1
|
Wang S, Ma S, Sun S, Wang Q, Ding Q, Jin L, Chen F, Yin G, Wu X, Wang R, Wang H. Global evolutionary dynamics of virulence genes in ST11-KL47 carbapenem-resistant Klebsiella pneumoniae. Int J Antimicrob Agents 2024; 64:107245. [PMID: 38906484 DOI: 10.1016/j.ijantimicag.2024.107245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/06/2024] [Accepted: 06/12/2024] [Indexed: 06/23/2024]
Abstract
ST11-KL47 is a hypervirulent carbapenem-resistant Klebsiella pneumoniae (CRKP) that is highly prevalent in China and poses a major public health risk. To investigate the evolutionary dynamics of virulence genes in this subclone, we analysed 78 sequenced isolates obtained from a long-term study across 29 centres from 17 cities in China. Virulence genes were located in large hybrid pNDM-Mar-like plasmids (length: ∼266 kilobases) rather than in classical pK2044-like plasmids. These hybrid plasmids, derived from the fusion of pK2044 and pNDM-Mar plasmids mediated by insertion sequence (IS) elements (such as ISKpn28 and IS26), integrated virulence gene fragments into the chromosome. Analysis of 217 sequences containing the special IncFIB (pNDM-Mar) replicon using public databases indicated that these plasmids typically contained T4SS-related and multiple antimicrobial resistance genes, were present in 24 countries, and were found in humans, animals, and the environment. Notably, the chromosomal integration of virulence genes was observed in strains across five countries across two continents. In vivo and in vitro models showed that the large hybrid plasmid increased the host fitness cost while increasing virulence. Conversely, virulence genes transferred to chromosomes resulted in increased fitness and lower virulence. In conclusion, virulence genes in the plasmids of ST11-KL47 CRKP are evolving, driven by adaptive negative selection, to enable vertical chromosomal inheritance along with conferring a survival advantage and low pathogenicity.
Collapse
Affiliation(s)
- Shuyi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Shuai Ma
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China
| | - Shijun Sun
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Qi Ding
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Longyang Jin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Fengning Chen
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Guankun Yin
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Xingyu Wu
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Ruobing Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China; Institute of Medical Technology, Peking University Health Science Center, Beijing, China.
| |
Collapse
|
2
|
Tian X, Wang J, Chen H, Ding M, Jin Q, Zhang JR. In vivo functional immunoprotection correlates for vaccines against invasive bacteria. Vaccine 2024; 42:853-863. [PMID: 38233287 DOI: 10.1016/j.vaccine.2024.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 10/24/2023] [Accepted: 01/04/2024] [Indexed: 01/19/2024]
Abstract
Vaccination has significantly reduced the incidence of invasive infections caused by several bacterial pathogens, including Streptococcus pneumoniae, Haemophilus influenzae, and Neisseria meningitidis. However, no vaccines are available for many other invasive pathogens. A major hurdle in vaccine development is the lack of functional markers to quantify vaccine immunity in eliminating pathogens during the process of infection. Based on our recent discovery of the liver as the major organ of vaccine-induced clearance of blood-borne virulent bacteria, we here describe a new vaccine evaluation system that quantitatively characterizes the key features of effective vaccines in shuffling virulent bacteria from the blood circulation to the liver resident macrophage Kupffer cells (KCs) and sinusoidal endothelial cells (LSECs) in mouse septic infection model. This system consists of three related correlates or assays: pathogen clearance from the bloodstream, pathogen trapping in the liver, and pathogen capture by KCs/LSECs. These readouts were consistently associated with the serotype-specific immunoprotection levels of the 13-valent pneumococcal polysaccharide conjugate vaccine (PCV13) against lethal infection of S. pneumoniae, a major invasive Gram-positive pathogen of community-acquired infections in humans. Furthermore, the reliability and sensitivity of these correlates in reflecting vaccine efficacy were verified with whole cell vaccines of Klebsiella pneumoniae and Escherichia coli, two major Gram-negative pathogens in hospital-acquired invasive infections. This system may be used as effective readouts to evaluate the immunoprotective potential of vaccine candidates in the preclinical phase by filling the current technical gap in vaccine evaluation between the conventional in vitro approaches (e.g. antibody production and pathogen neutralization/opsonophagocytosis) and survival of immunized animals.
