1
|
Elalouf A, Yaniv-Rosenfeld A, Maoz H. Immune response against bacterial infection in organ transplant recipients. Transpl Immunol 2024; 86:102102. [PMID: 39094907 DOI: 10.1016/j.trim.2024.102102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/30/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This comprehensive review delves into the intricate dynamics between the immune system and bacterial infections in organ transplant recipients. Its primary objective is to fill existing knowledge gaps while critically assessing the strengths and weaknesses of current research. The paper accentuates the delicate balance that must be struck between preventing graft rejection through immunosuppression and maintaining robust immunity against bacterial threats. In this context, personalized medicine emerges as a transformative concept, offering the potential to revolutionize clinical outcomes by tailoring immunosuppressive regimens and vaccination strategies to the unique profiles of transplant recipients. By emphasizing the pivotal role of continuous monitoring, the review underscores the necessity for vigilant surveillance of transplant recipients to detect bacterial infections and associated immune responses early, thereby reducing the risk of severe infections and ultimately improving patient outcomes. Furthermore, the study highlights the significance of the host microbiome in shaping immune responses, suggesting that interventions targeting the microbiome hold promise for enhancing bacterial immunity in transplant recipients, both in research and clinical practice. In terms of future research directions, the review advocates for large-scale, longitudinal studies encompassing diverse patient cohorts to provide more comprehensive insights into post-transplant immune responses. It also advocates integrating multi-omics approaches, including genomics, transcriptomics, proteomics, and microbiome data, to understand immune responses and their underlying mechanisms. In conclusion, this review significantly enriches our understanding of immune responses in transplant recipients. It paves the way for more effective and personalized approaches to managing infections in this complex setting.
Collapse
Affiliation(s)
- Amir Elalouf
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel.
| | | | - Hanan Maoz
- Bar-Ilan University, Department of Management, Ramat Gan 5290002, Israel
| |
Collapse
|
2
|
Kumar A, Green KM, Rawat M. A Comprehensive Overview of Postbiotics with a Special Focus on Discovery Techniques and Clinical Applications. Foods 2024; 13:2937. [PMID: 39335866 PMCID: PMC11431132 DOI: 10.3390/foods13182937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/06/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
The increasing interest in postbiotics, a term gaining recognition alongside probiotics and prebiotics, aligns with a growing number of clinical trials demonstrating positive outcomes for specific conditions. Postbiotics present several advantages, including safety, extended shelf life, ease of administration, absence of risk, and patentability, making them more appealing than probiotics alone. This review covers various aspects, starting with an introduction, terminology, classification of postbiotics, and brief mechanisms of action. It emphasizes microbial metabolomics as the initial step in discovering novel postbiotics. Commonly employed techniques such as NMR, GC-MS, and LC-MS are briefly outlined, along with their application principles and limitations in microbial metabolomics. The review also examines existing research where these techniques were used to identify, isolate, and characterize postbiotics derived from different microbial sources. The discovery section concludes by highlighting challenges and future directions to enhance postbiotic discovery. In the second half of the review, we delve deeper into numerous published postbiotic clinical trials to date. We provide brief overviews of system-specific trial applications, their objectives, the postbiotics tested, and their outcomes. The review concludes by highlighting ongoing applications of postbiotics in extended clinical trials, offering a comprehensive overview of the current landscape in this evolving field.
