1
|
Cardoso KF, de Souza LRA, da Silva Santos BSÁ, de Carvalho KRA, da Silva Messias SG, de Faria Gonçalves AP, Kano FS, Alves PA, da Silva Campos MA, Xavier MP, Garcia CC, Russo RC, Gazzinelli RT, Costa ÉA, da Silva Martins NR, Miyaji EN, de Magalhães Vieira Machado A, Silva Araújo MS. Intranasal influenza-vectored vaccine expressing pneumococcal surface protein A protects against Influenza and Streptococcus pneumoniae infections. NPJ Vaccines 2024; 9:246. [PMID: 39702744 DOI: 10.1038/s41541-024-01033-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 11/21/2024] [Indexed: 12/21/2024] Open
Abstract
Streptococcus pneumoniae and influenza A virus (IAV) are significant agents of pneumonia cases and severe respiratory infections globally. Secondary bacterial infections, particularly by Streptococcus pneumoniae, are common in IAV-infected individuals, leading to critical outcomes. Despite reducing mortality, pneumococcal vaccines have high production costs and are serotype specific. The emergence of new circulating serotypes has led to the search for new prevention strategies that provide a broad spectrum of protection. In this context, vaccination using antigens present in all serotypes, such as Pneumococcal Surface Protein A (PspA), can offer broad coverage regardless of serotype. Employing the reverse genetics technique, our research group developed a recombinant influenza A H1N1 virus that expresses PspA (Flu-PspA), through the replacement of neuraminidase by PspA. This virus was evaluated as a bivalent vaccine against infections caused by influenza A and S. pneumoniae in mice. Initially, we evaluated the Flu-PspA virus's ability to infect cells and express PspA in vitro, its capacity to multiply in embryonated chicken eggs, and its safety when inoculated in mice. Subsequently, the protective effect against influenza A and Streptococcus pneumoniae lethal challenge infections in mice was assessed using different immunization protocols. Analysis of the production of antibodies against PspA4 protein and influenza, and the binding capacity of anti-PspA4 antibodies/complement deposition to different strains of S. pneumoniae were also evaluated. Our results demonstrate that the Flu-PspA virus vaccine efficiently induces PspA protein expression in vitro, and that it was able to multiply in embryonated chicken eggs even without exogenous neuraminidase. The Flu-PspA-based bivalent vaccine was demonstrated to be safe, stimulated high titers of anti-PspA and anti-influenza antibodies, and protected mice against homosubtypic and heterosubtypic influenza A and S. pneumoniae challenge. Moreover, an efficient binding of antibodies and complement deposition on the surface of pneumococcal strains ascribes the broad-spectrum vaccine response in vivo. In summary, this innovative approach holds promise for developing a dual-protective vaccine against two major respiratory pathogens.
Collapse
Affiliation(s)
- Kimberly Freitas Cardoso
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Lara Regina Alves de Souza
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | | | | | - Sarah Giarola da Silva Messias
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Ana Paula de Faria Gonçalves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Flora Satiko Kano
- Grupo de Pesquisa em Biologia Molecular e Imunologia da Malária, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Pedro Augusto Alves
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marco Antônio da Silva Campos
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Marcelo Pascoal Xavier
- Laboratório de Imunologia de Doenças Virais, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Cristiana Couto Garcia
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil
| | - Remo Castro Russo
- Laboratório de Imunologia e Mecânica Pulmonar, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Ricardo Tostes Gazzinelli
- Centro de Tecnologia de Vacinas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Érica Azevedo Costa
- Escola de Veterinária, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | | | | | | | - Márcio Sobreira Silva Araújo
- Grupo Integrado de Pesquisa em Biomarcadores, Instituto René Rachou-Fundação Oswaldo Cruz, Belo Horizonte, Minas Gerais, Brasil.
| |
Collapse
|
2
|
Majumder S, Li P, Das S, Nafiz TN, Kumar S, Bai G, Dellario H, Sui H, Guan Z, Curtiss R, Furuya Y, Sun W. A bacterial vesicle-based pneumococcal vaccine against influenza-mediated secondary Streptococcus pneumoniae pulmonary infection. Mucosal Immunol 2024; 17:169-181. [PMID: 38215909 PMCID: PMC11033695 DOI: 10.1016/j.mucimm.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 12/29/2023] [Accepted: 01/08/2024] [Indexed: 01/14/2024]
Abstract
Streptococcus pneumoniae (Spn) is a common pathogen causing a secondary bacterial infection following influenza, which leads to severe morbidity and mortality during seasonal and pandemic influenza. Therefore, there is an urgent need to develop bacterial vaccines that prevent severe post-influenza bacterial pneumonia. Here, an improved Yersinia pseudotuberculosis strain (designated as YptbS46) possessing an Asd+ plasmid pSMV92 could synthesize high amounts of the Spn pneumococcal surface protein A (PspA) antigen and monophosphoryl lipid A as an adjuvant. The recombinant strain produced outer membrane vesicles (OMVs) enclosing a high amount of PspA protein (designated as OMV-PspA). A prime-boost intramuscular immunization with OMV-PspA induced both memory adaptive and innate immune responses in vaccinated mice, reduced the viral and bacterial burden, and provided complete protection against influenza-mediated secondary Spn infection. Also, the OMV-PspA immunization afforded significant cross-protection against the secondary Spn A66.1 infection and long-term protection against the secondary Spn D39 challenge. Our study implies that an OMV vaccine delivering Spn antigens can be a new promising pneumococcal vaccine candidate.
Collapse
Affiliation(s)
- Saugata Majumder
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Peng Li
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Shreya Das
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Tanvir Noor Nafiz
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Sudeep Kumar
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Guangchun Bai
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA
| | - Hazel Dellario
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Haixin Sui
- Wadsworth Center, New York State Department of Health, Albany, New York, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, USA
| | - Roy Curtiss
- Department of Infectious Diseases and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Yoichi Furuya
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| | - Wei Sun
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, New York, USA.
| |
Collapse
|
3
|
Kuroda E, Koizumi Y, Piao Z, Nakayama H, Tomono K, Oishi K, Hamaguchi S, Akeda Y. Establishment of a modified opsonophagocytic killing assay for anti-pneumococcal surface protein A antibody. J Microbiol Methods 2023; 212:106804. [PMID: 37543109 DOI: 10.1016/j.mimet.2023.106804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/20/2023] [Accepted: 08/03/2023] [Indexed: 08/07/2023]
Abstract
Streptococcus pneumoniae (pneumococcus) is a pathogenic gram-positive bacterium that causes pneumonia, meningitis, and sepsis. Pneumococcal surface protein A (PspA) induces antibodies that protect against lethal infections by pneumococci. PspA is a choline-binding protein present on the cell surface of almost all pneumococcal strains and is a non-capsular polysaccharide vaccine candidate. For research and development of PspA-based vaccines, an in-vitro test system to measure the activity of functional antibodies capable of killing pneumococci is essential. The opsonophagocytic killing (OPK) assay is used to evaluate the opsonic activity of functional antibodies induced by capsular polysaccharide (CPS)-based vaccines (standard OPK assay). Despite the potential of anti-PspA antibodies to protect against lethal infections in mice, the standard OPK assay fails to evaluate anti-PspA antibodies. Using a pneumococcal surface protein C-deficient strain and extending the incubation time of opsonized bacteria, complement, and HL-60 cells reportedly results in enhanced bactericidal activity (modified OPK assay). We aimed to measure the bactericidal activity of anti-PspA antibodies in intact pneumococcal strains. We optimized the pneumococcal culture method used in the OPK assay to increase the efficiency of anti-PspA antibody-mediated phagocytosis of HL-60 cells. As thick capsules hinder phagocytosis, we attempted to obtain pneumococci with thin capsules through an improved culture method. As pneumococci attached to cells exhibit thin capsules, pneumococci cultured in Todd Hewitt yeast extract (THY) broth were spread on blood agar plates and incubated for 4 h. cpsA mRNA transcript levels in pneumococci cultured on blood agar were lower than those in pneumococci cultured in THY broth. OPK activity against pneumococci expressing PspA of clades 1-5 was reasonably well detected using pneumococci cultured on blood agar in the modified OPK assay. The modified OPK assay for anti-PspA antibody using pneumococci cultured on blood agar represents a useful assay to determine the killing activity of functional anti-PspA antibodies against pneumococci.