Collapse
Affiliation(s)
- Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| | - Haoze Chen
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Qian Jin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China; Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
3
|
Wang J, An H, Ding M, Liu Y, Wang S, Jin Q, Wu Q, Dong H, Guo Q, Tian X, Liu J, Zhang J, Zhu T, Li J, Shao Z, Briles DE, Veening JW, Zheng H, Zhang L, Zhang JR. Liver macrophages and sinusoidal endothelial cells execute vaccine-elicited capture of invasive bacteria. Sci Transl Med 2023; 15:eade0054. [PMID: 38117903 DOI: 10.1126/scitranslmed.ade0054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
Vaccination has substantially reduced the morbidity and mortality of bacterial diseases, but mechanisms of vaccine-elicited pathogen clearance remain largely undefined. We report that vaccine-elicited immunity against invasive bacteria mainly operates in the liver. In contrast to the current paradigm that migrating phagocytes execute vaccine-elicited immunity against blood-borne pathogens, we found that invasive bacteria are captured and killed in the liver of vaccinated host via various immune mechanisms that depend on the protective potency of the vaccine. Vaccines with relatively lower degrees of protection only activated liver-resident macrophage Kupffer cells (KCs) by inducing pathogen-binding immunoglobulin M (IgM) or low amounts of IgG. IgG-coated pathogens were directly captured by KCs via multiple IgG receptors FcγRs, whereas IgM-opsonized bacteria were indirectly bound to KCs via complement receptors of immunoglobulin superfamily (CRIg) and complement receptor 3 (CR3) after complement C3 activation at the bacterial surface. Conversely, the more potent vaccines engaged both KCs and liver sinusoidal endothelial cells by inducing higher titers of functional IgG antibodies. Endothelial cells (ECs) captured densely IgG-opsonized pathogens by the low-affinity IgG receptor FcγRIIB in a "zipper-like" manner and achieved bacterial killing predominantly in the extracellular milieu via an undefined mechanism. KC- and endothelial cell-based capture of antibody-opsonized bacteria also occurred in FcγR-humanized mice. These vaccine protection mechanisms in the liver not only provide a comprehensive explanation for vaccine-/antibody-boosted immunity against invasive bacteria but also may serve as in vivo functional readouts of vaccine efficacy.
Collapse
Affiliation(s)
- Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yanhong Liu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Shaomeng Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qian Jin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Qi Wu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Haodi Dong
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| | - Qile Guo
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | | | | | - Tao Zhu
- Cansino Biologics, Tianjin 300301, China
| | | | - Zhujun Shao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102299, China
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | - Linqi Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
4
|
Zhang C, Liu Y, An H, Wang X, Xu L, Deng H, Wu S, Zhang JR, Liu X. Amino Acid Starvation-Induced Glutamine Accumulation Enhances Pneumococcal Survival. mSphere 2023; 8:e0062522. [PMID: 37017541 PMCID: PMC10286718 DOI: 10.1128/msphere.00625-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/19/2023] [Indexed: 04/06/2023] Open
Abstract
Bacteria are known to cope with amino acid starvation by the stringent response signaling system, which is mediated by the accumulation of the (p)ppGpp alarmones when uncharged tRNAs stall at the ribosomal A site. While a number of metabolic processes have been shown to be regulatory targets of the stringent response in many bacteria, the global impact of amino acid starvation on bacterial metabolism remains obscure. This work reports the metabolomic profiling of the human pathogen Streptococcus pneumoniae under methionine starvation. Methionine limitation led to the massive overhaul of the pneumococcal metabolome. In particular, methionine-starved pneumococci showed a massive accumulation of many metabolites such as glutamine, glutamic acid, lactate, and cyclic AMP (cAMP). In the meantime, methionine-starved pneumococci showed a lower intracellular pH and prolonged survival. Isotope tracing revealed that pneumococci depend predominantly on amino acid uptake to replenish intracellular glutamine but cannot convert glutamine to methionine. Further genetic and biochemical analyses strongly suggested that glutamine is involved in the formation of a "prosurvival" metabolic state by maintaining an appropriate intracellular pH, which is accomplished by the enzymatic release of ammonia from glutamine. Methionine starvation-induced intracellular pH reduction and glutamine accumulation also occurred to various extents under the limitation of other amino acids. These findings have uncovered a new metabolic mechanism of bacterial adaptation to amino acid limitation and perhaps other stresses, which may be used as a potential therapeutic target for infection control. IMPORTANCE Bacteria are known to cope with amino acid starvation by halting growth and prolonging survival via the stringent response signaling system. Previous investigations have allowed us to understand how the stringent response regulates many aspects of macromolecule synthesis and catabolism, but how amino acid starvation promotes bacterial survival at the metabolic level remains largely unclear. This paper reports our systematic profiling of the methionine starvation-induced metabolome in S. pneumoniae. To the best of our knowledge, this represents the first reported bacterial metabolome under amino acid starvation. These data have revealed that the significant accumulation of glutamine and lactate enables S. pneumoniae to form a "prosurvival" metabolic state with a lower intracellular pH, which inhibits bacterial growth for prolonged survival. Our findings have provided insightful information on the metabolic mechanisms of pneumococcal adaptation to nutrient limitation during the colonization of the human upper airway.
