1
|
Guzman RM, Voth DE. Embracing multiple infection models to tackle Q fever: A review of in vitro, in vivo, and lung ex vivo models. Cell Immunol 2024; 405-406:104880. [PMID: 39357100 DOI: 10.1016/j.cellimm.2024.104880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Multiple animal and cell culture models are employed to study pathogenesis of Coxiella burnetii, the causative agent of acute and chronic human Q fever. C. burnetii is a lung pathogen that is aerosolized in contaminated products and inhaled by humans to cause acute disease that can disseminate to other organs and establish chronic infection. Cellular models of Q fever include a variety of tissue-derived cell lines from mice and humans such as lung alveolar ex vivo cells. These models have the advantage of being cost-effective and reproducible. Similarly, animal models including mice and guinea pigs are cost-effective, although only immunocompromised SCID mice display a severe disease phenotype in response to Nine Mile I and Nine Mile II isolates of C. burnetii while immunocompetent guinea pigs display human-like symptoms and robust immune responses. Non-human primates such as macaques and marmosets are the closest model of human disease but are costly and largely used for adaptive immune response studies. All animal models are used for vaccine development but many differences exist in the pathogen's ability to establish lung infection when considering infection routes, bacterial isolates, and host genetic background. Similarly, while cellular models are useful for characterization of host-pathogen mechanisms, future developments should include use of a lung infection platform to draw appropriate conclusions. Here, we summarize the current state of the C. burnetii lung pathogenesis field by discussing the contribution of different animal and cell culture models and include suggestions for continuing to move the field forward.
Collapse
Affiliation(s)
- R M Guzman
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, United States.
| |
Collapse
|
2
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. Infect Immun 2024; 92:e0005324. [PMID: 38837340 PMCID: PMC11238558 DOI: 10.1128/iai.00053-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/14/2024] [Indexed: 06/07/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular bacteria that causes the global zoonotic disease Q Fever. Treatment options for chronic infection are limited, and the development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected tumor necrosis factor alpha (TNFα)/cycloheximide-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- bone marrow-derived macrophages (BMDMs) to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
3
|
Palanisamy R, Zhang Y, Zhang G. Role of Type 4B Secretion System Protein, IcmE, in the Pathogenesis of Coxiella burnetii. Pathogens 2024; 13:405. [PMID: 38787259 PMCID: PMC11123719 DOI: 10.3390/pathogens13050405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/02/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium that causes Q fever, a life-threatening zoonotic disease. C. burnetii replicates within an acidified parasitophorous vacuole derived from the host lysosome. The ability of C. burnetii to replicate and achieve successful intracellular life in the cell cytosol is vastly dependent on the Dot/Icm type 4B secretion system (T4SSB). Although several T4SSB effector proteins have been shown to be important for C. burnetii virulence and intracellular replication, the role of the icmE protein in the host-C. burnetii interaction has not been investigated. In this study, we generated a C. burnetii Nine Mile Phase II (NMII) mutant library and identified 146 transposon mutants with a single transposon insertion. Transposon mutagenesis screening revealed that disruption of icmE gene resulted in the attenuation of C. burnetii NMII virulence in SCID mice. ELISA analysis indicated that the levels of pro-inflammatory cytokines, including interleukin-1β, IFN-γ, TNF-α, and IL-12p70, in serum from Tn::icmE mutant-infected SCID mice were significantly lower than those in serum from wild-type (WT) NMII-infected mice. Additionally, Tn::icmE mutant bacteria were unable to replicate in mouse bone marrow-derived macrophages (MBMDM) and human macrophage-like cells (THP-1). Immunoblotting results showed that the Tn::icmE mutant failed to activate inflammasome components such as IL-1β, caspase 1, and gasdermin-D in THP-1 macrophages. Collectively, these results suggest that the icmE protein may play a vital role in C. burnetii virulence, intracellular replication, and activation of inflammasome mediators during NMII infection.
Collapse
Affiliation(s)
| | | | - Guoquan Zhang
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
| |
Collapse
|
4
|
Chauhan M, Osbron CA, Koehler HS, Goodman AG. STING dependent BAX-IRF3 signaling results in apoptosis during late-stage Coxiella burnetii infection. Cell Death Dis 2024; 15:195. [PMID: 38459007 PMCID: PMC10924102 DOI: 10.1038/s41419-024-06573-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/21/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
STING (STimulator of Interferon Genes) is a cytosolic sensor for cyclic dinucleotides (CDNs) and initiates an innate immune response upon binding to CDNs. Coxiella burnetii is a Gram-negative obligate intracellular bacterium and the causative agent of the zoonotic disease Q fever. The ability of C. burnetii to inhibit host cell death is a critical factor in disease development. Previous studies have shown that C. burnetii inhibits host cell apoptosis at early stages of infection. However, during the late-stages of infection, there is host cell lysis resulting in the release of bacteria to infect bystander cells. Thus, we investigated the role of STING during late-stages of C. burnetii infection and examined STING's impact on host cell death. We show that the loss of STING results in higher bacterial loads and abrogates IFNβ and IL6 induction at 12 days post-infection. The absence of STING during C. burnetii infection significantly reduces apoptosis through decreased caspase-8 and -3 activation. During infection, STING activates IRF3 which interacts with BAX. BAX then translocates to the mitochondria, which is followed by mitochondrial membrane depolarization. This results in increased cytosolic mtDNA in a STING-dependent manner. The presence of increased cytosolic mtDNA results in greater cytosolic 2'-3' cGAMP, creating a positive feedback loop and leading to further increases in STING activation and its downstream signaling. Taken together, we show that STING signaling is critical for BAX-IRF3-mediated mitochondria-induced apoptosis during late-stage C. burnetii infection.
