1
|
Cao H, Fang C, Liu LL, Farnir F, Liu WJ. Identification of Susceptibility Genes Underlying Bovine Respiratory Disease in Xinjiang Brown Cattle Based on DNA Methylation. Int J Mol Sci 2024; 25:4928. [PMID: 38732144 PMCID: PMC11084705 DOI: 10.3390/ijms25094928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
DNA methylation is a form of epigenetic regulation, having pivotal parts in controlling cellular expansion and expression levels within genes. Although blood DNA methylation has been studied in humans and other species, its prominence in cattle is largely unknown. This study aimed to methodically probe the genomic methylation map of Xinjiang brown (XJB) cattle suffering from bovine respiratory disease (BRD), consequently widening cattle blood methylome ranges. Genome-wide DNA methylation profiling of the XJB blood was investigated through whole-genome bisulfite sequencing (WGBS). Many differentially methylated regions (DMRs) obtained by comparing the cases and controls groups were found within the CG, CHG, and CHH (where H is A, T, or C) sequences (16,765, 7502, and 2656, respectively), encompassing 4334 differentially methylated genes (DMGs). Furthermore, GO/KEGG analyses showed that some DMGs were involved within immune response pathways. Combining WGBS-Seq data and existing RNA-Seq data, we identified 71 significantly differentially methylated (DMGs) and expressed (DEGs) genes (p < 0.05). Next, complementary analyses identified nine DMGs (LTA, STAT3, IKBKG, IRAK1, NOD2, TLR2, TNFRSF1A, and IKBKB) that might be involved in the immune response of XJB cattle infected with respiratory diseases. Although further investigations are needed to confirm their exact implication in the involved immune processes, these genes could potentially be used for a marker-assisted selection of animals resistant to BRD. This study also provides new knowledge regarding epigenetic control for the bovine respiratory immune process.
Collapse
Affiliation(s)
- Hang Cao
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (H.C.); (L.-L.L.)
| | - Chao Fang
- Faculte de Medecine Veterinaire, Universite de Liege, Quartier Vallee 2, Avenue de Cureghem 6 (B43), 4000 Liege, Belgium;
| | - Ling-Ling Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (H.C.); (L.-L.L.)
| | - Frederic Farnir
- Faculte de Medecine Veterinaire, Universite de Liege, Quartier Vallee 2, Avenue de Cureghem 6 (B43), 4000 Liege, Belgium;
| | - Wu-Jun Liu
- College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China; (H.C.); (L.-L.L.)
| |
Collapse
|
2
|
Zihad SNK, Sifat N, Islam MA, Monjur-Al-Hossain A, Sikdar KYK, Sarker MMR, Shilpi JA, Uddin SJ. Role of pattern recognition receptors in sensing Mycobacterium tuberculosis. Heliyon 2023; 9:e20636. [PMID: 37842564 PMCID: PMC10570006 DOI: 10.1016/j.heliyon.2023.e20636] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 09/06/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023] Open
Abstract
Mycobacterium tuberculosis is one of the major invasive intracellular pathogens causing most deaths by a single infectious agent. The interaction between host immune cells and this pathogen is the focal point of the disease, Tuberculosis. Host immune cells not only mount the protective action against this pathogen but also serve as the primary niche for growth. Thus, recognition of this pathogen by host immune cells and following signaling cascades are key dictators of the disease state. Immune cells, mainly belonging to myeloid cell lineage, recognize a wide variety of Mycobacterium tuberculosis ligands ranging from carbohydrate and lipids to proteins to nucleic acids by different membrane-bound and soluble pattern recognition receptors. Simultaneous interaction between different host receptors and pathogen ligands leads to immune-inflammatory response as well as contributes to virulence. This review summarizes the contribution of pattern recognition receptors of host immune cells in recognizing Mycobacterium tuberculosis and subsequent initiation of signaling pathways to provide the molecular insight of the specific Mtb ligands interacting with specific PRR, key adaptor molecules of the downstream signaling pathways and the resultant effector functions which will aid in identifying novel drug targets, and developing novel drugs and adjuvants.
Collapse
Affiliation(s)
| | - Nazifa Sifat
- Department of Pharmacy, ASA University of Bangladesh, Dhaka, 1207, Bangladesh
| | | | | | | | - Md Moklesur Rahman Sarker
- Department of Pharmacy, State University of Bangladesh, Dhaka, 1205, Bangladesh
- Department of Pharmacy, Gono University, Nolam, Mirzanagar, Savar, Dhaka 1344, Bangladesh
| | - Jamil A. Shilpi
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| | - Shaikh Jamal Uddin
- Pharmacy Discipline, Life Science School, Khulna University, Khulna, 9208, Bangladesh
| |
Collapse
|
3
|
Abstract
Mycobacteria are responsible for several human and animal diseases. NOD2 is a pattern recognition receptor that has an important role in mycobacterial recognition. However, the mechanisms by which mutations in NOD2 alter the course of mycobacterial infection remain unclear. Herein, we aimed to review the totality of studies directly addressing the relationship between NOD2 and mycobacteria as a foundation for moving the field forward. NOD2 was linked to mycobacterial infection at 3 levels: (1) genetic, through association with mycobacterial diseases of humans; (2) chemical, through the distinct NOD2 ligand in the mycobacterial cell wall; and (3) immunologic, through heightened NOD2 signaling caused by the unique modification of the NOD2 ligand. The immune response to mycobacteria is shaped by NOD2 signaling, responsible for NF-κB and MAPK activation, and the production of various immune effectors like cytokines and nitric oxide, with some evidence linking this to bacteriologic control. Absence of NOD2 during mycobacterial infection of mice can be detrimental, but the mechanism remains unknown. Conversely, the success of immunization with mycobacteria has been linked to NOD2 signaling and NOD2 has been targeted as an avenue of immunotherapy for diseases even beyond mycobacteria. The mycobacteria-NOD2 interaction remains an important area of study, which may shed light on immune mechanisms in disease.
Collapse
Affiliation(s)
- Jean-Yves Dubé
- Department of Microbiology and Immunology, McGill University, Montréal, Canada
| | - Marcel A. Behr
- Department of Medicine, McGill University Health Centre, Montréal, Canada
| |
Collapse
|
4
|
Wolf AJ. Peptidoglycan-induced modulation of metabolic and inflammatory responses. IMMUNOMETABOLISM (COBHAM, SURREY) 2023; 5:e00024. [PMID: 37128291 PMCID: PMC10144284 DOI: 10.1097/in9.0000000000000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/06/2023] [Indexed: 05/03/2023]
Abstract
Bacterial cell wall peptidoglycan is composed of innate immune ligands and, due to its important structural role, also regulates access to many other innate immune ligands contained within the bacteria. There is a growing body of literature demonstrating how innate immune recognition impacts the metabolic functions of immune cells and how metabolic changes are not only important to inflammatory responses but are often essential. Peptidoglycan is primarily sensed in the context of the whole bacteria during lysosomal degradation; consequently, the innate immune receptors for peptidoglycan are primarily intracellular cytosolic innate immune sensors. However, during bacterial growth, peptidoglycan fragments are shed and can be found in the bloodstream of humans and mice, not only during infection but also derived from the abundant bacterial component of the gut microbiota. These peptidoglycan fragments influence cells throughout the body and are important for regulating inflammation and whole-body metabolic function. Therefore, it is important to understand how peptidoglycan-induced signals in innate immune cells and cells throughout the body interact to regulate how the body responds to both pathogenic and nonpathogenic bacteria. This mini-review will highlight key research regarding how cellular metabolism shifts in response to peptidoglycan and how systemic peptidoglycan sensing impacts whole-body metabolic function.
Collapse
Affiliation(s)
- Andrea J. Wolf
- The Karsh Division of Gastroenterology and Hepatology, F. Widjaja Foundation Inflammatory Bowel Disease Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Godkowicz M, Druszczyńska M. NOD1, NOD2, and NLRC5 Receptors in Antiviral and Antimycobacterial Immunity. Vaccines (Basel) 2022; 10:vaccines10091487. [PMID: 36146565 PMCID: PMC9503463 DOI: 10.3390/vaccines10091487] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 11/24/2022] Open
Abstract
The innate immune system recognizes pathogen-associated molecular motifs through pattern recognition receptors (PRRs) that induce inflammasome assembly in macrophages and trigger signal transduction pathways, thereby leading to the transcription of inflammatory cytokine genes. Nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) represent a family of cytosolic PRRs involved in the detection of intracellular pathogens such as mycobacteria or viruses. In this review, we discuss the role of NOD1, NOD2, and NLRC5 receptors in regulating antiviral and antimycobacterial immune responses by providing insight into molecular mechanisms as well as their potential health and disease implications.