Collapse
Affiliation(s)
- Chengwang Zhang
- Department of Basic Medical Science, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Yanhong Liu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xueying Wang
- National Protein Science Facility, Tsinghua University, Beijing, China
| | - Lina Xu
- National Protein Science Facility, Tsinghua University, Beijing, China
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Songquan Wu
- Department of Basic Medical Science, School of Medicine, Lishui University, Lishui, Zhejiang, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- National Protein Science Facility, Tsinghua University, Beijing, China
- School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
5
|
Banerjee K, Motley MP, Boniche-Alfaro C, Bhattacharya S, Shah R, Ardizzone A, Fries BC. Patient-Derived Antibody Data Yields Development of Broadly Cross-Protective Monoclonal Antibody against ST258 Carbapenem-Resistant Klebsiella pneumoniae. Microbiol Spectr 2022; 10:e0176022. [PMID: 35862974 PMCID: PMC9430753 DOI: 10.1128/spectrum.01760-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 06/23/2022] [Indexed: 11/30/2022] Open
Abstract
The most pressing challenge for the development of anti-capsular antibodies is maximizing coverage against the heterogenous capsular polysaccharide (CPS) of carbapenem-resistant Klebsiella pneumoniae (CR-Kp). So far, only CR-Kp with wzi154 CPS has been successfully targeted by antibodies. Here, we present murine antibody 24D11, which was developed by vaccinating mice with purified wzi50-type CPS. Cross-reactivity and protective efficacy of MAb 24D11 were confirmed against CR-Kp that express the 3 most prevalent CPS types (wzi29, wzi154, wzi50) using both in vitro and in vivo infection models. 24D11 induced complement-mediated and independent opsonophagocytosis in macrophages as well as killing of all CR-Kp strains in whole blood cells derived from healthy donors. In a murine intratracheal infection model, 24D11 reduced lung burden and dissemination of CR-Kp strains when administered 4 h pre- or postinfection. The protective efficacy of 24D11 remained effective in neutropenic mice. This is the first antibody which exhibits cross-protective efficacy against clade 1 and 2 ST258 CR-Kp strains. It overcomes a major barrier to successfully target wzi29, a major CPS expressed by ST258 CR-Kp. The finding that 24D11 also exhibits potent protective efficacy against wzi154 CR-Kp strains highlights its high potential as a lead agent for the development of broadly active immunotherapy. IMPORTANCE Here, we present in vitro and in vivo data for the wzi50 CPS-specific monoclonal antibody MAb 24D11, demonstrating its cross-protective efficacy against three prominent win types (wzi29, wzi154, and wzi50) of the carbapenem-resistant clonal group CG258. In a murine pulmonary infection model, MAb 24D11 reduced bacterial lung burden and dissemination to other organs even if administered 4 h postinfection. Its protective efficacy was also observed in neutropenic mice, which highlights its potential value in clinical settings where oncology patients with CG258 infections may also be neutropenic.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Michael P. Motley
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Camila Boniche-Alfaro
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
| | - Somanon Bhattacharya
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Raj Shah
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Andrew Ardizzone
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C. Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran’s Administration Medical Center, Northport, New York, USA
- Department of Microbiology and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
6
|
Huang X, Li X, An H, Wang J, Ding M, Wang L, Li L, Ji Q, Qu F, Wang H, Xu Y, Lu X, He Y, Zhang JR. Capsule type defines the capability of Klebsiella pneumoniae in evading Kupffer cell capture in the liver. PLoS Pathog 2022; 18:e1010693. [PMID: 35914009 PMCID: PMC9342791 DOI: 10.1371/journal.ppat.1010693] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 06/22/2022] [Indexed: 11/21/2022] Open
Abstract
