1
|
Pleguezuelos-Manzano C, Beenker WAG, van Son GJF, Begthel H, Amatngalim GD, Beekman JM, Clevers H, den Hertog J. Dual RNA sequencing of a co-culture model of Pseudomonas aeruginosa and human 2D upper airway organoids. Sci Rep 2025; 15:2222. [PMID: 39824906 DOI: 10.1038/s41598-024-82500-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 12/05/2024] [Indexed: 01/20/2025] Open
Abstract
Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required. Here, we set up a new P. aeruginosa infection model, using 2D upper airway nasal organoids that were derived from 3D organoids. Using dual RNA-sequencing, we dissected the interaction between organoid epithelial cells and WT or QS-mutant P. aeruginosa strains. Since only a single healthy individual and a single CF subject were used as donors for the organoids, conclusions about CF-specific effects could not be deduced. However, P. aeruginosa induced epithelial inflammation, whereas QS signaling did not affect the epithelial airway cells. Conversely, the epithelium influenced infection-related processes of P. aeruginosa, including QS-mediated regulation. Comparison of our model with samples from the airways of CF subjects indicated that our model recapitulates important aspects of infection in vivo. Hence, the 2D airway organoid infection model is relevant and may help to reduce the future burden of P. aeruginosa infections in CF.
Collapse
Affiliation(s)
- Cayetano Pleguezuelos-Manzano
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Wouter A G Beenker
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gijs J F van Son
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Harry Begthel
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands
| | - Gimano D Amatngalim
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jeffrey M Beekman
- Department of Pediatric Pulmonology, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Member of ERN-LUNG, Utrecht, The Netherlands
- Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Centre for Living Technologies, Eindhoven-Wageningen-Utrecht Alliance, Utrecht, The Netherlands
| | - Hans Clevers
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Oncode Institute, Hubrecht Institute-KNAW and University Medical Center, Utrecht, The Netherlands.
- Roche Pharma Research and Early Development, Roche Innovation Center Basel, 4070, Basel, Switzerland.
| | - Jeroen den Hertog
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Utrecht, The Netherlands.
- Institute Biology Leiden, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
Expanding the search for small-molecule antibacterials by multidimensional profiling. Nat Chem Biol 2022; 18:584-595. [PMID: 35606559 DOI: 10.1038/s41589-022-01040-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 04/15/2022] [Indexed: 11/08/2022]
Abstract
New techniques for systematic profiling of small-molecule effects can enhance traditional growth inhibition screens for antibiotic discovery and change how we search for new antibacterial agents. Computational models that integrate physicochemical compound properties with their phenotypic and molecular downstream effects can not only predict efficacy of molecules yet to be tested, but also reveal unprecedented insights on compound modes of action (MoAs). The unbiased characterization of compounds that themselves are not growth inhibitory but exhibit diverse MoAs, can expand antibacterial strategies beyond direct inhibition of core essential functions. Early and systematic functional annotation of compound libraries thus paves the way to new models in the selection of lead antimicrobial compounds. In this Review, we discuss how multidimensional small-molecule profiling and the ever-increasing computing power are accelerating the discovery of unconventional antibacterials capable of bypassing resistance and exploiting synergies with established antibacterial treatments and with protective host mechanisms.
Collapse
|
3
|
Ducret V, Abdou M, Goncalves Milho C, Leoni S, Martin-Pelaud O, Sandoz A, Segovia Campos I, Tercier-Waeber ML, Valentini M, Perron K. Global Analysis of the Zinc Homeostasis Network in Pseudomonas aeruginosa and Its Gene Expression Dynamics. Front Microbiol 2021; 12:739988. [PMID: 34690984 PMCID: PMC8531726 DOI: 10.3389/fmicb.2021.739988] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 08/24/2021] [Indexed: 11/28/2022] Open
Abstract
Zinc is one of the most important trace elements for life and its deficiency, like its excess, can be fatal. In the bacterial opportunistic pathogen Pseudomonas aeruginosa, Zn homeostasis is not only required for survival, but also for virulence and antibiotic resistance. Thus, the bacterium possesses multiple Zn import/export/storage systems. In this work, we determine the expression dynamics of the entire P. aeruginosa Zn homeostasis network at both transcript and protein levels. Precisely, we followed the switch from a Zn-deficient environment, mimicking the initial immune strategy to counteract bacterial infections, to a Zn-rich environment, representing the phagocyte metal boost used to eliminate an engulfed pathogen. Thanks to the use of the NanoString technology, we timed the global silencing of Zn import systems and the orchestrated induction of Zn export systems. We show that the induction of Zn export systems is hierarchically organized as a function of their impact on Zn homeostasis. Moreover, we identify PA2807 as a novel Zn resistance component in P. aeruginosa and highlight new regulatory links among Zn-homeostasis systems. Altogether, this work unveils a sophisticated and adaptive homeostasis network, which complexity is key in determining a pathogen spread in the environment and during host-colonization.
