Discovery Incorporated, Irvine, CA, United States
| | - Antti E Seppo
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Kirsi M Järvinen
- Department of Pediatrics, University of Rochester, Rochester, NY, United States
| | - Courtney L Meehan
- Department of Anthropology, Washington State University, Pullman, WA, United States
| | - Debela Gindola
- Department of Anthropology, Hawassa University, Awasa, Ethiopia
| | - Janet E Williams
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Daniel W Sellen
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| | | | | | - Samwel Mbugua
- Department of Human Nutrition, Egerton University, Nakuru, Kenya
| | - Sophie E Moore
- Department of Women and Children's Health, King's College London, London, United Kingdom.,MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - Andrew M Prentice
- MRC Unit, The Gambia at the London School of Hygiene and Tropical Medicine, Banjul, Gambia
| | - James A Foster
- Department of Biological Sciences, University of Idaho, Moscow, ID, United States
| | - Gloria E Otoo
- Department of Nutrition and Food Science, University of Ghana, Accra, Ghana
| | - Juan M Rodríguez
- Department of Nutrition and Food Science, Complutense University of Madrid, Madrid, Spain
| | | | - Lars Bode
- Larsson-Rosenquist Foundation Mother-Milk-Infant Center of Research Excellence, University of California, San Diego, La Jolla, CA, United States.,Department of Pediatrics, University of California, San Diego, La Jolla, CA, United States
| | - Mark A McGuire
- Department of Animal and Veterinary Science, University of Idaho, Moscow, ID, United States
| | - Joseph J Campo
- Antigen Discovery Incorporated, Irvine, CA, United States
| |
Collapse
|
8
|
Mazzoleni V, Zimmermann K, Smirnova A, Tarassov I, Prévost G. Staphylococcus aureus Panton-Valentine Leukocidin triggers an alternative NETosis process targeting mitochondria. FASEB J 2020; 35:e21167. [PMID: 33241563 DOI: 10.1096/fj.201902981r] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 09/18/2020] [Accepted: 10/23/2020] [Indexed: 01/18/2023]
Abstract
Panton-Valentine Leukocidin (PVL) is a bicomponent leukotoxin produced by 3%-10% of clinical Staphylococcus aureus (SA) strains involved in the severity of hospital and community-acquired infections. Although PVL was long known as a pore-forming toxin, recent studies have challenged the formation of a pore at the plasma membrane, while its endocytosis and the exact mode of action remain to be defined. In vitro immunolabeling of human neutrophils shows that Neutrophil Extracellular Traps (NETosis) is triggered by the action of purified PVL, but not by Gamma hemolysin CB (HlgCB), a structurally similar SA leukotoxin. PVL causes the ejection of chromatin fibers (NETs) decorated with antibacterial peptides independently of the NADPH oxidase oxidative burst. Leukotoxin partially colocalizes with mitochondria and enhances the production of reactive oxygen species from these organelles, while showing an increased autophagy, which results unnecessary for NETs ejection. PVL NETosis is elicited through Ca2+ -activated SK channels and Myeloperoxidase activity but is abolished by Allopurinol pretreatment of neutrophils. Moreover, massive citrullination of the histone H3 is performed by peptidyl arginine deiminases. Inhibition of this latter enzymes fails to abolish NET extrusion. Unexpectedly, PVL NETosis does not seem to involve Src kinases, which is the main kinase family activated downstream the binding of PVL F subunit to CD45 receptor, while the specific kinase pathway differs from the NADPH oxidase-dependent NETosis. PVL alone causes a different and specific form of NETosis that may rather represent a bacterial strategy conceived to disarm and disrupt the immune response, eventually allowing SA to spread.
Collapse
Affiliation(s)
- Viola Mazzoleni
- University of Strasbourg, CHRU Strasbourg, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, UR7290, Institut de Bactériologie, Strasbourg, France
| | - Kiran Zimmermann
- University of Strasbourg, CHRU Strasbourg, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, UR7290, Institut de Bactériologie, Strasbourg, France
| | - Anna Smirnova
- UMR 7156 GMGM Strasbourg University/CNRS, Strasbourg, France
| | - Ivan Tarassov
- UMR 7156 GMGM Strasbourg University/CNRS, Strasbourg, France
| | - Gilles Prévost
- University of Strasbourg, CHRU Strasbourg, ITI InnoVec, Fédération de Médecine Translationnelle de Strasbourg, UR7290, Institut de Bactériologie, Strasbourg, France
| |
Collapse
|
9
|
Convergent Evolution of Neutralizing Antibodies to Staphylococcus aureus γ-Hemolysin C That Recognize an Immunodominant Primary Sequence-Dependent B-Cell Epitope. mBio 2020; 11:mBio.00460-20. [PMID: 32546616 PMCID: PMC7298706 DOI: 10.1128/mbio.00460-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. Staphylococcus aureus infection is a major public health threat in part due to the spread of antibiotic resistance and repeated failures to develop a protective vaccine. Infection is associated with production of virulence factors that include exotoxins that attack host barriers and cellular defenses, such as the leukocidin (Luk) family of bicomponent pore-forming toxins. To investigate the structural basis of antibody-mediated functional inactivation of Luk toxins, we generated a panel of murine monoclonal antibodies (MAbs) that neutralize host cell killing by the γ-hemolysin HlgCB. By biopanning these MAbs against a phage-display library of random Luk peptide fragments, we identified a small subregion within the rim domain of HlgC as the epitope for all the MAbs. Within the native holotoxin, this subregion folds into a conserved β-hairpin structure, with exposed key residues, His252 and Tyr253, required for antibody binding. On the basis of the phage-display results and molecular modeling, a 15-amino-acid synthetic peptide representing the minimal epitope on HlgC (HlgC241-255) was designed, and preincubation with this peptide blocked antibody-mediated HIgCB neutralization. Immunization of mice with HlgC241-255 or the homologous LukS246-260 subregion peptide elicited serum antibodies that specifically recognized the native holotoxin subunits. Furthermore, serum IgG from patients who were convalescent for invasive S. aureus infection showed neutralization of HlgCB toxin activity ex vivo, which recognized the immunodominant HlgC241-255 peptide and was dependent on His252 and Tyr253 residues. We have thus validated an efficient, rapid, and scalable experimental workflow for identification of immunodominant and immunogenic leukotoxin-neutralizing B-cell epitopes that can be exploited for new S. aureus-protective vaccines and immunotherapies.
Collapse
|
10
|
Staphylococcus aureus Toxins: From Their Pathogenic Roles to Anti-virulence Therapy Using Natural Products. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0059-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
11
|
Galia L, Ligozzi M, Bertoncelli A, Mazzariol A. Real-time PCR assay for detection of Staphylococcus aureus, Panton-Valentine Leucocidin and Methicillin Resistance directly from clinical samples. AIMS Microbiol 2019; 5:138-146. [PMID: 31384708 PMCID: PMC6642910 DOI: 10.3934/microbiol.2019.2.138] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 03/26/2019] [Indexed: 02/04/2023] Open
Abstract
Rapid detection of Methicillin Resistant Staphylococcus aureus (MRSA) is an important concern for both treatment and implementation of infection control policies. The present study provides an ‘in house’ real-time PCR assay to detect directly nuc, pvl, and mecA genes. The assay is able to perform identification of MRSA, Methicillin-Sensitive S. aureus, Methicillin-Resistant Coagulase Negative Staphylococci and the Panton-Valentine leukocidin virulence gene from rectal and pharyngeal swab samples in a screening context. We found an analytical sensitivity of this current Triplex PCR assay of 514 CFU/mL. Analytical specificity was tested with different Gram-positive and Gram-negative species and yielded no false-positive PCR signal. The sensitivity and specificity of the Triplex Real Time PCR were both 100% for these targets when compared with the culture and conventional methods. This assay is readily adaptable for routine use in a microbiology laboratory, as it will enable the implementation of timely and properly guided therapy and infection control strategies.
Collapse
Affiliation(s)
- Liliana Galia
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Marco Ligozzi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Anna Bertoncelli
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Annarita Mazzariol
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| |
Collapse
|
12
|
Haapasalo K, Wollman AJM, de Haas CJC, van Kessel KPM, van Strijp JAG, Leake MC. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration. FASEB J 2019; 33:3807-3824. [PMID: 30509126 PMCID: PMC6404581 DOI: 10.1096/fj.201801910r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 10/29/2018] [Indexed: 11/11/2022]
Abstract
Staphylococcus aureus Panton-Valentine leukocidin is a pore-forming toxin targeting the human C5a receptor (hC5aR), enabling this pathogen to battle the immune response by destroying phagocytes through targeted lysis. The mechanisms that contribute to rapid cell lysis are largely unexplored. Here, we show that cell lysis may be enabled by a process of toxins targeting receptor clusters and present indirect evidence for receptor "recycling" that allows multiple toxin pores to be formed close together. With the use of live cell single-molecule super-resolution imaging, Förster resonance energy transfer and nanoscale total internal reflection fluorescence colocalization microscopy, we visualized toxin pore formation in the presence of its natural docking ligand. We demonstrate disassociation of hC5aR from toxin complexes and simultaneous binding of new ligands. This effect may free mobile receptors to amplify hyperinflammatory reactions in early stages of microbial infections and have implications for several other similar bicomponent toxins and the design of new antibiotics.-Haapasalo, K., Wollman, A. J. M., de Haas, C. J. C., van Kessel, K. P. M., van Strijp, J. A. G., Leake, M. C. Staphylococcus aureus toxin LukSF dissociates from its membrane receptor target to enable renewed ligand sequestration.