Collapse
Affiliation(s)
- Magdalena Godkowicz
- Lodz Institutes of the Polish Academy of Sciences, The Bio-Med-Chem Doctoral School, University of Lodz, 90-237 Lodz, Poland
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
- Correspondence:
| | - Magdalena Druszczyńska
- Department of Immunology and Infectious Biology, Faculty of Biology and Environmental Protection, University of Lodz, Banacha12/16, 90-237 Lodz, Poland
| |
Collapse
|
6
|
Dubé JY, McIntosh F, Behr MA. Mice Dually Disrupted for Nod2 and Mincle Manifest Early Bacteriological Control but Late Susceptibility During Mycobacterium tuberculosis Infection. Front Immunol 2022; 13:862992. [PMID: 35418999 PMCID: PMC8995500 DOI: 10.3389/fimmu.2022.862992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Pattern recognition receptors Mincle and NOD2 have been implicated in mycobacterial immunity. However, knockout (KO) animal infection studies with Mycobacterium tuberculosis (Mtb) have had mild/delayed phenotypes. Given that genetic susceptibility to infectious diseases can be polygenic, we hypothesized that murine double knockout (DKO) of Mincle and Nod2 would result in exacerbation of altered immunity to mycobacterial infection leading to a more extreme phenotype than either KO alone. To test this hypothesis, we monitored bacterial burden, immune responses and survival following in vivo infections with Mtb in DKO mice for comparison to wildtype (WT) and single KOs. Bacterial burden and immune responses were not significantly affected at 3 and 6 weeks after infection in all mutant mice. At later timepoints, Nod2-KO mice had reduced survival compared to wildtype mice, and Mincle-KO survival was intermediate. Unexpectedly, dual disruption had no further effect; rather, DKO mice phenocopied Nod2-KO mice. We observed that Mtb-related death, exclusively in mice with disrupted Nod2, was accompanied by greater pulmonary cell death and distinct large necrotic foci. Therefore, determining how these receptors contribute to mycobacterial resistance will require analysis of immunophenotypes and their consequences on host pathology.
Collapse
Affiliation(s)
- Jean-Yves Dubé
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,McGill International TB Centre, Montréal, QC, Canada
| | - Fiona McIntosh
- Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,McGill International TB Centre, Montréal, QC, Canada
| | - Marcel A Behr
- Department of Microbiology and Immunology, McGill University, Montréal, QC, Canada.,Infectious Diseases and Immunity in Global Health Program, Research Institute of the McGill University Health Centre, Montréal, QC, Canada.,McGill International TB Centre, Montréal, QC, Canada.,Department of Medicine, McGill University Health Centre, Montréal, QC, Canada
| |
Collapse
|
7
|
Masumoto J, Zhou W, Morikawa S, Hosokawa S, Taguchi H, Yamamoto T, Kurata M, Kaneko N. Molecular biology of autoinflammatory diseases. Inflamm Regen 2021; 41:33. [PMID: 34635190 PMCID: PMC8507398 DOI: 10.1186/s41232-021-00181-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/09/2021] [Indexed: 12/25/2022] Open
Abstract
The long battle between humans and various physical, chemical, and biological insults that cause cell injury (e.g., products of tissue damage, metabolites, and/or infections) have led to the evolution of various adaptive responses. These responses are triggered by recognition of damage-associated molecular patterns (DAMPs) and/or pathogen-associated molecular patterns (PAMPs), usually by cells of the innate immune system. DAMPs and PAMPs are recognized by pattern recognition receptors (PRRs) expressed by innate immune cells; this recognition triggers inflammation. Autoinflammatory diseases are strongly associated with dysregulation of PRR interactomes, which include inflammasomes, NF-κB-activating signalosomes, type I interferon-inducing signalosomes, and immuno-proteasome; disruptions of regulation of these interactomes leads to inflammasomopathies, relopathies, interferonopathies, and proteasome-associated autoinflammatory syndromes, respectively. In this review, we discuss the currently accepted molecular mechanisms underlying several autoinflammatory diseases.
Collapse
Affiliation(s)
- Junya Masumoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan.
| | - Wei Zhou
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Shinnosuke Morikawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Sho Hosokawa
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Haruka Taguchi
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Toshihiro Yamamoto
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Mie Kurata
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| | - Naoe Kaneko
- Department of Pathology, Ehime University Graduate School of Medicine and Proteo-Science Center, Shitsukawa 454, Toon, Ehime, 791-0295, Japan
| |
Collapse
|
8
|
Dubé JY, Fava VM, Schurr E, Behr MA. Underwhelming or Misunderstood? Genetic Variability of Pattern Recognition Receptors in Immune Responses and Resistance to Mycobacterium tuberculosis. Front Immunol 2021; 12:714808. [PMID: 34276708 PMCID: PMC8278570 DOI: 10.3389/fimmu.2021.714808] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 06/17/2021] [Indexed: 12/23/2022] Open
Abstract
Human genetic control is thought to affect a considerable part of the outcome of infection with Mycobacterium tuberculosis (Mtb). Most of us deal with the pathogen by containment (associated with clinical "latency") or sterilization, but tragically millions each year do not. After decades of studies on host genetic susceptibility to Mtb infection, genetic variation has been discovered to play a role in tuberculous immunoreactivity and tuberculosis (TB) disease. Genes encoding pattern recognition receptors (PRRs) enable a consistent, molecularly direct interaction between humans and Mtb which suggests the potential for co-evolution. In this review, we explore the roles ascribed to PRRs during Mtb infection and ask whether such a longstanding and intimate interface between our immune system and this pathogen plays a critical role in determining the outcome of Mtb infection. The scientific evidence to date suggests that PRR variation is clearly implicated in altered immunity to Mtb but has a more subtle role in limiting the pathogen and pathogenesis. In contrast to 'effectors' like IFN-γ, IL-12, Nitric Oxide and TNF that are critical for Mtb control, 'sensors' like PRRs are less critical for the outcome of Mtb infection. This is potentially due to redundancy of the numerous PRRs in the innate arsenal, such that Mtb rarely goes unnoticed. Genetic association studies investigating PRRs during Mtb infection should therefore be designed to investigate endophenotypes of infection - such as immunological or clinical variation - rather than just TB disease, if we hope to understand the molecular interface between innate immunity and Mtb.
Collapse
Affiliation(s)
- Jean-Yves Dubé
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Vinicius M. Fava
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
| | - Erwin Schurr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department of Human Genetics, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Marcel A. Behr
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
- McGill International TB Centre, McGill University, Montreal, QC, Canada
- Department of Medicine, Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
9
|
Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol 2021; 39:611-637. [PMID: 33637017 DOI: 10.1146/annurev-immunol-093019-010426] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Infection with Mycobacterium tuberculosis causes >1.5 million deaths worldwide annually. Innate immune cells are the first to encounter M. tuberculosis, and their response dictates the course of infection. Dendritic cells (DCs) activate the adaptive response and determine its characteristics. Macrophages are responsible both for exerting cell-intrinsic antimicrobial control and for initiating and maintaining inflammation. The inflammatory response to M. tuberculosis infection is a double-edged sword. While cytokines such as TNF-α and IL-1 are important for protection, either excessive or insufficient cytokine production results in progressive disease. Furthermore, neutrophils-cells normally associated with control of bacterial infection-are emerging as key drivers of a hyperinflammatory response that results in host mortality. The roles of other innate cells, including natural killer cells and innate-like T cells, remain enigmatic. Understanding the nuances of both cell-intrinsic control of infection and regulation of inflammation will be crucial for the successful development of host-targeted therapeutics and vaccines.
Collapse
Affiliation(s)
| | - Erik Van Dis
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; ,
| | - Sarah A Stanley
- Division of Immunology and Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, USA; , .,Division of Infectious Diseases and Vaccinology, School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
10
|
Rodrigues TS, Conti BJ, Fraga-Silva TFDC, Almeida F, Bonato VLD. Interplay between alveolar epithelial and dendritic cells and Mycobacterium tuberculosis. J Leukoc Biol 2020; 108:1139-1156. [PMID: 32620048 DOI: 10.1002/jlb.4mr0520-112r] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 05/09/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022] Open
Abstract
The innate response plays a crucial role in the protection against tuberculosis development. Moreover, the initial steps that drive the host-pathogen interaction following Mycobacterium tuberculosis infection are critical for the development of adaptive immune response. As alveolar Mϕs, airway epithelial cells, and dendritic cells can sense the presence of M. tuberculosis and are the first infected cells. These cells secrete mediators, which generate inflammatory signals that drive the differentiation and activation of the T lymphocytes necessary to clear the infection. Throughout this review article, we addressed the interaction between epithelial cells and M. tuberculosis, as well as the interaction between dendritic cells and M. tuberculosis. The understanding of the mechanisms that modulate those interactions is critical to have a complete view of the onset of an infection and may be useful for the development of dendritic cell-based vaccine or immunotherapies.