Collapse
Affiliation(s)
- Verena Ducret
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Melina Abdou
- Department of Inorganic and Analytical Chemistry, University of Geneva, Geneva, Switzerland
| | - Catarina Goncalves Milho
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Sara Leoni
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Oriane Martin-Pelaud
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Antoine Sandoz
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland
| | - Inés Segovia Campos
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.,Department of Earth Sciences, University of Geneva, Geneva, Switzerland
| | | | - Martina Valentini
- Department of Microbiology and Molecular Medicine, CMU, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Karl Perron
- Microbiology Unit, Department of Botany and Plant Biology, University of Geneva, Geneva, Switzerland.,Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, Switzerland
| |
Collapse
|
4
|
Morin CD, Déziel E, Gauthier J, Levesque RC, Lau GW. An Organ System-Based Synopsis of Pseudomonas aeruginosa Virulence. Virulence 2021; 12:1469-1507. [PMID: 34180343 PMCID: PMC8237970 DOI: 10.1080/21505594.2021.1926408] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Driven in part by its metabolic versatility, high intrinsic antibiotic resistance, and a large repertoire of virulence factors, Pseudomonas aeruginosa is expertly adapted to thrive in a wide variety of environments, and in the process, making it a notorious opportunistic pathogen. Apart from the extensively studied chronic infection in the lungs of people with cystic fibrosis (CF), P. aeruginosa also causes multiple serious infections encompassing essentially all organs of the human body, among others, lung infection in patients with chronic obstructive pulmonary disease, primary ciliary dyskinesia and ventilator-associated pneumonia; bacteremia and sepsis; soft tissue infection in burns, open wounds and postsurgery patients; urinary tract infection; diabetic foot ulcers; chronic suppurative otitis media and otitis externa; and keratitis associated with extended contact lens use. Although well characterized in the context of CF, pathogenic processes mediated by various P. aeruginosa virulence factors in other organ systems remain poorly understood. In this review, we use an organ system-based approach to provide a synopsis of disease mechanisms exerted by P. aeruginosa virulence determinants that contribute to its success as a versatile pathogen.
Collapse
Affiliation(s)
- Charles D Morin
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Eric Déziel
- Centre Armand-Frappier Santé Biotechnologie, Institut National De La Recherche Scientifique (INRS), Laval, Quebec, Canada
| | - Jeff Gauthier
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Roger C Levesque
- Département De Microbiologie-infectiologie Et Immunologie, Institut De Biologie Intégrative Et Des Systèmes (IBIS), Université Laval, Québec City, Quebec, Canada
| | - Gee W Lau
- Department of Pathobiology, University of Illinois at Urbana-Champaign, Urbana, IL, US
| |
Collapse
|
5
|
Calprotectin-Mediated Zinc Chelation Inhibits Pseudomonas aeruginosa Protease Activity in Cystic Fibrosis Sputum. J Bacteriol 2021; 203:e0010021. [PMID: 33927050 DOI: 10.1128/jb.00100-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa induces pathways indicative of low zinc availability in the cystic fibrosis (CF) lung environment. To learn more about P. aeruginosa zinc access in CF, we grew P. aeruginosa strain PAO1 directly in expectorated CF sputum. The P. aeruginosa Zur transcriptional repressor controls the response to low intracellular zinc, and we used the NanoString methodology to monitor levels of Zur-regulated transcripts, including those encoding a zincophore system, a zinc importer, and paralogs of zinc containing proteins that do not require zinc for activity. Zur-controlled transcripts were induced in sputum-grown P. aeruginosa compared to those grown in control cultures but not if the sputum was amended with zinc. Amendment of sputum with ferrous iron did not reduce expression of Zur-regulated genes. A reporter fusion to a Zur-regulated promoter had variable activity in P. aeruginosa grown in sputum from different donors, and this variation inversely correlated with sputum zinc concentrations. Recombinant human calprotectin (CP), a divalent-metal binding protein released by neutrophils, was sufficient to induce a zinc starvation response in P. aeruginosa grown in laboratory medium or zinc-amended CF sputum, indicating that CP is functional in the sputum environment. Zinc metalloproteases comprise a large fraction of secreted zinc-binding P. aeruginosa proteins. Here, we show that recombinant CP inhibited both LasB-mediated casein degradation and LasA-mediated lysis of Staphylococcus aureus, which was reversible with added zinc. These studies reveal the potential for CP-mediated zinc chelation to posttranslationally inhibit zinc metalloprotease activity and thereby affect the protease-dependent physiology and/or virulence of P. aeruginosa in the CF lung environment. IMPORTANCE The factors that contribute to worse outcomes in individuals with cystic fibrosis (CF) with chronic Pseudomonas aeruginosa infections are not well understood. Therefore, there is a need to understand environmental factors within the CF airway that contribute to P. aeruginosa colonization and infection. We demonstrate that growing bacteria in CF sputum induces a zinc starvation response that inversely correlates with sputum zinc levels. Additionally, both calprotectin and a chemical zinc chelator inhibit the proteolytic activities of LasA and LasB proteases, suggesting that extracellular zinc chelators can influence proteolytic activity and thus P. aeruginosa virulence and nutrient acquisition in vivo.
