1
|
Lucidi M, Visaggio D, Migliaccio A, Capecchi G, Visca P, Imperi F, Zarrilli R. Pathogenicity and virulence of Acinetobacter baumannii: Factors contributing to the fitness in healthcare settings and the infected host. Virulence 2024; 15:2289769. [PMID: 38054753 PMCID: PMC10732645 DOI: 10.1080/21505594.2023.2289769] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 11/27/2023] [Indexed: 12/07/2023] Open
Abstract
Acinetobacter baumannii is a common cause of healthcare-associated infections and hospital outbreaks, particularly in intensive care units. Much of the success of A. baumannii relies on its genomic plasticity, which allows rapid adaptation to adversity and stress. The capacity to acquire novel antibiotic resistance determinants and the tolerance to stresses encountered in the hospital environment promote A. baumannii spread among patients and long-term contamination of the healthcare setting. This review explores virulence factors and physiological traits contributing to A. baumannii infection and adaptation to the hospital environment. Several cell-associated and secreted virulence factors involved in A. baumannii biofilm formation, cell adhesion, invasion, and persistence in the host, as well as resistance to xeric stress imposed by the healthcare settings, are illustrated to give reasons for the success of A. baumannii as a hospital pathogen.
Collapse
Affiliation(s)
- Massimiliano Lucidi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
| | - Daniela Visaggio
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | | | | | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Francesco Imperi
- Department of Science, Roma Tre University, Rome, Italy
- NBFC, National Biodiversity Future Center, Palermo, Italy
- Santa Lucia Foundation IRCCS, Rome, Italy
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
2
|
Ren X, Clark RM, Bansah DA, Varner EN, Tiffany CR, Jaswal K, Geary JH, Todd OA, Winkelman JD, Friedman ES, Zemel BS, Wu GD, Zackular JP, DePas WH, Behnsen J, Palmer LD. Amino acid competition shapes Acinetobacter baumannii gut carriage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.19.619093. [PMID: 39502362 PMCID: PMC11537318 DOI: 10.1101/2024.10.19.619093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/14/2024]
Abstract
Antimicrobial resistance is an urgent threat to human health. Asymptomatic colonization is often critical for persistence of antimicrobial-resistant pathogens. Gut colonization by the antimicrobial-resistant priority pathogen Acinetobacter baumannii is associated with increased risk of clinical infection. Ecological factors shaping A. baumannii gut colonization remain unclear. Here we show that A. baumannii and other pathogenic Acinetobacter evolved to utilize the amino acid ornithine, a non-preferred carbon source. A. baumannii utilizes ornithine to compete with the resident microbiota and persist in the gut in mice. Supplemental dietary ornithine promotes long-term fecal shedding of A. baumannii. By contrast, supplementation of a preferred carbon source-monosodium glutamate (MSG)-abolishes the requirement for A. baumannii ornithine catabolism. Additionally, we report evidence for diet promoting A. baumannii gut carriage in humans. Together, these results highlight that evolution of ornithine catabolism allows A. baumannii to compete with the microbiota in the gut, a reservoir for pathogen spread.
Collapse
Affiliation(s)
- Xiaomei Ren
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - R. Mason Clark
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Dziedzom A. Bansah
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Elizabeth N. Varner
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Connor R. Tiffany
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Kanchan Jaswal
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - John H. Geary
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Olivia A. Todd
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | | | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Babette S. Zemel
- Department of Pediatrics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Joseph P. Zackular
- Division of Protective Immunity, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Microbial Medicine, Children’s Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - William H. DePas
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Judith Behnsen
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| |
Collapse
|
3
|
Escalante J, Hamza M, Nishimura B, Melecio M, Davies-Sala C, Tuttobene MR, Subils T, Traglia GM, Pham C, Sieira R, Actis LA, Bonomo RA, Tolmasky ME, Ramirez MS. Carbapenem-resistant Acinetobacter baumannii (CRAB): metabolic adaptation and transcriptional response to human urine (HU). Sci Rep 2024; 14:19145. [PMID: 39160175 PMCID: PMC11333713 DOI: 10.1038/s41598-024-70216-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 08/13/2024] [Indexed: 08/21/2024] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major human pathogen and a research priority for developing new antimicrobial agents. CRAB is a causative agent of a variety of infections in different body sites. One of the manifestations is catheter-associated urinary tract infection, which exposes the bacteria to the host's urine, creating a particular environment. Exposure of two CRAB clinical isolates, AB5075 and AMA40, to human urine (HU) resulted in the differential expression levels of 264 and 455 genes, respectively, of which 112 were common to both strains. Genes within this group play roles in metabolic pathways such as phenylacetic acid (PAA) catabolism, the Hut system, the tricarboxylic acid (TCA) cycle, and other processes like quorum sensing and biofilm formation. These results indicate that the presence of HU induces numerous adaptive changes in gene expression of the infecting bacteria. These changes presumably help bacteria establish and thrive in the hostile conditions in the urinary tract. These analyses advance our understanding of CRAB's metabolic adaptations to human fluids, as well as expand knowledge on bacterial responses to distinct human fluids containing different concentrations of human serum albumin (HSA).