Collapse
Affiliation(s)
- Karita Haapasalo
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Bacteriology and Immunology, University of Helsinki, Helsinki, Finland
| | - Adam J. M. Wollman
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
| | - Carla J. C. de Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Kok P. M. van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Mark C. Leake
- Department of Biology, Biological Physical Sciences Institute, University of York, York, United Kingdom
- Department of Physics, Biological Physical Sciences Institute, University of York, York, United Kingdom
| |
Collapse
|
13
|
Darisipudi MN, Nordengrün M, Bröker BM, Péton V. Messing with the Sentinels-The Interaction of Staphylococcus aureus with Dendritic Cells. Microorganisms 2018; 6:microorganisms6030087. [PMID: 30111706 PMCID: PMC6163568 DOI: 10.3390/microorganisms6030087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 08/12/2018] [Accepted: 08/14/2018] [Indexed: 12/14/2022] Open
Abstract
Staphylococcus aureus (S. aureus) is a dangerous pathogen as well as a frequent colonizer, threatening human health worldwide. Protection against S. aureus infection is challenging, as the bacteria have sophisticated strategies to escape the host immune response. To maintain equilibrium with S. aureus, both innate and adaptive immune effector mechanisms are required. Dendritic cells (DCs) are critical players at the interface between the two arms of the immune system, indispensable for inducing specific T cell responses. In this review, we highlight the importance of DCs in mounting innate as well as adaptive immune responses against S. aureus with emphasis on their role in S. aureus-induced respiratory diseases. We also review what is known about mechanisms that S. aureus has adopted to evade DCs or manipulate these cells to its advantage.
Collapse
Affiliation(s)
- Murthy N Darisipudi
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Maria Nordengrün
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Barbara M Bröker
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| | - Vincent Péton
- Department of Immunology, University Medicine Greifswald, Ferdinand-Sauerbruch-Straße DZ7, D-17475 Greifswald, Germany.
| |
Collapse
|
14
|
Tromp AT, Van Gent M, Abrial P, Martin A, Jansen JP, De Haas CJC, Van Kessel KPM, Bardoel BW, Kruse E, Bourdonnay E, Boettcher M, McManus MT, Day CJ, Jennings MP, Lina G, Vandenesch F, Van Strijp JAG, Lebbink RJ, Haas PJA, Henry T, Spaan AN. Human CD45 is an F-component-specific receptor for the staphylococcal toxin Panton-Valentine leukocidin. Nat Microbiol 2018; 3:708-717. [PMID: 29736038 DOI: 10.1038/s41564-018-0159-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 04/13/2018] [Indexed: 12/22/2022]
Abstract
The staphylococcal bi-component leukocidins Panton-Valentine leukocidin (PVL) and γ-haemolysin CB (HlgCB) target human phagocytes. Binding of the toxins' S-components to human complement C5a receptor 1 (C5aR1) contributes to cellular tropism and human specificity of PVL and HlgCB. To investigate the role of both leukocidins during infection, we developed a human C5aR1 knock-in (hC5aR1KI) mouse model. HlgCB, but unexpectedly not PVL, contributed to increased bacterial loads in tissues of hC5aR1KI mice. Compared to humans, murine hC5aR1KI neutrophils showed a reduced sensitivity to PVL, which was mediated by the toxin's F-component LukF-PV. By performing a genome-wide CRISPR-Cas9 screen, we identified CD45 as a receptor for LukF-PV. The human-specific interaction between LukF-PV and CD45 provides a molecular explanation for resistance of hC5aR1KI mouse neutrophils to PVL and probably contributes to the lack of a PVL-mediated phenotype during infection in these mice. This study demonstrates an unsuspected role of the F-component in driving the sensitivity of human phagocytes to PVL.
Collapse
Affiliation(s)
- Angelino T Tromp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michiel Van Gent
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands.,Department of Microbiology, University of Chicago, Chicago, IL, USA
| | - Pauline Abrial
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civils de Lyon, Lyon, France
| | - Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civils de Lyon, Lyon, France
| | - Joris P Jansen
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Carla J C De Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Kok P M Van Kessel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Bart W Bardoel
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth Kruse
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emilie Bourdonnay
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civils de Lyon, Lyon, France
| | - Michael Boettcher
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California, San Francisco, San Francisco, CA, USA
| | - Michael T McManus
- Department of Microbiology and Immunology, UCSF Diabetes Center, Keck Center for Noncoding RNA, University of California, San Francisco, San Francisco, CA, USA
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Gérard Lina
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civils de Lyon, Lyon, France
| | - François Vandenesch
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civils de Lyon, Lyon, France
| | - Jos A G Van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Robert Jan Lebbink
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Pieter-Jan A Haas
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, Ecole Normale Supérieure de Lyon, Université Lyon, Hospices Civils de Lyon, Lyon, France.
| | - András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands. .,St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
15
|
Characterization of Human Type C Enterotoxin Produced by Clinical S. epidermidis Isolates. Toxins (Basel) 2018; 10:toxins10040139. [PMID: 29584685 PMCID: PMC5923305 DOI: 10.3390/toxins10040139] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 03/19/2018] [Accepted: 03/20/2018] [Indexed: 11/17/2022] Open
Abstract
Staphylococcal Enterotoxins (SEs) are superantigens (SAg) originally produced by S. aureus, but their presence in coagulase negative staphylococci (CNS) has long been suspected. This study aims to better characterize a novel C-like enterotoxin expressed by clinical S. epidermidis strains, called SECepi. We isolated and characterized SECepi for its molecular and functional properties. The toxin was structurally modeled according to its significant similarity with S. aureus SEC3. Most of SEC amino acid residues important for the formation of the trimolecular Major Histocompatibility Complex II MHCII-SEC-T Cell Receptor TCR complex are conserved in SECepi. The functional properties of SECepi were estimated after cloning, expression in E. coli, and purification. The recombinant SECepi toxin exhibits biological characteristics of a SAg including stimulation of human T-cell mitogenicity, inducing and releasing high cytokines levels: IL-2, -4, -6, -8, -10, IFN-γ, TNF-α and GM-CSF at a dose as low as 3.7 pM. Compared to SECaureus, the production of pro-sepsis cytokine IL-6 is significantly higher with SECepi-activated lymphocytes. Furthermore, SECepi is stable to heat, pepsin or trypsin hydrolysis. The SECepi superantigen produced by CNS is functionally very close to that of S. aureus, possibly inducing a systemic inflammatory response at least comparable to that of SECaureus, and may account for S. epidermidis pathogenicity.
Collapse
|
16
|
Hassoun A, Linden PK, Friedman B. Incidence, prevalence, and management of MRSA bacteremia across patient populations-a review of recent developments in MRSA management and treatment. Crit Care 2017; 21:211. [PMID: 28807042 PMCID: PMC5557425 DOI: 10.1186/s13054-017-1801-3] [Citation(s) in RCA: 344] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) infection is still a major global healthcare problem. Of concern is S. aureus bacteremia, which exhibits high rates of morbidity and mortality and can cause metastatic or complicated infections such as infective endocarditis or sepsis. MRSA is responsible for most global S. aureus bacteremia cases, and compared with methicillin-sensitive S. aureus, MRSA infection is associated with poorer clinical outcomes. S. aureus virulence is affected by the unique combination of toxin and immune-modulatory gene products, which may differ by geographic location and healthcare- or community-associated acquisition. Management of S. aureus bacteremia involves timely identification of the infecting strain and source of infection, proper choice of antibiotic treatment, and robust prevention strategies. Resistance and nonsusceptibility to first-line antimicrobials combined with a lack of equally effective alternatives complicates MRSA bacteremia treatment. This review describes trends in epidemiology and factors that influence the incidence of MRSA bacteremia. Current and developing diagnostic tools, treatments, and prevention strategies are also discussed.
Collapse
Affiliation(s)
- Ali Hassoun
- Alabama Infectious Disease Center, 420 Lowell Drive, Suite 301, Huntsville, AL 35801 USA
| | - Peter K. Linden
- Allegheny General Hospital, Division of Surgical Critical Care, Allegheny Professional Building, 490 East North Ave, Suite 309, Pittsburgh, PA 15212 USA
| | - Bruce Friedman
- Joseph M. Still Burn Center, 3675 J. Dewey Gray Circle, Suite 200B, Augusta, GA 30909 USA
| |
Collapse
|
17
|
Spaan AN, van Strijp JAG, Torres VJ. Leukocidins: staphylococcal bi-component pore-forming toxins find their receptors. Nat Rev Microbiol 2017; 15:435-447. [PMID: 28420883 DOI: 10.1038/nrmicro.2017.27] [Citation(s) in RCA: 226] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus is a major bacterial pathogen that causes disease worldwide. The emergence of strains that are resistant to commonly used antibiotics and the failure of vaccine development have resulted in a renewed interest in the pathophysiology of this bacterium. Staphylococcal leukocidins are a family of bi-component pore-forming toxins that are important virulence factors. During the past five years, cellular receptors have been identified for all of the bi-component leukocidins. The identification of the leukocidin receptors explains the cellular tropism and species specificity that is exhibited by these toxins, which has important biological consequences. In this Review, we summarize the recent discoveries that have reignited interest in these toxins and provide an outlook for future research.