Collapse
Affiliation(s)
- Manish Chauhan
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Chelsea A Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Heather S Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
5
|
Schulze-Luehrmann J, Liebler-Tenorio E, Felipe-López A, Lührmann A. Cell death induction facilitates egress of Coxiella burnetii from infected host cells at late stages of infection. Mol Microbiol 2024; 121:513-528. [PMID: 38115201 DOI: 10.1111/mmi.15210] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/21/2023]
Abstract
Intracellular bacteria have evolved mechanisms to invade host cells, establish an intracellular niche that allows survival and replication, produce progeny, and exit the host cell after completion of the replication cycle to infect new target cells. Bacteria exit their host cell by (i) initiation of apoptosis, (ii) lytic cell death, and (iii) exocytosis. While bacterial egress is essential for bacterial spreading and, thus, pathogenesis, we currently lack information about egress mechanisms for the obligate intracellular pathogen C. burnetii, the causative agent of the zoonosis Q fever. Here, we demonstrate that C. burnetii inhibits host cell apoptosis early during infection, but induces and/or increases apoptosis at later stages of infection. Only at later stages of infection did we observe C. burnetii egress, which depends on previously established large bacteria-filled vacuoles and a functional intrinsic apoptotic cascade. The released bacteria are not enclosed by a host cell membrane and can infect and replicate in new target cells. In summary, our data argue that C. burnetii egress in a non-synchronous way at late stages of infection. Apoptosis-induction is important for C. burnetii egress, but other pathways most likely contribute.
Collapse
Affiliation(s)
- Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | | | - Alfonso Felipe-López
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
6
|
Osbron CA, Lawson C, Hanna N, Koehler HS, Goodman AG. Caspase-8 activity mediates TNFα production and restricts Coxiella burnetii replication during murine macrophage infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578698. [PMID: 38352389 PMCID: PMC10862817 DOI: 10.1101/2024.02.02.578698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Coxiella burnetii is an obligate intracellular bacteria which causes the global zoonotic disease Q Fever. Treatment options for infection are limited, and development of novel therapeutic strategies requires a greater understanding of how C. burnetii interacts with immune signaling. Cell death responses are known to be manipulated by C. burnetii, but the role of caspase-8, a central regulator of multiple cell death pathways, has not been investigated. In this research, we studied bacterial manipulation of caspase-8 signaling and the significance of caspase-8 to C. burnetii infection, examining bacterial replication, cell death induction, and cytokine signaling. We measured caspase, RIPK, and MLKL activation in C. burnetii-infected TNFα/CHX-treated THP-1 macrophage-like cells and TNFα/ZVAD-treated L929 cells to assess apoptosis and necroptosis signaling. Additionally, we measured C. burnetii replication, cell death, and TNFα induction over 12 days in RIPK1-kinase-dead, RIPK3-kinase-dead, or RIPK3-kinase-dead-caspase-8-/- BMDMs to understand the significance of caspase-8 and RIPK1/3 during infection. We found that caspase-8 is inhibited by C. burnetii, coinciding with inhibition of apoptosis and increased susceptibility to necroptosis. Furthermore, C. burnetii replication was increased in BMDMs lacking caspase-8, but not in those lacking RIPK1/3 kinase activity, corresponding with decreased TNFα production and reduced cell death. As TNFα is associated with the control of C. burnetii, this lack of a TNFα response may allow for the unchecked bacterial growth we saw in caspase-8-/- BMDMs. This research identifies and explores caspase-8 as a key regulator of C. burnetii infection, opening novel therapeutic doors.
Collapse
Affiliation(s)
- Chelsea A. Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Crystal Lawson
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Nolan Hanna
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Heather S. Koehler
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| | - Alan G. Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, USA
| |
Collapse
|
7
|
Sam G, Stenos J, Graves SR, Rehm BHA. Q fever immunology: the quest for a safe and effective vaccine. NPJ Vaccines 2023; 8:133. [PMID: 37679410 PMCID: PMC10484952 DOI: 10.1038/s41541-023-00727-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Accepted: 08/24/2023] [Indexed: 09/09/2023] Open
Abstract
Q fever is an infectious zoonotic disease, caused by the Gram-negative bacterium Coxiella burnetii. Transmission occurs from livestock to humans through inhalation of a survival form of the bacterium, the Small Cell Variant, often via handling of animal parturition products. Q fever manifests as an acute self-limiting febrile illness or as a chronic disease with complications such as vasculitis and endocarditis. The current preventative human Q fever vaccine Q-VAX poses limitations on its worldwide implementation due to reactogenic responses in pre-sensitized individuals. Many strategies have been undertaken to develop a universal Q fever vaccine but with little success to date. The mechanisms of the underlying reactogenic responses remain only partially understood and are important factors in the development of a safe Q fever vaccine. This review provides an overview of previous and current experimental vaccines developed for use against Q fever and proposes approaches to develop a vaccine that establishes immunological memory while eliminating harmful reactogenic responses.
Collapse
Affiliation(s)
- Gayathri Sam
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia
| | - John Stenos
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC, 3220, Australia
| | - Stephen R Graves
- Australian Rickettsial Reference Laboratory, University Hospital, Geelong, VIC, 3220, Australia
- Elizabeth Macarthur Agricultural Institute, NSW Department of Primary Industries, Menangle, NSW, 2567, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, 4111, Australia.