Collapse
Affiliation(s)
- Eisuke Kuroda
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Department of Transformative Infection Control Development Studies, Osaka University Graduate School of Medicine, Suita, Osaka, Japan; Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan
| | - Yuka Koizumi
- Discovery Research Department, Innovative Vaccine Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Zhenyu Piao
- Biotechnology Section, Biomedical Science Center, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Hiroki Nakayama
- Discovery Research Department, Innovative Vaccine Research and Development Division, The Research Foundation for Microbial Diseases of Osaka University, Osaka, Japan
| | - Kazunori Tomono
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan
| | | | - Shigeto Hamaguchi
- Department of Infection Control and Prevention, Graduate School of Medicine, Osaka University, Suita, Osaka, Japan; Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Division of Fostering Required Medical Human Resources, Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Osaka, Japan; Department of Transformative Analysis for Human Specimen, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yukihiro Akeda
- Division of Infection Control and Prevention, Osaka University Hospital, Osaka University, Suita, Osaka, Japan; Thailand-Japan Research Collaboration Centre on Emerging and Re-emerging Infections, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
4
|
Chan WY, Entwisle C, Ercoli G, Ramos-Sevillano E, McIlgorm A, Cecchini P, Bailey C, Lam O, Whiting G, Green N, Goldblatt D, Wheeler JX, Brown JS. Corrected and Republished from: "A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge". Infect Immun 2022; 90:e0084618a. [PMID: 35076289 PMCID: PMC9199499 DOI: 10.1128/iai.00846-18a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 11/20/2022] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
Affiliation(s)
- Win-Yan Chan
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | | | - Giuseppe Ercoli
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Elise Ramos-Sevillano
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| | - Ann McIlgorm
- ImmunoBiology Ltd., Babraham, Cambridge, United Kingdom
| | | | | | - Oliver Lam
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Gail Whiting
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Nicola Green
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David Goldblatt
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Jun X. Wheeler
- National Institute for Biological Standards and Control, South Mimms, Potters Bar, Hertfordshire, United Kingdom
| | - Jeremy S. Brown
- Centre for Inflammation and Tissue Repair, UCL Respiratory, Division of Medicine, University College Medical School Rayne Institute, London, United Kingdom
| |
Collapse
|
5
|
Senevirathne A, Park JY, Hewawaduge C, Perumalraja K, Lee JH. Eukaryotic expression system complemented with expressivity of Semliki Forest Virus's RdRp and invasiveness of engineered Salmonella demonstrate promising potential for bacteria mediated gene therapy. Biomaterials 2021; 279:121226. [PMID: 34736150 DOI: 10.1016/j.biomaterials.2021.121226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/29/2021] [Accepted: 10/22/2021] [Indexed: 10/20/2022]
Abstract
This study describes an efficient eukaryotic expression system (pJHL204) built into the Salmonella delivery system to enhance the essential efficacy and effectiveness of conventional DNA therapy. The expression system utilizes RNA-dependent RNA polymerase activity (RdRp) of Semiliki Forest Virus attributing to dramatic antigen expression by cytoplasmic mRNA amplification. Functional characterization of the pJHL204 by in vitro and in vivo transfection studies revealed the improved expression of mRNA at least 150 folds than the RdRp mutant plasmid under in vitro conditions. Using green fluorescence protein (GFP) and mCherry as bait proteins this system was extensively characterized for plasmid delivery capacity, antigen expression, and safety using in vivo and in vitro models by employing flow cytometry, fluorescence microscopy, and immunohistochemical staining. Employment of Salmonella as a carrier significantly extends plasmid in vivo survivability and prolongs the effective duration until the elimination of the Salmonella carrier strain in the host. The strategy can be easily adapted for P2A connected multiple antigen delivery in a single vector system due to the significantly high cargo capacity of Salmonella. A mouse challenge study was carried out utilizing P2A connected H1N1 hemagglutinin (HA) and neuraminidase (NA) via the Salmonella carrier strain JOL2500 significantly reduced viral activity and protected mice against the H1N1 challenge and demonstrates potential to redefine in vivo DNA therapy as a reliable and safe system to treat human diseases using useful microbes like Salmonella.
Collapse
Affiliation(s)
- Amal Senevirathne
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Ji-Young Park
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Chamith Hewawaduge
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - Kirthika Perumalraja
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea
| | - John Hwa Lee
- College of Veterinary Medicine, Jeonbuk National University, Iksan Campus, 54596, Iksan, Republic of Korea.
| |
Collapse
|
6
|
Converso TR, Assoni L, André GO, Darrieux M, Leite LCC. The long search for a serotype independent pneumococcal vaccine. Expert Rev Vaccines 2020; 19:57-70. [PMID: 31903805 DOI: 10.1080/14760584.2020.1711055] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Introduction: Serotype replacement - a consequence of polysaccharide vaccine use - will continue to drive the inclusion of new serotypes on conjugate vaccines, increasing production complexity and costs, and making an already expensive vaccine less accessible to developing countries, where prevalence is higher and resources available for health systems, scarcer. Serotype-independent formulations are a promising option, but so far they have not been successful in reducing colonization/transmission.Areas covered: Protein-based and whole-cell vaccine candidates studied in the past 30 years. Challenges for serotype-independent vaccine development and alternative approaches.Expert opinion: Clinical trials performed so far demonstrated the importance to establish more reliable animal models and better correlates of protection. Defining appropriate endpoints for clinical trials of serotype-independent vaccine candidates has been a challenge. Inhibition of colonization has been evaluated, but concern on the extent of bacterial elimination is still a matter of debate. Challenges on establishing representative sites for clinical trials, sample sizes and appropriate age groups are discussed. On a whole, although many challenges will have to be overcome, establishing protein-based antigens as serotype-independent vaccines is still the best alternative against the huge burden of pneumococcal diseases in the world.
Collapse
Affiliation(s)
- T R Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L Assoni
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - G O André
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - M Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - L C C Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, SP, Brazil
| |
Collapse
|
7
|
Akbari E, Negahdari B, Faraji F, Behdani M, Kazemi-Lomedasht F, Habibi-Anbouhi M. Protective responses of an engineered PspA recombinant antigen against Streptococcus pneumoniae. ACTA ACUST UNITED AC 2019; 24:e00385. [PMID: 31763198 PMCID: PMC6864353 DOI: 10.1016/j.btre.2019.e00385] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 09/20/2019] [Accepted: 10/08/2019] [Indexed: 11/24/2022]
Abstract
In this study, two immunogenic antigens based on recombinant PspA proteins were immunized mice. The protective effects of developed anti-PspA antibodies in mice in intranasal and intraperitoneal challenges were proved. Based on the obtained results, immunization with the B-regions of PspA antigens are crucial in protection of challenged mice with S. pneumoniae strains.
Streptococcus pneumoniae is a major pathogen in human respiratory tract which causes significant morbidity and mortality across from the world. Currently available vaccines are not completely effective and cannot cover all pathogenic strains so there is an important need to develop an alternative cost-effective vaccine, based on conserved protein antigens. Pneumococcal surface protein A (PspA) is one of interesting candidates for development of a serotype-independent vaccine against pneumococcal infections. PspA is grouped into two major families with five clades, and broad-reacting PspA-based vaccines should contain at least one functional fragment from each of the two families. In this study, we developed two immunogenic antigens based on recombinant PspA proteins that including the different antigenic regions of PspA from both two families. The cross-reactivity of antibodies elicited against two PspA proteins PspAB1-5 and PspA4ABC and their role in complement deposition with three strains of pneumococci were tested. The protective effects of developed anti-PspA antibodies in mice in intranasal and intraperitoneal challenges were evaluated using a strain from clade 2. Sera from immunized mice with PspAB1-5 in comparison with PspA4ABC was able to deposit more C3 complement component on surface of pneumococci bearing diverse PspA from both families 1 and 2, and immunized mice with the PspAB1-5 showed a higher protection than PspA4ABC in pneumococcal challenges. The obtained results from this study indicate that a PspA-based antigen composed of B region from all clades in addition to conserved domains, can provide a significant protection against multiple strains of S. pneumoniae and may overcome the limitation of polysaccharide vaccines.
Collapse
Affiliation(s)
- Elaheh Akbari
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran.,Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- National Cell Bank of Iran, Pasteur Institute of Iran, Tehran, Iran
| | - Mahdi Behdani
- Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| | | | | |
Collapse
|
8
|
A Novel, Multiple-Antigen Pneumococcal Vaccine Protects against Lethal Streptococcus pneumoniae Challenge. Infect Immun 2019; 87:IAI.00846-18. [PMID: 30530620 PMCID: PMC6386546 DOI: 10.1128/iai.00846-18] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 11/29/2018] [Indexed: 01/07/2023] Open
Abstract
Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Current vaccination against Streptococcus pneumoniae uses vaccines based on capsular polysaccharides from selected serotypes and has led to nonvaccine serotype replacement disease. We have investigated an alternative serotype-independent approach, using multiple-antigen vaccines (MAV) prepared from S. pneumoniae TIGR4 lysates enriched for surface proteins by a chromatography step after culture under conditions that induce expression of heat shock proteins (Hsp; thought to be immune adjuvants). Proteomics and immunoblot analyses demonstrated that, compared to standard bacterial lysates, MAV was enriched with Hsps and contained several recognized protective protein antigens, including pneumococcal surface protein A (PspA) and pneumolysin (Ply). Vaccination of rodents with MAV induced robust antibody responses to multiple serotypes, including nonpneumococcal conjugate vaccine serotypes. Homologous and heterologous strains of S. pneumoniae were opsonized after incubation in sera from vaccinated rodents. In mouse models, active vaccination with MAV significantly protected against pneumonia, while passive transfer of rabbit serum from MAV-vaccinated rabbits significantly protected against sepsis caused by both homologous and heterologous S. pneumoniae strains. Direct comparison of MAV preparations made with or without the heat shock step showed no clear differences in protein antigen content and antigenicity, suggesting that the chromatography step rather than Hsp induction improved MAV antigenicity. Overall, these data suggest that the MAV approach may provide serotype-independent protection against S. pneumoniae.