Collapse
Affiliation(s)
- András N Spaan
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Jos A G van Strijp
- Department of Medical Microbiology, University Medical Center Utrecht, Heidelberglaan 100, 3584CX Utrecht, The Netherlands
| | - Victor J Torres
- Department of Microbiology, New York University School of Medicine, 430 East 29th Street, 10016 New York, USA
| |
Collapse
|
18
|
Koop G, Vrieling M, Storisteanu DML, Lok LSC, Monie T, van Wigcheren G, Raisen C, Ba X, Gleadall N, Hadjirin N, Timmerman AJ, Wagenaar JA, Klunder HM, Fitzgerald JR, Zadoks R, Paterson GK, Torres C, Waller AS, Loeffler A, Loncaric I, Hoet AE, Bergström K, De Martino L, Pomba C, de Lencastre H, Ben Slama K, Gharsa H, Richardson EJ, Chilvers ER, de Haas C, van Kessel K, van Strijp JAG, Harrison EM, Holmes MA. Identification of LukPQ, a novel, equid-adapted leukocidin of Staphylococcus aureus. Sci Rep 2017; 7:40660. [PMID: 28106142 PMCID: PMC5247767 DOI: 10.1038/srep40660] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 12/08/2016] [Indexed: 11/09/2022] Open
Abstract
Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific. Here, we identify and characterise a novel S. aureus leukocidin; LukPQ. LukPQ is encoded on a 45 kb prophage (ΦSaeq1) found in six different clonal lineages, almost exclusively in strains cultured from equids. We show that LukPQ is a potent and specific killer of equine neutrophils and identify equine-CXCRA and CXCR2 as its target receptors. Although the S-component (LukP) is highly similar to the S-component of LukED, the species specificity of LukPQ and LukED differs. By forming non-canonical toxin pairs, we identify that the F-component contributes to the observed host tropism of LukPQ, thereby challenging the current paradigm that leukocidin specificity is driven solely by the S-component.
Collapse
Affiliation(s)
- Gerrit Koop
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - Manouk Vrieling
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Daniel M. L. Storisteanu
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Laurence S. C. Lok
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Tom Monie
- Medical Research Council Human Nutrition Research, Elsie Widdowson Laboratory, 120 Fulbourn Road, Cambridge CB1 9NL, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Glenn van Wigcheren
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Claire Raisen
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Xiaoliang Ba
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Nicholas Gleadall
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Nazreen Hadjirin
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| | - Arjen J. Timmerman
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Jaap A. Wagenaar
- Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
- Central Veterinary Institute of Wageningen UR, 8200 AB Lelystad, The Netherlands
| | - Heleen M. Klunder
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL, Utrecht, The Netherlands
| | - J. Ross Fitzgerald
- The Roslin Institute, University of Edinburgh, EH25 9RG, Edinburgh, United Kingdom
| | - Ruth Zadoks
- Moredun Research Institute, Bush Loan, Penicuik EH26 0PZ, United Kingdom
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, United Kingdom
| | - Gavin K. Paterson
- Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Midlothian, EH25 9RG, United Kingdom
| | - Carmen Torres
- Área Bioquímica y Biología Molecular, Universidad de La Rioja, Madre de Dios 51, Logroño 26006, Spain
| | - Andrew S. Waller
- Animal Health Trust, Lanwades Park, Kentford, Newmarket CB8 7UU, United Kingdom
| | - Anette Loeffler
- Department of Clinical Sciences and Services, Royal Veterinary College, Hawkshead Lane, Hatfield, North Mymms, Hertfordshire AL9 7TA, United Kingdom
| | - Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, Veterinärplatz 1, 1210 Vienna, Austria
| | - Armando E. Hoet
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
- Veterinary Public Health Program, College of Public Health, The Ohio State University, 1900 Coffey Road, Columbus, OH 43210, USA
| | - Karin Bergström
- Department of Animal Health and Antimicrobial Strategies, SVA, SE-751 89 Uppsala, Sweden
| | - Luisa De Martino
- Department of Veterinary Medicine and Animal Production, Infectious Diseases Section, University of Naples “Federico II”, 80137 Naples, Italy
| | - Constança Pomba
- Interdisciplinary Centre of Research in Animal Health, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 LISBOA, Portugal
| | - Hermínia de Lencastre
- Laboratório de Genética Molecular, Instituto de Tecnologia Química e Biológica da Universidade Nova de Lisboa (ITQB/UNL), Oeiras, Portugal
- Laboratory of Microbiology and Infectious Diseases, The Rockefeller University, New York, NY10065, USA
| | - Karim Ben Slama
- Laboratoire de Microorganismes et Biomolécules actives, Département de Biologie, Faculté de Sciences de Tunis, 2092 Tunis, Tunisia
- Institut Supérieur des Sciences Biologiques Appliquées de Tunis, Université de Tunis El Manar, 2092 Tunis, Tunisia
| | - Haythem Gharsa
- Laboratoire de Microorganismes et Biomolécules actives, Département de Biologie, Faculté de Sciences de Tunis, 2092 Tunis, Tunisia
| | - Emily J. Richardson
- Institute of Microbiology and Infection, University of Birmingham, Birmingham B15 2TT, UK
| | - Edwin R. Chilvers
- Department of Medicine, University of Cambridge School of Clinical Medicine, Addenbrooke’s and Papworth Hospitals, Hills Road, Cambridge CB2 0QQ, United Kingdom
| | - Carla de Haas
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Kok van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Jos A. G. van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Ewan M. Harrison
- Department of Medicine, University of Cambridge, Addenbrooke’s Hospital, Cambridge CB2 0QQ, UK
| | - Mark A. Holmes
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, United Kingdom
| |
Collapse
|
19
|
Zimmermann-Meisse G, Prévost G, Jover E. Above and beyond C5a Receptor Targeting by Staphylococcal Leucotoxins: Retrograde Transport of Panton-Valentine Leucocidin and γ-Hemolysin. Toxins (Basel) 2017; 9:toxins9010041. [PMID: 28117704 PMCID: PMC5308273 DOI: 10.3390/toxins9010041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/10/2017] [Accepted: 01/16/2017] [Indexed: 12/03/2022] Open
Abstract
Various membrane receptors associated with the innate immune response have recently been identified as mediators of the cellular action of Staphylococcus aureus leucotoxins. Two of these, the Panton–Valentine leucotoxin LukS-PV/LukF-PV and the γ-hemolysin HlgC/HlgB, bind the C5a complement-derived peptide receptor. These leucotoxins utilize the receptor to induce intracellular Ca2+ release from internal stores, other than those activated by C5a. The two leucotoxins are internalized with the phosphorylated receptor, but it is unknown whether they divert retrograde transport of the receptor or follow another pathway. Immunolabeling and confocal microscopic techniques were used to analyze the presence of leucotoxins in endosomes, lysosomes, endoplasmic reticulum, and Golgi. The two leucotoxins apparently followed retrograde transport similar to that of the C5a peptide-activated receptor. However, HlgC/HlgB reached the Golgi network very early, whereas LukS-PV/LukF-PV followed slower kinetics. The HlgC/HlgB leucotoxin remained in neutrophils 6 h after a 10-min incubation of the cells in the presence of the toxin with no signs of apoptosis, whereas apoptosis was observed 3 h after neutrophils were incubated with LukS-PV/LukF-PV. Such retrograde transport of leucotoxins provides a novel understanding of the cellular effects initiated by sublytic concentrations of these toxins.
Collapse
Affiliation(s)
- Gaëlle Zimmermann-Meisse
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| | - Gilles Prévost
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| | - Emmanuel Jover
- Fédération de Médecine Translationnelle de Strasbourg (FMTS), VBP EA7290, Institut de Bactériologie, Université de Strasbourg, 3 rue Koeberlé, F-67000 Strasbourg, France.
| |
Collapse
|
20
|
Structure and Function of the Two-Component Cytotoxins of Staphylococcus aureus - Learnings for Designing Novel Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 966:15-35. [PMID: 28455832 DOI: 10.1007/5584_2016_200] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Staphylococcus aureus can produce up to five different bi-component cytotoxins: two gamma-hemolysins HlgAB and HlgCB, and leukocidins SF-PV (Panton Valentine leukocidin), ED (LukED) and GH (LukGH, also called LukAB). Their major function in S. aureus pathogenesis is to evade innate immunity by attacking phagocytic cells and to support bacterial growth by lysing red blood cells. The five cytotoxins display different levels of amino acid sequence conservation (30-82%), but all form a remarkably similar beta-barrel type pore structure (greatly resembling the mono-component toxin alpha-hemolysin) that inserts into the target cell membrane leading to necrotic cell death. This review provides an overview of the culmination of decades of research on the structure of these toxins, their unique sequence and structural features that helps to explain the observed functional differences, such as toxin potency towards different cell types and species, receptor specificity and formation of functional non-cognate toxin pairs. The vast knowledge accumulated in this field supports novel approaches and the design of therapeutics targeting these cytotoxins to tame virulence and fight S. aureus infections.
Collapse
|
21
|
Is LukS-PV a novel experimental therapy for leukemia? Gene 2016; 600:44-47. [PMID: 27916717 DOI: 10.1016/j.gene.2016.11.044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/17/2016] [Accepted: 11/30/2016] [Indexed: 12/15/2022]
Abstract
Although the studies on the pathogenesis and prognosis of leukemia have made revolutionary progress, the long-term survival remains unsatisfactory. Alternative techniques are being developed to target leukemia. Several decades after researchers' work, a variety of bacteria toxins are being explored as potential anti-leukemia agents, either to provide direct effects or to deliver therapeutic proteins to leukemia. LukS-PV, a component of Panton-Valentine Leukocidin secreted by S. aureus, has been tested in acute myeloid leukemia as a novel experimental strategy. Further researches about the targeting mechanisms of LukS-PV are required to make it a complete therapeutic approach for leukemia treatment. The function of this article is to provide clinicians and experimentalists with a chronological and comprehensive appraisal of use of LukS-PV as an experimental strategy for leukemia therapy.