Collapse
Affiliation(s)
- Tamara Silva Rodrigues
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno José Conti
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Thais Fernanda de Campos Fraga-Silva
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Fausto Almeida
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| | - Vânia Luiza Deperon Bonato
- Basic and Applied Immunology Program, Department of Biochemistry and Immunology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
11
|
López V, Alberdi P, Fuente JDL. Common Strategies, Different Mechanisms to Infect the Host: Anaplasma and Mycobacterium. Tuberculosis (Edinb) 2018. [DOI: 10.5772/intechopen.71535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
NOD1 and NOD2: Molecular targets in prevention and treatment of infectious diseases. Int Immunopharmacol 2017; 54:385-400. [PMID: 29207344 DOI: 10.1016/j.intimp.2017.11.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 11/23/2017] [Accepted: 11/27/2017] [Indexed: 02/06/2023]
Abstract
Nucleotide-binding oligomerization domain (NOD) 1 and NOD2 are pattern-recognition receptors responsible for sensing fragments of bacterial peptidoglycan known as muropeptides. Stimulation of innate immunity by systemic or local administration of NOD1 and NOD2 agonists is an attractive means to prevent and treat infectious diseases. In this review, we discuss novel data concerning structural features of selective and non-selective (dual) NOD1 and NOD2 agonists, main signaling pathways and biological effects induced by NOD1 and NOD2 stimulation, including induction of pro-inflammatory cytokines, type I interferons and antimicrobial peptides, induction of autophagy, alterations of metabolism. We also discuss interactions between NOD1/NOD2 and Toll-like receptor agonists in terms of synergy and cross-tolerance. Finally, we review available animal data on the role of NOD1 and NOD2 in protection against infections, and discuss how these data could be applied in human infectious diseases.
Collapse
|
13
|
Donovan ML, Schultz TE, Duke TJ, Blumenthal A. Type I Interferons in the Pathogenesis of Tuberculosis: Molecular Drivers and Immunological Consequences. Front Immunol 2017; 8:1633. [PMID: 29230217 PMCID: PMC5711827 DOI: 10.3389/fimmu.2017.01633] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/09/2017] [Indexed: 12/11/2022] Open
Abstract
Tuberculosis (TB) remains a major global health threat. Urgent needs in the fight against TB include improved and innovative treatment options for drug-sensitive and -resistant TB as well as reliable biological indicators that discriminate active from latent disease and enable monitoring of treatment success or failure. Prominent interferon (IFN) inducible gene signatures in TB patients and animal models of Mycobacterium tuberculosis infection have drawn significant attention to the roles of type I IFNs in the host response to mycobacterial infections. Here, we review recent developments in the understanding of the innate immune pathways that drive type I IFN responses in mycobacteria-infected host cells and the functional consequences for the host defense against M. tuberculosis, with a view that such insights might be exploited for the development of targeted host-directed immunotherapies and development of reliable biomarkers.
Collapse
Affiliation(s)
- Meg L Donovan
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Thomas E Schultz
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Taylor J Duke
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| | - Antje Blumenthal
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
14
|
Lee JY, Lee MS, Kim DJ, Yang SJ, Lee SJ, Noh EJ, Shin SJ, Park JH. Nucleotide-Binding Oligomerization Domain 2 Contributes to Limiting Growth of Mycobacterium abscessus in the Lung of Mice by Regulating Cytokines and Nitric Oxide Production. Front Immunol 2017; 8:1477. [PMID: 29163541 PMCID: PMC5681718 DOI: 10.3389/fimmu.2017.01477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Accepted: 10/20/2017] [Indexed: 12/22/2022] Open
Abstract
Mycobacterium abscessus is a prominent cause of pulmonary infection in immunosuppressed patients and those with cystic fibrosis. Nucleotide-binding oligomerization domain (NOD) 2 is a cytosolic receptor which senses a bacterial peptidoglycan component, muramyl dipeptide (MDP). Although nucleotide-binding oligomerization domain 2 (NOD2) contributes to protect host against various microbial infections, it is still unclear whether NOD2 is essential to regulate host immune responses against M. abscessus infection. In this study, we sought to clarify the role of NOD2 and the underlying mechanism in host defense against M. abscessus infection. Mice were infected intranasally with M. abscessus and sacrificed at indicated time points. Bacterial survival, cytokines production, and pathology in the lungs were determined. Bone marrow-derived macrophages were used to clarify cellular mechanism of NOD2-mediated immune response. Bacterial clearance was impaired, and pathology was more severe in the lungs of NOD2-deficient mice compared with the wild-type mice. In macrophages, NOD2-mediated activation of p38 and JNK were required for production of proinflammatory cytokines and nitric oxide (NO) and expression of iNOS in response to M. abscessus. NO was critical for limiting intracellular growth of the pathogen. Intranasal administration of MDP reduced in vivo bacterial replication and thus improved lung pathology in M. abscessus-infected mice. This study offers important new insights into the potential roles of the NOD2 in initiating and potentiating innate immune response against M. abscessus pulmonary infection.
Collapse
Affiliation(s)
- Jun-Young Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Moo-Seung Lee
- Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, Daegu Gyeongbuk Institute of Science & Technology (DGIST), Daegu, South Korea
| | - Soo-Jin Yang
- School of Bioresources and Bioscience, Chung-Ang University, Anseong, South Korea
| | - Sang-Jin Lee
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| | - Eui-Jeong Noh
- Department of Obstetrics and Gynecology, College of Medicine, Konyang University, Daejeon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Jong-Hwan Park
- Laboratory Animal Medicine, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
15
|
Abstract
Tuberculosis remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis, is acquired by the respiratory route. It is exquisitely adapted to humans and is a prototypic intracellular pathogen of macrophages, with alveolar macrophages being the primary conduit of infection and disease. However, M. tuberculosis bacilli interact with and are affected by several soluble and cellular components of the innate immune system which dictate the outcome of primary infection, most commonly a latently infected healthy human host, in whom the bacteria are held in check by the host immune response within the confines of tissue granuloma, the host histopathologic hallmark. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the early host immune response fails to control bacterial growth, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols. The molecular details of the M. tuberculosis-host innate immune system interaction continue to be elucidated, particularly those occurring within the lung. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. In this article, we describe a contemporary view of the molecular events underlying the interaction between M. tuberculosis and a variety of cellular and soluble components and processes of the innate immune system.
Collapse
|
16
|
Abstract
This article describes the nature of the host response to Mycobacterium tuberculosis in the mouse and guinea pig models of infection. It describes the great wealth of information obtained from the mouse model, reflecting the general availability of immunological reagents, as well as genetic manipulations of the mouse strains themselves. This has led to a good understanding of the nature of the T-cell response to the infection, as well as an appreciation of the complexity of the response involving multiple cytokine- and chemokine-mediated systems. As described here and elsewhere, we have a growing understanding of how multiple CD4-positive T-cell subsets are involved, including regulatory T cells, TH17 cells, as well as the subsequent emergence of effector and central memory T-cell subsets. While, in contrast, our understanding of the host response in the guinea pig model is less advanced, considerable strides have been made in the past decade in terms of defining the basis of the immune response, as well as a better understanding of the immunopathologic process. This model has long been the gold standard for vaccine testing, and more recently is being revisited as a model for testing new drug regimens (bedaquiline being the latest example).
Collapse
|
17
|
Awuh JA, Flo TH. Molecular basis of mycobacterial survival in macrophages. Cell Mol Life Sci 2017; 74:1625-1648. [PMID: 27866220 PMCID: PMC11107535 DOI: 10.1007/s00018-016-2422-8] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 11/06/2016] [Accepted: 11/14/2016] [Indexed: 12/31/2022]
Abstract
Macrophages play an essential role in the immune system by ingesting and degrading invading pathogens, initiating an inflammatory response and instructing adaptive immune cells, and resolving inflammation to restore homeostasis. More interesting is the fact that some bacteria have evolved to use macrophages as a natural habitat and tools of spread in the host, e.g., Mycobacterium tuberculosis (Mtb) and some non-tuberculous mycobacteria (NTM). Mtb is considered one of humanity's most successful pathogens and is the causal agent of tuberculosis, while NTMs cause opportunistic infections all of which are of significant public health concern. Here, we describe mechanisms by which intracellular pathogens, with an emphasis on mycobacteria, manipulate macrophage functions to circumvent killing and live inside these cells even under considerable immunological pressure. Such macrophage functions include the selective evasion or engagement of pattern recognition receptors, production of cytokines, reactive oxygen and nitrogen species, phagosome maturation, as well as other killing mechanisms like autophagy and cell death. A clear understanding of host responses elicited by a specific pathogen and strategies employed by the microbe to evade or exploit these is of significant importance for the development of effective vaccines and targeted immunotherapy against persistent intracellular infections like tuberculosis.