Collapse
|
9
|
Arora D, Sharma C, Jaglan S, Lichtfouse E. Live-Attenuated Bacterial Vectors for Delivery of Mucosal Vaccines, DNA Vaccines, and Cancer Immunotherapy. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2019. [PMCID: PMC7123696 DOI: 10.1007/978-3-030-01881-8_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccines save millions of lives each year from various life-threatening infectious diseases, and there are more than 20 vaccines currently licensed for human use worldwide. Moreover, in recent decades immunotherapy has become the mainstream therapy, which highlights the tremendous potential of immune response mediators, including vaccines for prevention and treatment of various forms of cancer. However, despite the tremendous advances in microbiology and immunology, there are several vaccine preventable diseases which still lack effective vaccines. Classically, weakened forms (attenuated) of pathogenic microbes were used as vaccines. Although the attenuated microbes induce effective immune response, a significant risk of reversion to pathogenic forms remains. While in the twenty-first century, with the advent of genetic engineering, microbes can be tailored with desired properties. In this review, I have focused on the use of genetically modified bacteria for the delivery of vaccine antigens. More specifically, the live-attenuated bacteria, derived from pathogenic bacteria, possess many features that make them highly suitable vectors for the delivery of vaccine antigens. Bacteria can theoretically express any heterologous gene or can deliver mammalian expression vectors harboring vaccine antigens (DNA vaccines). These properties of live-attenuated microbes are being harnessed to make vaccines against several infectious and noninfectious diseases. In this regard, I have described the desired features of live-attenuated bacterial vectors and the mechanisms of immune responses manifested by live-attenuated bacterial vectors. Interestingly anaerobic bacteria are naturally attracted to tumors, which make them suitable vehicles to deliver tumor-associated antigens thus I have discussed important studies investigating the role of bacterial vectors in immunotherapy. Finally, I have provided important discussion on novel approaches for improvement and tailoring of live-attenuated bacterial vectors for the generation of desired immune responses.
Collapse
Affiliation(s)
- Divya Arora
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Chetan Sharma
- Guru Angad Dev Veterinary and Animal Science University, Ludhiana, Punjab India
| | - Sundeep Jaglan
- Indian Institute of Integrative Medicine, CSIR, Jammu, India
| | - Eric Lichtfouse
- Aix Marseille University, CNRS, IRD, INRA, Coll France, CEREGE, Aix en Provence, France
| |
Collapse
|
10
|
Lu J, Guo J, Wang D, Yu J, Gu T, Jiang C, Kong W, Wu Y. Broad protective immune responses elicited by bacterium-like particle-based intranasal pneumococcal particle vaccine displaying PspA2 and PspA4 fragments. Hum Vaccin Immunother 2018; 15:371-380. [PMID: 30235046 DOI: 10.1080/21645515.2018.1526556] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae is an infectious pathogen mainly infecting host bodies through the respiratory system. An effective pneumococcal vaccine would be targeted to the mucosa and provide not only protection against invasive infection but also against colonization in the respiratory system. In the present work, we applied bacterium-like particles (BLPs) as an adjuvant for the development of a PspA mucosal vaccine, in which the PspA protein was displayed on the surface of BLPs. Intranasal immunization with the PspA-BLP pneumococcal vaccine, comprised of PspA2 from pneumococcal family 1 and PspA4 from pneumococcal family 2, not only induced a high level of serum IgG antibodies but also a high level of mucosal SIgA antibodies. Analysis of binding of serum antibodies to intact bacteria showed a broad coverage of binding to pneumococcal strains expressing PspA from clade 1 to 5. Immunization with the PspA-BLP vaccine conferred protection against fatal intranasal challenge with both PspA family 1 and family 2 pneumococcal strains regardless of serotype. Therefore, the PspA-BLP pneumococcal vaccine was demonstrated to be a promising strategy for mucosal immunization to enhance both systemic and mucosal immune responses.
Collapse
Affiliation(s)
- Jingcai Lu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China.,b R&D center , Changchun BCHT Biotechnology co , Changchun , China
| | - Jieshi Guo
- c Department of Neonatology , The First Hospital of Jilin University , Changchun , China
| | - Dandan Wang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Jinfei Yu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Tiejun Gu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Chunlai Jiang
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Wei Kong
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| | - Yongge Wu
- a National Engineering Laboratory for AIDS Vaccine, School of Life Sciences , Jilin University , Changchun , China
| |
Collapse
|
11
|
Th17-Mediated Cross Protection against Pneumococcal Carriage by Vaccination with a Variable Antigen. Infect Immun 2017; 85:IAI.00281-17. [PMID: 28717032 DOI: 10.1128/iai.00281-17] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 07/06/2017] [Indexed: 12/22/2022] Open
Abstract
Serotype-specific protection against Streptococcus pneumoniae is an important limitation of the current polysaccharide-based vaccines. To prevent serotype replacement, reduce transmission, and limit the emergence of new variants, it is essential to induce broad protection and restrict pneumococcal colonization. In this study, we used a prototype vaccine formulation consisting of lipopolysaccharide (LPS)-detoxified outer membrane vesicles (OMVs) from Salmonella enterica serovar Typhimurium displaying the variable N terminus of PspA (α1α2) for intranasal vaccination, which induced strong Th17 immunity associated with a substantial reduction of pneumococcal colonization. Despite the variable nature of this protein, a common major histocompatibility complex class (MHC-II) epitope was identified, based on in silico prediction combined with ex vivo screening, and was essential for interleukin-17 A (IL-17A)-mediated cross-reactivity and associated with cross protection. Based on 1,352 PspA sequences derived from a pneumococcal carriage cohort, this OMV-based vaccine formulation containing a single α1α2 type was estimated to cover 19.1% of strains, illustrating the potential of Th17-mediated cross protection.
Collapse
|
12
|
Abstract
Streptococcus pneumoniae remains one of the most frequent bacterial causes of morbidity and mortality worldwide. National immunization programs implementing pneumococcal polysaccharide conjugate vaccines (PCVs) have successfully reduced rates of vaccine-type invasive disease and colonization both via direct effects in immunized children and, in some settings, indirect effects in unimmunized individuals. Limitations of the current PCV approach include the emergence of non-vaccine serotypes contributing to carriage and invasive disease in high-PCV coverage settings and the high cost of goods of PCVs which limits their accessibility in developing countries where the burden of disease remains highest. Furthermore, the distribution of serotypes causing disease varies geographically and includes more serotypes than are currently covered in a single PCV formulation. Researchers have long been exploring the potential of genetically conserved non-capsular pneumococcal antigens as vaccine candidates that might overcome such limitations. To better evaluate the rationale of such approaches, an understanding of the mechanisms of immunity to the various phases of pneumococcal infection is of paramount importance. Herein we will review the evolving understanding of both vaccine-induced and naturally acquired immunity to pneumococcal colonization and infection and discuss how this informs current approaches using serotype-independent pneumococcal vaccine candidates. We will then review the alternative vaccine candidates that have been or are currently under evaluation in clinical trials.
Collapse
Affiliation(s)
- Kristin Moffitt
- a Division of Infectious Diseases ; Department of Medicine; Boston Children's Hospital ; Boston , MA USA
| | - Richard Malley
- a Division of Infectious Diseases ; Department of Medicine; Boston Children's Hospital ; Boston , MA USA
| |
Collapse
|
13
|
Bridge DR, Whitmire JM, Makobongo MO, Merrell DS. Heterologous Pseudomonas aeruginosa O-antigen delivery using a Salmonella enterica serovar Typhimurium wecA mutant strain. Int J Med Microbiol 2016; 306:529-540. [PMID: 27476047 DOI: 10.1016/j.ijmm.2016.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/22/2016] [Accepted: 06/27/2016] [Indexed: 01/30/2023] Open
Abstract
There is a broad interest in adapting live vaccine strains (LVS) for use as recombinant vaccines that can deliver heterologous antigens. The Salmonella enterica serovar Typhimurium SL1344 ΔwecA LVS contains a mutation in wecA that abrogates production of Enterobacterial common antigen. This ΔwecA strain is attenuated in vivo, persistently colonizes the host, and protects against both wild type and cross-Salmonella serovar lethal challenge in a murine model of salmonellosis. Given these characteristics, we hypothesized that the SL1344 ΔwecA strain could be used as a carrier for heterologous antigen expression. To test this hypothesis, SL1344 ΔwecA was engineered to express the Pseudomonas aeruginosa O11 O-antigen gene cluster. Intraperitoneal (IP) but not oral immunization of BALB/c mice with the heterologous expression strain protected against lethal P. aeruginosa intranasal (IN) challenge. Furthermore, IP immunization resulted in P. aeruginosa O11-specific Ig and IgG antibody production. Functional analysis of sera collected from the IP immunized mice showed antibody-mediated agglutination and opsonophagocytic activity against P. aeruginosa. En masse, these results indicate that the S. Typhimurium SL1344 ΔwecA strain expressing the P. aeruginosa O11 O-antigen gene cluster is able to induce a humoral immune response and to protect against lethal P. aeruginosa challenge. As such, the S. Typhimurium SL1344 ΔwecA LVS can likely serve as a vehicle for expression of a wide variety of heterologous antigens as a means to create recombinant vaccines.
Collapse
Affiliation(s)
- Dacie R Bridge
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Jeannette M Whitmire
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - Morris O Makobongo
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| | - D Scott Merrell
- Department of Microbiology and Immunology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, United States.
| |
Collapse
|
14
|
Abstract
This chapter reviews papers mostly written since 2005 that report results using live attenuated bacterial vectors to deliver after administration through mucosal surfaces, protective antigens, and DNA vaccines, encoding protective antigens to induce immune responses and/or protective immunity to pathogens that colonize on or invade through mucosal surfaces. Papers that report use of such vaccine vector systems for parenteral vaccination or to deal with nonmucosal pathogens or do not address induction of mucosal antibody and/or cellular immune responses are not reviewed.