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD, 4222, Australia.
| |
Collapse
|
8
|
Debowski AW, Bzdyl NM, Thomas DR, Scott NE, Jenkins CH, Iwasaki J, Kibble EA, Khoo CA, Scheuplein NJ, Seibel PM, Lohr T, Metters G, Bond CS, Norville IH, Stubbs KA, Harmer NJ, Holzgrabe U, Newton HJ, Sarkar-Tyson M. Macrophage infectivity potentiator protein, a peptidyl prolyl cis-trans isomerase, essential for Coxiella burnetii growth and pathogenesis. PLoS Pathog 2023; 19:e1011491. [PMID: 37399210 DOI: 10.1371/journal.ppat.1011491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 06/14/2023] [Indexed: 07/05/2023] Open
Abstract
Coxiella burnetii is a Gram-negative intracellular pathogen that causes the debilitating disease Q fever, which affects both animals and humans. The only available human vaccine, Q-Vax, is effective but has a high risk of severe adverse reactions, limiting its use as a countermeasure to contain outbreaks. Therefore, it is essential to identify new drug targets to treat this infection. Macrophage infectivity potentiator (Mip) proteins catalyse the folding of proline-containing proteins through their peptidyl prolyl cis-trans isomerase (PPIase) activity and have been shown to play an important role in the virulence of several pathogenic bacteria. To date the role of the Mip protein in C. burnetii pathogenesis has not been investigated. This study demonstrates that CbMip is likely to be an essential protein in C. burnetii. The pipecolic acid derived compounds, SF235 and AN296, which have shown utility in targeting other Mip proteins from pathogenic bacteria, demonstrate inhibitory activities against CbMip. These compounds were found to significantly inhibit intracellular replication of C. burnetii in both HeLa and THP-1 cells. Furthermore, SF235 and AN296 were also found to exhibit antibiotic properties against both the virulent (Phase I) and avirulent (Phase II) forms of C. burnetii Nine Mile Strain in axenic culture. Comparative proteomics, in the presence of AN296, revealed alterations in stress responses with H2O2 sensitivity assays validating that Mip inhibition increases the sensitivity of C. burnetii to oxidative stress. In addition, SF235 and AN296 were effective in vivo and significantly improved the survival of Galleria mellonella infected with C. burnetii. These results suggest that unlike in other bacteria, Mip in C. burnetii is required for replication and that the development of more potent inhibitors against CbMip is warranted and offer potential as novel therapeutics against this pathogen.
Collapse
Affiliation(s)
- Aleksandra W Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicole M Bzdyl
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| | - David R Thomas
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Nichollas E Scott
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | | | - Jua Iwasaki
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- Wesfarmers Centre for Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Nedlands, Western Australia, Australia
- Centre for Child Health Research, University of Western Australia, Perth, Western Australia, Australia
| | - Emily A Kibble
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
- School of Veterinary and Life Sciences, Murdoch University, Perth, WA, Australia
- DMTC Limited, Level 1, Kew, Australia
| | - Chen Ai Khoo
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
| | - Nicolas J Scheuplein
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Pamela M Seibel
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Theresa Lohr
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Georgie Metters
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Charles S Bond
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Isobel H Norville
- Defence Science and Technology Laboratory, Porton Down, Salisbury, United Kingdom
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| | - Nicholas J Harmer
- Department of Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter, United Kingdom
- Living Systems Institute, Stocker Road Exeter, United Kingdom
| | - Ulrike Holzgrabe
- Institute of Pharmacy and Food Chemistry, University of Würzburg, Am Hubland, Würzburg, Germany
| | - Hayley J Newton
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, Australia
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Western Australia, Australia
| |
Collapse
|
9
|
Clemente TM, Augusto L, Angara RK, Gilk SD. Coxiella burnetii actively blocks IL-17-induced oxidative stress in macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.15.532774. [PMID: 36993319 PMCID: PMC10055185 DOI: 10.1101/2023.03.15.532774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Coxiella burnetii is a highly infectious pathogen that causes Q fever, a leading cause of culture-negative endocarditis. Coxiella first targets alveolar macrophages and forms a phagolysosome-like compartment called the Coxiella-Containing Vacuole (CCV). Successful host cell infection requires the Type 4B Secretion System (T4BSS), which translocates bacterial effector proteins across the CCV membrane into the host cytoplasm, where they manipulate numerous cell processes. Our prior transcriptional studies revealed that Coxiella T4BSS blocks IL-17 signaling in macrophages. Given that IL-17 is known to protect against pulmonary pathogens, we hypothesize that C. burnetii T4BSS downregulates intracellular IL-17 signaling to evade the host immune response and promote bacterial pathogenesis. Using a stable IL-17 promoter reporter cell line, we confirmed that Coxiella T4BSS blocks IL-17 transcription activation. Assessment of the phosphorylation state of NF-κB, MAPK, and JNK revealed that Coxiella downregulates IL-17 activation of these proteins. Using ACT1 knockdown and IL-17RA or TRAF6 knockout cells, we next determined that IL17RA-ACT1-TRAF6 pathway is essential for the IL-17 bactericidal effect in macrophages. In addition, macrophages stimulated with IL-17 generate higher levels of reactive oxygen species, which is likely connected to the bactericidal effect of IL-17. However, C. burnetii T4SS effector proteins block the IL-17-mediated oxidative stress, suggesting that Coxiella blocks IL-17 signaling to avoid direct killing by the macrophages.