Collapse
|
6
|
Morpholinium-based ionic liquids show antimicrobial activity against clinical isolates of Pseudomonas aeruginosa. Res Microbiol 2021; 172:103817. [PMID: 33741516 DOI: 10.1016/j.resmic.2021.103817] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 11/22/2022]
Abstract
Pseudomonas aeruginosa is a multi-drug resistant (MDR) pathogen. It is classified by WHO as one of the most life-threatening pathogens causing nosocomial infections. Some of its clinical isolates and their subpopulations show high persistence to many antibiotics that are recommended by the European Committee on Antimicrobial Susceptibility Testing (EUCAST). Thus, there is a need for non-traditional classes of antibiotics to fight the increasing threat of MDR P. aeruginosa. Ionic liquids (IL) are one such promising class of novel antibiotics. We selected four strains of P. aeruginosa and studied the growth inhibition and other effects of 12 different ILs. We used the well-characterized P. aeruginosa PAO1 (ATCC 15692) as model strain and compared it to three other isolates from chronic lung infection (LES B58), skin burn infection (UCBPP-PA14) and keratitis infection (39016), respectively. The ILs consisted of either 4,4-didecylmorpholinium [Dec2Mor]+ or 4-decyl-4-ethylmorpholinium [DecEtMor]+ cations combined with different anions. We found that the ILs with 4,4-didecylmorpholinium [Dec2Mor]+ cations most effectively inhibited bacterial growth as well as reduced strain fitness and virulence factor production. Our results indicate that these ILs could be used to treat P. aeruginosa infections.
Collapse
|
7
|
Camus L, Vandenesch F, Moreau K. From genotype to phenotype: adaptations of Pseudomonas aeruginosa to the cystic fibrosis environment. Microb Genom 2021; 7:mgen000513. [PMID: 33529147 PMCID: PMC8190622 DOI: 10.1099/mgen.0.000513] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
Pseudomonas aeruginosa is one of the main microbial species colonizing the lungs of cystic fibrosis patients and is responsible for the decline in respiratory function. Despite the hostile pulmonary environment, P. aeruginosa is able to establish chronic infections thanks to its strong adaptive capacity. Various longitudinal studies have attempted to compare the strains of early infection with the adapted strains of chronic infection. Thanks to new '-omics' techniques, convergent genetic mutations, as well as transcriptomic and proteomic dysregulations have been identified. As a consequence of this evolution, the adapted strains of P. aeruginosa have particular phenotypes that promote persistent infection.
Collapse
Affiliation(s)
- Laura Camus
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| | - François Vandenesch
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
- Centre National de Référence des Staphylocoques, Hospices Civils de Lyon, Lyon, France
- Institut des Agents Infectieux, Hospices Civils de Lyon, Lyon, France
| | - Karen Moreau
- CIRI – Centre International de Recherche en Infectiologie, Université de Lyon/Inserm U1111/Université Claude Bernard Lyon 1/CNRS UMR5308/ENS de Lyon, Lyon, France
| |
Collapse
|
8
|
Shetty AC, Mattick J, Chung M, McCracken C, Mahurkar A, Filler SG, Fraser CM, Rasko DA, Bruno VM, Dunning Hotopp JC. Cost effective, experimentally robust differential-expression analysis for human/mammalian, pathogen and dual-species transcriptomics. Microb Genom 2020; 6. [PMID: 31851607 PMCID: PMC7067034 DOI: 10.1099/mgen.0.000320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
As sequencing read length has increased, researchers have quickly adopted longer reads for their experiments. Here, we examine 14 pathogen or host–pathogen differential gene expression data sets to assess whether using longer reads is warranted. A variety of data sets was used to assess what genomic attributes might affect the outcome of differential gene expression analysis including: gene density, operons, gene length, number of introns/exons and intron length. No genome attribute was found to influence the data in principal components analysis, hierarchical clustering with bootstrap support, or regression analyses of pairwise comparisons that were undertaken on the same reads, looking at all combinations of paired and unpaired reads trimmed to 36, 54, 72 and 101 bp. Read pairing had the greatest effect when there was little variation in the samples from different conditions or in their replicates (e.g. little differential gene expression). But overall, 54 and 72 bp reads were typically most similar. Given differences in costs and mapping percentages, we recommend 54 bp reads for organisms with no or few introns and 72 bp reads for all others. In a third of the data sets, read pairing had absolutely no effect, despite paired reads having twice as much data. Therefore, single-end reads seem robust for differential-expression analyses, but in eukaryotes paired-end reads are likely desired to analyse splice variants and should be preferred for data sets that are acquired with the intent to be community resources that might be used in secondary data analyses.