Polysaccharide capsule is the main virulence factor of K. pneumoniae, a major pathogen of bloodstream infections in humans. While more than 80 capsular serotypes have been identified in K. pneumoniae, only several serotypes are frequently identified in invasive infections. It is documented that the capsule enhances bacterial resistance to phagocytosis, antimicrobial peptides and complement deposition under in vitro conditions. However, the precise role of the capsule in the process of K. pneumoniae bloodstream infections remains to be elucidated. Here we show that the capsule promotes K. pneumoniae survival in the bloodstream by protecting bacteria from being captured by liver resident macrophage Kupffer cells (KCs). Our real-time in vivo imaging revealed that blood-borne acapsular K. pneumoniae mutant is rapidly captured and killed by KCs in the liver sinusoids of mice, whereas, to various extents, encapsulated strains bypass the anti-bacterial machinery in a serotype-dependent manner. Using capsule switched strains, we show that certain high-virulence (HV) capsular serotypes completely block KC’s capture, whereas the low-virulence (LV) counterparts confer partial protection against KC’s capture. Moreover, KC’s capture of the LV K. pneumoniae could be in vivo neutralized by free capsular polysaccharides of homologous but not heterologous serotypes, indicating that KCs specifically recognize the LV capsules. Finally, immunization with inactivated K. pneumoniae enables KCs to capture the HV K. pneumoniae. Together, our findings have uncovered that KCs are the major target cells of K. pneumoniae capsule to promote bacterial survival and virulence, which can be reversed by vaccination. Klebsiella pneumoniae is a major human pathogen. While capsule is the main virulence factor of the pathogen, only several of more than 80 capsule serotypes are frequently identified in invasive infections. However, it remains unclear how capsule contributes to K. pneumoniae virulence. Here we show that capsule type defines K. pneumoniae virulence by differential escape of immune surveillance in the liver. While low-virulence (LV) types are captured by Kupffer cells (KCs), high-virulence (HV) types circumvent the anti-bacterial machinery. Further, inactivated K. pneumoniae vaccine enables KCs to capture the HV K. pneumoniae and protects mice from lethal infection. Our findings explain the clinical prevalence of HV capsule types, and provide promising insights for future vaccine development.
Collapse
Affiliation(s)
- Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xiuyuan Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Juanjuan Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Ming Ding
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Lijun Wang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Beijing Tsinghua Changgung Hospital, Tsinghua University, Beijing, China
| | - Lulu Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Quanjiang Ji
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Fen Qu
- The Center of Clinical Diagnosis Laboratory, 302 Hospital of PLA, Beijing, China
- China Aviation General Hospital of China Medical University, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Yingchun Xu
- Department of Clinical Laboratory, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Xinxin Lu
- Department of Clinical Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yuan He
- Research Beyond Borders, Boehringer Ingelheim (China), Shanghai, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
- * E-mail:
| |
Collapse
|
7
|
Huffman A, Ong E, Hur J, D’Mello A, Tettelin H, He Y. COVID-19 vaccine design using reverse and structural vaccinology, ontology-based literature mining and machine learning. Brief Bioinform 2022; 23:bbac190. [PMID: 35649389 PMCID: PMC9294427 DOI: 10.1093/bib/bbac190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 12/11/2022] Open
Abstract
Rational vaccine design, especially vaccine antigen identification and optimization, is critical to successful and efficient vaccine development against various infectious diseases including coronavirus disease 2019 (COVID-19). In general, computational vaccine design includes three major stages: (i) identification and annotation of experimentally verified gold standard protective antigens through literature mining, (ii) rational vaccine design using reverse vaccinology (RV) and structural vaccinology (SV) and (iii) post-licensure vaccine success and adverse event surveillance and its usage for vaccine design. Protegen is a database of experimentally verified protective antigens, which can be used as gold standard data for rational vaccine design. RV predicts protective antigen targets primarily from genome sequence analysis. SV refines antigens through structural engineering. Recently, RV and SV approaches, with the support of various machine learning methods, have been applied to COVID-19 vaccine design. The analysis of post-licensure vaccine adverse event report data also provides valuable results in terms of vaccine safety and how vaccines should be used or paused. Ontology standardizes and incorporates heterogeneous data and knowledge in a human- and computer-interpretable manner, further supporting machine learning and vaccine design. Future directions on rational vaccine design are discussed.