Collapse
Affiliation(s)
- Jenny Escalante
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Mase Hamza
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Brent Nishimura
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Meghan Melecio
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Carol Davies-Sala
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Marisel R Tuttobene
- Área Biología Molecular, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR, CONICET-UNR), Rosario, Argentina
| | - Tomás Subils
- Instituto de Procesos Biotecnológicos y Químicos de Rosario (IPROBYQ, CONICET-UNR), Rosario, Argentina
| | - German M Traglia
- Unidad de Genómica y Bioinformática, Departamento de Ciencias Biológicas, CENUR Litoral Norte, Universidad de la República, Montevideo, Uruguay
| | - Chloe Pham
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - Rodrigo Sieira
- Fundación Instituto Leloir-IIBBA CONICET, Buenos Aires, Argentina
| | - Luis A Actis
- Department of Microbiology, Miami University, Oxford, Ohio, USA
| | - Robert A Bonomo
- Research Service and GRECC, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Departments of Medicine, Pharmacology, Molecular Biology and Microbiology, Biochemistry, Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Marcelo E Tolmasky
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA
| | - María Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, 800 N State College Blvd, Fullerton, CA, USA.
| |
Collapse
|
4
|
Sett A, Dubey V, Bhowmik S, Pathania R. Decoding Bacterial Persistence: Mechanisms and Strategies for Effective Eradication. ACS Infect Dis 2024; 10:2525-2539. [PMID: 38940498 DOI: 10.1021/acsinfecdis.4c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
The ability of pathogenic bacteria to evade antibiotic treatment is an intricate and multifaceted phenomenon. Over the years, treatment failure among patients due to determinants of antimicrobial resistance (AMR) has been the focal point for the research and development of new therapeutic agents. However, the survival of bacteria by persisting under antibiotic stress has largely been overlooked. Bacterial persisters are a subpopulation of sensitive bacterial cells exhibiting a noninheritable drug-tolerant phenotype. They are linked to the recalcitrance of infections in healthcare settings, in turn giving rise to AMR variants. The importance of bacterial persistence in recurring infections has been firmly recognized. Fundamental work over the past decade has highlighted numerous unique tolerance factors contributing to the persister phenotype in many clinically relevant pathogens. This review summarizes contributing factors that could aid in developing new strategies against bacterial antibiotic persisters.
Collapse
Affiliation(s)
- Abhiroop Sett
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Vineet Dubey
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Somok Bhowmik
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
- Centre of Excellence in Disaster Mitigation and Management, Indian Institute of Technology, Roorkee, Uttarakhand 247667, India
| |
Collapse
|
5
|
Kurniawan J, Waturangi DE, Julyantoro PGS, Papuangan N. Ice nucleation active bacteria metabolites as antibiofilm agent to control Aeromonas hydrophila and Streptococcus agalactiae infections in Aquaculture. BMC Res Notes 2024; 17:166. [PMID: 38886828 PMCID: PMC11184859 DOI: 10.1186/s13104-024-06821-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 06/05/2024] [Indexed: 06/20/2024] Open
Abstract
OBJECTIVES The aim of this study was to quantify and identify metabolites of Ice Nucleation Active (INA) bacteria as an anti-biofilm agent against biofilms of fish pathogens such as Aeromonas hydrophila and Streptococcus agalactiae. RESULTS Ice nucleation active bacteria, which have the ability to catalyze ice nucleation, isolated from rainwater in previous studies, were used. All INA isolates were tested in several assays, including the antimicrobial test, which uses streptomycin as the positive control and none of the isolates were found positive in the antimicrobial test. As for the quorum quenching assay, it was found that four out of ten isolates were able to disturb the communication system in Chromobacterium violaceum wild type, which was used as the indicator bacteria. On the next assay, all ten isolates were tested for Biofilm Inhibition and Destruction and showed anti-biofilm activity with the highest percentage inhibition of 33.49% by isolate A40 against A. hydrophila and 77.26% by isolate A19 against S. agalactiae. C1 performed the highest destruction against A. hydrophila and S. agalactiae, with percentages of 32.11% and 51.88%, respectively. As for the GC-MS analysis, supernatants of INA bacteria contain bioactive compounds such as sarcosine and fatty acids, which are known to have antibiofilm activity against several biofilm-forming bacteria. Through 16s rRNA sequencing, identified bacteria are from the Pantoea, Enterobacter, and Acinetobacter genera. As for the conclusion, ice nucleation active bacteria metabolites tested showed positive results against pathogenic bacteria Aeromonas hydrophila and Streptococcus agalactiae in destructing and inhibiting biofilm growth.