Collapse
Affiliation(s)
- Anand Kumar
- Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, USA;
| | - Katelyn M. Green
- Biochemistry and Biotechnology Group, Los Alamos National Laboratory, Bioscience Division, Los Alamos, NM 87545, USA;
| | - Manmeet Rawat
- Department of Medicine, The Penn State University College of Medicine, Hershey, PA 17033, USA;
| |
Collapse
|
3
|
Yuan H, Jung ES, Chae SW, Jung SJ, Daily JW, Park S. Biomarkers for Health Functional Foods in Metabolic Dysfunction-Associated Steatotic Liver Disorder (MASLD) Prevention: An Integrative Analysis of Network Pharmacology, Gut Microbiota, and Multi-Omics. Nutrients 2024; 16:3061. [PMID: 39339660 PMCID: PMC11434757 DOI: 10.3390/nu16183061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/01/2024] [Accepted: 09/05/2024] [Indexed: 09/30/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disorder (MASLD) is increasingly prevalent globally, highlighting the need for preventive strategies and early interventions. This comprehensive review explores the potential of health functional foods (HFFs) to maintain healthy liver function and prevent MASLD through an integrative analysis of network pharmacology, gut microbiota, and multi-omics approaches. We first examined the biomarkers associated with MASLD, emphasizing the complex interplay of genetic, environmental, and lifestyle factors. We then applied network pharmacology to identify food components with potential beneficial effects on liver health and metabolic function, elucidating their action mechanisms. This review identifies and evaluates strategies for halting or reversing the development of steatotic liver disease in the early stages, as well as biomarkers that can evaluate the success or failure of such strategies. The crucial role of the gut microbiota and its metabolites for MASLD prevention and metabolic homeostasis is discussed. We also cover state-of-the-art omics approaches, including transcriptomics, metabolomics, and integrated multi-omics analyses, in research on preventing MASLD. These advanced technologies provide deeper insights into physiological mechanisms and potential biomarkers for HFF development. The review concludes by proposing an integrated approach for developing HFFs targeting MASLD prevention, considering the Korean regulatory framework. We outline future research directions that bridge the gap between basic science and practical applications in health functional food development. This narrative review provides a foundation for researchers and food industry professionals interested in developing HFFs to support liver health. Emphasis is placed on maintaining metabolic balance and focusing on prevention and early-stage intervention strategies.
Collapse
Affiliation(s)
- Heng Yuan
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
| | - Eun-Soo Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Soo-Wan Chae
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - Su-Jin Jung
- Clinical Trial Center for Functional Foods, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea; (E.-S.J.); (S.-W.C.); (S.-J.J.)
- Clinical Trial Center for K-FOOD Microbiome, Biomedical Research Institute, Jeonbuk National University Hospital, Jeonju 54907, Republic of Korea
- Research Institute of Clinical Medicine, Jeonbuk National University, Jeonju 54907, Republic of Korea
| | - James W. Daily
- Department of R&D, Daily Manufacturing Inc., Rockwell, NC 28138, USA;
| | - Sunmin Park
- Department of Bioconvergence, Hoseo University, Asan 31499, Republic of Korea;
- Department of Food and Nutrition, Obesity/Diabetes Research Center, Hoseo University, 20 Hoseoro79bungil, Asan 31499, Republic of Korea
| |
Collapse
|
4
|
De La Cruz KF, Townsend EC, Alex Cheong JZ, Salamzade R, Liu A, Sandstrom S, Davila E, Huang L, Xu KH, Wu SY, Meudt JJ, Shanmuganayagam D, Gibson ALF, Kalan LR. The porcine skin microbiome exhibits broad fungal antagonism. Fungal Genet Biol 2024; 173:103898. [PMID: 38815692 DOI: 10.1016/j.fgb.2024.103898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/02/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
The skin and its microbiome function to protect the host from pathogen colonization and environmental stressors. In this study, using the Wisconsin Miniature Swine™ model, we characterize the porcine skin fungal and bacterial microbiomes, identify bacterial isolates displaying antifungal activity, and use whole-genome sequencing to identify biosynthetic gene clusters encoding for secondary metabolites that may be responsible for the antagonistic effects on fungi. Through this comprehensive approach of paired microbiome sequencing with culturomics, we report the discovery of novel species of Corynebacterium and Rothia. Further, this study represents the first comprehensive evaluation of the porcine skin mycobiome and the evaluation of bacterial-fungal interactions on this surface. Several diverse bacterial isolates exhibit potent antifungal properties against opportunistic fungal pathogens in vitro. Genomic analysis of inhibitory species revealed a diverse repertoire of uncharacterized biosynthetic gene clusters suggesting a reservoir of novel chemical and biological diversity. Collectively, the porcine skin microbiome represents a potential unique source of novel antifungals.