Collapse
Affiliation(s)
- Anthony Huffman
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Edison Ong
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Junguk Hur
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, North Dakota 58202, USA
| | - Adonis D’Mello
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Hervé Tettelin
- Department of Microbiology and Immunology, Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Yongqun He
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
- Unit for Laboratory Animal Medicine, Department of Microbiology and Immunology, Center for Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| |
Collapse
|
8
|
Guo Z, Yang H, Zhang JR, Zeng W, Hu X. Leptin receptor signaling sustains metabolic fitness of alveolar macrophages to attenuate pulmonary inflammation. SCIENCE ADVANCES 2022; 8:eabo3064. [PMID: 35857512 PMCID: PMC9286500 DOI: 10.1126/sciadv.abo3064] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Alveolar macrophages (AMs) are critical mediators of pulmonary inflammation. Given the unique lung tissue environment, whether there exist AM-specific mechanisms that control inflammation is not known. Here, we found that among various tissue-resident macrophage populations, AMs specifically expressed Lepr, encoding receptor for a key metabolic hormone leptin. AM-intrinsic Lepr signaling attenuated pulmonary inflammation in vivo, manifested as subdued acute lung injury yet compromised host defense against Streptococcus pneumoniae infection. Lepr signaling protected AMs from necroptosis and thus constrained neutrophil recruitment and tissue damage secondary to release of proinflammatory cytokine interleukin-1α. Mechanistically, Lepr signaling sustained activation of adenosine monophosphate-activated protein kinase in a Ca2+ influx-dependent manner and rewired cellular metabolism, thus preventing excessive lipid droplet formation and overloaded metabolic stress in a lipid-rich alveolar microenvironment. In conclusion, our results defined AM-expressed Lepr as a metabolic checkpoint of pulmonary inflammation and exemplified a macrophage tissue adaptation strategy for maintenance of immune homeostasis.
Collapse
Affiliation(s)
- Ziyi Guo
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Haoqi Yang
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wenwen Zeng
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| | - Xiaoyu Hu
- Institute for Immunology and School of Medicine, Tsinghua University, Beijing 100084, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China
- Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing 100084, China
| |
Collapse
|
9
|
An H, Qian C, Huang Y, Li J, Tian X, Feng J, Hu J, Fang Y, Jiao F, Zeng Y, Huang X, Meng X, Liu X, Lin X, Zeng Z, Guilliams M, Beschin A, Chen Y, Wu Y, Wang J, Oggioni MR, Leong J, Veening JW, Deng H, Zhang R, Wang H, Wu J, Cui Y, Zhang JR. Functional vulnerability of liver macrophages to capsules defines virulence of blood-borne bacteria. J Exp Med 2022; 219:e20212032. [PMID: 35258552 PMCID: PMC8908791 DOI: 10.1084/jem.20212032] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/22/2021] [Accepted: 01/24/2022] [Indexed: 12/12/2022] Open
Abstract
Many encapsulated bacteria use capsules to cause invasive diseases. However, it remains largely unknown how the capsules enhance bacterial virulence under in vivo infection conditions. Here we show that the capsules primarily target the liver to enhance bacterial survival at the onset of blood-borne infections. In a mouse sepsis model, the capsules enabled human pathogens Streptococcus pneumoniae and Escherichia coli to circumvent the recognition of liver-resident macrophage Kupffer cells (KCs) in a capsular serotype-dependent manner. In contrast to effective capture of acapsular bacteria by KCs, the encapsulated bacteria are partially (low-virulence types) or completely (high-virulence types) "untouchable" for KCs. We finally identified the asialoglycoprotein receptor (ASGR) as the first known capsule receptor on KCs to recognize the low-virulence serotype-7F and -14 pneumococcal capsules. Our data identify the molecular interplay between the capsules and KCs as a master controller of the fate and virulence of encapsulated bacteria, and suggest that the interplay is targetable for therapeutic control of septic infections.