Collapse
|
22
|
Pathogenic features of clinically significant coagulase-negative staphylococci in hospital and community infections in Benin. Int J Med Microbiol 2016; 307:75-82. [PMID: 27876296 DOI: 10.1016/j.ijmm.2016.11.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 10/14/2016] [Accepted: 11/08/2016] [Indexed: 11/21/2022] Open
Abstract
In West Africa, very little consideration has been given to coagulase negative Staphylococci (CNS). Herein, we describe the features contributing to the pathogenicity of 99 clinically-significant independent CNS isolates associated with infections encountered at the National Teaching Hospital Center of Cotonou (Benin). The pathogenic potentials of nosocomial strains were compared with community strains. S. haemolyticus (44%), S. epidermidis (22%) and S. hominis (7%) were the most frequently isolated while bacteremia (66.7%) and urinary tract infections (24.2%) were the most commonly encountered infections. Most strains were resistant to multiple antibiotics, including penicillin (92%), fosfomycin (81%), methicillin (74%) and trimethoprim-sulfamethoxazole (72%). The most frequently isolated species were also the most frequently resistant to methicillin: S. hominis (100%), S. haemolyticus (93%) and S. epidermidis (67%). Screening of toxic functions or toxin presence revealed hemolytic potential in 25% of strains in over 50% of human erythrocytes in 1h. Twenty-six percent of strains exhibited protease activity with low (5%), moderate (10%) and high activity (11%), while 25% of strains displayed esterase activity. Three percent of strain supernatants were able to lyse 100% of human polymorphonuclear cells after 30min. Polymerase chain reaction and latex agglutination methods revealed staphylococcal enterotoxin C gene expression in 9% of S. epidermidis. A majority of hospital-associated CNS strains (68%) had at least one important virulence feature, compared with only 32% for community-acquired strains. The present investigation confirms that these microorganisms can be virulent, at least in some individual cases, possibly through genetic transfer from S. aureus.
Collapse
|
23
|
Kong C, Neoh HM, Nathan S. Targeting Staphylococcus aureus Toxins: A Potential form of Anti-Virulence Therapy. Toxins (Basel) 2016; 8:toxins8030072. [PMID: 26999200 PMCID: PMC4810217 DOI: 10.3390/toxins8030072] [Citation(s) in RCA: 192] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 03/03/2016] [Accepted: 03/10/2016] [Indexed: 01/01/2023] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen and the leading cause of a wide range of severe clinical infections. The range of diseases reflects the diversity of virulence factors produced by this pathogen. To establish an infection in the host, S. aureus expresses an inclusive set of virulence factors such as toxins, enzymes, adhesins, and other surface proteins that allow the pathogen to survive under extreme conditions and are essential for the bacteria’s ability to spread through tissues. Expression and secretion of this array of toxins and enzymes are tightly controlled by a number of regulatory systems. S. aureus is also notorious for its ability to resist the arsenal of currently available antibiotics and dissemination of various multidrug-resistant S. aureus clones limits therapeutic options for a S. aureus infection. Recently, the development of anti-virulence therapeutics that neutralize S. aureus toxins or block the pathways that regulate toxin production has shown potential in thwarting the bacteria’s acquisition of antibiotic resistance. In this review, we provide insights into the regulation of S. aureus toxin production and potential anti-virulence strategies that target S. aureus toxins.
Collapse
Affiliation(s)
- Cin Kong
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| | - Hui-min Neoh
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, 56000 Cheras, Kuala Lumpur, Malaysia.
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
24
|
Shariati L, Validi M, Hasheminia AM, Ghasemikhah R, Kianpour F, Karimi A, Nafisi MR, Tabatabaiefar MA. Staphylococcus aureus Isolates Carrying Panton-Valentine Leucocidin Genes: Their Frequency, Antimicrobial Patterns, and Association With Infectious Disease in Shahrekord City, Southwest Iran. Jundishapur J Microbiol 2016; 9:e28291. [PMID: 27099685 PMCID: PMC4834141 DOI: 10.5812/jjm.28291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 08/28/2015] [Accepted: 09/26/2015] [Indexed: 11/25/2022] Open
Abstract
Background: A diversity of virulence factors work together to create the pathogenicity of Staphylococcus aureus. These factors include cell surface components that promote adherence to surfaces as well as exoproteins such as Panton-Valentine leukocidin (PVL), encoded by the luk-PV genes, that invade or bypass the immune system and are toxic to the host, thereby enhancing the severity of infections caused by methicillin-resistant Staphylococcus aureus (MRSA). Objectives: The aim of this study was to determine the frequency of PVL-positive MRSA strains by real-time PCR and their antibiotic susceptibility patterns by phenotypic test. Materials and Methods: In total, 284 Staphylococcus isolates, identified by phenotypic methods from clinical samples of Shahrekord University Hospitals, Shahrekord, Iran, were tested for nuc, mecA, and PVL genes by TaqMan real-time PCR. The antibiotic susceptibility patterns of PVL-containing MRSA strains were determined via the disk diffusion method. Results: In total, 196 isolates (69%) were nuc positive (i.e., S. aureus); of those isolates, 96 (49%) were mecA positive (MRSA). Eighteen (18.8%) of the 96 MRSA positive and 3 (3%) of the 100 methicillin-susceptible Staphylococcus aureus (MSSA) strains were PVL positive. PVL-positive MRSA strains were mostly recovered from tracheal specimens. Eight PVL-positive MRSA strains were resistant to all the tested antibiotics except vancomycin. A significant correlation (P = 0.001) was found between the mecA positivity and the presence of luk-PV genes. Conclusions: Community acquired (CA)-MRSA is becoming a public health concern in many parts of the world, including Asian countries. The variable prevalence of luk-PV-positive MRSA isolates in different regions and their rather high frequency in pneumonia necessitate the application of rapid diagnostic methods such as real-time PCR to improve treatment effectiveness.
Collapse
Affiliation(s)
- Laleh Shariati
- Department of Molecular Medicine, Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Majid Validi
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, IR Iran
| | - Ali Mohammad Hasheminia
- Department of Nursing, School of Nursing and Midwifery, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Reza Ghasemikhah
- Department of Parasitology and Mycology, School of Medicine, Arak University of Medical Sciences, Arak, IR Iran
| | - Fariborz Kianpour
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
| | - Ali Karimi
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Mohammad Reza Nafisi
- Department of Microbiology and Immunology, Cellular and Molecular Research Center, Shahrekord University of Medical Sciences, Shahrekord, IR Iran
| | - Mohammad Amin Tabatabaiefar
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Pediatric Inherited Diseases Research Center, Research Institute for Primordial Prevention of Non-Communicable Disease, Isfahan University of Medical Sciences, Isfahan, IR Iran
- Corresponding author: Mohammad Amin Tabatabaiefar, Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, P. O. Box: 81746-73461, Isfahan, IR Iran. Tel: +98-3137922487, Fax: +98-3136688597, E-mail:
| |
Collapse
|
25
|
Cardot-Martin E, Casalegno JS, Badiou C, Dauwalder O, Keller D, Prévost G, Rieg S, Kern WV, Cuerq C, Etienne J, Vandenesch F, Lina G, Dumitrescu O. α-Defensins partially protect human neutrophils against Panton-Valentine leukocidin produced by Staphylococcus aureus. Lett Appl Microbiol 2015; 61:158-64. [PMID: 25963798 DOI: 10.1111/lam.12438] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/30/2015] [Accepted: 05/02/2015] [Indexed: 01/15/2023]
Abstract
UNLABELLED α-Defensins produced by neutrophils are important effector molecules of the innate immune system. In addition to their microbicidal effects, α-defensins have the ability to neutralize bacterial toxins. Panton-Valentine leukocidin (PVL) is the hallmark of community-acquired methicillin-resistant Staphylococcus aureus. Staphylococcus aureus that produce PVL are responsible for severe diseases, including necrotizing pneumonia. Polymorphonuclear neutrophils (PMNs) are the target cells of PVL action. The goal of this study was to elucidate the effect of a group of α-defensins known as the human neutrophil peptides (HNPs) on the interactions between LukS-PV and LukF-PV, which compose PVL, and human PMNs. We observed that HNPs bound to both subunits of PVL and significantly decreased PVL pore formation in PMNs, with a maximum inhibition of 27%. When various HNP molecules were tested individually under the same conditions, we observed that HNP3, but not HNP1 or 2, decreased pore formation. Similarly, HNP3 significantly decreased PVL-induced PMN lysis, with a maximum inhibition of 31%. Interestingly, HNPs did not affect LukS-PV LukF-PV oligomerization, LukS-PV LukF-PV binding to PMNs or calcium influx induced by PVL in PMNs. Our results suggest that HNP3 partially protects neutrophils against PVL by interfering with the conformational changes of PVL required to form a functional pore. SIGNIFICANCE AND IMPACT OF THE STUDY Panton-Valentine leukocidin (PVL) is a pore-forming toxin produced by Staphylococcus aureus, responsible for neutrophil damage and key player of severe staphylococcal diseases. Antimicrobial peptides produced by neutrophils (HNP1-3) neutralize several other bacterial cytotoxins. We examined the impact of human neutrophil peptides (HNPs) on PVL cytotoxicity against human neutrophils and we found that HNPs bind to both LukS and LukF components of PVL, thereby inhibiting pore formation and neutrophil lysis. Our results suggest that HNP3 may impair PVL conformational changes required to form a functional pore and provide insight into the pathogenesis of PVL-related staphylococcal infection, with potential impact on the disease outcome.