Collapse
Affiliation(s)
- Jessica Kurniawan
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia
| | - Diana Elizabeth Waturangi
- Department of Biotechnology, Faculty of Biotechnology, Atma Jaya Catholic University of Indonesia, Jalan Jenderal Sudirman 51, Jakarta, 12930, Indonesia.
| | - Pande Gde Sasmita Julyantoro
- Department of Aquatic Resources Management, Faculty of Marine Science and Fisheries, University of Udayana, Denpasar, Bali, 80361, Indonesia
| | - Nurmaya Papuangan
- Department of Biology Education, Faculty of Teacher Training and Education, Khairun University, Ternate, 97728, Indonesia
| |
Collapse
|
6
|
M E S, Selvam PK, Gopikrishnan M, Vasudevan K, Zayed H, Ramasamy M, Walter CEJ, C GPD. Transcriptomic analysis reveals zinc-mediated virulence and pathogenicity in multidrug-resistant Acinetobacter baumannii. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:1-21. [PMID: 38960471 DOI: 10.1016/bs.apcsb.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Acinetobacter baumannii is a gram-negative bacterium well known for its multidrug resistance and connection to nosocomial infections under ESKAPE pathogens. This opportunistic pathogen is ubiquitously associated with nosocomial infections, posing significant threats within healthcare environments. Its critical clinical symptoms, namely, meningitis, urinary tract infections, bloodstream infections, ventilator-associated pneumonia, and pneumonia, catalyze the imperative demand for innovative therapeutic interventions. The proposed research focuses on delineating the role of Zinc, a crucial metallo-binding protein and micronutrient integral to bacterial metabolism and virulence, to enhance understanding of the pathogenicity of A. baumannii. RNA sequencing and subsequent DESeq2 analytical methods were used to identify differential gene expressions influenced by zinc exposure. Exploiting the STRING database for functional enrichment analysis has demonstrated the complex molecular mechanisms underlying the enhancement of pathogenicity prompted by Zinc. Moreover, hub genes like gltB, ribD, AIL77834.1, sdhB, nuoI, acsA_1, acoC, accA, accD were predicted using the cytohubba tool in Cytoscape. This investigation underscores the pivotal role of Zinc in the virulence of A. baumannii elucidates the underlying molecular pathways responsible for its pathogenicity. The research further accentuates the need for innovative therapeutic strategies to combat A. baumannii infections, particularly those induced by multidrug-resistant strains.
Collapse
Affiliation(s)
- Santhosh M E
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Prasanna Kumar Selvam
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Mohanraj Gopikrishnan
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India
| | - Karthick Vasudevan
- Department of Biotechnology, School of Applied Sciences, REVA University, Bengaluru, Karnataka, India
| | - Hatem Zayed
- Department of Biomedical Sciences, College of Health and Sciences, Qatar University, Doha, Qatar
| | - Magesh Ramasamy
- Department of Biotechnology, Sri Ramachandra Institute of Higher Education and Research (DU), Chennai, Tamil Nadu, India
| | | | - George Priya Doss C
- Laboratory of Integrative Genomics, Department of Integrative Biology, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India.