Collapse
Affiliation(s)
- Jane Atesoh Awuh
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway
| | - Trude Helen Flo
- Centre of Molecular Inflammation Research, Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, PB 8905, 7491, Trondheim, Norway.
| |
Collapse
|
18
|
Tartey S, Takeuchi O. Pathogen recognition and Toll-like receptor targeted therapeutics in innate immune cells. Int Rev Immunol 2017; 36:57-73. [PMID: 28060562 DOI: 10.1080/08830185.2016.1261318] [Citation(s) in RCA: 154] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The innate immune system deploys a variety of pattern-recognition receptors (PRRs) which include Toll-like receptors (TLRs), RIG-I-like receptors, NOD-like receptors, and C-type lectin receptors to detect the invasion of pathogens and initiate protective responses. The intercellular and intracellular orchestration of signals from different PRRs, their endogenous or microbial ligands and accessory molecules determine the stimulatory or inhibitory responses. Progressing over the last two decades, considerable research on the molecular mechanisms underlying host-pathogen interactions has led to a paradigm shift of our understanding of TLR signaling in the innate immune system. Given that a significant amount of evidence implicates TLRs in the pathogenesis of immune diseases and cancer, and their activation occurs early in the inflammatory cascade, they are attractive targets for novel therapeutic agents. In this review, we discuss the recent advances in TLR signaling cross talks and the mechanism of pathogen recognition with special emphasis on the role of TLRs in tumor immunity and TLR-targeted therapeutics.
Collapse
Affiliation(s)
- Sarang Tartey
- a Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University , Kawara-Cho, Sakyo-Ku, Kyoto , Japan.,b AMED-CREST, Japan Agency for Medical Research and Development , Kyoto , Japan
| | - Osamu Takeuchi
- a Laboratory of Infection and Prevention, Institute for Virus Research, Kyoto University , Kawara-Cho, Sakyo-Ku, Kyoto , Japan.,b AMED-CREST, Japan Agency for Medical Research and Development , Kyoto , Japan
| |
Collapse
|
19
|
Ishikawa E, Mori D, Yamasaki S. Recognition of Mycobacterial Lipids by Immune Receptors. Trends Immunol 2017; 38:66-76. [DOI: 10.1016/j.it.2016.10.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/24/2016] [Accepted: 10/28/2016] [Indexed: 01/03/2023]
|
20
|
Human NOD2 Recognizes Structurally Unique Muramyl Dipeptides from Mycobacterium leprae. Infect Immun 2016; 84:2429-38. [PMID: 27297389 PMCID: PMC4995902 DOI: 10.1128/iai.00334-16] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/07/2016] [Indexed: 11/20/2022] Open
Abstract
The innate immune system recognizes microbial pathogens via pattern recognition receptors. One such receptor, NOD2, via recognition of muramyl dipeptide (MDP), triggers a distinct network of innate immune responses, including the production of interleukin-32 (IL-32), which leads to the differentiation of monocytes into dendritic cells (DC). NOD2 has been implicated in the pathogenesis of human leprosy, yet it is not clear whether Mycobacterium leprae, which has a distinct MDP structure, can activate this pathway. We investigated the effect of MDP structure on the innate immune response, finding that infection of monocytes with M. leprae induces IL-32 and DC differentiation in a NOD2-dependent manner. The presence of the proximal l-Ala instead of Gly in the common configuration of the peptide side chain of M. leprae did not affect recognition by NOD2 or cytokine production. Furthermore, amidation of the d-Glu residue did not alter NOD2 activation. These data provide experimental evidence that NOD2 recognizes naturally occurring structural variants of MDP.
Collapse
|
21
|
Inflammasome Activation and Function During Infection with Mycobacterium Tuberculosis. Curr Top Microbiol Immunol 2016; 397:183-97. [DOI: 10.1007/978-3-319-41171-2_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Ahsan F, Moura-Alves P, Guhlich-Bornhof U, Klemm M, Kaufmann SHE, Maertzdorf J. Role of Interleukin 36γ in Host Defense Against Tuberculosis. J Infect Dis 2016; 214:464-74. [DOI: 10.1093/infdis/jiw152] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/07/2016] [Indexed: 12/11/2022] Open
|
23
|
Abstract
T regulatory cells (Treg) constitute a specialized subset of T cells that play a pivotal role in preventing the occurrence of autoimmune diseases by suppressing deleterious activities of immune cells. Contrarily, they can have adverse effect on immune response against infectious diseases where Treg weaken the host immunity leading to enhanced microbial load and thereby increase in severity of the disease. Here, we have attempted to review plethora of information documenting prevalence of Treg in tuberculosis (TB) and their involvement in progression and immunopathogenesis of the disease. Further, we have laid emphasis on the possible use of Treg as a biomarker for determining the TB treatment efficacy. Also, we have discussed the probable contribution of Treg in dampening the efficacy of BCG, the anti-TB vaccine. Finally, we have speculated some of the possible strategies which might be explored by exploiting Treg for enhancing the efficacy of TB management.
Collapse
|
24
|
Qualls JE, Murray PJ. Immunometabolism within the tuberculosis granuloma: amino acids, hypoxia, and cellular respiration. Semin Immunopathol 2016; 38:139-52. [PMID: 26490974 PMCID: PMC4779414 DOI: 10.1007/s00281-015-0534-0] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 10/01/2015] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) granulomas are compact, organized agglomerations of infected and uninfected macrophages, T cells, neutrophils, and other immune cells. Within the granuloma, several unique metabolic adaptations occur to modify the behavior of immune cells, potentially favoring bacterial persistence balanced with protection against immunopathology. These include the induction of arginase-1 in macrophages to temper nitric oxide (NO) production and block T cell proliferation, inhibition of oxygen-requiring NO production in hypoxic regions, and induction of tryptophan-degrading enzymes that modify T cell proliferation and function. The spatial and time-dependent organization of granulomas further influences immunometabolism, for example through lactate production by activated macrophages, which can induce arginase-1. Although complex, the metabolic changes in and around TB granulomas can be potentially modified by host-directed therapies. While elimination of the TB bacilli is often the goal of any anti-TB therapy, host-directed approaches must also account for the possibility of immunopathologic damage to the lung.
Collapse
Affiliation(s)
- Joseph E Qualls
- Department of Pediatrics, Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA.
| | - Peter J Murray
- Department of Infectious Diseases and Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
25
|
Lee JY, Hwang EH, Kim DJ, Oh SM, Lee KB, Shin SJ, Park JH. The role of nucleotide-binding oligomerization domain 1 during cytokine production by macrophages in response to Mycobacterium tuberculosis infection. Immunobiology 2016; 221:70-5. [DOI: 10.1016/j.imbio.2015.07.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/14/2015] [Accepted: 07/23/2015] [Indexed: 12/21/2022]
|
26
|
Gopalakrishnan A, Dietzold J, Salgame P. Vaccine-mediated immunity to experimental Mycobacterium tuberculosis is not impaired in the absence of Toll-like receptor 9. Cell Immunol 2015; 302:11-18. [PMID: 26748860 DOI: 10.1016/j.cellimm.2015.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/26/2015] [Accepted: 12/30/2015] [Indexed: 12/15/2022]
Abstract
Accumulating evidence indicates that inflammatory signals required for maximizing effector T cell generation have opposing effects on the development of memory T cell precursors. Toll-like receptor (TLR)2, and TLR9 significantly contribute to the inflammatory milieu and therefore in this study we examined whether the absence of TLR9 alone or the combined absence of TLR2 and TLR9 would affect vaccine-mediated immunity to Mtb. We found that TLR9KO and TLR2/9DKO mice vaccinated with a live Mtb auxotroph, akin to vaccinated WT mice, exhibited early control of Mtb growth in the lungs compared to their naïve counterparts. The granulomatous response, IFNγ production and cellular recruitment to the lungs were also similar in all the vaccinated groups of mice. These findings indicate that there is minimal contribution from TLR2 and TLR9 in generating memory immunity to Mtb with live vaccines. Defining the innate milieu that can drive maximal memory T cell generation with a tuberculosis vaccine needs further inquiry.