Collapse
|
15
|
Mertensotto MJ, Drees JJ, Augustin LB, Schottel JL, Saltzman DA. Expression of periplasmic chaperones in Salmonella Typhimurium reduces its viability in vivo. Curr Microbiol 2014; 70:433-5. [PMID: 25432864 DOI: 10.1007/s00284-014-0739-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 11/05/2014] [Indexed: 11/26/2022]
Abstract
The efficacy of live attenuated bacterial vectors is dependent upon the fine-tuning of a strain's immunogenicity and its virulence. Strains are often engineered to deliver heterologous antigens, but soluble expression of recombinant proteins can be troublesome. Therefore, secretion systems or chaperone proteins are routinely used to assist in attaining high levels of functional, soluble protein production. However, the effects of chaperone expression on the virulence of attenuated bacterial vectors have not been previously reported. In anticipation of utilizing periplasmic chaperone proteins to facilitate soluble production of immunomodulatory proteins in an attenuated strain of Salmonella Typhimurium, the production of the chaperones was tested for their effect on both culture growth and bacterial persistence in mouse tissues. Although no effect on growth of the bacteria was observed in vitro, the increased expression of the periplasmic chaperones resulted in over-attenuation of the Salmonella in vivo.
Collapse
|
16
|
Abstract
The pneumococcus is a remarkably adaptable pathogen whose disease manifestations range from mucosal surface infections such as acute otitis media and pneumonia to invasive infections such as sepsis and meningitis. Currently approved vaccines target the polysaccharide capsule, of which there are over 90 distinct serotypes, leading to rapid serotype replacement in vaccinated populations. Substantial progress has been made in the development of a universal pneumococcal vaccine, with efforts focused on broadly conserved and protective protein antigens. An area attracting considerable attention is the potential application of live attenuated vaccines to confer serotype-independent protection against mucosal and systemic infection. On the basis of recent work to understand the mucosal and systemic responses to nasal administration of pneumococci and to develop novel attenuation strategies, the prospect of a practical and protective live vaccine remains promising.
Collapse
Affiliation(s)
- Jason W Rosch
- a Department of Infectious Diseases; St. Jude Children's Research Hospital ; Memphis , TN USA
| |
Collapse
|
17
|
Tarahomjoo S. Recent Approaches in Vaccine Development against Streptococcus pneumoniae. J Mol Microbiol Biotechnol 2014; 24:215-27. [DOI: 10.1159/000365052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
18
|
Piao Z, Akeda Y, Takeuchi D, Ishii KJ, Ubukata K, Briles DE, Tomono K, Oishi K. Protective properties of a fusion pneumococcal surface protein A (PspA) vaccine against pneumococcal challenge by five different PspA clades in mice. Vaccine 2014; 32:5607-13. [PMID: 25132335 DOI: 10.1016/j.vaccine.2014.07.108] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/21/2014] [Accepted: 07/31/2014] [Indexed: 12/17/2022]
Abstract
An increase in the appearance of nonvaccine serotypes in both children and adults with invasive pneumococcal disease (IPD) after introduction of pneumococcal conjugate vaccine represents a limitation of this vaccine. In this study, we generated three recombinant pneumococcal surface protein A (PspA) proteins comprising PspA families 1 and 2, and we examined the reactivity of antisera raised in mice immunized with a PspA fusion protein in combination with CpG oligonucleotides plus aluminum hydroxide gel. The protective effects of immunization with PspA fusion proteins against pneumococcal challenge by strains with five different PspA clades were also examined in mice. Flow cytometry demonstrated that PspA3+2-induced antiserum showed the greatest binding of PspA-specific IgG to all five challenge strains with different clades. PspA2+4- or PspA2+5-induced antiserum showed the lowest binding of PspA-specific IgG to clade 3. Immunization with PspA3+2 afforded significant protection against pneumococcal challenge by five strains with different clades in mice, but immunization with PspA2+4 or PspA2+5 failed to protect mice from pneumococcal challenge by strains with clades 1 and 3. The binding of PspA-specific IgG in antisera raised by three PspA fusion proteins was examined in 68 clinical isolates from adult patients with IPD. Immunization of mice with PspA3+2-induced antiserum with a high binding capacity for clinical isolates expressing clades 1-4, but not clade 5. Our results suggest that the PspA3+2 vaccine has an advantage over the PspA2+4 or PspA2+5 vaccine in terms of a broad range of cross-reactivity with clinical isolates and cross-protection against pneumococcal challenge in mice.
Collapse
Affiliation(s)
- Zhenyu Piao
- Laboratory for Clinical Research on Infectious Disease, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Japan; Division of Infection Control and Prevention, Osaka University Graduate School of Medicine, Japan
| | - Yukihiro Akeda
- Laboratory for Clinical Research on Infectious Disease, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Dan Takeuchi
- Laboratory for Clinical Research on Infectious Disease, International Research Center for Infectious Diseases, Research Institute for Microbial Diseases, Osaka University, Japan
| | - Ken J Ishii
- National Institute of Biomedical Innovation, Japan; Laboratory of Vaccine Science, WPI Immunology Frontier Research Center, Osaka University, Japan
| | - Kimiko Ubukata
- Department of Infectious Diseases, Keio University School of Medicine, Japan
| | - David E Briles
- Department of Microbiology, University of Alabama at Birmingham, USA
| | - Kazunori Tomono
- Division of Infection Control and Prevention, Osaka University Graduate School of Medicine, Japan
| | - Kazunori Oishi
- Infectious Disease Surveillance Center, National Institute of Infectious Diseases, Japan.
| |
Collapse
|
19
|
Abstract
Streptococcus pneumoniae still causes severe morbidity and mortality worldwide, especially in young children and the elderly. Much effort has been dedicated to developing protein-based universal vaccines to conquer the current shortcomings of capsular vaccines and capsular conjugate vaccines, such as serotype replacement, limited coverage and high costs. A recombinant live vector vaccine delivering protective antigens is a promising way to achieve this goal. In this review, we discuss the researches using live recombinant vaccines, mainly live attenuated Salmonella and lactic acid bacteria, to deliver pneumococcal antigens. We also discuss both the limitations and the future of these vaccines.
Collapse
|
20
|
Abstract
Over the past three decades, a powerful array of techniques has been developed for expressing heterologous proteins and saccharides on the surface of bacteria. Surface-engineered bacteria, in turn, have proven useful in a variety of settings, including high-throughput screening, biofuel production, and vaccinology. In this chapter, we provide a comprehensive review of methods for displaying polypeptides and sugars on the bacterial cell surface, and discuss the many innovative applications these methods have found to date. While already an important biotechnological tool, we believe bacterial surface display may be further improved through integration with emerging methodology in other fields, such as protein engineering and synthetic chemistry. Ultimately, we envision bacterial display becoming a multidisciplinary platform with the potential to transform basic and applied research in bacteriology, biotechnology, and biomedicine.
Collapse
|
21
|
Miyaji EN, Oliveira MLS, Carvalho E, Ho PL. Serotype-independent pneumococcal vaccines. Cell Mol Life Sci 2013; 70:3303-26. [PMID: 23269437 PMCID: PMC11113425 DOI: 10.1007/s00018-012-1234-8] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 12/01/2012] [Accepted: 12/04/2012] [Indexed: 12/14/2022]
Abstract
Streptococcus pneumoniae remains an important cause of disease with high mortality and morbidity, especially in children and in the elderly. The widespread use of the polysaccharide conjugate vaccines in some countries has led to a significant decrease in invasive disease caused by vaccine serotypes, but an increase in disease caused by non-vaccine serotypes has impacted on the overall efficacy of these vaccines on pneumococcal disease. The obvious solution to overcome such shortcomings would be the development of new formulations that provide serotype-independent immunity. This review focuses on the most promising approaches, including protein antigens, whole cell pneumococcal vaccines, and recombinant bacteria expressing pneumococcal antigens. The protective capacity of these vaccine candidates against the different stages of pneumococcal infection, including colonization, mucosal disease, and invasive disease in animal models is reviewed. Some of the human trials that have already been performed or that are currently ongoing are presented. Finally, the feasibility and the possible shortcomings of these candidates in relation to an ideal vaccine against pneumococcal infections are discussed.