Collapse
Affiliation(s)
- Tatiana M Clemente
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Leonardo Augusto
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Rajendra K Angara
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| | - Stacey D Gilk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, US
| |
Collapse
|
10
|
Waguia Kontchou C, Häcker G. Role of mitochondrial outer membrane permeabilization during bacterial infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 374:83-127. [PMID: 36858657 DOI: 10.1016/bs.ircmb.2022.10.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Beyond the initial 'powerhouse' view, mitochondria have numerous functions in their mammalian cell and contribute to many physiological processes, and many of these we understand only partially. The control of apoptosis by mitochondria is firmly established. Many questions remain however how this function is embedded into physiology, and how other signaling pathways regulate mitochondrial apoptosis; the interplay of bacteria with the mitochondrial apoptosis pathway is one such example. The outer mitochondrial membrane regulates both import into mitochondria and the release of intermembrane, and in some situations also matrix components from mitochondria, and these mitochondrial components can have signaling function in the cytosol. One function is the induction of apoptotic cell death. An exciting, more recently discovered function is the regulation of inflammation. Mitochondrial molecules, both proteins and nucleic acids, have inflammatory activity when released from mitochondria, an activity whose regulation is intertwined with the activation of apoptotic caspases. Bacterial infection can have more general effects on mitochondrial apoptosis-regulation, through effects on host transcription and other pathways, such as signals controlled by pattern recognition. Some specialized bacteria have products that more specifically regulate signaling to the outer mitochondrial membrane, and to apoptosis; both pro- and anti-apoptotic mechanisms have been reported. Among the intriguing recent findings in this area are signaling contributions of porins and the sub-lethal release of intermembrane constituents. We will here review the literature and place the new developments into the established context of mitochondrial signaling during the contact of bacterial pathogens with human cells.
Collapse
Affiliation(s)
- Collins Waguia Kontchou
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Georg Häcker
- Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Faculty of Medicine, Freiburg, Germany; BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
11
|
Ganesan S, Alvarez NN, Steiner S, Fowler KM, Corona AK, Roy CR. Syntaxin 11 Contributes to the Interferon-Inducible Restriction of Coxiella burnetii Intracellular Infection. mBio 2023; 14:e0354522. [PMID: 36728431 PMCID: PMC9972978 DOI: 10.1128/mbio.03545-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 01/04/2023] [Indexed: 02/03/2023] Open
Abstract
There is a limited understanding of host defense mechanisms targeting intracellular pathogens that proliferate in a lysosome. Coxiella burnetii is a model bacterial pathogen capable of replicating in the hydrolytic and acidic environment of the lysosome. It has been shown that gamma interferon (IFNγ)-stimulated host cells restrict C. burnetii replication by a mechanism that involves host IDO1 depletion of tryptophan. Host cells deficient in IDO1 activity, however, retain the ability to restrict C. burnetii replication when stimulated with IFNγ, which suggests additional mechanisms of host defense. This study identified syntaxin 11 (STX11) as a host protein that contributes to IFNγ-mediated suppression of C. burnetii replication. STX11 is a SNARE protein; SNARE proteins are proteins that mediate fusion of host vesicles with specific subcellular organelles. Depletion of STX11 using either small interfering RNA (siRNA)- or CRISPR-based approaches enhanced C. burnetii replication intracellularly. Stable expression of STX11 reduced C. burnetii replication in epithelial cells and macrophages, which indicates that this STX11-dependent cell-autonomous response is operational in multiple cell types and can function independently of other IFNγ-induced factors. Fluorescently tagged STX11 localized to the Coxiella-containing vacuole (CCV), and STX11 restriction was found to involve an interaction with STX8. Thus, STX11 regulates a vesicle fusion pathway that limits replication of this intracellular pathogen in a lysosome-derived organelle. IMPORTANCE Cell intrinsic defense mechanisms are used by eukaryotic cells to restrict the replication and dissemination of pathogens. This study identified a human protein called syntaxin 11 (STX11) as a host restriction factor that inhibits the intracellular replication of Coxiella burnetii. Syntaxins regulate the delivery of cargo inside vesicles by promoting specific membrane fusion events between donor and acceptor vesicles. Data presented here demonstrate that STX11 regulates an immunological defense pathway that controls replication of pathogens in lysosome-derived organelles, which provides new insight into the function of this SNARE protein.
Collapse
Affiliation(s)
- Sandhya Ganesan
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Natalie N. Alvarez
- Department of Pediatrics, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Samuel Steiner
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Karen M. Fowler
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Abigail K. Corona
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
12
|
MicroRNAs Contribute to Host Response to Coxiella burnetii. Infect Immun 2023; 91:e0019922. [PMID: 36537791 PMCID: PMC9872603 DOI: 10.1128/iai.00199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs), a class of small noncoding RNAs, are critical to gene regulation in eukaryotes. They are involved in modulating a variety of physiological processes, including the host response to intracellular infections. Little is known about miRNA functions during infection by Coxiella burnetii, the causative agent of human Q fever. This bacterial pathogen establishes a large replicative vacuole within macrophages by manipulating host processes such as apoptosis and autophagy. We investigated miRNA expression in C. burnetii-infected macrophages and identified several miRNAs that were down- or upregulated during infection. We further explored the functions of miR-143-3p, an miRNA whose expression is downregulated in macrophages infected with C. burnetii, and show that increasing the abundance of this miRNA in human cells results in increased apoptosis and reduced autophagy-conditions that are unfavorable to C. burnetii intracellular growth. In sum, this study demonstrates that C. burnetii infection elicits a robust miRNA-based host response, and because miR-143-3p promotes apoptosis and inhibits autophagy, downregulation of miR-143-3p expression during C. burnetii infection likely benefits the pathogen.