Collapse
Affiliation(s)
- Archana Gopalakrishnan
- Department of Medicine, Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ, USA; Rutgers-Graduate School of Biomedical Sciences, Newark, NJ, USA
| | - Jillian Dietzold
- Department of Medicine, Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ, USA; Rutgers-Graduate School of Biomedical Sciences, Newark, NJ, USA
| | - Padmini Salgame
- Department of Medicine, Center for Emerging Pathogens, Rutgers, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
27
|
Stamm CE, Collins AC, Shiloh MU. Sensing of Mycobacterium tuberculosis and consequences to both host and bacillus. Immunol Rev 2015; 264:204-19. [PMID: 25703561 DOI: 10.1111/imr.12263] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mycobacterium tuberculosis (Mtb), the primary causative agent of human tuberculosis, has killed more people than any other bacterial pathogen in human history and remains one of the most important transmissible diseases worldwide. Because of the long-standing interaction of Mtb with humans, it is no surprise that human mucosal and innate immune cells have evolved multiple mechanisms to detect Mtb during initial contact. To that end, the cell surface of human cells is decorated with numerous pattern recognition receptors for a variety of mycobacterial ligands. Furthermore, once Mtb is ingested into professional phagocytes, other host molecules are engaged to report on the presence of an intracellular pathogen. In this review, we discuss the role of specific mycobacterial products in modulating the host's ability to detect Mtb. In addition, we describe the specific host receptors that mediate the detection of mycobacterial infection and the role of individual receptors in mycobacterial pathogenesis in humans and model organisms.
Collapse
Affiliation(s)
- Chelsea E Stamm
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA; Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | | |
Collapse
|
28
|
Prakhar P, Holla S, Ghorpade DS, Gilleron M, Puzo G, Udupa V, Balaji KN. Ac2PIM-responsive miR-150 and miR-143 target receptor-interacting protein kinase 2 and transforming growth factor beta-activated kinase 1 to suppress NOD2-induced immunomodulators. J Biol Chem 2015; 290:26576-86. [PMID: 26391398 PMCID: PMC4646315 DOI: 10.1074/jbc.m115.662817] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/15/2015] [Indexed: 11/06/2022] Open
Abstract
Specific and coordinated regulation of innate immune receptor-driven signaling networks often determines the net outcome of the immune responses. Here, we investigated the cross-regulation of toll-like receptor (TLR)2 and nucleotide-binding oligomerization domain (NOD)2 pathways mediated by Ac2PIM, a tetra-acylated form of mycobacterial cell wall component and muramyl dipeptide (MDP), a peptidoglycan derivative respectively. While Ac2PIM treatment of macrophages compromised their ability to induce NOD2-dependent immunomodulators like cyclooxygenase (COX)-2, suppressor of cytokine signaling (SOCS)-3, and matrix metalloproteinase (MMP)-9, no change in the NOD2-responsive NO, TNF-α, VEGF-A, and IL-12 levels was observed. Further, genome-wide microRNA expression profiling identified Ac2PIM-responsive miR-150 and miR-143 to target NOD2 signaling adaptors, RIP2 and TAK1, respectively. Interestingly, Ac2PIM was found to activate the SRC-FAK-PYK2-CREB cascade via TLR2 to recruit CBP/P300 at the promoters of miR-150 and miR-143 and epigenetically induce their expression. Loss-of-function studies utilizing specific miRNA inhibitors establish that Ac2PIM, via the miRNAs, abrogate NOD2-induced PI3K-PKCδ-MAPK pathway to suppress β-catenin-mediated expression of COX-2, SOCS-3, and MMP-9. Our investigation has thus underscored the negative regulatory role of Ac2PIM-TLR2 signaling on NOD2 pathway which could broaden our understanding on vaccine potential or adjuvant utilities of Ac2PIM and/or MDP.
Collapse
Affiliation(s)
- Praveen Prakhar
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Sahana Holla
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Devram Sampat Ghorpade
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | - Martine Gilleron
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Germain Puzo
- Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS and Université de Toulouse, 31077 Toulouse, France
| | - Vibha Udupa
- From the Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India and
| | | |
Collapse
|
29
|
Dorhoi A, Kaufmann SHE. Versatile myeloid cell subsets contribute to tuberculosis-associated inflammation. Eur J Immunol 2015; 45:2191-202. [PMID: 26140356 DOI: 10.1002/eji.201545493] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/23/2015] [Accepted: 06/29/2015] [Indexed: 12/21/2022]
Abstract
Tuberculosis (TB), a chronic bacterial infectious disease caused by Mycobacterium tuberculosis (Mtb), typically affects the lung and causes profound morbidity and mortality rates worldwide. Recent advances in cellular immunology emphasize the complexity of myeloid cell subsets controlling TB inflammation. The specialization of myeloid cell subsets for particular immune processes has tailored their roles in protection and pathology. Among myeloid cells, dendritic cells (DCs) are essential for the induction of adaptive immunity, macrophages predominantly harbor Mtb within TB granulomas and polymorphonuclear neutrophils (PMNs) orchestrate lung damage. However, within each myeloid cell population, diverse phenotypes with unique functions are currently recognized, differentially influencing TB pneumonia and granuloma functionality. More recently, myeloid-derived suppressor cells (MDSCs) have been identified at the site of Mtb infection. Along with PMNs, MDSCs accumulate within the inflamed lung, interact with granuloma-residing cells and contribute to exuberant inflammation. In this review, we discuss the contribution of different myeloid cell subsets to inflammation in TB by highlighting their interactions with Mtb and their role in lung pathology. Uncovering the manifold nature of myeloid cells in TB pathogenesis will inform the development of future immune therapies aimed at tipping the inflammation balance to the benefit of the host.
Collapse
Affiliation(s)
- Anca Dorhoi
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Stefan H E Kaufmann
- Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| |
Collapse
|
30
|
Srivastava S, Ernst JD, Desvignes L. Beyond macrophages: the diversity of mononuclear cells in tuberculosis. Immunol Rev 2015; 262:179-92. [PMID: 25319335 DOI: 10.1111/imr.12217] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Mycobacterium tuberculosis, the bacterium that causes tuberculosis (TB), is an intracellular pathogen of mononuclear phagocytes. Although M. tuberculosis has traditionally been thought to survive and replicate in macrophages, recent work in our laboratory and others has revealed that M. tuberculosis infects multiple subsets of mononuclear phagocytes in vivo and in vitro. In experimental animals, M. tuberculosis infects no fewer than five distinct cell subsets in the lungs, including resident alveolar macrophages and 4 types of cells that recruited to the lungs in response to inflammatory signals: neutrophils, monocytes, interstitial macrophages, and dendritic cells. A characteristic of the adaptive immune response in TB is that it is delayed for several weeks following infection, and we have determined that this delay is due to prolonged residence of the bacteria in lung phagocytes prior to acquisition of the bacteria by dendritic cells. Among the mechanisms used by M. tuberculosis to delay acquisition by dendritic cells is to inhibit apoptosis of alveolar macrophages and neutrophils, which sequester the bacteria and prevent their acquisition by dendritic cells in the early stages of infection. We hypothesize that each infected cell subset makes a distinct contribution to the overall biology of M. tuberculosis and allows the bacteria to evade elimination by T-cell responses and to avoid rapid killing by antimycobacterial drugs.
Collapse
Affiliation(s)
- Smita Srivastava
- Departments of Medicine, Microbiology, and Pathology, New York University School of Medicine, New York, NY, USA
| | | | | |
Collapse
|
31
|
Carvalho NB, Oliveira FS, Marinho FA, de Almeida LA, Fahel JS, Báfica A, Rothfuchs AG, Zamboni DS, Caliari MV, Oliveira SC. Nucleotide-binding oligomerization domain-2 (NOD2) regulates type-1 cytokine responses to Mycobacterium avium but is not required for host control of infection. Microbes Infect 2015; 17:337-44. [DOI: 10.1016/j.micinf.2015.03.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/23/2015] [Accepted: 03/18/2015] [Indexed: 10/23/2022]
|
32
|
Salem M, Seidelin JB, Eickhardt S, Alhede M, Rogler G, Nielsen OH. Species-specific engagement of human nucleotide oligomerization domain 2 (NOD)2 and Toll-like receptor (TLR) signalling upon intracellular bacterial infection: role of Crohn's associated NOD2 gene variants. Clin Exp Immunol 2015; 179:426-34. [PMID: 25335775 DOI: 10.1111/cei.12471] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2014] [Indexed: 12/29/2022] Open
Abstract
Recognition of bacterial peptidoglycan-derived muramyl-dipeptide (MDP) by nucleotide oligomerization domain 2 (NOD2) induces crucial innate immune responses. Most bacteria carry the N-acetylated form of MDP (A-MDP) in their cell membranes, whereas N-glycolyl MDP (G-MDP) is typical for mycobacteria. Experimental murine studies have reported G-MDP to have a greater NOD2-stimulating capacity than A-MDP. As NOD2 polymorphisms are associated with Crohn's disease (CD), a link has been suggested between mycobacterial infections and CD. Thus, the aim was to investigate if NOD2 responses are dependent upon type of MDP and further to determine the role of NOD2 gene variants for the bacterial recognition in CD. The response pattern to A-MDP, G-MDP, Mycobacterium segmatis (expressing mainly G-MDP) and M. segmatisΔnamH (expressing A-MDP), Listeria monocytogenes (LM) (an A-MDP-containing bacteria) and M. avium paratuberculosis (MAP) (a G-MDP-containing bacteria associated with CD) was investigated in human peripheral blood mononuclear cells (PBMCs). A-MDP and M. segmatisΔnamH induced significantly higher tumour necrosis factor (TNF)-α protein levels in healthy wild-type NOD2 PBMCs compared with G-MDP and M. segmatis. NOD2 mutations resulted in a low tumour necrosis factor (TNF)-α protein secretion following stimulation with LM. Contrary to this, TNF-α levels were unchanged upon MAP stimulation regardless of NOD2 genotype and MAP solely activated NOD2- and Toll-like receptor (TLRs)-pathway with an enhanced production of interleukin (IL)-1β and IL-10. In conclusion, the results indicate that CD-associated NOD2 deficiencies might affect the response towards a broader array of commensal and pathogenic bacteria expressing A-MDP, whereas they attenuate the role of mycobacteria in the pathogenesis of CD.