Collapse
Affiliation(s)
- Eliane Namie Miyaji
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | | | - Eneas Carvalho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| | - Paulo Lee Ho
- Centro de Biotecnologia, Instituto Butantan, Av Vital Brasil 1500, São Paulo, SP 05503-900 Brazil
| |
Collapse
|
22
|
Frey SE, Lottenbach KR, Hill H, Blevins TP, Yu Y, Zhang Y, Brenneman KE, Kelly-Aehle SM, McDonald C, Jansen A, Curtiss R. A Phase I, dose-escalation trial in adults of three recombinant attenuated Salmonella Typhi vaccine vectors producing Streptococcus pneumoniae surface protein antigen PspA. Vaccine 2013; 31:4874-80. [PMID: 23916987 DOI: 10.1016/j.vaccine.2013.07.049] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 06/24/2013] [Accepted: 07/22/2013] [Indexed: 11/16/2022]
Abstract
BACKGROUND Live, attenuated, orally-administered Salmonella strains are excellent vectors for vaccine antigens and are attractive as vaccines based on previous use of S. Typhimurium in animals. A Phase I dose escalation trial was conducted to evaluate the safety and immunogenicity of three newly constructed recombinant attenuated Salmonella enterica serovar Typhi vaccine (RASV) vectors synthesizing Streptococcus pneumoniae surface protein A (PspA). METHODS The 3 S. Typhi strains used as vectors to deliver PspA were S. Typhi ISP1820; S. Typhi Ty2 RpoS(-); and S. Typhi Ty2 RpoS(+). Sixty healthy adults (median age 25.2 years) were enrolled into 4 Arms (total 15 subjects per Arm); within each Arm, subjects were randomized 1:1:1 into 3 Groups of 5. All subjects in the same Group received the same vaccine vector, and all subjects in the same Arm received the same titer of vaccine (10(7), 10(8), 10(9) or 10(10)CFU). Adverse events, safety, shedding, and IgG and IgA titers against Salmonella outer membrane proteins (OMPs), lipopolysaccharide (LPS) and PspA were evaluated. RESULTS In the highest dose group, no subject experienced severe reactions or serious adverse events. Most adverse events were mild; one subject had a positive blood culture. No subject shed vaccine in stool. No statistically significant differences for post vaccination ELISA or ELISPOT results between Groups were detected. However, a limited number of ≥ 4 fold increases from baseline for IgA anti-OMPs, IgA and IgG anti-LPS, and IgA anti-PspA occurred for a few individuals as measured by ELISA, and IgA anti-OMPs as measured by ELISPOT assay. CONCLUSIONS All three S. Typhi vectored pneumococcal vaccines were safe and well-tolerated. Immunogenicity was limited possibly due to pre-existing high antibody titers prior to vaccination. Increases in IgA were most often observed.
Collapse
Affiliation(s)
- Sharon E Frey
- Saint Louis University, School of Medicine, Center for Vaccine Development, St. Louis, MO, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Pelton SI, Pettigrew MM, Barenkamp SJ, Godfroid F, Grijalva CG, Leach A, Patel J, Murphy TF, Selak S, Bakaletz LO. Panel 6: Vaccines. Otolaryngol Head Neck Surg 2013; 148:E90-101. [PMID: 23536534 DOI: 10.1177/0194599812466535] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
OBJECTIVE To update progress on the effectiveness of vaccine for prevention of acute otitis media (AOM) and identification of promising candidate antigens against Streptococcus pneumoniae, nontypeable Haemophilus influenzae, and Moraxella catarrhalis. REVIEW METHODS Literature searches were performed in OvidSP and PubMed restricted to articles published between June 2007 and September 2011. Search terms included otitis media, vaccines, vaccine antigens, and each of the otitis pathogens and candidate antigens identified in the ninth conference report. CONCLUSIONS The current report provides further evidence for the effectiveness of pneumococcal conjugate vaccines (PCVs) in the prevention of otitis media. Observational studies demonstrate a greater decline in AOM episodes than reported in clinical efficacy trials. Unmet challenges include extending protection to additional serotypes and additional pathogens, the need to prevent early episodes, the development of correlates of protection for protein antigens, and the need to define where an otitis media vaccine strategy fits with priorities for child health. IMPLICATIONS FOR PRACTICE Acute otitis media continues to be a burden on children and families, especially those who suffer from frequent recurrences. The 7-valent PCV (PCV7) has reduced the burden of disease as well as shifted the pneumococcal serotypes and the distribution of otopathogens currently reported in children with AOM. Antibiotic resistance remains an ongoing challenge. Multiple candidate antigens have demonstrated the necessary requirements of conservation, surface exposure, immunogenicity, and protection in animal models. Further research on the role of each antigen in pathogenesis, in the development of correlates of protection in animal models, and in new adjuvants to elicit responses in the youngest infants is likely to be productive and permit more antigens to move into human clinical trials.
Collapse
Affiliation(s)
- Stephen I Pelton
- Boston University School of Medicine, Boston, Massachusetts, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Characterization of protective immune responses induced by pneumococcal surface protein A in fusion with pneumolysin derivatives. PLoS One 2013; 8:e59605. [PMID: 23533636 PMCID: PMC3606166 DOI: 10.1371/journal.pone.0059605] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 02/15/2013] [Indexed: 01/09/2023] Open
Abstract
Pneumococcal surface protein A (PspA) and Pneumolysin derivatives (Pds) are important vaccine candidates, which can confer protection in different models of pneumococcal infection. Furthermore, the combination of these two proteins was able to increase protection against pneumococcal sepsis in mice. The present study investigated the potential of hybrid proteins generated by genetic fusion of PspA fragments to Pds to increase cross-protection against fatal pneumococcal infection. Pneumolisoids were fused to the N-terminus of clade 1 or clade 2 pspA gene fragments. Mouse immunization with the fusion proteins induced high levels of antibodies against PspA and Pds, able to bind to intact pneumococci expressing a homologous PspA with the same intensity as antibodies to rPspA alone or the co-administered proteins. However, when antibody binding to pneumococci with heterologous PspAs was examined, antisera to the PspA-Pds fusion molecules showed stronger antibody binding and C3 deposition than antisera to co-administered proteins. In agreement with these results, antisera against the hybrid proteins were more effective in promoting the phagocytosis of bacteria bearing heterologous PspAs in vitro, leading to a significant reduction in the number of bacteria when compared to co-administered proteins. The respective antisera were also capable of neutralizing the lytic activity of Pneumolysin on sheep red blood cells. Finally, mice immunized with fusion proteins were protected against fatal challenge with pneumococcal strains expressing heterologous PspAs. Taken together, the results suggest that PspA-Pd fusion proteins comprise a promising vaccine strategy, able to increase the immune response mediated by cross-reactive antibodies and complement deposition to heterologous strains, and to confer protection against fatal challenge.
Collapse
|
25
|
Nanogel-based PspA intranasal vaccine prevents invasive disease and nasal colonization by Streptococcus pneumoniae. Infect Immun 2013; 81:1625-34. [PMID: 23460513 DOI: 10.1128/iai.00240-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To establish a safer and more effective vaccine against pneumococcal respiratory infections, current knowledge regarding the antigens common among pneumococcal strains and improvements to the system for delivering these antigens across the mucosal barrier must be integrated. We developed a pneumococcal vaccine that combines the advantages of pneumococcal surface protein A (PspA) with a nontoxic intranasal vaccine delivery system based on a nanometer-sized hydrogel (nanogel) consisting of a cationic cholesteryl group-bearing pullulan (cCHP). The efficacy of the nanogel-based PspA nasal vaccine (cCHP-PspA) was tested in murine pneumococcal airway infection models. Intranasal vaccination with cCHP-PspA provided protective immunity against lethal challenge with Streptococcus pneumoniae Xen10, reduced colonization and invasion by bacteria in the upper and lower respiratory tracts, and induced systemic and nasal mucosal Th17 responses, high levels of PspA-specific serum immunoglobulin G (IgG), and nasal and bronchial IgA antibody responses. Moreover, there was no sign of PspA delivery by nanogel to either the olfactory bulbs or the central nervous system after intranasal administration. These results demonstrate the effectiveness and safety of the nanogel-based PspA nasal vaccine system as a universal mucosal vaccine against pneumococcal respiratory infection.