Collapse
Affiliation(s)
- Haoran An
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Chenyun Qian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Yijia Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xianbin Tian
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jiaying Feng
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Jiao Hu
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yujie Fang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Fangfang Jiao
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Yuna Zeng
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
| | - Xueting Huang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Xianbin Meng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Xue Liu
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Xin Lin
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| | - Zhutian Zeng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Martin Guilliams
- Laboratory of Myeloid Cell Biology in Tissue Homeostasis and Regeneration, VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium
| | - Alain Beschin
- Myeloid Cell Immunology Lab, VIB Center for Inflammation Research, Brussels, Belgium
- Laboratory of Cellular and Molecular Immunology, Vrije University Brussel, Brussels, Belgium
| | - Yongwen Chen
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Yuzhang Wu
- Institute of Immunology, Third Military Medical University, Chongqing, China
| | - Jing Wang
- Shanghai Institute of Immunology, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | | | - John Leong
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA
| | - Jan-Willem Veening
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Haiteng Deng
- School of Life Sciences, Tsinghua University, Beijing, China
| | - Rong Zhang
- The Second Affiliated Hospital of Zhejiang University, Zhejiang University, Hangzhou, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People’s Hospital, Beijing, China
| | - Jiang Wu
- Beijing Center for Disease Control and Prevention, Beijing, China
| | - Yan Cui
- Department of General Surgery, Strategic Support Force Medical Center, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, Department of Basic Medical Science, School of Medicine, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Zangari T, Zafar MA, Lees JA, Abruzzo AR, Bee GCW, Weiser JN. Pneumococcal capsule blocks protection by immunization with conserved surface proteins. NPJ Vaccines 2021; 6:155. [PMID: 34930916 PMCID: PMC8688510 DOI: 10.1038/s41541-021-00413-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/09/2021] [Indexed: 12/03/2022] Open
Abstract
Vaccines targeting Streptococcus pneumoniae (Spn) are limited by dependence on capsular polysaccharide and its serotype diversity. More broadly-based approaches using common protein antigens have not resulted in a licensed vaccine. Herein, we used an unbiased, genome-wide approach to find novel vaccine antigens to disrupt carriage modeled in mice. A Tn-Seq screen identified 198 genes required for colonization of which 16 are known to express conserved, immunogenic surface proteins. After testing defined mutants for impaired colonization of infant and adult mice, 5 validated candidates (StkP, PenA/Pbp2a, PgdA, HtrA, and LytD/Pce/CbpE) were used as immunogens. Despite induction of antibody recognizing the Spn cell surface, there was no protection against Spn colonization. There was, however, protection against an unencapsulated Spn mutant. This result correlated with increased antibody binding to the bacterial surface in the absence of capsule. Our findings demonstrate how the pneumococcal capsule interferes with mucosal protection by antibody to common protein targets.
Collapse
Affiliation(s)
- Tonia Zangari
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - M. Ammar Zafar
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA ,grid.241167.70000 0001 2185 3318Present Address: Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, NC USA
| | - John A. Lees
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA ,grid.7445.20000 0001 2113 8111Present Address: Department of Infectious Disease Epidemiology, Medical Research Council Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Annie R. Abruzzo
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Gavyn Chern Wei Bee
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Jeffrey N. Weiser
- grid.240324.30000 0001 2109 4251Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| |
Collapse
|
11
|
Zhang C, An H, Hu J, Li J, Zhang W, Lan X, Deng H, Zhang JR. MetR is a molecular adaptor for pneumococcal carriage in the healthy upper airway. Mol Microbiol 2021; 116:438-458. [PMID: 33811693 DOI: 10.1111/mmi.14724] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 03/29/2021] [Accepted: 03/30/2021] [Indexed: 11/26/2022]
Abstract
Streptococcus pneumoniae resides in the human upper airway as a commensal but also causes pneumonia, bacteremia, meningitis, and otitis media. It remains unclear how pneumococci adapt to nutritional conditions of various host niches. We here show that MetR, a LysR family transcriptional regulator, serves as a molecular adaptor for pneumococcal fitness, particularly in the upper airway. The metR mutant of strain D39 rapidly disappeared from the nasopharynx but was marginally attenuated in the lungs and bloodstream of mice. RNA-seq and ChIP-seq analyses showed that MetR broadly regulates transcription of the genes involved in methionine synthesis and other functions under methionine starvation. Genetic and biochemical analyses confirmed that MetR is essential for the activation of methionine synthesis but not uptake. Co-infection of influenza virus partially restored the colonization defect of the metR mutant. These results strongly suggest that MetR is particularly evolved for pneumococcal carriage in the upper airway of healthy individuals where free methionine is severely limited, but it becomes dispensable where environmental methionine is relatively more abundant (e.g., inflamed upper airway and sterile sites). To the best of our knowledge, MetR represents the first known regulator particularly for pneumococcal carriage in healthy individuals.