Collapse
Affiliation(s)
- Amol C Shetty
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - John Mattick
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Matthew Chung
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.,Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Carrie McCracken
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Anup Mahurkar
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Scott G Filler
- David Geffen School of Medicine at UCLA, Los Angeles, CA 90502, USA.,Division of Infectious Diseases, Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA 90502, USA
| | - Claire M Fraser
- Department of Medicine, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.,Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - David A Rasko
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.,Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Vincent M Bruno
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.,Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.,Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA.,Greenebaum Cancer Center, University of Maryland, Baltimore, MD 21201, USA
| |
Collapse
|
9
|
Sheldon JR, Skaar EP. Acinetobacter baumannii can use multiple siderophores for iron acquisition, but only acinetobactin is required for virulence. PLoS Pathog 2020; 16:e1008995. [PMID: 33075115 PMCID: PMC7595644 DOI: 10.1371/journal.ppat.1008995] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/29/2020] [Accepted: 09/18/2020] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is an emerging pathogen that poses a global health threat due to a lack of therapeutic options for treating drug-resistant strains. In addition to acquiring resistance to last-resort antibiotics, the success of A. baumannii is partially due to its ability to effectively compete with the host for essential metals. Iron is fundamental in shaping host-pathogen interactions, where the host restricts availability of this nutrient in an effort to curtail bacterial proliferation. To circumvent restriction, pathogens possess numerous mechanisms to obtain iron, including through the use of iron-scavenging siderophores. A. baumannii elaborates up to ten distinct siderophores, encoded from three different loci: acinetobactin and pre-acinetobactin (collectively, acinetobactin), baumannoferrins A and B, and fimsbactins A-F. The expression of multiple siderophores is common amongst bacterial pathogens and often linked to virulence, yet the collective contribution of these siderophores to A. baumannii survival and pathogenesis has not been investigated. Here we begin dissecting functional redundancy in the siderophore-based iron acquisition pathways of A. baumannii. Excess iron inhibits overall siderophore production by the bacterium, and the siderophore-associated loci are uniformly upregulated during iron restriction in vitro and in vivo. Further, disrupting all of the siderophore biosynthetic pathways is necessary to drastically reduce total siderophore production by A. baumannii, together suggesting a high degree of functional redundancy between the metabolites. By contrast, inactivation of acinetobactin biosynthesis alone impairs growth on human serum, transferrin, and lactoferrin, and severely attenuates survival of A. baumannii in a murine bacteremia model. These results suggest that whilst A. baumannii synthesizes multiple iron chelators, acinetobactin is critical to supporting growth of the pathogen on host iron sources. Given the acinetobactin locus is highly conserved and required for virulence of A. baumannii, designing therapeutics targeting the biosynthesis and/or transport of this siderophore may represent an effective means of combating this pathogen.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
10
|
Abstract
Bacteria are highly interactive and possess an extraordinary repertoire of intercellular communication and social behaviors, including quorum sensing (QS). QS has been studied in detail at the molecular level, so mechanistic details are well understood in many species and are often involved in virulence. The use of different animal host models has demonstrated QS-dependent control of virulence determinants and virulence in several human pathogenic bacteria. QS also controls virulence in several plant pathogenic species. Despite the role QS plays in virulence during animal and plant laboratory-engineered infections, QS mutants are frequently isolated from natural infections, demonstrating that the function of QS during infection and its role in pathogenesis remain poorly understood and are fruitful areas for future research. We discuss the role of QS during infection in various organisms and highlight approaches to better understand QS during human infection. This is an important consideration in an era of growing antimicrobial resistance, when we are looking for new ways to target bacterial infections.
Collapse
Affiliation(s)
- Sheyda Azimi
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Alexander D Klementiev
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Marvin Whiteley
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Emory-Children's Cystic Fibrosis Center, Atlanta, Georgia 30329, USA
| | - Stephen P Diggle
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, USA; ,
- Center for Microbial Dynamics and Infection, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
11
|
Exogenous Alginate Protects Staphylococcus aureus from Killing by Pseudomonas aeruginosa. J Bacteriol 2020; 202:JB.00559-19. [PMID: 31792010 DOI: 10.1128/jb.00559-19] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 11/22/2019] [Indexed: 12/31/2022] Open
Abstract
Cystic fibrosis (CF) patients chronically infected with both Pseudomonas aeruginosa and Staphylococcus aureus have worse health outcomes than patients who are monoinfected with either P. aeruginosa or S. aureus We showed previously that mucoid strains of P. aeruginosa can coexist with S. aureus in vitro due to the transcriptional downregulation of several toxic exoproducts typically produced by P. aeruginosa, including siderophores, rhamnolipids, and HQNO (2-heptyl-4-hydroxyquinoline N-oxide). Here, we demonstrate that exogenous alginate protects S. aureus from P. aeruginosa in both planktonic and biofilm coculture models under a variety of nutritional conditions. S. aureus protection in the presence of exogenous alginate is due to the transcriptional downregulation of pvdA, a gene required for the production of the iron-scavenging siderophore pyoverdine as well as the downregulation of the PQS (Pseudomonas quinolone signal) (2-heptyl-3,4-dihydroxyquinoline) quorum sensing system. The impact of exogenous alginate is independent of endogenous alginate production. We further demonstrate that coculture of mucoid P. aeruginosa with nonmucoid P. aeruginosa strains can mitigate the killing of S. aureus by the nonmucoid strain of P. aeruginosa, indicating that the mechanism that we describe here may function in vivo in the context of mixed infections. Finally, we investigated a panel of mucoid clinical isolates that retain the ability to kill S. aureus at late time points and show that each strain has a unique expression profile, indicating that mucoid isolates can overcome the S. aureus-protective effects of mucoidy in a strain-specific manner.IMPORTANCE CF patients are chronically infected by polymicrobial communities. The two dominant bacterial pathogens that infect the lungs of CF patients are P. aeruginosa and S. aureus, with ∼30% of patients coinfected by both species. Such coinfected individuals have worse outcomes than monoinfected patients, and both species persist within the same physical space. A variety of host and environmental factors have been demonstrated to promote P. aeruginosa-S. aureus coexistence, despite evidence that P. aeruginosa kills S. aureus when these organisms are cocultured in vitro Thus, a better understanding of P. aeruginosa-S. aureus interactions, particularly mechanisms by which these microorganisms are able to coexist in proximal physical space, will lead to better-informed treatments for chronic polymicrobial infections.