Collapse
Affiliation(s)
- M Salem
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Herlev, Denmark
| | | | | | | | | | | |
Collapse
|
33
|
Willcocks S, Wren BW. Shared characteristics between Mycobacterium tuberculosis and fungi contribute to virulence. Future Microbiol 2015; 9:657-68. [PMID: 24957092 DOI: 10.2217/fmb.14.29] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis, an etiologic agent of tuberculosis, exacts a heavy toll in terms of human morbidity and mortality. Although an ancient disease, new strains are emerging as human population density increases. The emergent virulent strains appear adept at steering the host immune response from a protective Th1 type response towards a Th2 bias, a feature shared with some pathogenic fungi. Other common characteristics include infection site, metabolic features, the composition and display of cell surface molecules, the range of innate immune receptors engaged during infection, and the ability to form granulomas. Literature from these two distinct fields of research are reviewed to propose that the emergent virulent strains of M. tuberculosis are in the process of convergent evolution with pathogenic fungi, and are increasing the prominence of conserved traits from environmental phylogenetic ancestors that facilitate their evasion of host defenses and dissemination.
Collapse
Affiliation(s)
- Sam Willcocks
- The London School of Hygiene & Tropical Medicine, London, WC1E 7HT, UK
| | | |
Collapse
|
34
|
Landes MB, Rajaram MVS, Nguyen H, Schlesinger LS. Role for NOD2 in Mycobacterium tuberculosis-induced iNOS expression and NO production in human macrophages. J Leukoc Biol 2015; 97:1111-9. [PMID: 25801769 DOI: 10.1189/jlb.3a1114-557r] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 03/02/2015] [Indexed: 01/04/2023] Open
Abstract
M.tb, which causes TB, is a host-adapted intracellular pathogen of macrophages. Macrophage intracellular PRRs, such as NOD proteins, regulate proinflammatory cytokine production in response to various pathogenic organisms. We demonstrated previously that NOD2 plays an important role in controlling the inflammatory response and viability of M.tb and Mycobacterium bovis BCG in human macrophages. Various inflammatory mediators, such as cytokines, ROS, and RNS, such as NO, can mediate this control. iNOS (or NOS2) is a key enzyme for NO production and M.tb control during infection of mouse macrophages; however, the role of NO during infection of human macrophages remains unclear, in part, as a result of the low amounts of NO produced in these cells. Here, we tested the hypothesis that activation of NOD2 by its ligands (MDP and GMDP, the latter from M.tb) plays an important role in the expression and activity of iNOS and NO production in human macrophages. We demonstrate that M.tb or M. bovis BCG infection enhances iNOS expression in human macrophages. The M.tb-induced iNOS expression and NO production are dependent on NOD2 expression during M.tb infection. Finally, NF-κB activation is required for NOD2-dependent expression of iNOS in human macrophages. Our data provide evidence for a new molecular pathway that links activation of NOD2, an important intracellular PRR, and iNOS expression and activity during M.tb infection of human macrophages.
Collapse
Affiliation(s)
- Michelle B Landes
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Murugesan V S Rajaram
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Huy Nguyen
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| | - Larry S Schlesinger
- Departments of Microbiology and Microbial Infection and Immunity, *Center for Microbial Interface Biology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
35
|
Behr MA, Divangahi M. Freund's adjuvant, NOD2 and mycobacteria. Curr Opin Microbiol 2015; 23:126-32. [DOI: 10.1016/j.mib.2014.11.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 11/18/2014] [Accepted: 11/19/2014] [Indexed: 11/26/2022]
|
36
|
Petnicki-Ocwieja T, Kern A. Mechanisms of Borrelia burgdorferi internalization and intracellular innate immune signaling. Front Cell Infect Microbiol 2014; 4:175. [PMID: 25566512 PMCID: PMC4266086 DOI: 10.3389/fcimb.2014.00175] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 11/27/2014] [Indexed: 01/12/2023] Open
Abstract
Lyme disease is a long-term infection whose most severe pathology is characterized by inflammatory arthritis of the lower bearing joints, carditis, and neuropathy. The inflammatory cascades are initiated through the early recognition of invading Borrelia burgdorferi spirochetes by cells of the innate immune response, such as neutrophils and macrophage. B. burgdorferi does not have an intracellular niche and thus much research has focused on immune pathways activated by pathogen recognition molecules at the cell surface, such as the Toll-like receptors (TLRs). However, in recent years, studies have shown that internalization of the bacterium by host cells is an important component of the defense machinery in response to B. burgdorferi. Upon internalization, B. burgdorferi is trafficked through an endo/lysosomal pathway resulting in the activation of a number of intracellular pathogen recognition receptors including TLRs and Nod-like receptors (NLRs). Here we will review the innate immune molecules that participate in both cell surface and intracellular immune activation by B. burgdorferi.
Collapse
Affiliation(s)
- Tanja Petnicki-Ocwieja
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| | - Aurelie Kern
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center Boston, MA, USA
| |
Collapse
|
37
|
Innate Resistance to Tuberculosis in Man, Cattle and Laboratory Animal Models: Nipping Disease in the Bud? J Comp Pathol 2014; 151:291-308. [DOI: 10.1016/j.jcpa.2014.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 07/29/2014] [Accepted: 08/02/2014] [Indexed: 01/04/2023]
|
38
|
Leissinger M, Kulkarni R, Zemans RL, Downey GP, Jeyaseelan S. Investigating the role of nucleotide-binding oligomerization domain-like receptors in bacterial lung infection. Am J Respir Crit Care Med 2014; 189:1461-8. [PMID: 24707903 DOI: 10.1164/rccm.201311-2103pp] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Lower respiratory tract infections (LRTIs) are a persistent and pervasive public health problem worldwide. Pneumonia and other LRTIs will be among the leading causes of death in adults, and pneumonia is the single largest cause of death in children. LRTIs are also an important cause of acute lung injury and acute exacerbations of chronic obstructive pulmonary disease. Because innate immunity is the first line of defense against pathogens, understanding the role of innate immunity in the pulmonary system is of paramount importance. Pattern recognition molecules (PRMs) that recognize microbial-associated molecular patterns are an integral component of the innate immune system and are located in both cell membranes and cytosol. Toll-like receptors and nucleotide-binding oligomerization domain-like receptors (NLRs) are the major sensors at the forefront of pathogen recognition. Although Toll-like receptors have been extensively studied in host immunity, NLRs have diverse and important roles in immune and inflammatory responses, ranging from antimicrobial properties to adaptive immune responses. The lung contains NLR-expressing immune cells such as leukocytes and nonimmune cells such as epithelial cells that are in constant and close contact with invading microbes. This pulmonary perspective addresses our current understanding of the structure and function of NLR family members, highlighting advances and gaps in knowledge, with a specific focus on immune responses in the respiratory tract during bacterial infection. Further advances in exploring cellular and molecular responses to bacterial pathogens are critical to develop improved strategies to treat and prevent devastating infectious diseases of the lung.