Collapse
Affiliation(s)
- Karinda F De La Cruz
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Elizabeth C Townsend
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States; Medical Scientist Training Program, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - J Z Alex Cheong
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Rauf Salamzade
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, WI, United States
| | - Aiping Liu
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Shelby Sandstrom
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Evelin Davila
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; National Summer Undergraduate Research Project, University of Arizona, Tucson, AZ, United States
| | - Lynda Huang
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Kayla H Xu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Sherrie Y Wu
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Jennifer J Meudt
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Dhanansayan Shanmuganayagam
- Department of Animal & Dairy Sciences, University of Wisconsin, Madison, WI, United States; Center for Biomedical Swine Research & Innovation, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Angela L F Gibson
- Department of Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Lindsay R Kalan
- Department of Medical Microbiology and Immunology, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada; M.G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada; David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
5
|
Aqueel R, Badar A, Ijaz UZ, Malik KA. Microbial influencers and cotton leaf curl disease (CLCuD) susceptibility: a network perspective. Front Microbiol 2024; 15:1381883. [PMID: 38952448 PMCID: PMC11215052 DOI: 10.3389/fmicb.2024.1381883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Biotic stresses, such as plant viruses, e.g., cotton leaf curl virus (CLCuV), can alter root-associated and leaf-associated microbial diversities in plants. There are complex ecological dynamics at play, with each microbe contributing to a multitude of biotic and abiotic interactions, thus deciding the stability of the plant's ecosystem in response to the disease. Deciphering these networks of interactions is a challenging task. The inferential research in microbiome is also at a nascent stage, often constrained by the underlying analytical assumptions and the limitations with respect to the depth of sequencing. There is also no real consensus on network-wide statistics to identify the influential microbial players in a network. Guided by the latest developments in network science, including recently published metrics such as Integrated View of Influence (IVI) and some other centrality measures, this study provides an exposé of the most influential nodes in the rhizospheric and phyllospheric microbial networks of the cotton leaf curl disease (CLCuD) susceptible, partially tolerant, and resistant cotton varieties. It is evident from our results that the CLCuD-resistant Gossypium arboreum possesses an equal share of keystone species, which helps it to withstand ecological pressures. In the resistant variety, the phyllosphere harbors the most influential nodes, whereas in the susceptible variety, they are present in the rhizosphere. Based on hubness score, spreading score, and IVI, the top 10 occurring keystone species in the FDH-228 (resistant) variety include Actinokineospora, Cohnella, Thermobacillus, Clostridium, Desulfofarcimen, and MDD-D21. Elusimicrobia, Clostridium-sensu-stricto_12, Candidatus woesebacteria, and Dyella were identified as the most influential nodes in the PFV-1 (partially tolerant) variety. In the PFV-2 (susceptible) variety, the keystone species were identified as Georginia, Nesterenkonia, Elusimicrobia MVP-88, Acetivibrio, Tepedisphaerales, Chelatococcus, Nitrosospira, and RCP2-54. This concept deciphers the diseased and healthy plant's response to viral disease, which may be microbially mediated.
Collapse
Affiliation(s)
- Rhea Aqueel
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
| | - Ayesha Badar
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Umer Zeeshan Ijaz
- Water and Environment Research Group, Mazumdar-Shaw Advanced Research Centre, University of Glasgow, Glasgow, United Kingdom
- National University of Ireland, University Road, Galway, Ireland
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, United Kingdom
| | - Kauser Abdulla Malik
- Kauser Abdulla Malik School of Life Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
- Pakistan Academy of Sciences, Islamabad, Pakistan
| |
Collapse
|
6
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
7
|
Barua N, Herken AM, Melendez-Velador N, Platt TG, Hansen RR. Photo-addressable microwell devices for rapid functional screening and isolation of pathogen inhibitors from bacterial strain libraries. BIOMICROFLUIDICS 2024; 18:014107. [PMID: 38434239 PMCID: PMC10907074 DOI: 10.1063/5.0188270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/06/2024] [Indexed: 03/05/2024]
Abstract
Discovery of new strains of bacteria that inhibit pathogen growth can facilitate improvements in biocontrol and probiotic strategies. Traditional, plate-based co-culture approaches that probe microbial interactions can impede this discovery as these methods are inherently low-throughput, labor-intensive, and qualitative. We report a second-generation, photo-addressable microwell device, developed to iteratively screen interactions between candidate biocontrol agents existing in bacterial strain libraries and pathogens under increasing pathogen pressure. Microwells (0.6 pl volume) provide unique co-culture sites between library strains and pathogens at controlled cellular ratios. During sequential screening iterations, library strains are challenged against increasing numbers of pathogens to quantitatively identify microwells containing strains inhibiting the highest numbers of pathogens. Ring-patterned 365 nm light is then used to ablate a photodegradable hydrogel membrane and sequentially release inhibitory strains from the device for recovery. Pathogen inhibition with each recovered strain is validated, followed by whole genome sequencing. To demonstrate the rapid nature of this approach, the device was used to screen a 293-membered biovar 1 agrobacterial strain library for strains inhibitory to the plant pathogen Agrobacterium tumefaciens sp. 15955. One iterative screen revealed nine new inhibitory strains. For comparison, plate-based methods did not uncover any inhibitory strains from the library (n = 30 plates). The novel pathogen-challenge screening mode developed here enables rapid selection and recovery of strains that effectively suppress pathogen growth from bacterial strain libraries, expanding this microwell technology platform toward rapid, cost-effective, and scalable screening for probiotics, biocontrol agents, and inhibitory molecules that can protect against known or emerging pathogens.