Collapse
|
12
|
Pseudomonas aeruginosa lasR mutant fitness in microoxia is supported by an Anr-regulated oxygen-binding hemerythrin. Proc Natl Acad Sci U S A 2020; 117:3167-3173. [PMID: 31980538 DOI: 10.1073/pnas.1917576117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa strains with loss-of-function mutations in the transcription factor LasR are frequently encountered in the clinic and the environment. Among the characteristics common to LasR-defective (LasR-) strains is increased activity of the transcription factor Anr, relative to their LasR+ counterparts, in low-oxygen conditions. One of the Anr-regulated genes found to be highly induced in LasR- strains was PA14_42860 (PA1673), which we named mhr for microoxic hemerythrin. Purified P. aeruginosa Mhr protein contained the predicted di-iron center and bound molecular oxygen with an apparent K d of ∼1 µM. Both Anr and Mhr were necessary for fitness in lasR+ and lasR mutant strains in colony biofilms grown in microoxic conditions, and the effects were more striking in the lasR mutant. Among genes in the Anr regulon, mhr was most closely coregulated with the Anr-controlled high-affinity cytochrome c oxidase genes. In the absence of high-affinity cytochrome c oxidases, deletion of mhr no longer caused a fitness disadvantage, suggesting that Mhr works in concert with microoxic respiration. We demonstrate that Anr and Mhr contribute to LasR- strain fitness even in biofilms grown in normoxic conditions. Furthermore, metabolomics data indicate that, in a lasR mutant, expression of Anr-regulated mhr leads to differences in metabolism in cells grown on lysogeny broth or artificial sputum medium. We propose that increased Anr activity leads to higher levels of the oxygen-binding protein Mhr, which confers an advantage to lasR mutants in microoxic conditions.
Collapse
|
13
|
Skopelja-Gardner S, Theprungsirikul J, Lewis KA, Hammond JH, Carlson KM, Hazlett HF, Nymon A, Nguyen D, Berwin BL, Hogan DA, Rigby WFC. Regulation of Pseudomonas aeruginosa-Mediated Neutrophil Extracellular Traps. Front Immunol 2019; 10:1670. [PMID: 31379861 PMCID: PMC6657737 DOI: 10.3389/fimmu.2019.01670] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/04/2019] [Indexed: 12/13/2022] Open
Abstract
Pseudomonas aeruginosa is the most prevalent opportunistic pathogen in the airways of cystic fibrosis (CF) patients. The pulmonary disorder is characterized by recurrent microbial infections and an exaggerated host inflammatory immune response led primarily by influx of neutrophils. Under these conditions, chronic colonization with P. aeruginosa is associated with diminished pulmonary function and increased morbidity and mortality. P. aeruginosa has a wide array of genetic mechanisms that facilitate its persistent colonization of the airway despite extensive innate host immune responses. Loss of function mutations in the quorum sensing regulatory gene lasR have been shown to confer survival advantage and a more pathogenic character to P. aeruginosa in CF patients. However, the strategies used by LasR-deficient P. aeruginosa to modulate neutrophil-mediated bactericidal functions are unknown. We sought to understand the role of LasR in P. aeruginosa-mediated neutrophil extracellular trap (NET) formation, an important anti-microbial mechanism deployed by neutrophils, the first-line responder in the infected airway. We observe mechanistic and phenotypic differences between NETs triggered by LasR-sufficient and LasR-deficient P. aeruginosa strains. We uncover that LasR-deficient P. aeruginosa strains fail to induce robust NET formation in both human and murine neutrophils, independently of bacterial motility or LPS expression. LasR does not mediate NET release via downstream quorum sensing signaling pathways but rather via transcriptional regulation of virulence factors, including, but not restricted to, LasB elastase and LasA protease. Finally, our studies uncover the differential requirements for NADPH oxidase in NET formation triggered by different P. aeruginosa strains.