Collapse
|
26
|
Kong W, Brovold M, Koeneman BA, Clark-Curtiss J, Curtiss R. Turning self-destructing Salmonella into a universal DNA vaccine delivery platform. Proc Natl Acad Sci U S A 2012; 109:19414-9. [PMID: 23129620 PMCID: PMC3511069 DOI: 10.1073/pnas.1217554109] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We previously developed a biological containment system using recombinant Salmonella Typhimurium strains that are attenuated yet capable of synthesizing protective antigens. The regulated delayed attenuation and programmed self-destructing features designed into these S. Typhimurium strains enable them to efficiently colonize host tissues and allow release of the bacterial cell contents after lysis. To turn such a recombinant attenuated Salmonella vaccine (RASV) strain into a universal DNA vaccine-delivery vehicle, our approach was to genetically modify RASV strains to display a hyperinvasive phenotype to maximize Salmonella host entry and host cell internalization, to enable Salmonella endosomal escape to release a DNA vaccine into the cytosol, and to decrease Salmonella-induced pyroptosis/apoptosis that allows the DNA vaccine time to traffic to the nucleus for efficient synthesis of encoded protective antigens. A DNA vaccine vector that encodes a domain that contributes to the arabinose-regulated lysis phenotype but has a eukaryotic promoter was constructed. The vector was then improved by insertion of multiple DNA nuclear-targeting sequences for efficient nuclear trafficking and gene expression, and by increasing nuclease resistance to protect the plasmid from host degradation. A DNA vaccine encoding influenza WSN virus HA antigen delivered by the RASV strain with the best genetic attributes induced complete protection to mice against a lethal influenza virus challenge. Adoption of these technological improvements will revolutionize means for effective delivery of DNA vaccines to stimulate mucosal, systemic, and cellular protective immunities, and lead to a paradigm shift in cost-effective control and prevention of a diversity of diseases.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Antibodies, Bacterial/immunology
- Antibody Formation/immunology
- Apoptosis
- Base Sequence
- Deoxyribonucleases/metabolism
- Gene Transfer Techniques
- Genes, Bacterial/genetics
- Genetic Engineering
- Genetic Vectors/genetics
- Hemagglutinin Glycoproteins, Influenza Virus/immunology
- Immunization
- Mice
- Molecular Sequence Data
- Plasmids/genetics
- Salmonella/genetics
- Salmonella/immunology
- Salmonella Infections, Animal/immunology
- Salmonella Infections, Animal/microbiology
- Salmonella Infections, Animal/prevention & control
- Salmonella Vaccines/immunology
- Vaccines, Attenuated/immunology
- Vaccines, DNA/immunology
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Wei Kong
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
| | - Matthew Brovold
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
| | | | - Josephine Clark-Curtiss
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401; and
| | - Roy Curtiss
- Center for Infectious Diseases and Vaccinology at the Biodesign Institute, and
- School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401; and
| |
Collapse
|
27
|
New technologies in developing recombinant attenuated Salmonella vaccine vectors. Microb Pathog 2012; 58:17-28. [PMID: 23142647 DOI: 10.1016/j.micpath.2012.10.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 10/29/2012] [Accepted: 10/30/2012] [Indexed: 01/01/2023]
Abstract
Recombinant attenuated Salmonella vaccine (RASV) vectors producing recombinant gene-encoded protective antigens should have special traits. These features ensure that the vaccines survive stresses encountered in the gastrointestinal tract following oral vaccination to colonize lymphoid tissues without causing disease symptoms and to result in induction of long-lasting protective immune responses. We recently described ways to achieve these goals by using regulated delayed in vivo attenuation and regulated delayed in vivo antigen synthesis, enabling RASVs to efficiently colonize effector lymphoid tissues and to serve as factories to synthesize protective antigens that induce higher protective immune responses. We also developed some additional new strategies to increase vaccine safety and efficiency. Modification of lipid A can reduce the inflammatory responses without compromising the vaccine efficiency. Outer membrane vesicles (OMVs) from Salmonella-containing heterologous protective antigens can be used to increase vaccine efficiency. A dual-plasmid system, possessing Asd+ and DadB+ selection markers, each specifying a different protective antigen, can be used to develop multivalent live vaccines. These new technologies have been adopted to develop a novel, low-cost RASV synthesizing multiple protective pneumococcal protein antigens that could be safe for newborns/infants and induce protective immunity to diverse Streptococcus pneumoniae serotypes after oral immunization.
Collapse
|
28
|
The Asd(+)-DadB(+) dual-plasmid system offers a novel means to deliver multiple protective antigens by a recombinant attenuated Salmonella vaccine. Infect Immun 2012; 80:3621-33. [PMID: 22868499 DOI: 10.1128/iai.00620-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We developed means to deliver multiple heterologous antigens on dual plasmids with non-antibiotic-resistance markers in a single recombinant attenuated vaccine strain of Salmonella enterica serotype Typhimurium. The first component of this delivery system is a strain of S. Typhimurium carrying genomic deletions in alr, dadB, and asd, resulting in obligate requirements for diaminopimelic acid (DAP) and d-alanine for growth. The second component is the Asd(+)-DadB(+) plasmid pair carrying wild-type copies of asdA and dadB, respectively, to complement the mutations. To evaluate the protection efficacy of the dual-plasmid vaccine, S. Typhimurium strain χ9760 (a strain with multiple attenuating mutations: Δasd Δalr ΔdadB ΔrecF) was transformed with Asd(+) and DadB(+) plasmids specifying pneumococcal antigens PspA and PspC, respectively. Both plasmids were stable in χ9760 for 50 generations when grown in nonselective medium. This was significantly (P < 0.05) greater than the stability seen in its recF(+) counterpart χ9590 and could be attributed to reduced interplasmid recombination in χ9760. Oral immunization of BALB/c mice with 1 × 10(9) CFU of χ9760 (carrying Asd(+)-PspA and DadB(+)-PspC plasmids) elicited a dominant Th1-type serum IgG response against both antigens and protected mice against intraperitoneal challenge with 200 50% lethal doses (LD(50)s) of virulent Streptococcus pneumoniae strain WU2 or intravenous challenge with 100 LD(50)s of virulent S. pneumoniae strain L81905 or intranasal challenge with a lethal dose of S. pneumoniae A66.1 in a pneumonia model. Protection offered by χ9760 was superior to that offered by the mixture of two strains, χ9828 (Asd(+)-PspA) and χ11026 (DadB(+)-PspC). This novel dual-plasmid system marks a remarkable improvement in the development of live bacterial vaccines.
Collapse
|
29
|
Controlled inflammatory responses in the lungs are associated with protection elicited by a pneumococcal surface protein A-based vaccine against a lethal respiratory challenge with Streptococcus pneumoniae in mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:1382-92. [PMID: 22761301 DOI: 10.1128/cvi.00171-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Streptococcus pneumoniae is a pathogen of great importance worldwide. We have previously described the efficacy of a nasal vaccine composed of the pneumococcal surface protein A and the whole-cell pertussis vaccine as an adjuvant against a pneumococcal invasive challenge in mice. Spread of bacteria to the bloodstream was probably prevented by the high levels of systemic antibodies induced by the vaccine, but bacteria were only cleared from the lungs 3 weeks later, indicating that local immune responses may contribute to survival. Here we show that a strict control of inflammatory responses in lungs of vaccinated mice occurs even in the presence of high numbers of pneumococci. This response was characterized by a sharp peak of neutrophils and lymphocytes with a simultaneous decrease in macrophages in the respiratory mucosa at 12 h postchallenge. Secretion of interleukin-6 (IL-6) and gamma interferon (IFN-γ) was reduced at 24 h postchallenge, and the induction of tumor necrosis factor alpha (TNF-α) secretion, observed in the first hours postchallenge, was completely abolished at 24 h. Before challenge and at 12 h postchallenge, vaccinated mice displayed higher numbers of CD4(+) T, CD8(+) T, and B lymphocytes in the lungs. However, protection still occurs in the absence of each of these cells during the challenge, indicating that other effectors may be related to the prevention of lung injuries in this model. High levels of mucosal anti-PspA antibodies were maintained in vaccinated mice during the challenge, suggesting an important role in protection.
Collapse
|
30
|
Min X, Zhang X, Wang H, Gong Y, Li M, Xu W, Yin Y, Cao J. Protection against pneumococcal infection elicited by immunization with glutamyl tRNA synthetase, polyamine transport protein D and sortase A. Vaccine 2012; 30:3624-33. [PMID: 22464966 DOI: 10.1016/j.vaccine.2012.03.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2011] [Revised: 02/15/2012] [Accepted: 03/17/2012] [Indexed: 12/11/2022]
Abstract
Protein-based vaccines are considered to be the next-generation of pneumococcal vaccines. Here we evaluated the protection elicited by immunization with recombinant glutamyl tRNA synthetase (Gts), polyamine transport protein D (PotD) and sortase A (SrtA) antigens in preclinical mouse models. In mucosal immunization studies, intranasal immunization with either Gts, PotD or SrtA could significantly reduce pneumococcal nasopharyngeal and lung colonization and significantly increase mice survival times following invasive pneumococcal challenge, and combinations of these antigens could enhance this protection. In systemic immunization studies, intraperitoneal immunization with multiple protein antigens also provided better protection against pneumococcal sepsis caused by different pneumococcal strains. Finally, passive immunization studies showed an additive effect by using multiple anti-sera when compared to single anti-sera. Therefore, a multicomponent protein-based pneumococcal vaccine composed of Gts, PotD or SrtA could confer protection against pneumococcal colonization as well as invasive infections in terms of efficacy of protection and serotype coverage.
Collapse
Affiliation(s)
- Xun Min
- Department of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Serotype-independent pneumococcal experimental vaccines that induce cellular as well as humoral immunity. Proc Natl Acad Sci U S A 2012; 109:3623-7. [PMID: 22308483 DOI: 10.1073/pnas.1121383109] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
For prevention of Streptococcus pneumoniae (pneumococcus) infections in infancy, protein-conjugated capsular polysaccharide vaccines provide serotype-specific, antibody-mediated immunity but do not cover all of the 90+ capsule serotypes. Therefore, microbiologists have sought protective noncapsular antigens common to all strains. Alternatively, we investigated killed cells of a noncapsulated strain, which expose many such common antigens. Given to mice intranasally, this vaccine elicits antibody-independent, CD4+ T lymphocyte-dependent accelerated clearance of pneumococci of various serotypes from the nasopharynx mediated by the cytokine IL-17A. Such immunity may reproduce the natural resistance that develops in infants before capsular antibodies arise. Given by injection, the killed cell vaccine induces bifunctional immunity: plasma antibodies protective against fatal pneumonia challenge, as well as IL-17A-mediated nasopharyngeal clearance. Human testing of this inexpensive candidate vaccine by intramuscular injection is planned. Bacterial cellular vaccines are complex--a challenge for reproducibility. However, when several known protective antigens were deleted, the killed pneumococcal vaccine was still protective. This antigenic redundancy may prevent vaccine escape variants by recombinational loss, which is frequent in pneumococcus. Biochemically defined immunogens with bifunctional activity have also been devised. These immunogens are three-component conjugates in which cell wall teichoic acid (a common antigen capable of T cell activation) is coupled to a genetic fusion of two common pneumococcal proteins: a protective surface antigen and a derivative of pneumolysin, which provides TLR4 agonist activity and induces antitoxic immunity. Such constructs induce accelerated clearance when given intranasally and induce both immune mechanisms when injected. The defined composition permits analysis of structure-function activity.