Collapse
Affiliation(s)
- E Cardot-Martin
- Centre International de Recherche en Infectiologie, INSERM U1111, University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | | | - C Badiou
- Centre International de Recherche en Infectiologie, INSERM U1111, University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - O Dauwalder
- Centre International de Recherche en Infectiologie, INSERM U1111, University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - D Keller
- Department of Microbiology, University of Strasbourg, Strasbourg, France
| | - G Prévost
- Department of Microbiology, University of Strasbourg, Strasbourg, France
| | - S Rieg
- Center for Infectious Diseases and Travel Medicine, University Medical Center, Freiburg, Germany
| | - W V Kern
- Center for Infectious Diseases and Travel Medicine, University Medical Center, Freiburg, Germany
| | - C Cuerq
- Hospices Civils de Lyon, Lyon, France.,Laboratoire de Biochimie, Centre de Biologie Sud, Lyon, France
| | - J Etienne
- Centre International de Recherche en Infectiologie, INSERM U1111, University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - F Vandenesch
- Centre International de Recherche en Infectiologie, INSERM U1111, University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - G Lina
- Centre International de Recherche en Infectiologie, INSERM U1111, University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| | - O Dumitrescu
- Centre International de Recherche en Infectiologie, INSERM U1111, University of Lyon 1, Lyon, France.,Hospices Civils de Lyon, Lyon, France
| |
Collapse
|
26
|
The bicomponent pore-forming leucocidins of Staphylococcus aureus. Microbiol Mol Biol Rev 2015; 78:199-230. [PMID: 24847020 DOI: 10.1128/mmbr.00055-13] [Citation(s) in RCA: 192] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The ability to produce water-soluble proteins with the capacity to oligomerize and form pores within cellular lipid bilayers is a trait conserved among nearly all forms of life, including humans, single-celled eukaryotes, and numerous bacterial species. In bacteria, some of the most notable pore-forming molecules are protein toxins that interact with mammalian cell membranes to promote lysis, deliver effectors, and modulate cellular homeostasis. Of the bacterial species capable of producing pore-forming toxic molecules, the Gram-positive pathogen Staphylococcus aureus is one of the most notorious. S. aureus can produce seven different pore-forming protein toxins, all of which are believed to play a unique role in promoting the ability of the organism to cause disease in humans and other mammals. The most diverse of these pore-forming toxins, in terms of both functional activity and global representation within S. aureus clinical isolates, are the bicomponent leucocidins. From the first description of their activity on host immune cells over 100 years ago to the detailed investigations of their biochemical function today, the leucocidins remain at the forefront of S. aureus pathogenesis research initiatives. Study of their mode of action is of immediate interest in the realm of therapeutic agent design as well as for studies of bacterial pathogenesis. This review provides an updated perspective on our understanding of the S. aureus leucocidins and their function, specificity, and potential as therapeutic targets.
Collapse
|
27
|
Tawk MY, Zimmermann K, Bossu J, Potrich C, Bourcier T, Dalla Serra M, Poulain B, Prévost G, Jover E. Internalization of staphylococcal leukotoxins that bind and divert the
C
5a receptor is required for intracellular
Ca
2+
mobilization by human neutrophils. Cell Microbiol 2015; 17:1241-57. [DOI: 10.1111/cmi.12434] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/26/2015] [Accepted: 03/01/2015] [Indexed: 01/12/2023]
Affiliation(s)
- Mira Y. Tawk
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Kiran Zimmermann
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Jean‐Louis Bossu
- INCI – UPR‐CNRS 3212 Physiologie des réseaux de neurones Strasbourg France
| | - Cristina Potrich
- National Research Council of Italy Institute of Biophysics and Bruno Kessler Foundation Trento Italy
| | - Tristan Bourcier
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Mauro Dalla Serra
- National Research Council of Italy Institute of Biophysics and Bruno Kessler Foundation Trento Italy
| | - Bernard Poulain
- INCI – UPR‐CNRS 3212 Physiologie des réseaux de neurones Strasbourg France
| | - Gilles Prévost
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| | - Emmanuel Jover
- Fédération de Médecine Translationnelle de Strasbourg EA7290 Virulence Bactérienne Précoce Institut de Bactériologie et Hôpitaux Universitaires de Strasbourg Université de Strasbourg Strasbourg France
| |
Collapse
|
28
|
Residues essential for Panton-Valentine leukocidin S component binding to its cell receptor suggest both plasticity and adaptability in its interaction surface. PLoS One 2014; 9:e92094. [PMID: 24643034 PMCID: PMC3958440 DOI: 10.1371/journal.pone.0092094] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/18/2014] [Indexed: 01/01/2023] Open
Abstract
Panton-Valentine leukocidin (PVL), a bicomponent staphylococcal leukotoxin, is involved in the poor prognosis of necrotizing pneumonia. The present study aimed to elucidate the binding mechanism of PVL and in particular its cell-binding domain. The class S component of PVL, LukS-PV, is known to ensure cell targeting and exhibits the highest affinity for the neutrophil membrane (Kd∼10−10 M) compared to the class F component of PVL, LukF-PV (Kd∼10−9 M). Alanine scanning mutagenesis was used to identify the residues involved in LukS-PV binding to the neutrophil surface. Nineteen single alanine mutations were performed in the rim domain previously described as implicated in cell membrane interactions. Positions were chosen in order to replace polar or exposed charged residues and according to conservation between leukotoxin class S components. Characterization studies enabled to identify a cluster of residues essential for LukS-PV binding, localized on two loops of the rim domain. The mutations R73A, Y184A, T244A, H245A and Y250A led to dramatically reduced binding affinities for both human leukocytes and undifferentiated U937 cells expressing the C5a receptor. The three-dimensional structure of five of the mutants was determined using X-ray crystallography. Structure analysis identified residues Y184 and Y250 as crucial in providing structural flexibility in the receptor-binding domain of LukS-PV.
Collapse
|
29
|
Aman MJ, Adhikari RP. Staphylococcal bicomponent pore-forming toxins: targets for prophylaxis and immunotherapy. Toxins (Basel) 2014; 6:950-72. [PMID: 24599233 PMCID: PMC3968370 DOI: 10.3390/toxins6030950] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Revised: 02/22/2014] [Accepted: 02/26/2014] [Indexed: 01/09/2023] Open
Abstract
Staphylococccus aureus represents one of the most challenging human pathogens as well as a common colonizer of human skin and mucosal surfaces. S. aureus causes a wide range of diseases from skin and soft tissue infection (SSTI) to debilitating and life-threatening conditions such as osteomyelitis, endocarditis, and necrotizing pneumonia. The range of diseases reflects the remarkable diversity of the virulence factors produced by this pathogen, including surface antigens involved in the establishment of infection and a large number of toxins that mediate a vast array of cellular responses. The staphylococcal toxins are generally believed to have evolved to disarm the innate immune system, the first line of defense against this pathogen. This review focuses on recent advances on elucidating the biological functions of S. aureus bicomponent pore-forming toxins (BCPFTs) and their utility as targets for preventive and therapeutic intervention. These toxins are cytolytic to a variety of immune cells, primarily neutrophils, as well as cells with a critical barrier function. The lytic activity of BCPFTs towards immune cells implies a critical role in immune evasion, and a number of epidemiological studies and animal experiments relate these toxins to clinical disease, particularly SSTI and necrotizing pneumonia. Antibody-mediated neutralization of this lytic activity may provide a strategy for development of toxoid-based vaccines or immunotherapeutics for prevention or mitigation of clinical diseases. However, certain BCPFTs have been proposed to act as danger signals that may alert the immune system through an inflammatory response. The utility of a neutralizing vaccination strategy must be weighed against such immune-activating potential.
Collapse
Affiliation(s)
- M Javad Aman
- Integrated BioTherapeutics Inc., 21 Firstfield Rd., Gaithersburg, MD 20878, USA.
| | - Rajan P Adhikari
- Integrated BioTherapeutics Inc., 21 Firstfield Rd., Gaithersburg, MD 20878, USA.
| |
Collapse
|
30
|
Spaan AN, Henry T, van Rooijen WJM, Perret M, Badiou C, Aerts PC, Kemmink J, de Haas CJC, van Kessel KPM, Vandenesch F, Lina G, van Strijp JAG. The staphylococcal toxin Panton-Valentine Leukocidin targets human C5a receptors. Cell Host Microbe 2013; 13:584-594. [PMID: 23684309 DOI: 10.1016/j.chom.2013.04.006] [Citation(s) in RCA: 208] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/15/2013] [Accepted: 04/09/2013] [Indexed: 12/14/2022]
Abstract
Panton-Valentine Leukocidin (PVL) is a staphylococcal bicomponent pore-forming toxin linked to severe invasive infections. Target-cell and species specificity of PVL are poorly understood, and the mechanism of action of this toxin in Staphylococcus aureus virulence is controversial. Here, we identify the human complement receptors C5aR and C5L2 as host targets of PVL, mediating both toxin binding and cytotoxicity. Expression and interspecies variations of the C5aR determine cell and species specificity of PVL. The C5aR binding PVL component, LukS-PV, is a potent inhibitor of C5a-induced immune cell activation. These findings provide insight into leukocidin function and staphylococcal virulence and offer directions for future investigations into individual susceptibility to severe staphylococcal disease.