Collapse
Affiliation(s)
- Sladjana Skopelja-Gardner
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Jomkuan Theprungsirikul
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kimberley A Lewis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - John H Hammond
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Kyrsten M Carlson
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Haley F Hazlett
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Amanda Nymon
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Dao Nguyen
- Department of Microbiology and Immunology, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Brent L Berwin
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| | - William F C Rigby
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States.,Division of Rheumatology, Department of Medicine, Geisel School of Medicine at Dartmouth, Lebanon, NH, United States
| |
Collapse
|
14
|
Grahl N, Dolben EL, Filkins LM, Crocker AW, Willger SD, Morrison HG, Sogin ML, Ashare A, Gifford AH, Jacobs NJ, Schwartzman JD, Hogan DA. Profiling of Bacterial and Fungal Microbial Communities in Cystic Fibrosis Sputum Using RNA. mSphere 2018; 3:e00292-18. [PMID: 30089648 PMCID: PMC6083091 DOI: 10.1128/msphere.00292-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 07/10/2018] [Indexed: 12/26/2022] Open
Abstract
Here, we report an approach to detect diverse bacterial and fungal taxa in complex samples by direct analysis of community RNA in one step using NanoString probe sets. We designed rRNA-targeting probe sets to detect 42 bacterial and fungal genera or species common in cystic fibrosis (CF) sputum and demonstrated the taxon specificity of these probes, as well as a linear response over more than 3 logs of input RNA. Culture-based analyses correlated qualitatively with relative abundance data on bacterial and fungal taxa obtained by NanoString, and the analysis of serial samples demonstrated the use of this method to simultaneously detect bacteria and fungi and to detect microbes at low abundance without an amplification step. Compared at the genus level, the relative abundances of bacterial taxa detected by analysis of RNA correlated with the relative abundances of the same taxa as measured by sequencing of the V4V5 region of the 16S rRNA gene amplified from community DNA from the same sample. We propose that this method may complement other methods designed to understand dynamic microbial communities, may provide information on bacteria and fungi in the same sample with a single assay, and with further development, may provide quick and easily interpreted diagnostic information on diverse bacteria and fungi at the genus or species level.IMPORTANCE Here we demonstrate the use of an RNA-based analysis of specific taxa of interest, including bacteria and fungi, within microbial communities. This multiplex method may be useful as a means to identify samples with specific combinations of taxa and to gain information on how specific populations vary over time and space or in response to perturbation. A rapid means to measure bacterial and fungal populations may aid in the study of host response to changes in microbial communities.
Collapse
Affiliation(s)
- Nora Grahl
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Emily L Dolben
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Laura M Filkins
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Alex W Crocker
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Sven D Willger
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Hilary G Morrison
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Mitchell L Sogin
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, USA
| | - Alix Ashare
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Alex H Gifford
- Pulmonary and Critical Care Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Nicholas J Jacobs
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joseph D Schwartzman
- Department of Pathology and Laboratory Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, New Hampshire, USA
| | - Deborah A Hogan
- Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
15
|
Hébert FO, Boyle B, Levesque RC. Direct In Vivo Microbial Transcriptomics During Infection. Trends Microbiol 2018; 26:732-735. [PMID: 30075901 DOI: 10.1016/j.tim.2018.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 07/18/2018] [Indexed: 10/28/2022]
Abstract
The challenge in infectious diseases is monitoring infection in the host. Omics-based genomics and transcriptomics can define microbial genes expressed during infection and treatment with antimicrobials. Recent studies pinpoint a direct in situ in vivo approach revolutionizing infection monitoring and optimizing antimicrobial therapy using machine learning.
Collapse
Affiliation(s)
- François-Olivier Hébert
- Institut de biologie intégrative et des systèmes (IBIS), Faculté de médecine, Université Laval, Québec, Canada.
| | - Brian Boyle
- Institut de biologie intégrative et des systèmes (IBIS), Faculté de médecine, Université Laval, Québec, Canada.
| | - Roger C Levesque
- Institut de biologie intégrative et des systèmes (IBIS), Faculté de médecine, Université Laval, Québec, Canada.
| |
Collapse
|
16
|
Abstract
INTRODUCTION Cystic fibrosis (CF) outcomes and survival have improved over the last century primarily due to advancements in antibiotics, nutritional, and pulmonary therapies. Reviewed here are the significant unmet needs that exist for individuals with CF. Areas covered: With the recent development of medications that address the underlying defect in the CF protein, there is hope that there will be continued improvement in CF outcomes. However, there remains a need to prevent or stop progression of CF-related complications, as the CF protein is important to several body systems. As end stage lung disease is the primary cause of mortality in CF, a need exists for advancements in pulmonary therapies to reduce time burden, identification of best practices for the treatment of pulmonary exacerbations, further development of anti-infective and anti-inflammatory therapies, and appropriately timed referral for lung transplantation at end-stage lung disease. Extra-pulmonary complications are increasingly recognized and better understanding of such problems as CF related liver disease is needed. Expert commentary: While CFTR modulators are available for the majority of CF patients, there remains a need for effective therapies to address infection, inflammation, irreversible lung disease, and extrapulmonary complications of CF.