Collapse
|
32
|
Naz RK. Female genital tract immunity: distinct immunological challenges for vaccine development. J Reprod Immunol 2012; 93:1-8. [DOI: 10.1016/j.jri.2011.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 09/27/2011] [Accepted: 09/30/2011] [Indexed: 10/14/2022]
|
33
|
Villena J, Oliveira MLS, Ferreira PCD, Salva S, Alvarez S. Lactic acid bacteria in the prevention of pneumococcal respiratory infection: future opportunities and challenges. Int Immunopharmacol 2011; 11:1633-45. [PMID: 21708293 DOI: 10.1016/j.intimp.2011.06.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2011] [Revised: 06/04/2011] [Accepted: 06/07/2011] [Indexed: 12/18/2022]
Abstract
Lactic acid bacteria (LAB) are technologically and commercially important and have various beneficial effects on human health. Several studies have demonstrated that certain LAB strains can exert their beneficial effect on the host through their immunomudulatory activity. Although most research concerning LAB-mediated enhanced immune protection is focused on gastrointestinal tract pathogens, recent studies have centered on whether these immunobiotics might sufficiently stimulate the common mucosal immune system to provide protection to other mucosal sites as well. In this sense, LAB have been used for the development of probiotic foods with the ability to stimulate respiratory immunity, which would increase resistance to infections, even in immunocompromised hosts. On the other hand, the advances in the molecular biology of LAB have enabled the development of recombinant strains expressing antigens from respiratory pathogens that have proved effective to induce protective immunity. In this review we examine the current scientific literature concerning the use of LAB strains to prevent respiratory infections. In particular, we have focused on the works that deal with the capacity of probiotic and recombinant LAB to improve the immune response against Streptococcus pneumoniae. Research from the last decade demonstrates that LAB represent a promising resource for the development of prevention strategies against respiratory infections that could be effective tools for medical application.
Collapse
Affiliation(s)
- Julio Villena
- Reference Centre for Lactobacilli (CERELA-CONICET), Chacabuco 145-T4000ILC, San Miguel de Tucumán, Tucumán, Argentina
| | | | | | | | | |
Collapse
|
34
|
Ashraf S, Kong W, Wang S, Yang J, Curtiss R. Protective cellular responses elicited by vaccination with influenza nucleoprotein delivered by a live recombinant attenuated Salmonella vaccine. Vaccine 2011; 29:3990-4002. [PMID: 21466806 DOI: 10.1016/j.vaccine.2011.03.066] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2011] [Revised: 03/11/2011] [Accepted: 03/20/2011] [Indexed: 12/27/2022]
Abstract
Orally administered recombinant attenuated Salmonella vaccines (RASVs) elicit humoral and mucosal immune responses against the immunizing antigen. The challenge in developing an effective vaccine against a virus or an intracellular bacterium delivered by RASVs is to introduce the protective antigen inside the host cell cytoplasm for presentation to MHC-I molecules for an efficient cell mediated immune response. To target the influenza nucleoprotein (NP) into the host cell cytosol, we constructed a regulated delayed lysis in vivo RASV strain χ11246(pYA4858) encoding influenza NP with a chromosomal deletion of the sifA gene to enable it to escape from the endosome prior to lysis. Oral immunization of mice with χ11246(pYA4858) (SifA⁻) with 3 booster immunizations resulted in complete protection (100%) against a lethal influenza virus (rWSN) challenge (100 LD₅₀) compared to 25% survival of mice immunized with the isogenic χ11017(pYA4858) (SifA⁺) strain. Reducing the number of booster immunizations with χ11246(pYA4858) from 3 to 2 resulted in 66% survival of mice challenged with rWSN (100 LD₅₀). Immunization with χ11246(pYA4858) via different routes provided protection in 80% orally, 100% intranasally and 100% intraperitoneally immunized mice against rWSN (100 LD₅₀). A Th1 type immune response was elicited against influenza NP in all experiments. IFN-γ secreting NP₁₄₇₋₁₅₅ specific T cells were not found to be correlated with protection. The role of antigen-specific CD8⁺ T cells remains to be determined. To conclude, we showed that Salmonella can be designed to deliver antigen(s) to the host cell cytosol for presumably class I presentation for the induction of protective immune responses.
Collapse
Affiliation(s)
- Shamaila Ashraf
- The Biodesign Institute, Center for Infectious Diseases and Vaccinology, Arizona State University, Tempe, AZ 85287-5401, USA
| | | | | | | | | |
Collapse
|
35
|
Goulart C, Darrieux M, Rodriguez D, Pimenta FC, Brandileone MCC, de Andrade ALS, Leite LC. Selection of family 1 PspA molecules capable of inducing broad-ranging cross-reactivity by complement deposition and opsonophagocytosis by murine peritoneal cells. Vaccine 2011; 29:1634-42. [DOI: 10.1016/j.vaccine.2010.12.074] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2010] [Revised: 11/30/2010] [Accepted: 12/16/2010] [Indexed: 11/27/2022]
|
36
|
Pandya GA, McEllistrem MC, Venepally P, Holmes MH, Jarrahi B, Sanka R, Liu J, Karamycheva SA, Bai Y, Fleischmann RD, Peterson SN. Monitoring the long-term molecular epidemiology of the pneumococcus and detection of potential 'vaccine escape' strains. PLoS One 2011; 6:e15950. [PMID: 21264340 PMCID: PMC3018475 DOI: 10.1371/journal.pone.0015950] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 12/01/2010] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND While the pneumococcal protein conjugate vaccines reduce the incidence in invasive pneumococcal disease (IPD), serotype replacement remains a major concern. Thus, serotype-independent protection with vaccines targeting virulence genes, such as PspA, have been pursued. PspA is comprised of diverse clades that arose through recombination. Therefore, multi-locus sequence typing (MLST)-defined clones could conceivably include strains from multiple PspA clades. As a result, a method is needed which can both monitor the long-term epidemiology of the pneumococcus among a large number of isolates, and analyze vaccine-candidate genes, such as pspA, for mutations and recombination events that could result in 'vaccine escape' strains. METHODOLOGY We developed a resequencing array consisting of five conserved and six variable genes to characterize 72 pneumococcal strains. The phylogenetic analysis of the 11 concatenated genes was performed with the MrBayes program, the single nucleotide polymorphism (SNP) analysis with the DNA Sequence Polymorphism program (DnaSP), and the recombination event analysis with the recombination detection package (RDP). RESULTS The phylogenetic analysis correlated with MLST, and identified clonal strains with unique PspA clades. The DnaSP analysis correlated with the serotype-specific diversity detected using MLST. Serotypes associated with more than one ST complex had a larger degree of sequence polymorphism than a serotype associated with one ST complex. The RDP analysis confirmed the high frequency of recombination events in the pspA gene. CONCLUSIONS The phylogenetic tree correlated with MLST, and detected multiple PspA clades among clonal strains. The genetic diversity of the strains and the frequency of recombination events in the mosaic gene, pspA were accurately assessed using the DnaSP and RDP programs, respectively. These data provide proof-of-concept that resequencing arrays could play an important role within research and clinical laboratories in both monitoring the molecular epidemiology of the pneumococcus and detecting 'vaccine escape' strains among vaccine-candidate genes.
Collapse
Affiliation(s)
- Gagan A. Pandya
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - M. Catherine McEllistrem
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania, United States of America
| | - Pratap Venepally
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Michael H. Holmes
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Behnam Jarrahi
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Ravi Sanka
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Jia Liu
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Svetlana A. Karamycheva
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Yun Bai
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Robert D. Fleischmann
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
| | - Scott N. Peterson
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, Maryland, United States of America
- * E-mail:
| |
Collapse
|
37
|
Immunization with a ZmpB-based protein vaccine could protect against pneumococcal diseases in mice. Infect Immun 2010; 79:867-78. [PMID: 21098102 DOI: 10.1128/iai.00717-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Zinc metalloprotease B (ZmpB) is present in all isolated pneumococcal strains and contributes to the pathogenesis of pneumococcal infection. In this study, recombinant ZmpB was cloned and expressed in Escherichia coli. The expression of ZmpB by different pneumococcal strains was detectable by Western blotting with antisera raised to recombinant ZmpB. Flow cytometry analysis demonstrated that anti-ZmpB polyclonal antibodies could bind to the cell surface of the pneumococcal strains analyzed. Both recombinant ZmpB protein and anti-ZmpB polyclonal antibodies significantly inhibited the adhesion of Streptococcus pneumoniae D39 to A549 cells. In mouse models, mucosal immunization with recombinant ZmpB could significantly reduce pneumococcal lung colonization caused by S. pneumoniae serotypes 19F and 14 and significantly increase mice survival times following invasive pneumococcal challenge with different pneumococcal strains, including serotypes 2, 3, 6B, and 14. Furthermore, intraperitoneal immunization with recombinant ZmpB in combination with the recombinant pneumolysin mutant (DeltaA146 Ply) and heat shock protein 40 (DnaJ) could enhance the protection against pneumococcal infection compared to protection provided by single-protein antigens. Passive immunization with hyperimmune antisera against these three antigens also demonstrated that the combination of three hyperimmune antisera could provide better protection than single antisera. Taken together, our results suggest that ZmpB is a good candidate pneumococcal vaccine antigen.