Collapse
|
13
|
Yek KQ, Stojanovski D, Newton HJ. Interaction between host cell mitochondria and Coxiella burnetii. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023. [DOI: 10.1016/bs.ircmb.2023.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
14
|
Anastácio S, de Sousa SR, Saavedra MJ, da Silva GJ. Role of Goats in the Epidemiology of Coxiella burnetii. BIOLOGY 2022; 11:biology11121703. [PMID: 36552213 PMCID: PMC9774940 DOI: 10.3390/biology11121703] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/17/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Since its first description in the late 1930s, Q fever has raised many questions. Coxiella burnetii, the causative agent, is a zoonotic pathogen affecting a wide range of hosts. This airborne organism leads to an obligate, intracellular lifecycle, during which it multiplies in the mononuclear cells of the immune system and in the trophoblasts of the placenta in pregnant females. Although some issues about C. burnetii and its pathogenesis in animals remain unclear, over the years, some experimental studies on Q fever have been conducted in goats given their excretion pattern. Goats play an important role in the epidemiology and economics of C. burnetii infections, also being the focus of several epidemiological studies. Additionally, variants of the agent implicated in human long-term disease have been found circulating in goats. The purpose of this review is to summarize the latest research on C. burnetii infection and the role played by goats in the transmission of the infection to humans.
Collapse
Affiliation(s)
- Sofia Anastácio
- Vasco da Gama Research Centre (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Avenida José R. Sousa Fernandes 197 Lordemão, 3020-210 Coimbra, Portugal
- Center of Neurosciences and Cell Biology, Health Science Campus, 3000-548 Coimbra, Portugal
- Correspondence:
| | - Sérgio Ramalho de Sousa
- Vasco da Gama Research Centre (CIVG), Department of Veterinary Sciences, Vasco da Gama University School, Avenida José R. Sousa Fernandes 197 Lordemão, 3020-210 Coimbra, Portugal
| | - Maria José Saavedra
- Laboratory Medical Microbiology—Antimicrobials, Biocides and Biofilms Unit, Department of Veterinary Sciences, School of Agrarian and Veterinary Sciences, University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Centre for the Research and Technology Agro-Environmental and Biological Sciences and Inov4Agro—Institute for Innovation, Capacity Building and Sustainability of Agri-Food Production, 5000-801 Vila Real, Portugal
| | - Gabriela Jorge da Silva
- Center of Neurosciences and Cell Biology, Health Science Campus, 3000-548 Coimbra, Portugal
- Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| |
Collapse
|
15
|
Hayek I, Szperlinski M, Lührmann A. Coxiella burnetii Affects HIF1α Accumulation and HIF1α Target Gene Expression. Front Cell Infect Microbiol 2022; 12:867689. [PMID: 35755850 PMCID: PMC9218251 DOI: 10.3389/fcimb.2022.867689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
HIF1α is an important transcription factor regulating not only cellular responses to hypoxia, but also anti-infective defense responses. We recently showed that HIF1α hampers replication of the obligate intracellular pathogen Coxiella burnetii which causes the zoonotic disease Q fever. Prior to development of chronic Q fever, it is assumed that the bacteria enter a persistent state. As HIF1α and/or hypoxia might be involved in the induction of C. burnetii persistence, we analyzed the role of HIF1α and hypoxia in the interaction of macrophages with C. burnetii to understand how the bacteria manipulate HIF1α stability and activity. We demonstrate that a C. burnetii-infection initially induces HIF1α stabilization, which decreases then over the course of an infection. This reduction depends on bacterial viability and a functional type IV secretion system (T4SS). While neither the responsible T4SS effector protein(s) nor the molecular mechanism leading to this partial HIF1α destabilization have been identified, our results demonstrate that C. burnetii influences the expression of HIF1α target genes in multiple ways. Therefore, a C. burnetii infection promotes HIF1α-mediated upregulation of several metabolic target genes; affects apoptosis-regulators towards a more pro-apoptotic signature; and under hypoxic conditions, shifts the ratio of the inflammatory genes analyzed towards a pro-inflammatory profile. Taken together, C. burnetii modulates HIF1α in a still elusive manner and alters the expression of multiple HIF1α target genes.
Collapse
Affiliation(s)
- Inaya Hayek
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Manuela Szperlinski
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie and Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Cordsmeier A, Rinkel S, Jeninga M, Schulze-Luehrmann J, Ölke M, Schmid B, Hasler D, Meister G, Häcker G, Petter M, Beare PA, Lührmann A. The Coxiella burnetii T4SS effector protein AnkG hijacks the 7SK small nuclear ribonucleoprotein complex for reprogramming host cell transcription. PLoS Pathog 2022; 18:e1010266. [PMID: 35134097 PMCID: PMC8824381 DOI: 10.1371/journal.ppat.1010266] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 01/10/2022] [Indexed: 11/24/2022] Open
Abstract
Inhibition of host cell apoptosis is crucial for survival and replication of several intracellular bacterial pathogens. To interfere with apoptotic pathways, some pathogens use specialized secretion systems to inject bacterial effector proteins into the host cell cytosol. One of these pathogens is the obligate intracellular bacterium Coxiella burnetii, the etiological agent of the zoonotic disease Q fever. In this study, we analyzed the molecular activity of the anti-apoptotic T4SS effector protein AnkG (CBU0781) to understand how C. burnetii manipulates host cell viability. We demonstrate by co- and RNA-immunoprecipitation that AnkG binds to the host cell DExD box RNA helicase 21 (DDX21) as well as to the host cell 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, an important regulator of the positive transcription elongation factor b (P-TEFb). The co-immunoprecipitation of AnkG with DDX21 is probably mediated by salt bridges and is independent of AnkG-7SK snRNP binding, and vice versa. It is known that DDX21 facilitates the release of P-TEFb from the 7SK snRNP complex. Consistent with the documented function of released P-TEFb in RNA Pol II pause release, RNA sequencing experiments