Collapse
Affiliation(s)
- Niloy Barua
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, USA
| | - Ashlee M. Herken
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas 66506, USA
| | | | - Thomas G. Platt
- Division of Biology, Kansas State University, 1717 Claflin Road, Manhattan, Kansas 66506, USA
| | - Ryan R. Hansen
- Tim Taylor Department of Chemical Engineering, Kansas State University, 1701A Platt Street, Manhattan, Kansas 66506, USA
| |
Collapse
|
8
|
Bhattacharjee P, Karim KA, Khan Z. Harnessing the Microbiome: A Comprehensive Review on Advancing Therapeutic Strategies for Rheumatic Diseases. Cureus 2023; 15:e50964. [PMID: 38249228 PMCID: PMC10800157 DOI: 10.7759/cureus.50964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/22/2023] [Indexed: 01/23/2024] Open
Abstract
Rheumatic diseases are a group of disorders that affect the joints, muscles, and bones. These diseases, such as rheumatoid arthritis, lupus, and psoriatic arthritis, can cause pain, stiffness, and swelling, leading to reduced mobility and disability. Recent studies have identified the microbiome, the diverse community of microorganisms that live in and on the human body, as a potential factor in the development and progression of rheumatic diseases. Harnessing the microbiome offers a promising new avenue for developing therapeutic strategies for these debilitating conditions. There is growing interest in the role of oral and gut microbiomes in the management of rheumatoid arthritis and other autoimmune disease. Microbial metabolites have immunomodulatory properties that could be exploited for rheumatic disorders. A wide range of microorganisms are present in the oral cavity and are found to be vulnerable to the effects of the environment. The physiology and ecology of the microbiota become intimately connected with those of the host, and they critically influence the promotion of health or progression toward disease. This article aims to provide a comprehensive overview of the current state of knowledge on oral and gut microbiome and its potential future role in the management of rheumatic diseases. This article will also discuss newer treatment strategies such as bioinformatic analyses and fecal transplantation.
Collapse
Affiliation(s)
- Priyadarshini Bhattacharjee
- Acute Medicine, Cambridge University Hospital NHS Foundation Trust, Cambridge, GBR
- School of Clinical Medicine, University of Cambridge, Cambridge, GBR
| | - Karim Arif Karim
- Medicine and Surgery, Kamuzu University of Health Sciences, Blantyre, MWI
| | - Zahid Khan
- Acute Medicine, Mid and South Essex NHS Foundation Trust, Southend-on-Sea, GBR
- Cardiology, Bart's Heart Centre, London, GBR
- Cardiology and General Medicine, Barking, Havering and Redbridge University Hospitals NHS Trust, London, GBR
- Cardiology, Royal Free Hospital, London, GBR
| |
Collapse
|
9
|
Baker KA, Poole C. CE: Current and Emerging Applications of Fecal Microbiota Transplantation. Am J Nurs 2023; 123:30-38. [PMID: 37678377 DOI: 10.1097/01.naj.0000978920.88346.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
ABSTRACT Fecal microbiota transplantation (FMT) is a life-changing treatment for people with recurrent Clostridioides difficile infection (rCDI). Frequently acquired in the hospital, CDI can cause serious gastrointestinal symptoms, including persistent watery diarrhea, abdominal pain, and severe dehydration. Antibiotics, the primary treatment, can unfortunately disrupt the gut microbiome and lead to antimicrobial resistance. FMT involves introducing stool from a healthy donor into the affected recipient to strengthen their compromised microbiome. Individuals receiving this treatment have reported remarkable improvement in clinical outcomes and quality of life. In addition to a discussion of rCDI within the context of the gastrointestinal microbiome, this article provides an overview of the FMT procedure, discusses nursing management of individuals undergoing FMT, and highlights emerging applications beyond rCDI. A case scenario is also provided to illustrate a typical trajectory for a patient undergoing FMT.