Collapse
|
38
|
Oliveira MLS, Miyaji EN, Ferreira DM, Moreno AT, Ferreira PCD, Lima FA, Santos FL, Sakauchi MA, Takata CS, Higashi HG, Raw I, Kubrusly FS, Ho PL. Combination of pneumococcal surface protein A (PspA) with whole cell pertussis vaccine increases protection against pneumococcal challenge in mice. PLoS One 2010; 5:e10863. [PMID: 20523738 PMCID: PMC2877721 DOI: 10.1371/journal.pone.0010863] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2010] [Accepted: 05/06/2010] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is the leading cause of respiratory acute infections around the world. In Latin America, approximately 20,000 children under 5 years of age die of pneumococcal diseases annually. Pneumococcal surface protein A (PspA) is among the best-characterized pneumococcal antigens that confer protection in animal models of pneumococcal infections and, as such, is a good alternative for the currently available conjugated vaccines. Efficient immune responses directed to PspA in animal models have already been described. Nevertheless, few low cost adjuvants for a subunit pneumococcal vaccine have been proposed to date. Here, we have tested the adjuvant properties of the whole cell Bordetella pertussis vaccine (wP) that is currently part of the DTP (diphtheria-tetanus-pertussis) vaccine administrated to children in several countries, as an adjuvant to PspA. Nasal immunization of BALB/c mice with a combination of PspA5 and wP or wP(low)--a new generation vaccine that contains low levels of B. pertussis LPS--conferred protection against a respiratory lethal challenge with S. pneumoniae. Both PspA5-wP and PspA5-wP(low) vaccines induced high levels of systemic and mucosal antibodies against PspA5, with similar profile, indicating no essential requirement for B. pertussis LPS in the adjuvant properties of wP. Accordingly, nasal immunization of C3H/HeJ mice with PspA5-wP conferred protection against the pneumococcal challenge, thus ruling out a role for TLR4 responses in the adjuvant activity and the protection mechanisms triggered by the vaccines. The high levels of anti-PspA5 antibodies correlated with increased cross-reactivity against PspAs from different clades and also reflected in cross-protection. In addition, passive immunization experiments indicated that antibodies played an important role in protection in this model. Finally, subcutaneous immunization with a combination of PspA5 with DTP(low) protected mice against challenge with two different pneumococcal strains, opening the possibility for the development of a combined infant vaccine composed of DTP and PspA.
Collapse
Affiliation(s)
- Maria Leonor S. Oliveira
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: (PLH); (MLSO)
| | - Eliane N. Miyaji
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Adriana T. Moreno
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | - Fernanda A. Lima
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | | | | | - Célia S. Takata
- Divisão Bioindustrial, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Hisako G. Higashi
- Divisão Bioindustrial, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Isaías Raw
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Flavia S. Kubrusly
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
| | - Paulo L. Ho
- Centro de Biotecnologia, Instituto Butantan, São Paulo, São Paulo, Brazil
- * E-mail: (PLH); (MLSO)
| |
Collapse
|
39
|
Options for inactivation, adjuvant, and route of topical administration of a killed, unencapsulated pneumococcal whole-cell vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1005-12. [PMID: 20427625 DOI: 10.1128/cvi.00036-10] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We previously reported that ethanol-killed cells of a noncapsulated strain of Streptococcus pneumoniae, given intranasally with cholera toxin as an adjuvant, protect rats against pneumonia and mice against colonization of the nasopharynx and middle ear by capsulated pneumococci of various serotypes. The acceleration of pneumococcal clearance from the nasopharynx in mice is CD4+ T cell-dependent and interleukin 17A (IL-17A) mediated and can be antibody independent. Here, anticipating human studies, we have demonstrated protection with a new vaccine strain expressing a nonhemolytic derivative of pneumolysin and grown in bovine-free culture medium. Killing the cells with chloroform, trichloroethylene, or beta-propiolactone--all used without postinactivation washing--produced more-potent immunogens than ethanol, and retention of soluble components released from the cells contributed to protection. Two sequential intranasal administrations of as little as 1 microg of protein (total of cellular and soluble combined) protected mice against nasopharyngeal challenge with pneumococci. Nontoxic single and double mutants of Escherichia coli heat-labile toxin were effective as mucosal adjuvants. Protection was induced by the sublingual and buccal routes, albeit requiring larger doses than when given intranasally. Protection was likewise induced transdermally with sonicates of the killed-cell preparation. Thus, this whole-cell antigen can be made and administered in a variety of ways to suit the manufacturer and the vaccination program and is potentially a solution to the need for a low-cost vaccine to reduce the burden of childhood pneumococcal disease in low-income countries.
Collapse
|
40
|
Immunization of mice with single PspA fragments induces antibodies capable of mediating complement deposition on different pneumococcal strains and cross-protection. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:439-46. [PMID: 20089795 DOI: 10.1128/cvi.00430-09] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
PspA is an important candidate for a vaccine with serotype-independent immunity against pneumococcal infections. Based on sequence relatedness, PspA has been classified into three families comprising six clades. We have previously addressed the cross-reactivity of antibodies against PspA fragments containing the N-terminal and proline-rich regions of PspA from clades 1 to 5 (PspA1, PspA2, PspA3, PspA4, and PspA5) by Western blot analysis and reported that anti-PspA4 and anti-PspA5 were able to recognize pneumococci expressing PspA proteins from all of the clades analyzed. We have now analyzed the functional capacity of these antibodies to bind and to mediate complement deposition on intact bacteria in vitro. Our results show that both PspA4 and PspA5 elicit antibodies that are able to bind and to mediate complement deposition efficiently on pneumococcal strains bearing PspA proteins from clades 1 to 5. Moreover, mice immunized with PspA4 and PspA5 were protected against an intranasal lethal challenge with strains expressing PspA proteins from the two major families. PspA4 and PspA5 are thus able to induce antibodies with a high degree of cross-reactivity in vitro, which is reflected in cross-protection of mice. We have also analyzed the contribution of the nonproline (NonPro) block within the conserved proline-rich region to the reactivity of anti-PspA antibodies, and the results indicate that N-terminal alpha-helical region, the blocks of proline repeats, and the NonPro region can influence the degree of cross-reactivity of antibodies to PspA.
Collapse
|
41
|
Immunogenicity of a live recombinant Salmonella enterica serovar typhimurium vaccine expressing pspA in neonates and infant mice born from naive and immunized mothers. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:363-71. [PMID: 20053873 DOI: 10.1128/cvi.00413-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We are developing a Salmonella vectored vaccine to prevent infant pneumonia and other diseases caused by Streptococcus pneumoniae. One prerequisite for achieving this goal is to construct and evaluate new recombinant attenuated Salmonella vaccine (RASV) strains suitable for use in neonates and infants. Salmonella enterica serovar Typhimurium strain chi9558(pYA4088) specifies delivery of the pneumococcal protective antigen PspA and can protect adult mice from challenge with S. pneumoniae. This strain is completely safe for oral delivery to day-old and infant mice. Here we assess the colonizing ability, immunogenicity, and protective efficacy of chi9558(pYA4088) in neonatal mice. Colonization was assessed in mice 0, 2, 4, or 7 days of age after oral inoculation. In the presence of maternal antibodies, the colonization of lymphoid tissues was delayed, but the immune responses were enhanced in mice born to immunized mothers. Both oral and intranasal routes were used to assess immunogenicity. All orally or intranasally immunized neonatal and infant mice born to either immunized or naïve mothers developed PspA-specific mucosal and systemic immune responses. Mice born to immunized mothers produced higher titers of PspA-specific antibodies in the blood and mucosa and greater numbers of PspA-specific interleukin-4 (IL-4)-secreting cells than mice born to naïve mothers. More importantly, mice born to immune mothers showed a significant increase in protection against S. pneumoniae challenge. These results suggest that strain chi9558(pYA4088) can circumvent some of the limitations of the immature immune system in neonatal and infant mice, generating enhanced protective immune responses in the presence of maternal antibodies.
Collapse
|
42
|
Jambo KC, Sepako E, Heyderman RS, Gordon SB. Potential role for mucosally active vaccines against pneumococcal pneumonia. Trends Microbiol 2009; 18:81-9. [PMID: 20031415 PMCID: PMC2855428 DOI: 10.1016/j.tim.2009.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2009] [Revised: 11/23/2009] [Accepted: 12/01/2009] [Indexed: 11/26/2022]
Abstract
Pneumococcal pneumonia is a life-threatening disease with high mortality and morbidity among children under 5 years of age, the elderly and immunocompromised individuals worldwide. Protection against pneumococcal pneumonia relies on successful regulation of colonisation in the nasopharynx and a brisk alveolar macrophage-mediated immune response in the lung. Therefore, enhancing pulmonary mucosal immunity (which includes a combination of innate, humoral and cell-mediated immunity) through mucosal vaccination might be the key to prevention of pneumococcal infection. Current challenges include a lack of information in humans on mucosal immunity against pneumococci and a lack of suitable adjuvants for new vaccines. Data from mouse models, however, suggest that mucosally active vaccines will enhance mucosal and systemic immunity for protection against pneumococcal infection.
Collapse
Affiliation(s)
- Kondwani C Jambo
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, P.O. Box 30096, Chichiri, Blantyre, Malawi.
| | | | | | | |
Collapse
|