Collapse
Affiliation(s)
- András N Spaan
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Thomas Henry
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | | | - Magali Perret
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | - Cédric Badiou
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France
| | - Piet C Aerts
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Johan Kemmink
- Medicinal Chemistry and Chemical Biology, Utrecht University, 3584CX Utrecht, The Netherlands
| | - Carla J C de Haas
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - Kok P M van Kessel
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands
| | - François Vandenesch
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Gérard Lina
- CIRI, International Center for Infectiology Research, LabEx Ecofect, Université Lyon 1, 69007 Lyon, France; Inserm, U1111, 69007 Lyon, France; Ecole Normale Supérieure de Lyon, 69007 Lyon, France; CNRS, UMR5308, 69007 Lyon, France; Hospices Civils de Lyon, 69007 Lyon, France
| | - Jos A G van Strijp
- Medical Microbiology, University Medical Center Utrecht, 3584CX Utrecht, The Netherlands.
| |
Collapse
|
31
|
Yoong P, Torres VJ. The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. Curr Opin Microbiol 2013; 16:63-9. [PMID: 23466211 DOI: 10.1016/j.mib.2013.01.012] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/03/2012] [Accepted: 01/28/2013] [Indexed: 12/24/2022]
Abstract
The success of Staphylococcus aureus as a leading cause of deadly hospital-acquired and community-acquired infections is attributed to its high-level resistance to most antibiotics, and the multitude of virulence factors it elaborates. Most clinical isolates produce up to four bi-component pore-forming toxins capable of lysing cells of the immune system. Subtle differences in activity and target range of each leukotoxin suggest that these toxins are not redundant, but instead may have specialized functions in attacking and/or evading host defenses. In turn, the host has developed countermeasures recognizing sublytic levels of leukotoxins as signals to activate protective immune defenses. The opposing cytotoxic and immune-activating effects of leukotoxins on host cells make for a complex dynamic between S. aureus and the host.
Collapse
Affiliation(s)
- Pauline Yoong
- Department of Microbiology, New York University School of Medicine, United States
| | | |
Collapse
|
32
|
Structural Insights into Clostridium perfringens Delta Toxin Pore Formation. PLoS One 2013; 8:e66673. [PMID: 23805259 PMCID: PMC3689675 DOI: 10.1371/journal.pone.0066673] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/10/2013] [Indexed: 12/15/2022] Open
Abstract
Clostridium perfringens Delta toxin is one of the three hemolysin-like proteins produced by C. perfringens type C and possibly type B strains. One of the others, NetB, has been shown to be the major cause of Avian Nectrotic Enteritis, which following the reduction in use of antibiotics as growth promoters, has become an emerging disease of industrial poultry. Delta toxin itself is cytotoxic to the wide range of human and animal macrophages and platelets that present GM2 ganglioside on their membranes. It has sequence similarity with Staphylococcus aureus β-pore forming toxins and is expected to heptamerize and form pores in the lipid bilayer of host cell membranes. Nevertheless, its exact mode of action remains undetermined. Here we report the 2.4 Å crystal structure of monomeric Delta toxin. The superposition of this structure with the structure of the phospholipid-bound F component of S. aureus leucocidin (LukF) revealed that the glycerol molecules bound to Delta toxin and the phospholipids in LukF are accommodated in the same hydrophobic clefts, corresponding to where the toxin is expected to latch onto the membrane, though the binding sites show significant differences. From structure-based sequence alignment with the known structure of staphylococcal α-hemolysin, a model of the Delta toxin pore form has been built. Using electron microscopy, we have validated our model and characterized the Delta toxin pore on liposomes. These results highlight both similarities and differences in the mechanism of Delta toxin (and by extension NetB) cytotoxicity from that of the staphylococcal pore-forming toxins.
Collapse
|
33
|
Los FCO, Randis TM, Aroian RV, Ratner AJ. Role of pore-forming toxins in bacterial infectious diseases. Microbiol Mol Biol Rev 2013; 77:173-207. [PMID: 23699254 PMCID: PMC3668673 DOI: 10.1128/mmbr.00052-12] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Pore-forming toxins (PFTs) are the most common bacterial cytotoxic proteins and are required for virulence in a large number of important pathogens, including Streptococcus pneumoniae, group A and B streptococci, Staphylococcus aureus, Escherichia coli, and Mycobacterium tuberculosis. PFTs generally disrupt host cell membranes, but they can have additional effects independent of pore formation. Substantial effort has been devoted to understanding the molecular mechanisms underlying the functions of certain model PFTs. Likewise, specific host pathways mediating survival and immune responses in the face of toxin-mediated cellular damage have been delineated. However, less is known about the overall functions of PFTs during infection in vivo. This review focuses on common themes in the area of PFT biology, with an emphasis on studies addressing the roles of PFTs in in vivo and ex vivo models of colonization or infection. Common functions of PFTs include disruption of epithelial barrier function and evasion of host immune responses, which contribute to bacterial growth and spreading. The widespread nature of PFTs make this group of toxins an attractive target for the development of new virulence-targeted therapies that may have broad activity against human pathogens.
Collapse
Affiliation(s)
| | - Tara M. Randis
- Department of Pediatrics, Columbia University, New York, New York, USA
| | - Raffi V. Aroian
- Division of Biological Sciences, Section of Cell and Developmental Biology, University of California San Diego, La Jolla, California, USA
| | - Adam J. Ratner
- Department of Pediatrics, Columbia University, New York, New York, USA
| |
Collapse
|
34
|
Role of pore-forming toxins in neonatal sepsis. Clin Dev Immunol 2013; 2013:608456. [PMID: 23710203 PMCID: PMC3655490 DOI: 10.1155/2013/608456] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 03/27/2013] [Indexed: 11/17/2022]
Abstract
Protein toxins are important virulence factors contributing to neonatal sepsis. The major pathogens of neonatal sepsis, group B Streptococci, Escherichia coli, Listeria monocytogenes, and Staphylococcus aureus, secrete toxins of different molecular nature, which are key for defining the disease. Amongst these toxins are pore-forming exotoxins that are expressed as soluble monomers prior to engagement of the target cell membrane with subsequent formation of an aqueous membrane pore. Membrane pore formation is not only a means for immediate lysis of the targeted cell but also a general mechanism that contributes to penetration of epithelial barriers and evasion of the immune system, thus creating survival niches for the pathogens. Pore-forming toxins, however, can also contribute to the induction of inflammation and hence to the manifestation of sepsis. Clearly, pore-forming toxins are not the sole factors that drive sepsis progression, but they often act in concert with other bacterial effectors, especially in the initial stages of neonatal sepsis manifestation.
Collapse
|
35
|
p-Sulfonato-calix[n]arenes inhibit staphylococcal bicomponent leukotoxins by supramolecular interactions. Biochem J 2013; 450:559-71. [PMID: 23282185 DOI: 10.1042/bj20121628] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PVL (Panton-Valentine leukocidin) and other Staphylococcus aureus β-stranded pore-forming toxins are important virulence factors involved in various pathologies that are often necrotizing. The present study characterized leukotoxin inhibition by selected SCns (p-sulfonato-calix[n]arenes): SC4, SC6 and SC8. These chemicals have no toxic effects on human erythrocytes or neutrophils, and some are able to inhibit both the activity of and the cell lysis by leukotoxins in a dose-dependent manner. Depending on the type of leukotoxins and SCns, flow cytometry revealed IC50 values of 6-22 μM for Ca2+ activation and of 2-50 μM for cell lysis. SCns were observed to affect membrane binding of class S proteins responsible for cell specificity. Electrospray MS and surface plasmon resonance established supramolecular interactions (1:1 stoichiometry) between SCns and class S proteins in solution, but not class F proteins. The membrane-binding affinity of S proteins was Kd=0.07-6.2 nM. The binding ability was completely abolished by SCns at different concentrations according to the number of benzenes (30-300 μM; SC8>SC6≫SC4). The inhibitory properties of SCns were also observed in vivo in a rabbit model of PVL-induced endophthalmitis. These calixarenes may represent new therapeutic avenues aimed at minimizing inflammatory reactions and necrosis due to certain virulence factors.
Collapse
|
36
|
Jover E, Tawk MY, Laventie BJ, Poulain B, Prévost G. Staphylococcal leukotoxins trigger free intracellular Ca(2+) rise in neurones, signalling through acidic stores and activation of store-operated channels. Cell Microbiol 2012; 15:742-58. [PMID: 23152983 PMCID: PMC3654557 DOI: 10.1111/cmi.12069] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 10/18/2012] [Accepted: 11/06/2012] [Indexed: 12/31/2022]
Abstract
Headache, muscle aches and chest pain of mild to medium intensity are among the most common clinical symptoms in moderate Staphylococcus aureus infections, with severe infections usually associated with worsening pain symptoms. These nociceptive responses of the body raise the question of how bacterial infection impinges on the nervous system. Does S. aureus, or its released virulence factors, act directly on neurones? To address this issue, we evaluated the potential effects on neurones of certain bi-component leukotoxins, which are virulent factors released by the bacterium. The activity of four different leukotoxins was verified by measuring the release of glutamate from rat cerebellar granular neurones. The bi-component γ-haemolysin HlgC/HlgB was the most potent leukotoxin, initiating transient rises in intracellular Ca2+ concentration in cerebellar neurones and in primary sensory neurones from dorsal root ganglia, as probed with the Fura-2 Ca2+ indicator dye. Using pharmacological antagonists of receptors and Ca2+ channels, the variations in intracellular Ca2+ concentration were found independent of the activation of voltage-operatedCa2+ channels or glutamate receptors. Drugs targeting Sarco-Endoplasmic Reticulum Ca2+-ATPase (SERCA) or H+-ATPase and antagonists of the store-operated Ca2+ entry complex blunted, or significantly reduced, the leukotoxin-induced elevation in intracellular Ca2+. Moreover, activation of the ADP-ribosyl cyclase CD38 was also required to initiate the release of Ca2+ from acidic stores. These findings suggest that, prior to forming a pore at the plasma membrane, leukotoxin HlgC/HlgB triggers a multistep process which initiates the release of Ca2+ from lysosomes, modifies the steady-state level of reticular Ca2+ stores and finally activates the Store-Operated Calcium Entry complex.