Collapse
Affiliation(s)
- Kathy A Baker
- Kathy A. Baker is a professor in the Harris College of Nursing and Health Sciences at Texas Christian University, Fort Worth, and editor-in-chief of Gastroenterology Nursing . Carsyn Poole is a staff nurse at Mayo Clinic Hospital, Rochester, MN. Contact author: Kathy A. Baker, . Baker is a paid consultant for Healix Infusion Therapy, LLC. The remaining coauthor and planners have disclosed no potential conflicts of interest, financial or otherwise. Lippincott Professional Development has identified and mitigated all relevant financial relationships
| | | |
Collapse
|
10
|
Lewis CV, Sellak H, Sawan MA, Joseph G, Darby TM, VanInsberghe D, Naudin CR, Archer DR, Jones RM, Taylor WR. Intestinal barrier dysfunction in murine sickle cell disease is associated with small intestine neutrophilic inflammation, oxidative stress, and dysbiosis. FASEB Bioadv 2023; 5:199-210. [PMID: 37151850 PMCID: PMC10158626 DOI: 10.1096/fba.2022-00121] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/19/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The intestinal microbiome has emerged as a potential contributor to the severity of sickle cell disease (SCD). We sought to determine whether SCD mice exhibit intestinal barrier dysfunction, inflammation, and dysbiosis. Using the Townes humanized sickle cell mouse model, we found a 3-fold increase in intestinal permeability as assessed via FITC-dextran (4 kDa) assay in SS (SCD) mice compared to AA (wild type) mice (n = 4, p < 0.05). This was associated with 25 to 50% decreases in claudin-1, 3, and 15 and zonula occludens-1 gene expression (n = 8-10, p < 0.05) in the small intestine. Increased Ly6G staining demonstrated more neutrophils in the SS small intestine (3-fold, n = 5, p < 0.05) associated with increased expression of TNFα, IL-17A, CXCL1, and CD68 (2.5 to 5-fold, n = 7-10, p < 0.05). In addition, we observed 30 to 55% decreases in superoxide dismutase-1, glutathione peroxidase-1, and catalase antioxidant enzyme expression (n = 7-8, p < 0.05) concomitant to an increase in superoxide (2-fold, n = 4, p < 0.05). Importantly, all significant observations of a leaky gut phenotype and inflammation were limited to the small intestine and not observed in the colon. Finally, characterization of the composition of the microbiome within the small intestine revealed dysbiosis in SS mice compared to their AA littermates with 47 phyla to species-level significant alterations in amplicon sequence variants. We conclude that the intestinal barrier is compromised in SCD, associated with decreased gene expression of tight junction proteins, enhanced inflammation, oxidative stress, and gut microbiome dysbiosis, all specific to the small intestine.