confirmed AnkG-mediated transcriptional reprogramming and showed that expression of genes involved in apoptosis, trafficking, and transcription are influenced by AnkG. Importantly, DDX21 and P-TEFb are both essential for AnkG-mediated inhibition of host cell apoptosis, emphasizing the significance of the interaction of AnkG with both, the DDX21 protein and the 7SK RNA. In line with a critical function of AnkG in pathogenesis, the AnkG deletion C. burnetii strain was severely affected in its ability to inhibit host cell apoptosis and to generate a replicative C. burnetii-containing vacuole. In conclusion, the interference with the activity of regulatory host cell RNAs mediated by a bacterial effector protein represent a novel mechanism through which C. burnetii modulates host cell transcription, thereby enhancing permissiveness to bacterial infection. For intracellular replication, Coxiella burnetii depends on a functional type IV secretion system, which is utilized to inject ~150 virulence factors, so called effector proteins, into the host cell cytosol. Activities have only been established for few of them. These effector proteins interfere with vesicular trafficking, autophagy, lipid metabolism, apoptosis, and transcription by binding and manipulating the activity of host cell proteins. Here, we report that the C. burnetii T4SS effector protein AnkG (CBU0781, Q83DF6) binds to the host cell DExD box helicase 21 (DDX21) as well as to several host cell RNAs, including the small regulatory 7SK RNA, which is an important regulator of the positive elongation factor b (pTEFb). AnkG interferes with the function of the 7SK small nuclear ribonucleoprotein (7SK snRNP) complex, leading to significant changes in host cell transcription and ensuring host cell survival. AnkG activity is essential for efficient intracellular replication of C. burnetii and its ability to inhibit apoptosis. In summary, we identified a novel process by which a bacterial effector protein manipulates the host cell for its own benefit.
Collapse
Affiliation(s)
- Arne Cordsmeier
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Sven Rinkel
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Myriam Jeninga
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Martha Ölke
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benedikt Schmid
- Lehrstuhl für Biotechnik, Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Daniele Hasler
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Gunter Meister
- Biochemistry Center Regensburg (BZR), Laboratory for RNA Biology, University of Regensburg, Regensburg, Germany
| | - Georg Häcker
- Faculty of Medicine, Institute of Medical Microbiology and Hygiene, Medical Center-University of Freiburg, Freiburg, Germany
| | - Michaela Petter
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
- * E-mail:
| |
Collapse
|
17
|
Osbron CA, Goodman AG. To die or not to die: Programmed cell death responses and their interactions with Coxiella burnetii infection. Mol Microbiol 2022; 117:717-736. [PMID: 35020241 PMCID: PMC9018580 DOI: 10.1111/mmi.14878] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/04/2022] [Accepted: 01/09/2022] [Indexed: 12/01/2022]
Abstract
Coxiella burnetii is a Gram-negative, obligate intracellular, macrophage-tropic bacterium and the causative agent of the zoonotic disease Q fever. The epidemiology of Q fever is associated with the presence of infected animals; sheep, goats, cattle, and humans primarily become infected by inhalation of contaminated aerosols. In humans, the acute phase of the disease is characterized primarily by influenza-like symptoms, and approximately 3-5% of the infected individuals develop chronic infection. C. burnetii infection activates many types of immune responses, and the bacteria's genome encodes for numerous effector proteins that interact with host immune signaling mechanisms. Here, we will discuss two forms of programmed cell death, apoptosis and pyroptosis. Apoptosis is a form of non-inflammatory cell death that leads to phagocytosis of small membrane-bound bodies. Conversely, pyroptosis results in lytic cell death accompanied by the release of proinflammatory cytokines. Both apoptosis and pyroptosis have been implicated in the clearance of intracellular bacterial pathogens, including C. burnetii. Finally, we will discuss the role of autophagy, the degradation of unwanted cellular components, during C. burnetii infection. Together, the review of these forms of programmed cell death will open new research questions aimed at combating this highly infectious pathogen for which treatment options are limited.
Collapse
Affiliation(s)
- Chelsea A Osbron
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164.,Paul G. Allen School of Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA, 99164
| |
Collapse
|
18
|
Loterio RK, Zamboni DS, Newton HJ. Keeping the host alive - lessons from obligate intracellular bacterial pathogens. Pathog Dis 2021; 79:6424899. [PMID: 34755855 DOI: 10.1093/femspd/ftab052] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 11/04/2021] [Indexed: 01/20/2023] Open
Abstract
Mammals have evolved sophisticated host cell death signaling pathways as an important immune mechanism to recognize and eliminate cell intruders before they establish their replicative niche. However, intracellular bacterial pathogens that have co-evolved with their host have developed a multitude of tactics to counteract this defense strategy to facilitate their survival and replication. This requires manipulation of pro-death and pro-survival host signaling pathways during infection. Obligate intracellular bacterial pathogens are organisms that absolutely require an eukaryotic host to survive and replicate, and therefore they have developed virulence factors to prevent diverse forms of host cell death and conserve their replicative niche. This review encapsulates our current understanding of these host-pathogen interactions by exploring the most relevant findings of Anaplasma spp., Chlamydia spp., Rickettsia spp. and Coxiella burnetii modulating host cell death pathways. A detailed comprehension of the molecular mechanisms through which these obligate intracellular pathogens manipulate regulated host cell death will not only increase the current understanding of these difficult-to-study pathogens but also provide insights into new tools to study regulated cell death and the development of new therapeutic approaches to control infection.