Collapse
Affiliation(s)
- Emmanuel Jover
- INCI - UPR-CNRS 3212, Neurotransmission et sécrétion neuroendocrine, 5, rue Blaise Pascal, F- 67084 Strasbourg cedex, France. jover@inci-cnrs
| | | | | | | | | |
Collapse
|
37
|
Nishiyama A, Isobe H, Iwao Y, Takano T, Hung WC, Taneike I, Nakagawa S, Dohmae S, Iwakura N, Yamamoto T. Accumulation of staphylococcal Panton-Valentine leukocidin in the detergent-resistant membrane microdomains on the target cells is essential for its cytotoxicity. ACTA ACUST UNITED AC 2012; 66:343-52. [PMID: 22924956 DOI: 10.1111/j.1574-695x.2012.01027.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 07/24/2012] [Accepted: 07/27/2012] [Indexed: 12/23/2022]
Abstract
The mechanisms for the cytotoxicity of staphylococcal Panton-Valentine leukocidin (PVL), a pore-forming toxin consisting of LukS-PV and LukF-PV, in human immune cells are still unclear. Because LukS-PV binds to ganglioside GM1, a constituent of detergent-resistant membrane microdomains (DRMs) of the plasma membrane, the role of DRMs in PVL cytotoxicity was examined in human polymorphonuclear neutrophils (PMNs), monocytes, HL-60 cells, and THP-1 cells. PVL binding capacities in HL-60 and THP-1 cells were higher than those in PMNs and monocytes; however, the PVL concentration to obtain more than 80% cell lysis in HL-60 cells was 10 times higher than that in PMNs and PVL even at such concentration induced < 10% cell lysis in THP-1 cells. After incubation of PMNs with LukS-PV, more than 90% of LukS-PV bound to the detergent-soluble membranes. Subsequent incubation with LukF-PV at 4 °C induced the accumulation of more than 70% of PVL components and 170- to 220-kDa complex formation in DRMs in an actin-independent manner. However, only 30% of PVL was found, and complex formation was under detectable level in DRMs in HL-60 cells. PVL did not accumulate in DRMs in THP-1 cells. Our observations strongly indicate that PVL accumulation in DRMs is essential for PVL cytotoxicity.
Collapse
Affiliation(s)
- Akihito Nishiyama
- Division of Bacteriology, Department of Infectious Disease Control and International Medicine, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Holzinger D, Gieldon L, Mysore V, Nippe N, Taxman DJ, Duncan JA, Broglie PM, Marketon K, Austermann J, Vogl T, Foell D, Niemann S, Peters G, Roth J, Löffler B. Staphylococcus aureus Panton-Valentine leukocidin induces an inflammatory response in human phagocytes via the NLRP3 inflammasome. J Leukoc Biol 2012; 92:1069-81. [PMID: 22892107 DOI: 10.1189/jlb.0112014] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The Staphylococcus aureus pore-forming toxin PVL is most likely causative for life-threatening necrotizing infections, which are characterized by massive tissue inflammation and necrosis. Whereas the cytotoxic action of PVL on human neutrophils is already well established, the PVL effects on other sensitive cell types, such as monocytes and macrophages, are less clear. In this study, we used different types of human leukocytes (neutrophils, monocytes, macrophages, lymphocytes) to investigate cell-specific binding of PVL subunits and subsequent proinflammatory and cytotoxic effects. In all PVL-sensitive cells, we identified the binding of the subunit LukS-PV as the critical factor for PVL-induced cytotoxicity, which was followed by binding of LukF-PV. LukS-PV binds to monocytes, macrophages, and neutrophils but not to lymphocytes. Additionally, we showed that PVL binding to monocytes and macrophages leads to release of caspase-1-dependent proinflammatory cytokines IL-1β and IL-18. PVL activates the NLRP3 inflammasome, a signaling complex of myeloid cells that is involved in caspase-1-dependent IL-1β processing in response to pathogens and endogenous danger signals. Specific inhibition of this pathway at several steps significantly reduced inflammasome activation and subsequent pyronecrosis. Furthermore, we found that PAMPs and DAMPs derived from dying neutrophils can dramatically enhance this response by up-regulating pro-IL-1β in monocytes/macrophages. This study analyzes a specific host signaling pathway that mediates PVL-induced inflammation and cytotoxicity, which has high relevance for CA-MRSA-associated and PVL-mediated pathogenic processes, such as necrotizing infections.
Collapse
Affiliation(s)
- Dirk Holzinger
- Institute of Immunology, Department of General Pediatrics, University Children’s Hospital Münster, Münster, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Galy R, Bergeret F, Keller D, Mourey L, Prévost G, Maveyraud L. Crystallization and preliminary crystallographic studies of both components of the staphylococcal LukE-LukD leukotoxin. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:663-7. [PMID: 22684065 PMCID: PMC3370905 DOI: 10.1107/s1744309112014662] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 04/04/2012] [Indexed: 06/01/2023]
Abstract
Soluble forms of recombinant LukE protein (expressed in Escherichia coli) and of wild-type LukD protein (expressed in Staphylococcus aureus), which together form the staphylococcal LukE-LukD leukotoxin, were purified to homogeneity and crystallized using the sitting-drop vapour-diffusion method. The crystals of LukE belonged to space group I4, with unit-cell parameters a = b = 134.50, c = 64.43 Å, and diffracted X-rays to 1.6 Å resolution. The crystals of LukD belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 48.04, b = 50.99, c = 137.40 Å, and diffracted to 1.9 Å resolution. Molecular replacement using the LukF-PV structure (PDB entry 1pvl) as a template model allowed the identification of an initial structure solution for the LukD data. In the case of LukE, a solution comprising only a single copy of the search model (LukS-PV; PDB entry 1t5r) was found, although the unit-cell parameters indicated that up to three molecules could be accommodated in the asymmetric unit.
Collapse
Affiliation(s)
- Romain Galy
- Institut de Pharmacologie et de Biologie Structurale, Centre National de la Recherche Scientifique, 205 Route de Narbonne, BP 64182, F-31077 Toulouse, France
| | | | | | | | | | | |
Collapse
|
40
|
Vandenesch F, Lina G, Henry T. Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2012; 2:12. [PMID: 22919604 PMCID: PMC3417661 DOI: 10.3389/fcimb.2012.00012] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 01/31/2012] [Indexed: 12/17/2022] Open
Abstract
One key aspect of the virulence of Staphylococcus aureus lies in its ability to target the host cell membrane with a large number of membrane-damaging toxins and peptides. In this review, we describe the hemolysins, the bi-component leukocidins (which include the Panton Valentine leukocidin, LukAB/GH, and LukED), and the cytolytic peptides (phenol soluble modulins). While at first glance, all of these factors might appear redundant, it is now clear that some of these factors play specific roles in certain S. aureus life stages and diseases or target specific cell types or species. In this review, we present an update of the literature on toxin receptors and their cell type and species specificities. Furthermore, we review epidemiological studies and animal models illustrating the role of these membrane-damaging factors in various diseases. Finally, we emphasize the interplay of these factors with the host immune system and highlight all their non-lytic functions.
Collapse
Affiliation(s)
- François Vandenesch
- Bacterial Pathogenesis and Innate Immunity Laboratory, INSERM U851 "Immunity, Infection and Vaccination," Lyon, France
| | | | | |
Collapse
|
41
|
Rigby KM, DeLeo FR. Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 2011; 34:237-59. [PMID: 22080185 PMCID: PMC3271231 DOI: 10.1007/s00281-011-0295-3] [Citation(s) in RCA: 269] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 10/14/2011] [Indexed: 12/29/2022]
Abstract
Staphylococcus aureus has been an important human pathogen throughout history and is currently a leading cause of bacterial infections worldwide. S. aureus has the unique ability to cause a continuum of diseases, ranging from minor skin infections to fatal necrotizing pneumonia. Moreover, the emergence of highly virulent, drug-resistant strains such as methicillin-resistant S. aureus in both healthcare and community settings is a major therapeutic concern. Neutrophils are the most prominent cellular component of the innate immune system and provide an essential primary defense against bacterial pathogens such as S. aureus. Neutrophils are rapidly recruited to sites of infection where they bind and ingest invading S. aureus, and this process triggers potent oxidative and non-oxidative antimicrobial killing mechanisms that serve to limit pathogen survival and dissemination. S. aureus has evolved numerous mechanisms to evade host defense strategies employed by neutrophils, including the ability to modulate normal neutrophil turnover, a process critical to the resolution of acute inflammation. Here we provide an overview of the role of neutrophils in host defense against bacterial pathogens and discuss strategies employed by S. aureus to circumvent neutrophil function.
Collapse
Affiliation(s)
- Kevin M Rigby
- Laboratory of Human Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | |
Collapse
|
42
|
Pichereau S, Moran JJM, Hayney MS, Shukla SK, Sakoulas G, Rose WE. Concentration-dependent effects of antimicrobials on Staphylococcus aureus toxin-mediated cytokine production from peripheral blood mononuclear cells. J Antimicrob Chemother 2011; 67:123-9. [PMID: 21980070 DOI: 10.1093/jac/dkr417] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Toxins contribute to the pathogenicity of Staphylococcus aureus infections by inducing a dysregulated inflammatory response. This study evaluated the impact of anti-staphylococcal antibiotic exposures over an increasing concentration range on cytokine production from peripheral blood mononuclear cells (PBMCs) after S. aureus toxin exposures. METHODS Human PBMCs were suspended in complete Roswell Park Memorial Institute (RPMI) 1640 medium with 10% fetal bovine serum at 10(6) cells/mL with 100 ng/mL S. aureus toxic shock syndrome toxin-1 (TSST-1), staphylococcal enterotoxin A (SEA), α-toxin or Panton-Valentine leucocidin (PVL). Vancomycin, trimethoprim/sulfamethoxazole, tigecycline, daptomycin, linezolid, clindamycin and azithromycin were added at a concentration range of 0.5-100 mg/L. Cytokine [interleukin-1β (IL-1β), IL-6, IL-8, interferon-γ (IFN-γ) and tumour necrosis factor-α (TNF-α)] concentrations were measured in duplicate by ELISA following exposure and were compared with response with toxin alone. RESULTS At concentrations approximating serum C(max), tigecycline decreased IL-6 by 52%-57% and IFN-γ production by 43%-53% compared with toxin alone (P ≤ 0.05) and linezolid inhibited TNF-α by 12%-35% and IL-8 by 25%-42% (P ≤ 0.02). However, trimethoprim/sulfamethoxazole increased TNF-α and IL-8 production (P = 0.002). Clindamycin, daptomycin, vancomycin and azithromycin had no consistent significant effect at approximate serum C(max) concentrations. All antibiotics had a concentration-dependent effect on cytokine production, with tigecycline, clindamycin and trimethoprim/sulfamethoxazole being the most potent inhibitors of cytokine production at concentrations exceeding 25 mg/L. CONCLUSIONS S. aureus toxins stimulate production of inflammatory cytokines in PBMCs. Antimicrobials with high tissue penetration, including tigecycline, clindamycin, trimethoprim/sulfamethoxazole and linezolid, reduced cytokine production, which, along with their antimicrobial effects, may have importance in the therapeutic outcome of severe infections.