Collapse
Affiliation(s)
- Chengwang Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Haoran An
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Jiao Hu
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Jing Li
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China
| | - Wenhao Zhang
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xun Lan
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| | - Haiteng Deng
- MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing-Ren Zhang
- Center for Infectious Disease Research, School of Medicine, Tsinghua University, Beijing, China.,Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
12
|
Banerjee K, Motley MP, Diago-Navarro E, Fries BC. Serum Antibody Responses against Carbapenem-Resistant Klebsiella pneumoniae in Infected Patients. mSphere 2021; 6:e01335-20. [PMID: 33658281 PMCID: PMC8546725 DOI: 10.1128/msphere.01335-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/04/2021] [Indexed: 11/20/2022] Open
Abstract
Capsular polysaccharide (CPS) heterogeneity within carbapenem-resistant Klebsiella pneumoniae (CR-Kp) strain sequence type 258 (ST258) must be considered when developing CPS-based vaccines. Here, we sought to characterize CPS-specific antibody responses elicited by CR-Kp-infected patients. Plasma and bacterial isolates were collected from 33 hospital patients with positive CR-Kp cultures. Isolate capsules were typed by wzi sequencing. Reactivity and measures of efficacy of patient antibodies were studied against 3 prevalent CR-Kp CPS types (wzi29, wzi154, and wzi50). High IgG titers against wzi154 and wzi50 CPS were documented in 79% of infected patients. Patient-derived (PD) IgGs agglutinated CR-Kp and limited growth better than naive IgG and promoted phagocytosis of strains across the serotype isolated from their donors. Additionally, poly-IgG from wzi50 and wzi154 patients promoted phagocytosis of nonconcordant CR-Kp serotypes. Such effects were lost when poly-IgG was depleted of CPS-specific IgG. Additionally, mice infected with wzi50, wzi154, and wzi29 CR-Kp strains preopsonized with wzi50 patient-derived IgG exhibited lower lung CFU than controls. Depletion of wzi50 antibodies (Abs) reversed this effect in wzi50 and wzi154 infections, whereas wzi154 Ab depletion reduced poly-IgG efficacy against wzi29 CR-Kp We are the first to report cross-reactive properties of CPS-specific Abs from CR-Kp patients through both in vitro and in vivo models.IMPORTANCE Carbapenem-resistant Klebsiella pneumoniae is a rapidly emerging public health threat that can cause fatal infections in up to 50% of affected patients. Due to its resistance to nearly all antimicrobials, development of alternate therapies like antibodies and vaccines is urgently needed. Capsular polysaccharides constitute important targets, as they are crucial for Klebsiella pneumoniae pathogenesis. Capsular polysaccharides are very diverse and, therefore, studying the host's capsule-type specific antibodies is crucial to develop effective anti-CPS immunotherapies. In this study, we are the first to characterize humoral responses in infected patients against carbapenem-resistant Klebsiella pneumoniae expressing different wzi capsule types. This study is the first to report the efficacy of cross-reactive properties of CPS-specific Abs in both in vitro and in vivo models.
Collapse
Affiliation(s)
- Kasturi Banerjee
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran's Administration Medical Center, Northport, New York, USA
| | - Michael P Motley
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Department of Molecular Genetics and Immunology, Stony Brook University, Stony Brook, New York, USA
| | - Elizabeth Diago-Navarro
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
| | - Bettina C Fries
- Department of Medicine, Infectious Disease Division, Stony Brook University, Stony Brook, New York, USA
- Veteran's Administration Medical Center, Northport, New York, USA
- Department of Molecular Genetics and Immunology, Stony Brook University, Stony Brook, New York, USA
| |
Collapse
|
13
|
Effect of N-terminal poly histidine-tag on immunogenicity of Streptococcus pneumoniae surface protein SP0845. Int J Biol Macromol 2020; 163:1240-1248. [DOI: 10.1016/j.ijbiomac.2020.07.056] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 07/04/2020] [Accepted: 07/06/2020] [Indexed: 12/29/2022]
|
14
|
Feng S, Xiong C, Wang G, Wang S, Jin G, Gu G. Exploration of Recombinant Fusion Proteins YAPO and YAPL as Carrier Proteins for Glycoconjugate Vaccine Design against Streptococcus pneumoniae Infection. ACS Infect Dis 2020; 6:2181-2191. [PMID: 32687317 DOI: 10.1021/acsinfecdis.0c00260] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Pneumolysin (Ply), pneumococcal surface protein A (PspA), and pneumococcal surface adhesin A (PsaA) are promising cell surface protein antigen targets for Streptococcus pneumoniae (Spn) vaccine development. Herein, we designed and recombined two fusion proteins, named YAPO and YAPL, which contained the main antigenic epitopes of Ply, PspA, and PsaA. In-depth immunological evaluations revealed that YAPO and YAPL had strong immunocompetence to be well-qualified potential carrier proteins. To verify this possibility, a serotype 3 Spn (ST3) CPS pentasaccharide was conjugated to each fusion protein to generate the resultant glycoconjugates. Immunological studies in mice revealed that, as compared with TT conjugate, YAPO and YAPL conjugates provoked robust T-cell dependent immune responses that could provide better recognition, in vitro efficient opsonophagocytosis, and in vivo effective protection against various serotypes of Spn. Collectively, YAPO and YAPL were identified as immunopotentiating carriers that could help convert immunologically inactive ST3 pentasaccharide into a T cell-dependent antigen and provide efficient and broad spectrum of immunoprotection coverage so as to formulate functional glycoconjugate vaccines against Spn infections.