Collapse
Affiliation(s)
- Caitlin V. Lewis
- Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Hassan Sellak
- Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Mariem A. Sawan
- Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Giji Joseph
- Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
| | - Trevor M. Darby
- Division of Gastroenterology, Hepatology, and Nutrition, Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - David VanInsberghe
- Division of Gastroenterology, Hepatology, and Nutrition, Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - Crystal R. Naudin
- Division of Gastroenterology, Hepatology, and Nutrition, Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - David R. Archer
- Aflac Cancer and Blood Disorders Center at Children's Healthcare of Atlanta and Emory University School of MedicineAtlantaGeorgiaUSA
| | - Rheinallt M. Jones
- Division of Gastroenterology, Hepatology, and Nutrition, Department of PediatricsEmory University School of MedicineAtlantaGeorgiaUSA
| | - W. Robert Taylor
- Division of Cardiology, Department of MedicineEmory University School of MedicineAtlantaGeorgiaUSA
- Cardiology DivisionAtlanta Veterans Affairs Medical CenterAtlantaGeorgiaUSA
- Department of Biomedical EngineeringEmory University School of Medicine and Georgia Institute of TechnologyAtlantaGeorgiaUSA
| |
Collapse
|
11
|
TRAVERSI DEBORAH, CALABRÒ GIOVANNAELISA, FRANCESE CORINNE, FRANCHITTI ELENA, PULLIERO ALESSANDRA, SPATERA PAOLA, IZZOTTI ALBERTO, VENTURA CARLADELLA, LAI ALESSIA, BERGNA ANNALISA, GALLI MASSIMO, ZEHENDER GIANGUGLIELMO, TAMBURRO MANUELA, LOMBARDI ADELE, SALZO ANGELO, DE DONA ROBERTA, D’AMICO ANTONIO, VICCIONE VITTORIO, RIPABELLI GIANCARLO, BACCOLINI VALENTINA, MIGLIARA GIUSEPPE, PITINI ERICA, MARZUILLO CAROLINA, DE VITO CORRADO, PASTORINO ROBERTA, VILLARI PAOLO, BOCCIA STEFANIA. [Genomics in Public Health Scientific evidence and prospects for integration in the prevention practice]. JOURNAL OF PREVENTIVE MEDICINE AND HYGIENE 2023; 63:E1-E29. [PMID: 36818497 PMCID: PMC9910509 DOI: 10.15167/2421-4248/jpmh2022.63.3s2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Affiliation(s)
- DEBORAH TRAVERSI
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italia
| | - GIOVANNA ELISA CALABRÒ
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
| | - CORINNE FRANCESE
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italia
| | - ELENA FRANCHITTI
- Dipartimento di Scienze della Sanità Pubblica e Pediatriche, Università di Torino, Torino, Italia
| | | | - PAOLA SPATERA
- Dipartimento di Scienze della Salute, Università di Genova, Genova, Italia
| | - ALBERTO IZZOTTI
- Dipartimento di Medicina Sperimentale, Università di Genova, Genova, Italia
- IRCCS Ospedale Policlinico San Martino, Genova, Italia
| | - CARLA DELLA VENTURA
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
- EpiSoMi CRC-Centro di Ricerca Coordinato, Università degli Studi di Milano, Milano, Italia
| | - ALESSIA LAI
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
- EpiSoMi CRC-Centro di Ricerca Coordinato, Università degli Studi di Milano, Milano, Italia
| | - ANNALISA BERGNA
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
- EpiSoMi CRC-Centro di Ricerca Coordinato, Università degli Studi di Milano, Milano, Italia
| | - MASSIMO GALLI
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
| | - GIANGUGLIELMO ZEHENDER
- Dipartimento di Scienze Biomediche e Cliniche, Università di Milano, Milano, Italia
- EpiSoMi CRC-Centro di Ricerca Coordinato, Università degli Studi di Milano, Milano, Italia
| | - MANUELA TAMBURRO
- Dipartimento di Medicina e di Scienze della Salute “Vincenzo Tiberio”, Università del Molise, Campobasso, Italia
| | - ADELE LOMBARDI
- Dipartimento di Medicina e di Scienze della Salute “Vincenzo Tiberio”, Università del Molise, Campobasso, Italia
| | - ANGELO SALZO
- Azienda Sanitaria Regionale del Molise, Campobasso, Italia
| | - ROBERTA DE DONA
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università del Molise, Campobasso, Italia
| | - ANTONIO D’AMICO
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università del Molise, Campobasso, Italia
| | - VITTORIO VICCIONE
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università del Molise, Campobasso, Italia
| | - GIANCARLO RIPABELLI
- Dipartimento di Medicina e di Scienze della Salute “Vincenzo Tiberio”, Università del Molise, Campobasso, Italia
- Azienda Sanitaria Regionale del Molise, Campobasso, Italia
- Scuola di Specializzazione in Igiene e Medicina Preventiva, Università del Molise, Campobasso, Italia
| | - VALENTINA BACCOLINI
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | - GIUSEPPE MIGLIARA
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | | | - CAROLINA MARZUILLO
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | - CORRADO DE VITO
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | - ROBERTA PASTORINO
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| | - PAOLO VILLARI
- Dipartimento di Sanità Pubblica e Malattie Infettive, Sapienza Università di Roma, Roma, Italia
| | - STEFANIA BOCCIA
- Sezione di Igiene, Dipartimento Universitario di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, Roma, Italia
- Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italia
| |
Collapse
|