Collapse
Affiliation(s)
- Natalie E West
- a Department of Medicine, Division of Pulmonary and Critical Care Medicine , Johns Hopkins University , Baltimore , USA
| | - Patrick A Flume
- b Departments of Medicine and Pediatrics , Medical University of South Carolina , Charleston , SC , USA
| |
Collapse
|
17
|
Abstract
Microbiologists typically use laboratory systems to study the bacteria that infect humans. Over time, this has created a gap between what researchers understand about bacteria growing in the laboratory and those growing in humans. It is well-known that the behavior of bacteria is shaped by their environment, but how this behavior differs in laboratory models compared with human infections is poorly understood. We compared transcription data from a variety of human infections with data from a range of in vitro samples. We found important differences in expression of genes involved in antibiotic resistance, cell–cell communication, and metabolism. Understanding the bacterial expression patterns in human patients is a necessary step toward improved therapy and the development of more accurate laboratory models. Laboratory experiments have uncovered many basic aspects of bacterial physiology and behavior. After the past century of mostly in vitro experiments, we now have detailed knowledge of bacterial behavior in standard laboratory conditions, but only a superficial understanding of bacterial functions and behaviors during human infection. It is well-known that the growth and behavior of bacteria are largely dictated by their environment, but how bacterial physiology differs in laboratory models compared with human infections is not known. To address this question, we compared the transcriptome of Pseudomonas aeruginosa during human infection to that of P. aeruginosa in a variety of laboratory conditions. Several pathways, including the bacterium’s primary quorum sensing system, had significantly lower expression in human infections than in many laboratory conditions. On the other hand, multiple genes known to confer antibiotic resistance had substantially higher expression in human infection than in laboratory conditions, potentially explaining why antibiotic resistance assays in the clinical laboratory frequently underestimate resistance in patients. Using a standard machine learning technique known as support vector machines, we identified a set of genes whose expression reliably distinguished in vitro conditions from human infections. Finally, we used these support vector machines with binary classification to force P. aeruginosa mouse infection transcriptomes to be classified as human or in vitro. Determining what differentiates our current models from clinical infections is important to better understand bacterial infections and will be necessary to create model systems that more accurately capture the biology of infection.
Collapse
|
18
|
Dingemans J, Eyns H, Willekens J, Monsieurs P, Van Houdt R, Cornelis P, Malfroot A, Crabbé A. Intrapulmonary percussive ventilation improves lung function in cystic fibrosis patients chronically colonized with Pseudomonas aeruginosa: a pilot cross-over study. Eur J Clin Microbiol Infect Dis 2018; 37:1143-1151. [PMID: 29560543 DOI: 10.1007/s10096-018-3232-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 03/12/2018] [Indexed: 12/29/2022]
Abstract
High levels of shear stress can prevent and disrupt Pseudomonas aeruginosa biofilm formation in vitro. Intrapulmonary percussive ventilation (IPV) could be used to introduce shear stress into the lungs of cystic fibrosis (CF) patients to disrupt biofilms in vivo. We performed a first-of-its-kind pilot clinical study to evaluate short-term IPV therapy at medium (200 bursts per minute, bpm) and high frequency (400 bpm) as compared to autogenic drainage (AD) on lung function and the behavior of P. aeruginosa in the CF lung in four patients who are chronically colonized by P. aeruginosa. A significant difference between the three treatment groups was observed for both the forced expiratory volume in 1 s (FEV1) and the forced vital capacity (FVC) (p < 0.05). More specifically, IPV at high frequency significantly increased FEV1 and FVC compared to AD (p < 0.05) and IPV at medium frequency (p < 0.001). IPV at high frequency enhanced the expression levels of P. aeruginosa planktonic marker genes, which was less pronounced with IPV at medium frequency or AD. In conclusion, IPV at high frequency could potentially alter the behavior of P. aeruginosa in the CF lung and improve lung function. TRIAL REGISTRATION The trail was retrospectively registered at the ISRCTN registry on 6 June 2013, under trial registration number ISRCTN75391385.
Collapse
Affiliation(s)
- Jozef Dingemans
- Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
- Department of Biological Sciences, Binghamton Biofilm Research Center, Binghamton University, Binghamton, NY, 13902, USA
| | - Hanneke Eyns
- Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (UZB), 1090, Brussels, Belgium
| | - Julie Willekens
- Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (UZB), 1090, Brussels, Belgium
| | - Pieter Monsieurs
- Microbiology Unit, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
| | - Rob Van Houdt
- Microbiology Unit, Expert Group Molecular and Cellular Biology, Institute for Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), 2400, Mol, Belgium
| | - Pierre Cornelis
- Department of Bioengineering Sciences, Research Group Microbiology, Vrije Universiteit Brussel and VIB Structural Biology, Pleinlaan 2, 1050, Brussels, Belgium
| | - Anne Malfroot
- Cystic Fibrosis Clinic and Pediatric Infectious Diseases, Universitair Ziekenhuis Brussel, Vrije Universiteit Brussel (UZB), 1090, Brussels, Belgium
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
| |
Collapse
|
19
|
Hvorecny KL, Dolben E, Moreau-Marquis S, Hampton TH, Shabaneh TB, Flitter BA, Bahl CD, Bomberger JM, Levy BD, Stanton BA, Hogan DA, Madden DR. An epoxide hydrolase secreted by Pseudomonas aeruginosa decreases mucociliary transport and hinders bacterial clearance from the lung. Am J Physiol Lung Cell Mol Physiol 2017; 314:L150-L156. [PMID: 28982736 DOI: 10.1152/ajplung.00383.2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa colonizes the lungs of susceptible individuals by deploying virulence factors targeting host defenses. The secreted factor Cif (cystic fibrosis transmembrane conductance regulator inhibitory factor) dysregulates the endocytic recycling of CFTR and thus reduces CFTR abundance in host epithelial membranes. We have postulated that the decrease in ion secretion mediated by Cif would slow mucociliary transport and decrease bacterial clearance from the lungs. To test this hypothesis, we explored the effects of Cif in cultured epithelia and in the lungs of mice. We developed a strategy to interpret the "hurricane-like" motions observed in reconstituted cultures and identified a Cif-mediated decrease in the velocity of mucus transport in vitro. Presence of Cif also increased the number of bacteria recovered at two time points in an acute mouse model of pneumonia caused by P. aeruginosa. Furthermore, recent work has demonstrated an inverse correlation between the airway concentrations of Cif and 15-epi-lipoxin A4, a proresolving lipid mediator important in host defense and the resolution of pathogen-initiated inflammation. Here, we observe elevated levels of 15-epi-lipoxin A4 in the lungs of mice infected with a strain of P. aeruginosa that expresses only an inactive form of cif compared with those mice infected with wild-type P. aeruginosa. Together these data support the inclusion of Cif on the list of virulence factors that assist P. aeruginosa in colonizing and damaging the airways of compromised patients. Furthermore, this study establishes techniques that enable our groups to explore the underlying mechanisms of Cif effects during respiratory infection.