| |
Collapse
|
7
|
Saini M, Gaurav A, Hussain A, Pathania R. Small Molecule IITR08367 Potentiates Antibacterial Efficacy of Fosfomycin against Acinetobacter baumannii by Efflux Pump Inhibition. ACS Infect Dis 2024; 10:1711-1724. [PMID: 38562022 DOI: 10.1021/acsinfecdis.4c00077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Fosfomycin is a broad-spectrum single-dose therapy approved for treating lower urinary tract infections. Acinetobacter baumannii, one of the five major UTI-causing pathogens, is intrinsically resistant to fosfomycin. Reduced uptake and active efflux are major reasons for this intrinsic resistance. AbaF, a major facilitator superfamily class of transporter in A. baumannii, is responsible for fosfomycin efflux and biofilm formation. This study describes the identification and validation of a novel small-molecule efflux pump inhibitor that potentiates fosfomycin efficacy against A. baumannii. An AbaF inhibitor screening was performed against Escherichia coli KAM32/pUC18_abaF, using the noninhibitory concentration of 24 putative efflux pump inhibitors. The inhibitory activity of IITR08367 [bis(4-methylbenzyl) disufide] against fosfomycin/H+ antiport was validated using ethidium bromide efflux, quinacrine-based proton-sensitive fluorescence, and membrane depolarization assays. IITR08367 inhibits fosfomycin/H+ antiport activity by perturbing the transmembrane proton gradient. IITR08367 is a nontoxic molecule that potentiates fosfomycin activity against clinical strains of A. baumannii and prevents biofilm formation by inhibiting efflux pump (AbaF). The IITR08367-fosfomycin combination reduced bacterial burden by > 3 log10 in kidney and bladder tissue in the murine UTI model. Overall, fosfomycin, in combination with IITR08367, holds the potential to treat urinary tract infections caused by A. baumannii.
Collapse
Affiliation(s)
- Mahak Saini
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India
| | - Amit Gaurav
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India
| | - Arsalan Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India
| | - Ranjana Pathania
- Department of Biosciences and Bioengineering, Indian Institute of Technology, Roorkee, Uttarakhand 247 667, India
| |
Collapse
|
8
|
Walsh D, Bevan J, Harrison F. How Does Airway Surface Liquid Composition Vary in Different Pulmonary Diseases, and How Can We Use This Knowledge to Model Microbial Infections? Microorganisms 2024; 12:732. [PMID: 38674677 PMCID: PMC11052052 DOI: 10.3390/microorganisms12040732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/26/2024] [Accepted: 03/28/2024] [Indexed: 04/28/2024] Open
Abstract
Growth environment greatly alters many facets of pathogen physiology, including pathogenesis and antimicrobial tolerance. The importance of host-mimicking environments for attaining an accurate picture of pathogen behaviour is widely recognised. Whilst this recognition has translated into the extensive development of artificial cystic fibrosis (CF) sputum medium, attempts to mimic the growth environment in other respiratory disease states have been completely neglected. The composition of the airway surface liquid (ASL) in different pulmonary diseases is far less well characterised than CF sputum, making it very difficult for researchers to model these infection environments. In this review, we discuss the components of human ASL, how different lung pathologies affect ASL composition, and how different pathogens interact with these components. This will provide researchers interested in mimicking different respiratory environments with the information necessary to design a host-mimicking medium, allowing for better understanding of how to treat pathogens causing infection in these environments.
Collapse
Affiliation(s)
- Dean Walsh
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK (F.H.)
| | | | | |
Collapse
|
9
|
Le TS, Bui XT, Nguyen PD, Hao Ngo H, Dang BT, Le Quang DT, Thi Pham T, Visvanathan C, Diels L. Bacterial community composition in a two-stage anaerobic membrane bioreactor for co-digestion of food waste and food court wastewater. BIORESOURCE TECHNOLOGY 2024; 391:129925. [PMID: 37898371 DOI: 10.1016/j.biortech.2023.129925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/24/2023] [Accepted: 10/24/2023] [Indexed: 10/30/2023]
Abstract
This study investigated the microbial community of a two-stage anaerobic membrane bioreactor (2S-AnMBR) co-digesting food waste and food court wastewater. The hydrolysis reactor (HR) was dominated by Bacteroidetes and Firmicutes phylum, with genus Lactobacillus enriched due to food waste fermentation. The up-flow anaerobic sludge blanket (UASB) was dominated by genus such as Methanobacterium and Methanosaeta. The presence of Methanobacterium (91 %) and Methanosaeta (7.5 %) suggested that methane production pathways inevitably undergo both hydrogenotrophic and acetoclastic methanogenesis. Hydrogen generated during hydrolysis fermentation in the HR contributed to methane production in the UASB via hydrogenotrophic pathways. However, the low abundance of Methanosaeta in the UASB can be attributed to the limited inffluent of volatile fatty acids (VFA) and the competitive presence of acetate-consuming bacteria Acinetobacter. The UASB exhibited more excellent dispersion and diversity of metabolic pathways compared to the HR, indicating efficient methane production.
Collapse
Affiliation(s)
- Thanh-Son Le
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam; Institute for Environment and Natural Resources, 142 To Hien Thanh street, District 10, Ho Chi Minh City, Viet Nam
| | - Xuan-Thanh Bui
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Phuoc-Dan Nguyen
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam.