Collapse
Affiliation(s)
- Mary Leissinger
- 1 Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana
| | | | | | | | | |
Collapse
|
39
|
Hansen JM, Golchin SA, Veyrier FJ, Domenech P, Boneca IG, Azad AK, Rajaram MVS, Schlesinger LS, Divangahi M, Reed MB, Behr MA. N-glycolylated peptidoglycan contributes to the immunogenicity but not pathogenicity of Mycobacterium tuberculosis. J Infect Dis 2013; 209:1045-54. [PMID: 24265438 DOI: 10.1093/infdis/jit622] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mycobacteria produce an unusual, glycolylated form of muramyl dipeptide (MDP) that is more potent and efficacious at inducing NOD2-mediated host responses. We tested the importance of this modified form of MDP in Mycobacterium tuberculosis by disrupting the gene, namH, responsible for this modification. In vitro, the namH mutant did not produce N-glycolylated muropeptides, but there was no alteration in colony morphology, growth kinetics, cellular morphology, or mycolic acid profile. Ex vivo, the namH mutant survived and replicated normally in murine and human macrophages, yet induced diminished production of tumor necrosis factor α. In vivo, namH disruption did not affect the bacterial burden during infection of C57BL/6 mice or cellular recruitment to the lungs but modestly prolonged survival after infection in Rag1(-/-) mice. These results indicate that the modified MDP is an important contributor to the unusual immunogenicity of mycobacteria but has a limited role in the pathogenesis of M. tuberculosis infection.
Collapse
Affiliation(s)
- Jesse M Hansen
- Department of Medicine, Research Institute of the McGill University Health Center, Montreal, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Lemire P, Calzas C, Segura M. The NOD2 receptor does not play a major role in the pathogenesis of Group B Streptococcus in mice. Microb Pathog 2013; 65:41-7. [PMID: 24107312 DOI: 10.1016/j.micpath.2013.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 09/25/2013] [Accepted: 09/26/2013] [Indexed: 01/08/2023]
Abstract
Group B Streptococcus (GBS) capsular type III is an important agent of life-threatening invasive infections. It has been previously shown that encapsulated GBS is easily internalized by dendritic cells (DCs) and this internalization has an impact on cytokine production. The intracellular receptors or pathways underlying this response are not well understood. In this work, we investigated the role of NOD2 in the pathogenesis of GBS using a mouse model of infection. NOD2(-/-) mice showed similar levels of survival and bacteremia than control mice. Interestingly, ex vivo analysis of total spleen cells from infected animals showed that the absence of NOD2 results in reduced production of inflammatory cytokines. However this abridged inflammatory response does not seem to improve mouse survival. In conclusion, we demonstrated that NOD2 is not a crucial receptor to fight GBS infection and only partially contributes to the inflammatory response.
Collapse
Affiliation(s)
- Paul Lemire
- Laboratory of Immunology, Faculté de médecine vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada
| | | | | |
Collapse
|
41
|
Killick KE, Ní Cheallaigh C, O'Farrelly C, Hokamp K, MacHugh DE, Harris J. Receptor-mediated recognition of mycobacterial pathogens. Cell Microbiol 2013; 15:1484-95. [PMID: 23795683 DOI: 10.1111/cmi.12161] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 06/17/2013] [Accepted: 06/17/2013] [Indexed: 01/13/2023]
Abstract
Mycobacteria are a genus of bacteria that range from the non-pathogenic Mycobacterium smegmatis to Mycobacterium tuberculosis, the causative agent of tuberculosis in humans. Mycobacteria primarily infect host tissues through inhalation or ingestion. They are phagocytosed by host macrophages and dendritic cells. Here, conserved pathogen-associated molecular patterns (PAMPs) on the surface of mycobacteria are recognized by phagocytic pattern recognition receptors (PRRs). Several families of PRRs have been shown to non-opsonically recognize mycobacterial PAMPs, including membrane-bound C-type lectin receptors, membrane-bound and cytosolic Toll-like receptors and cytosolic NOD-like receptors. Recently, a possible role for intracellular cytosolic PRRs in the recognition of mycobacterial pathogens has been proposed. Here, we discuss currentideas on receptor-mediated recognition of mycobacterial pathogens by macrophages and dendritic cells.
Collapse
Affiliation(s)
- Kate E Killick
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Belfield, Dublin, 4, Ireland.
| | | | | | | | | | | |
Collapse
|
42
|
Macrophages in tuberculosis: friend or foe. Semin Immunopathol 2013; 35:563-83. [PMID: 23864058 DOI: 10.1007/s00281-013-0388-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 06/20/2013] [Indexed: 12/14/2022]
Abstract
Tuberculosis (TB) remains one of the greatest threats to human health. The causative bacterium, Mycobacterium tuberculosis (Mtb), is acquired by the respiratory route. It is exquisitely human adapted and a prototypic intracellular pathogen of macrophages, with alveolar macrophages (AMs) being the primary conduit of infection and disease. The outcome of primary infection is most often a latently infected healthy human host, in whom the bacteria are held in check by the host immune response. Such individuals can develop active TB later in life with impairment in the immune system. In contrast, in a minority of infected individuals, the host immune response fails to control the growth of bacilli, and progressive granulomatous disease develops, facilitating spread of the bacilli via infectious aerosols coughed out into the environment and inhaled by new hosts. The molecular details of the Mtb-macrophage interaction continue to be elucidated. However, it is clear that a number of complex processes are involved at the different stages of infection that may benefit either the bacterium or the host. Macrophages demonstrate tremendous phenotypic heterogeneity and functional plasticity which, depending on the site and stage of infection, facilitate the diverse outcomes. Moreover, host responses vary depending on the specific characteristics of the infecting Mtb strain. In this chapter, we describe a contemporary view of the behavior of AMs and their interaction with various Mtb strains in generating unique immunologic lung-specific responses.
Collapse
|
43
|
Weinhold M, Eisenblätter M, Jasny E, Fehlings M, Finke A, Gayum H, Rüschendorf U, Renner Viveros P, Moos V, Allers K, Schneider T, Schaible UE, Schumann RR, Mielke ME, Ignatius R. The Attenuated Brucella abortus Strain 19 Invades, Persists in, and Activates Human Dendritic Cells, and Induces the Secretion of IL-12p70 but Not IL-23. PLoS One 2013; 8:e65934. [PMID: 23805193 PMCID: PMC3689767 DOI: 10.1371/journal.pone.0065934] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/02/2013] [Indexed: 02/02/2023] Open
Abstract
BACKGROUND Bacterial vectors have been proposed as novel vaccine strategies to induce strong cellular immunity. Attenuated strains of Brucella abortus comprise promising vector candidates since they have the potential to induce strong CD4(+) and CD8(+) T-cell mediated immune responses in the absence of excessive inflammation as observed with other Gram-negative bacteria. However, some Brucella strains interfere with the maturation of dendritic cells (DCs), which is essential for antigen-specific T-cell priming. In the present study, we investigated the interaction of human monocyte-derived DCs with the smooth attenuated B. abortus strain (S) 19, which has previously been employed successfully to vaccinate cattle. METHODOLOGY/PRINCIPAL FINDINGS We first looked into the potential of S19 to hamper the cytokine-induced maturation of DCs; however, infected cells expressed CD25, CD40, CD80, and CD86 to a comparable extent as uninfected, cytokine-matured DCs. Furthermore, S19 activated DCs in the absence of exogeneous stimuli, enhanced the expression of HLA-ABC and HLA-DR, and was able to persist intracellularly without causing cytotoxicity. Thus, DCs provide a cellular niche for persisting brucellae in vivo as a permanent source of antigen. S19-infected DCs produced IL-12/23p40, IL-12p70, and IL-10, but not IL-23. While heat-killed bacteria also activated DCs, soluble mediators were not involved in S19-induced activation of human DCs. HEK 293 transfectants revealed cellular activation by S19 primarily through engagement of Toll-like receptor (TLR)2. CONCLUSIONS/SIGNIFICANCE Thus, as an immunological prerequisite for vaccine efficacy, B. abortus S19 potently infects and potently activates (most likely via TLR2) human DCs to produce Th1-promoting cytokines.