Collapse
Affiliation(s)
- Shaojie Feng
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Chenghe Xiong
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guirong Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Subo Wang
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| | - Guoxia Jin
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua Dong Lu, Jinan 250014, China
| | - Guofeng Gu
- National Glycoengineering Research Center and Shandong Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, 72 Binhai Road, Qingdao 266237, China
| |
Collapse
|
15
|
The Modified Surface Killing Assay Distinguishes between Protective and Nonprotective Antibodies to PspA. mSphere 2019; 4:4/6/e00589-19. [PMID: 31826968 PMCID: PMC6908419 DOI: 10.1128/msphere.00589-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The most important finding of this study is that the MSKA can be used as an in vitro functional assay. Such an assay will be critical for the development of PspA-containing vaccines. The other important findings relate to the locations and nature of the protection-eliciting epitopes of PspA. There are limited prior data on the locations of protection-eliciting PspA epitopes, but those data along with the data presented here make it clear that there is not a single epitope or domain of PspA that can elicit protective antibody and there exists at least one region of the αHD which seldom elicits protective antibody. Moreover, these data, in concert with prior data, strongly make the case that protective epitopes in the αHD are highly conformational (≥100-amino-acid fragments of the αHD are required), whereas at least some protection-eliciting epitopes in the proline-rich domain are encoded by ≤15-amino-acid sequences. Pneumococcal surface protein A (PspA) elicits antibody protective against lethal challenge by Streptococcus pneumoniae and is a candidate noncapsular antigen for inclusion in vaccines. Evaluation of immunity to PspA in human trials would be greatly facilitated by an in vitro functional assay able to distinguish protective from nonprotective antibodies to PspA. Mouse monoclonal antibodies (MAbs) to PspA can mediate killing by human granulocytes in the modified surface killing assay (MSKA). To determine if the MSKA can distinguish between protective and nonprotective MAbs, we examined seven MAbs to PspA. All bound recombinant PspA, as detected by enzyme-linked immunosorbent assay and Western blotting; four gave strong passive protection against fatal challenge, two were nonprotective, and the seventh one only delayed death. The four that were able to provide strong passive protection were also most able to enhance killing in the MSKA, the two that were not protective in mice were not effective in the MSKA, and the MAb that was only weakly protective in mice was weakly effective in the MSKA (P < 0.001). One of the four most protective MAbs tested reacted to the proline-rich domain of PspA. Two of the other most protective MAbs and the weakly protective MAb reacted with a fragment from PspA’s α-helical domain (αHD), containing amino acids (aa) 148 to 247 from the N terminus of PspA. The fourth highly protective MAb recognized none of the overlapping 81- or 100-aa fragments of PspA. The two nonprotective MAbs recognized a more N-terminal αHD fragment (aa 48 to 147). IMPORTANCE The most important finding of this study is that the MSKA can be used as an in vitro functional assay. Such an assay will be critical for the development of PspA-containing vaccines. The other important findings relate to the locations and nature of the protection-eliciting epitopes of PspA. There are limited prior data on the locations of protection-eliciting PspA epitopes, but those data along with the data presented here make it clear that there is not a single epitope or domain of PspA that can elicit protective antibody and there exists at least one region of the αHD which seldom elicits protective antibody. Moreover, these data, in concert with prior data, strongly make the case that protective epitopes in the αHD are highly conformational (≥100-amino-acid fragments of the αHD are required), whereas at least some protection-eliciting epitopes in the proline-rich domain are encoded by ≤15-amino-acid sequences.
Collapse
|