Collapse
Affiliation(s)
- Robson Kriiger Loterio
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil.,Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| | - Dario S Zamboni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto Medical School, FMRP/USP. Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900, Brazil
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, 792 Elizabeth Street, Melbourne, 3000, Victoria, Australia
| |
Collapse
|
19
|
Sireci G, Badami GD, Di Liberto D, Blanda V, Grippi F, Di Paola L, Guercio A, de la Fuente J, Torina A. Recent Advances on the Innate Immune Response to Coxiella burnetii. Front Cell Infect Microbiol 2021; 11:754455. [PMID: 34796128 PMCID: PMC8593175 DOI: 10.3389/fcimb.2021.754455] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/12/2021] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii is an obligate intracellular Gram-negative bacterium and the causative agent of a worldwide zoonosis known as Q fever. The pathogen invades monocytes and macrophages, replicating within acidic phagolysosomes and evading host defenses through different immune evasion strategies that are mainly associated with the structure of its lipopolysaccharide. The main transmission routes are aerosols and ingestion of fomites from infected animals. The innate immune system provides the first host defense against the microorganism, and it is crucial to direct the infection towards a self-limiting respiratory disease or the chronic form. This review reports the advances in understanding the mechanisms of innate immunity acting during C. burnetii infection and the strategies that pathogen put in place to infect the host cells and to modify the expression of specific host cell genes in order to subvert cellular processes. The mechanisms through which different cell types with different genetic backgrounds are differently susceptible to C. burnetii intracellular growth are discussed. The subsets of cytokines induced following C. burnetii infection as well as the pathogen influence on an inflammasome-mediated response are also described. Finally, we discuss the use of animal experimental systems for studying the innate immune response against C. burnetii and discovering novel methods for prevention and treatment of disease in humans and livestock.
Collapse
Affiliation(s)
- Guido Sireci
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Giusto Davide Badami
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Diana Di Liberto
- Central Laboratory of Advanced Diagnostic and Biological Research (CLADIBIOR), Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University Hospital "Paolo Giaccone", Università degli studi di Palermo, Palermo, Italy
| | - Valeria Blanda
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Francesca Grippi
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Laura Di Paola
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - Annalisa Guercio
- Istituto Zooprofilattico Sperimentale della Sicilia, Palermo, Italy
| | - José de la Fuente
- SaBio Health and Biotechnology, Instituto de Investigación en Recursos Cinegéticos, IREC -Spanish National Research Council CSIC - University of Castilla-La Mancha UCLM - Regional Government of Castilla-La Mancha JCCM, Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State University, Stillwater, OK, United States
| | | |
Collapse
|
20
|
Undercover Agents of Infection: The Stealth Strategies of T4SS-Equipped Bacterial Pathogens. Toxins (Basel) 2021; 13:toxins13100713. [PMID: 34679006 PMCID: PMC8539587 DOI: 10.3390/toxins13100713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/04/2021] [Accepted: 10/06/2021] [Indexed: 11/16/2022] Open
Abstract
Intracellular bacterial pathogens establish their replicative niches within membrane-encompassed compartments, called vacuoles. A subset of these bacteria uses a nanochannel called the type 4 secretion system (T4SS) to inject effector proteins that subvert the host cell machinery and drive the biogenesis of these compartments. These bacteria have also developed sophisticated ways of altering the innate immune sensing and response of their host cells, which allow them to cause long-lasting infections and chronic diseases. This review covers the mechanisms employed by intravacuolar pathogens to escape innate immune sensing and how Type 4-secreted bacterial effectors manipulate host cell mechanisms to allow the persistence of bacteria.
Collapse
|
21
|
Evaluation of the Efficacy of Doxycycline, Ciprofloxacin, Levofloxacin and Co-trimoxazole using in vitro and in vivo models of Q fever. Antimicrob Agents Chemother 2021; 65:e0067321. [PMID: 34370577 PMCID: PMC8522727 DOI: 10.1128/aac.00673-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Q fever, caused by the intracellular pathogen Coxiella burnetii, is traditionally treated using tetracycline antibiotics, such as doxycycline. Doxycycline is often poorly tolerated and antibiotic resistant strains have been isolated. In this study, we have evaluated a panel of antibiotics (doxycycline, ciprofloxacin, levofloxacin, and, co-trimoxazole) against C. burnetii using in vitro methods (determination of MIC using liquid and solid media; efficacy assessment in a THP cell infection model) and in vivo methods (wax moth larvae and mouse models of infection). In addition, the schedule for antibiotic treatment has been evaluated, with therapy initiated at 24 h pre or post challenge. Both doxycycline and levofloxacin limited overt clinical signs during treatment in the AJ mouse model of aerosol infection, but further studies are required to investigate the possibility of disease relapse or incomplete bacterial clearance after the antibiotics are stopped. Levofloxacin was well tolerated and therefore warrants further investigation as an alternative to the current recommended treatment with doxycycline.