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Bao-Trong Dang
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Do-Thanh Le Quang
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Tan Thi Pham
- Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City, Viet Nam; Vietnam National University Ho Chi Minh City (VNU-HCM), Linh Trung ward, Ho Chi Minh City 700000, Viet Nam
| | - Chettiyappan Visvanathan
- Department of Civil and Environmental Engineering, Mahidol University, Salaya, Nakhon Pathom, Thailand
| | - Ludo Diels
- University of Antwerp, Groenenborgerlaan 171, 2020 Antwerpen, Belgium
| |
Collapse
|
10
|
Leus IV, Olvera M, Adamiak JW, Nguyen LL, Zgurskaya HI. Acinetobacter baumannii Survival under Infection-Associated Stresses Depends on the Expression of Resistance-Nodulation-Division and Major Facilitator Superfamily Efflux Pumps. Antibiotics (Basel) 2023; 13:7. [PMID: 38275317 PMCID: PMC10812440 DOI: 10.3390/antibiotics13010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Multidrug efflux transporters are major contributors to the antibiotic resistance of Acinetobacter baumannii in clinical settings. Previous studies showed that these transporters are tightly integrated into the physiology of A. baumannii and have diverse functions. However, for many of the efflux pumps, such functions remain poorly defined. In this study, we characterized two putative drug efflux pumps, AmfAB and AmfCD (Acinetobacter Major Facilitator), that are homologous to EmrAB-like transporters from Escherichia coli and other Gram-negative bacteria. These pumps comprise the Major Facilitator Superfamily (MFS) transporters AmfB and AmfD and the periplasmic membrane fusion proteins AmfA and AmfC, respectively. We inactivated and overproduced these pumps in the wild-type ATCC 17978 strain and its derivative strains lacking the major efflux pumps from the Resistance-Nodulation-Division (RND) superfamily and characterized antibiotic susceptibilities and growth of the strains under stresses typical during human infections. We found that neither AmfAB nor AmfCD contribute to the antibiotic non-susceptibility phenotypes of A. baumannii. The two pumps, however, are critical for the adaptation and growth of the bacterium under acidic stress, whereas AmfCD also contributes to growth under conditions of low iron, high temperature, and in the presence of bile salts. These functions are dependent on the presence of the RND pumps, the inactivation of which further diminishes A. baumannii survival and growth. Our results suggest that MFS transporters contribute to stress survival by affecting the permeability properties of the A. baumannii cell envelope.
Collapse
Affiliation(s)
| | | | | | | | - Helen I. Zgurskaya
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, OK 73072, USA; (I.V.L.); (M.O.); (J.W.A.); (L.L.N.)
| |
Collapse
|
11
|
Heidarinia H, Tajbakhsh E, Rostamian M, Momtaz H. Epitope mapping of Acinetobacter baumannii outer membrane protein W (OmpW) and laboratory study of an OmpW-derivative peptide. Heliyon 2023; 9:e18614. [PMID: 37560650 PMCID: PMC10407128 DOI: 10.1016/j.heliyon.2023.e18614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/11/2023] Open
Abstract
Outer membrane protein W (OmpW) is a less-known A. baumannii antigen with potential immunogenic properties. The epitopes of this protein are not well-identified yet. Therefore, in the present study, B- and T-cell epitopes of A. baumannii OmpW were found using comprehensive in silico and partially in vitro studies. The T-cell (both class-I and class-II) and B-cell (both linear and conformational) epitopes were predicted and screened through many bioinformatics approaches including the prediction of IFN-γ production, immunogenicity, toxicity, allergenicity, human similarity, and clustering. A single 15-mer epitopic peptide containing a linear B-cell and both classes of T-cell epitopes were found and used for further assays. For in vitro assays, patient- and healthy control-derived peripheral blood mononuclear cells were stimulated with the 15-mer peptide, Phytohemagglutinin, or medium alone, and cell proliferation and IFN-γ production assays were performed. The bioinformatics studies led to mapping OmpW epitopes and introducing a 15-mer peptide. In vitro assays to some extent showed its potency in cell proliferation but not in IFN-γ induction, although the responses were not very expressive and faced some questions/limitations. In general, in the current study, we mapped the most immunogenic epitopes of OmpW that may be used for future studies and also assayed one of these epitopes in vitro, which was shown to have an immunogenicity potential. However, the induced immune responses were not strong which suggests that the present peptide needs a series of biotechnological manipulations to be used as a potential vaccine candidate. More studies in this field are recommended.
Collapse
Affiliation(s)
- Hana Heidarinia
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Elahe Tajbakhsh
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hassan Momtaz
- Department of Microbiology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|