Collapse
Affiliation(s)
- Solen Pichereau
- Pharmacy Practice Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, USA
| | | | | | | | | | | |
Collapse
|
43
|
Crystal structure of the octameric pore of staphylococcal γ-hemolysin reveals the β-barrel pore formation mechanism by two components. Proc Natl Acad Sci U S A 2011; 108:17314-9. [PMID: 21969538 DOI: 10.1073/pnas.1110402108] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcal γ-hemolysin is a bicomponent pore-forming toxin composed of LukF and Hlg2. These proteins are expressed as water-soluble monomers and then assemble into the oligomeric pore form on the target cell. Here, we report the crystal structure of the octameric pore form of γ-hemolysin at 2.5 Å resolution, which is the first high-resolution structure of a β-barrel transmembrane protein composed of two proteins reported to date. The octameric assembly consists of four molecules of LukF and Hlg2 located alternately in a circular pattern, which explains the biochemical data accumulated over the past two decades. The structure, in combination with the monomeric forms, demonstrates the elaborate molecular machinery involved in pore formation by two different molecules, in which interprotomer electrostatic interactions using loops connecting β2 and β3 (loop A: Asp43-Lys48 of LukF and Lys37-Lys43 of Hlg2) play pivotal roles as the structural determinants for assembly through unwinding of the N-terminal β-strands (amino-latch) of the adjacent protomer, releasing the transmembrane stem domain folded into a β-sheet in the monomer (prestem), and interaction with the adjacent protomer.
Collapse
|
44
|
Heavy chain-only antibodies and tetravalent bispecific antibody neutralizing Staphylococcus aureus leukotoxins. Proc Natl Acad Sci U S A 2011; 108:16404-9. [PMID: 21930905 DOI: 10.1073/pnas.1102265108] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Panton-Valentine leukocidin (PVL) is a pore-forming toxin associated with current outbreaks of community-associated methicillin-resistant strains and implicated directly in the pathophysiology of Staphylococcus aureus-related diseases. Humanized heavy chain-only antibodies (HCAb) were generated against S. aureus PVL from immunized transgenic mice to neutralize toxin activity. The active form of PVL consists of the two components, LukS-PV and LukF-PV, which induce osmotic lysis following pore formation in host defense cells. One anti-LukS-PV HCAb, three anti-LukF-PV HCAbs with affinities in the nanomolar range, and one engineered tetravalent bispecific HCAb were tested in vitro and in vivo, and all prevented toxin binding and pore formation. Anti-LukS-PV HCAb also binds to γ-hemolysin C (HlgC) and inhibits HlgC/HlgB pore formation. Experiments in vivo in a toxin-induced rabbit endophthalmitis model showed that these HCAbs inhibit inflammatory reactions and tissue destruction, with the tetravalent bispecific HCAb performing best. Our findings show the therapeutic potential of HCAbs, and in particular, bispecific antibodies.
Collapse
|
45
|
Khosravi AD, Hoveizavi H, Farshadzadeh Z. The prevalence of genes encoding leukocidins in Staphylococcus aureus strains resistant and sensitive to methicillin isolated from burn patients in Taleghani Hospital, Ahvaz, Iran. Burns 2011; 38:247-51. [PMID: 21924558 DOI: 10.1016/j.burns.2011.08.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 07/27/2011] [Accepted: 08/08/2011] [Indexed: 11/19/2022]
Abstract
BACKGROUND Staphylococcus aureus has been recognized as an important human pathogen and is the major cause of nosocomial infections. Various strains of S. aureus produce bicomponent toxins such as LukE/D, and PVL. The toxins subunits bind to leukocyte cell membrane inducing trans-membrane pore formation and subsequent cell lysis. PVL is an example of these toxins and causes leukocyte destruction and tissue necrosis. It seems that S. aureus strains comprising LukE/D and PVL genes are more important in the disease process and associated with severe skin diseases, fatal pneumonia and osteomyelitis with high morbidity and mortality. OBJECTIVE The aim of this study was to determine the prevalence of genes encoding leukocidins in S. aureus strains resistant and sensitive to methicillin isolated from burn patients in Taleghani hospital, Ahvaz, Iran. METHODS In an 11-month study, 203 staphylococci isolates were collected from burn patients. The isolates were examined by traditional culture method for detecting S. aureus strains and further confirmation with standard biochemical tests including catalase, coagulase and DNase. DNA was extracted from bacterial colony by simple boiling method. Using template DNA, the polymerase chain reaction technique (PCR) was used to detect mecA gene for detecting methicillin resistant S. aureus strains (MRSA), PVL and Luk-E/D genes. RESULTS Ninety-five (46.8%) out of total tested isolates were identified as S. aureus. Based on the results from PCR, 83 strains (87.36%), were mecA positive, so they were resistant to methicillin and the rest were sensitive to methicillin (MSSA). The prevalence of PVL and LukE/D genes in MRSA strains were (7.23%) and (66.26%) respectively. While this prevalence were (33.3%) for both genes in MSSA strains. CONCLUSION There were PVL and LukE/D positive MRSA isolates with high prevalence in evaluated hospital. Since resulting diseases from these bacteria are severe and may even lead to death, the prevention of disease progress is desired by early diagnosis and proper treatment.
Collapse
Affiliation(s)
- Azar Dokht Khosravi
- Dept. of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | | | | |
Collapse
|
46
|
Wu B, Zhang W, Huang J, Liu H, Zhang T. Effect of recombinant Panton–Valentine leukocidin in vitro on apoptosis and cytokine production of human alveolar macrophages. Can J Microbiol 2010; 56:229-35. [PMID: 20453909 DOI: 10.1139/w10-002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Panton–Valentine leukocidin (PVL) is associated with rare cases of necrotizing pneumonia that occur in otherwise healthy individuals. Human alveolar macrophages (HAMs) are major effector cells in host defense against infections. However, the impact of PVL on HAMs is uncertain. We evaluated the role of PVL in cytotoxicity and production of inflammatory cytokines secreted by HAMs. HAMs were purified from bronchoalveolar lavage fluid. Recombinant PVL (rPVL) was used in the study to interfere with HAM apoptosis and cytokine production in vitro. Hoechst 33342 fluorescence staining, transmission electron microscopy examination, and flow cytometry indicated that rPVL (10 nmol/L) treatment resulted in HAMs with markedly apoptotic characteristics, and HAMs treated with rPVL at 100 nmol/L showed clear indication of necrosis. A treatment of rPVL at 10 nmol/L elicited the secretion of IL-10 by HAMs relative to untreated control cells, but there was a slight decrease in the constitutive secretion of tumor necrosis factor (TNF)-α. Our results indicate that PVL-treated samples decreased HAM viability, leading to apoptosis at low concentrations and necrosis at high concentrations. In addition, PVL-treated cells released increased amounts of IL-10 and decreased amounts of TNF-α under apoptosis-inducing concentrations. Therefore, we speculated that PVL could play a negative role in HAM function at lower concentrations.
Collapse
Affiliation(s)
- Benquan Wu
- Department of Internal Medicine, Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, P.R. China
| | - Wenxian Zhang
- Department of Internal Medicine, Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, P.R. China
| | - Jing Huang
- Department of Internal Medicine, Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, P.R. China
| | - Hui Liu
- Department of Internal Medicine, Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, P.R. China
| | - Tiantuo Zhang
- Department of Internal Medicine, Division of Respiratory Diseases, Third Affiliated Hospital of Sun Yat-Sen University, 600 Tianhe Road, Guangzhou 510630, P.R. China
| |
Collapse
|
47
|
Abstract
Staphylococcus aureus is notorious for its ability to become resistant to antibiotics. Infections that are caused by antibiotic-resistant strains often occur in epidemic waves that are initiated by one or a few successful clones. Methicillin-resistant S. aureus (MRSA) features prominently in these epidemics. Historically associated with hospitals and other health care settings, MRSA has now emerged as a widespread cause of community infections. Community or community-associated MRSA (CA-MRSA) can spread rapidly among healthy individuals. Outbreaks of CA-MRSA infections have been reported worldwide, and CA-MRSA strains are now epidemic in the United States. Here, we review the molecular epidemiology of the epidemic waves of penicillin- and methicillin-resistant strains of S. aureus that have occurred since 1940, with a focus on the clinical and molecular epidemiology of CA-MRSA.
Collapse
Affiliation(s)
- Henry F Chambers
- Division of Infectious Diseases, Department of Medicine, San Francisco General Hospital, University of California, San Francisco, California 94110, USA.
| | | |
Collapse
|