Collapse
Affiliation(s)
- Mario Weinhold
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Martin Eisenblätter
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Edith Jasny
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Fehlings
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Hermine Gayum
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ursula Rüschendorf
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Pablo Renner Viveros
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Tropical Medicine and International Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Verena Moos
- Medical Clinic I, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Kristina Allers
- Medical Clinic I, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Schneider
- Medical Clinic I, Charité – Universitätsmedizin Berlin, Campus Benjamin Franklin, Berlin, Germany
| | - Ulrich E. Schaible
- Research Center Borstel, Department of Molecular Infection Research, Borstel, Germany
| | - Ralf R. Schumann
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | | | - Ralf Ignatius
- Institute of Microbiology and Hygiene, Department of Infection Immunology, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Institute of Tropical Medicine and International Health, Charité – Universitätsmedizin Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
44
|
Vinh DC, Behr MA. Crohn's as an immune deficiency: from apparent paradox to evolving paradigm. Expert Rev Clin Immunol 2013; 9:17-30. [PMID: 23256761 DOI: 10.1586/eci.12.87] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Crohn's disease is often considered an autoimmune condition, based on the observations of a histopathological inflammatory process in the absence of identifiable causal microorganism(s) and that immune-modulating therapeutics result in diminished host-directed inflammatory pathology. However, the evidence for a self-targeted immune response is unproven; thus, the instigating and perpetuating forces that drive this chronic inflammation remain unknown. In recent years, a convergence of findings from different fields of investigation has led to a new paradigm, where Crohn's disease appears to be the consequence of an intrinsic innate immune deficiency. While genomic/postgenomic studies and functional immunologic investigations offer a common perspective, critical details of the processes involved require further elaboration. In this review, we place this new model in the context of the emerging literature on non-HIV immune deficiencies, to compare and contrast what is known about proven intrinsic (primary) immune deficiencies to the nascent understanding of Crohn's disease. We then re-evaluate postgenomic research, looking at the functional importance of Crohn's disease-associated mutations and polymorphisms, to delineate points of consensus and issues requiring further study. We ask whether the immunologic profile can guide predictions as to which microbial triggers could exploit these defects and thereby initiate and/or perpetuate chronic enteritis. Finally, we outline potential clinical implications of this model, from immunologic assessment of patients to the selection of therapeutic interventions.
Collapse
Affiliation(s)
- Donald C Vinh
- Department of Medicine, McGill University Health Centre, Montreal, QC, H3G 1A4, Canada
| | | |
Collapse
|
45
|
Hedl M, Abraham C. NLRP1 and NLRP3 inflammasomes are essential for distinct outcomes of decreased cytokines but enhanced bacterial killing upon chronic Nod2 stimulation. Am J Physiol Gastrointest Liver Physiol 2013; 304:G583-96. [PMID: 23287275 PMCID: PMC3602688 DOI: 10.1152/ajpgi.00297.2012] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Upon chronic microbial exposure and pattern-recognition receptor (PRR) stimulation, myeloid-derived cells undergo a distinct transcriptional program relative to acute PRR stimulation, with proinflammatory pathways being downregulated. However, other host-response pathways might be differentially regulated, and this concept has been relatively unexplored. Understanding mechanisms regulating chronic microbial exposure outcomes is important for conditions of ongoing infection or at mucosal surfaces, such as the intestine. The intracellular PRR nucleotide oligomerization domain 2 (Nod2) confers the highest genetic risk toward developing Crohn's disease (CD). We previously identified mechanisms mediating downregulation of proinflammatory pathways upon chronic Nod2 stimulation; here we sought to define how chronic Nod2 stimulation regulates bacterial killing. We find that, despite downregulating cytokine secretion upon restimulation through PRR and live bacteria, chronic Nod2 stimulation of human monocyte-derived macrophages enhances bacterial killing; this dual regulation is absent in CD Nod2-risk carriers. We show that chronic Nod2-mediated reprogramming of human monocyte-derived macrophages to a state of enhanced bacterial killing requires upregulated reactive oxygen/nitrogen species pathway function through increased p67phox/p47phox/nitric oxide synthase-2 expression; selectively knocking down each of these genes reverses the enhanced bacterial killing. Importantly, we find that, during chronic Nod2 stimulation, NLRP3/NLRP1 inflammasome-mediated caspase-1 activation with subsequent IL-1 secretion is essential for the subsequent bifurcation to downregulated proinflammatory cytokines and upregulated bacterial killing. Therefore, we identify mechanisms mediating the distinct inflammatory and microbicidal outcomes upon chronic stimulation of the CD-associated protein Nod2.
Collapse
Affiliation(s)
- Matija Hedl
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| | - Clara Abraham
- Department of Internal Medicine, Yale University, New Haven, Connecticut
| |
Collapse
|
46
|
Ehlers S, Schaible UE. The granuloma in tuberculosis: dynamics of a host-pathogen collusion. Front Immunol 2013; 3:411. [PMID: 23308075 PMCID: PMC3538277 DOI: 10.3389/fimmu.2012.00411] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 12/17/2012] [Indexed: 12/29/2022] Open
Abstract
A granuloma is defined as an inflammatory mononuclear cell infiltrate that, while capable of limiting growth of Mycobacterium tuberculosis, also provides a survival niche from which the bacteria may disseminate. The tuberculosis lesion is highly dynamic and shaped by both, immune response elements and the pathogen. In the granuloma, M. tuberculosis switches to a non-replicating but energy-generating life style whose detailed molecular characterization can identify novel targets for chemotherapy. To secure transmission to a new host, M. tuberculosis has evolved to drive T cell immunity to the point that necrotizing granulomas leak into bronchial cavities to facilitate expectoration of bacilli. From an evolutionary perspective it is therefore questionable whether vaccination and immunity enhancing strategies that merely mimic the natural immune response directed against M. tuberculosis infection can overcome pulmonary tuberculosis in the adult population. Juxtaposition of molecular pathology and immunology with microbial physiology and the use of novel imaging approaches afford an integrative view of the granuloma’s contribution to the life cycle of M. tuberculosis. This review revisits the different input of innate and adaptive immunity in granuloma biogenesis, with a focus on the co-evolutionary forces that redirect immune responses also to the benefit of the pathogen, i.e., its survival, propagation, and transmission.
Collapse
Affiliation(s)
- Stefan Ehlers
- Priority Research Area "Infections", Research Center Borstel Borstel, Germany ; Molecular Inflammation Medicine, Institute for Experimental Medicine, Christian-Albrechts-University Kiel, Germany
| | | |
Collapse
|
47
|
Salem S, Gros P. Genetic Determinants of Susceptibility to Mycobacterial Infections: IRF8, A New Kid on the Block. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 783:45-80. [DOI: 10.1007/978-1-4614-6111-1_3] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
48
|
Gomes MTR, Campos PC, de Almeida LA, Oliveira FS, Costa MMS, Marim FM, Pereira GSM, Oliveira SC. The role of innate immune signals in immunity to Brucella abortus. Front Cell Infect Microbiol 2012; 2:130. [PMID: 23112959 PMCID: PMC3480720 DOI: 10.3389/fcimb.2012.00130] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 10/04/2012] [Indexed: 01/18/2023] Open
Abstract
Innate immunity serves as the first line of defense against infectious agents such as intracellular bacteria. The innate immune platform includes Toll-like receptors (TLRs), retinoid acid-inducible gene-I-like receptors and other cytosolic nucleic acid sensors, nucleotide-binding and oligomerization domain-like receptors, adaptors, kinases and other signaling molecules that are required to elicit effective responses against different pathogens. Our research group has been using the Gram-negative bacteria Brucella abortus as a model of pathogen. We have demonstrated that B. abortus triggers MAPK and NF-κB signaling pathways in macrophages in a MyD88 and IRAK-4-dependent manner. Furthermore, we claimed that so far TLR9 is the most important single TLR during Brucella infection. The identification of host receptors that recognize pathogen-derived nucleic acids has revealed an essential role for nucleic acid sensing in the triggering of immunity to intracellular pathogens. Besides TLRs, herein we describe recent advances in NOD1, NOD2, and type I IFN receptors in innate immune pathways during B. abortus infection.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sergio C. Oliveira
- Department of Biochemistry and Immunology, Institute of Biological Sciences, Federal University of Minas GeraisBelo Horizonte, MG, Brazil
| |
Collapse
|
49
|
Deng W, Xie J. NOD2 signaling and role in pathogenic mycobacterium recognition, infection and immunity. Cell Physiol Biochem 2012; 30:953-63. [PMID: 22986285 DOI: 10.1159/000341472] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2012] [Indexed: 12/12/2022] Open
Abstract
The Mycobacterium pathogens acquire additional properties to expand their pathogenicity and existence spaces. The interaction between pathogenic Mycobacterium components and receptors of host innate immune system is critical for the infection outcome, particularly for the macrophage activation. NOD2 (Nucleotide binding oligomerization domain 2), an intracellular pathogen recognition sensor, attenuates two key putative host bacterial killing mechanisms: interfering the production of TNF-alpha and inducing resistance to apoptosis. Multiple evidences have shown that NOD2 acts as a non-redundant recognition system of Mycobacterium, a successful pathogen with many mechanisms to evade host immunity and leading to insidious disease. Understanding the complex interaction between host and pathogen mediated by NOD2 signaling, might provide novel insight into the pathogenesis of pathogenic Mycobacterium and inform the development of more effective vaccines and therapeutics.
Collapse
Affiliation(s)
- Wanyan Deng
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, School of Life Sciences, Southwest University, Beibei, Chongqing, China.
| | | |
Collapse
|
50
|
Kumar S, Ingle H, Prasad DVR, Kumar H. Recognition of bacterial infection by innate immune sensors. Crit Rev Microbiol 2012; 39:229-46. [DOI: 10.3109/1040841x.2012.706249] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|