Collapse
Affiliation(s)
- Kelli L Hvorecny
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Emily Dolben
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Sophie Moreau-Marquis
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Thomas H Hampton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Tamer B Shabaneh
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Becca A Flitter
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Christopher D Bahl
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Jennifer M Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine , Pittsburgh, Pennsylvania
| | - Bruce D Levy
- Department of Internal Medicine, Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Bruce A Stanton
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Deborah A Hogan
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| | - Dean R Madden
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth , Hanover, New Hampshire
| |
Collapse
|
20
|
Limoli DH, Whitfield GB, Kitao T, Ivey ML, Davis MR, Grahl N, Hogan DA, Rahme LG, Howell PL, O'Toole GA, Goldberg JB. Pseudomonas aeruginosa Alginate Overproduction Promotes Coexistence with Staphylococcus aureus in a Model of Cystic Fibrosis Respiratory Infection. mBio 2017; 8:e00186-17. [PMID: 28325763 PMCID: PMC5362032 DOI: 10.1128/mbio.00186-17] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 02/22/2017] [Indexed: 01/30/2023] Open
Abstract
While complex intra- and interspecies microbial community dynamics are apparent during chronic infections and likely alter patient health outcomes, our understanding of these interactions is currently limited. For example, Pseudomonas aeruginosa and Staphylococcus aureus are often found to coinfect the lungs of patients with cystic fibrosis (CF), yet these organisms compete under laboratory conditions. Recent observations that coinfection correlates with decreased health outcomes necessitate we develop a greater understanding of these interbacterial interactions. In this study, we tested the hypothesis that P. aeruginosa and/or S. aureus adopts phenotypes that allow coexistence during infection. We compared competitive interactions of P. aeruginosa and S. aureus isolates from mono- or coinfected CF patients employing in vitro coculture models. P. aeruginosa isolates from monoinfected patients were more competitive toward S. aureus than P. aeruginosa isolates from coinfected patients. We also observed that the least competitive P. aeruginosa isolates possessed a mucoid phenotype. Mucoidy occurs upon constitutive activation of the sigma factor AlgT/U, which regulates synthesis of the polysaccharide alginate and dozens of other secreted factors, including some previously described to kill S. aureus Here, we show that production of alginate in mucoid strains is sufficient to inhibit anti-S. aureus activity independent of activation of the AlgT regulon. Alginate reduces production of siderophores, 2-heptyl-4-hydroxyquinolone-N-oxide (HQNO), and rhamnolipids-each required for efficient killing of S. aureus These studies demonstrate alginate overproduction may be an important factor driving P. aeruginosa coinfection with S. aureusIMPORTANCE Numerous deep-sequencing studies have revealed the microbial communities present during respiratory infections in cystic fibrosis (CF) patients are diverse, complex, and dynamic. We now face the challenge of determining the influence of these community dynamics on patient health outcomes and identifying candidate targets to modulate these interactions. We make progress toward this goal by determining that the polysaccharide alginate produced by mucoid strains of P. aeruginosa is sufficient to inhibit multiple secreted antimicrobial agents produced by this organism. Importantly, these secreted factors are required to outcompete S. aureus, when the microbes are grown in coculture; thus we propose a mechanism whereby mucoid P. aeruginosa can coexist with S. aureus Finally, the approach used here can serve as a platform to investigate the interactions among other CF pathogens.
Collapse
Affiliation(s)
- Dominique H Limoli
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | | | - Tomoe Kitao
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - Melissa L Ivey
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Michael R Davis
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| | - Nora Grahl
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Deborah A Hogan
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Laurence G Rahme
- Department of Microbiology and Immunology, Harvard Medical School, Boston, Massachusetts, USA
- Department of Surgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Shriners Hospitals for Children Boston, Boston, Massachusetts, USA
| | - P Lynne Howell
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - George A O'Toole
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Joanna B Goldberg
- Department of Pediatrics, Emory University School of Medicine, Atlanta, Georgia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|