Collapse
|
22
|
Neurotransmitter System-Targeting Drugs Antagonize Growth of the Q Fever Agent, Coxiella burnetii, in Human Cells. mSphere 2021; 6:e0044221. [PMID: 34232075 PMCID: PMC8386451 DOI: 10.1128/msphere.00442-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Coxiella burnetii is a highly infectious, intracellular, Gram-negative bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis. C. burnetii is transmitted to humans via aerosols and has long been considered a potential biological warfare agent. Although antibiotics, such as doxycycline, effectively treat acute Q fever, a recently identified antibiotic-resistant strain demonstrates the ability of C. burnetii to resist traditional antimicrobials, and chronic disease is extremely difficult to treat with current options. These findings highlight the need for new Q fever therapeutics, and repurposed drugs that target eukaryotic functions to prevent bacterial replication are of increasing interest in infectious disease. To identify this class of anti-C. burnetii therapeutics, we screened a library of 727 FDA-approved or late-stage clinical trial compounds using a human macrophage-like cell model of infection. Eighty-eight compounds inhibited bacterial replication, including known antibiotics, antipsychotic or antidepressant treatments, antihistamines, and several additional compounds used to treat a variety of conditions. The majority of identified anti-C. burnetii compounds target host neurotransmitter system components. Serotoninergic, dopaminergic, and adrenergic components are among the most highly represented targets and potentially regulate macrophage activation, cytokine production, and autophagy. Overall, our screen identified multiple host-directed compounds that can be pursued for potential use as anti-C. burnetii drugs. IMPORTANCECoxiella burnetii causes the debilitating disease Q fever in humans. This infection is difficult to treat with current antibiotics and can progress to long-term, potentially fatal infection in immunocompromised individuals or when treatment is delayed. Here, we identified many new potential treatment options in the form of drugs that are either FDA approved or have been used in late-stage clinical trials and target human neurotransmitter systems. These compounds are poised for future characterization as nontraditional anti-C. burnetii therapies.
Collapse
|
23
|
Delaney MA, Hartigh AD, Carpentier SJ, Birkland TP, Knowles DP, Cookson BT, Frevert CW. Avoidance of the NLRP3 Inflammasome by the Stealth Pathogen, Coxiella burnetii. Vet Pathol 2021; 58:624-642. [PMID: 33357072 DOI: 10.1177/0300985820981369] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Coxiella burnetii, a highly adapted obligate intracellular bacterial pathogen and the cause of the zoonosis Q fever, is a reemerging public health threat. C. burnetii employs a Type IV secretion system (T4SS) to establish and maintain its intracellular niche and modulate host immune responses including the inhibition of apoptosis. Interactions between C. burnetii and caspase-1-mediated inflammasomes are not fully elucidated. This study confirms that C. burnetii does not activate caspase-1 during infection of mouse macrophages in vitro. C. burnetii-infected cells did not develop NLRP3 and ASC foci indicating its ability to avoid cytosolic detection. C. burnetii is unable to inhibit the pyroptosis and IL-1β secretion that is induced by potent inflammasome stimuli but rather enhances these caspase-1-mediated effects. We found that C. burnetii upregulates pro-IL-1β and robustly primes NLRP3 inflammasomes via TLR2 and MyD88 signaling. As for wildtype C. burnetii, T4SS-deficient mutants primed and potentiated NLRP3 inflammasomes. An in vivo model of pulmonary infection in C57BL/6 mice was developed. Mice deficient in NLRP3 or caspase-1 were like wildtype mice in the development and resolution of splenomegaly due to red pulp hyperplasia, and histologic lesions and macrophage kinetics, but had slightly higher pulmonary bacterial burdens at the greatest measured time point. Together these findings indicate that C. burnetii primes but avoids cytosolic detection by NLRP3 inflammasomes, which are not required for the clinical resistance of C57BL/6 mice. Determining mechanisms employed by C. burnetii to avoid cytosolic detection via NLRP3 inflammasomes will be beneficial to the development of preventative and interventional therapies for Q fever.
Collapse
Affiliation(s)
- Martha A Delaney
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
- Current address: Martha A. Delaney, Zoological Pathology Program, University of Illinois, Brookfield, IL, USA
| | - Andreas den Hartigh
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Samuel J Carpentier
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Timothy P Birkland
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
| | - Donald P Knowles
- Animal Disease Research Unit, Agricultural Research Service, United States Department of Agriculture, Pullman, WA
- Department of Veterinary Microbiology and Pathology, 6760Washington State University, Pullman, WA
| | - Brad T Cookson
- Departments of Microbiology and Lab Medicine, 7284University of Washington, Seattle, WA
| | - Charles W Frevert
- Departments of Comparative Medicine and Pathology, and the Comparative Pathology Program, 7284University of Washington, Seattle, WA
| |
Collapse
|
24
|
Schäfer W, Schmidt T, Cordsmeier A, Borges V, Beare PA, Pechstein J, Schulze-Luehrmann J, Holzinger J, Wagner N, Berens C, Heydel C, Gomes JP, Lührmann A. The anti-apoptotic Coxiella burnetii effector protein AnkG is a strain specific virulence factor. Sci Rep 2020; 10:15396. [PMID: 32958854 PMCID: PMC7506536 DOI: 10.1038/s41598-020-72340-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 08/26/2020] [Indexed: 11/24/2022] Open
Abstract
The ability to inhibit host cell apoptosis is important for the intracellular replication of the obligate intracellular pathogen Coxiella burnetii, as it allows the completion of the lengthy bacterial replication cycle. Effector proteins injected into the host cell by the C. burnetii type IVB secretion system (T4BSS) are required for the inhibition of host cell apoptosis. AnkG is one of these anti-apoptotic effector proteins. The inhibitory effect of AnkG requires its nuclear localization, which depends on p32-dependent intracellular trafficking and importin-α1-mediated nuclear entry of AnkG. Here, we compared the sequences of ankG from 37 C. burnetii isolates and classified them in three groups based on the predicted protein size. The comparison of the three different groups allowed us to identify the first 28 amino acids as essential and sufficient for the anti-apoptotic activity of AnkG. Importantly, only the full-length protein from the first group is a bona fide effector protein injected into host cells during infection and has anti-apoptotic activity. Finally, using the Galleria mellonella infection model, we observed that AnkG from the first group has the ability to attenuate pathology during in vivo infection, as it allows survival of the larvae despite bacterial replication.
Collapse
Affiliation(s)
- Walter Schäfer
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Teresa Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Arne Cordsmeier
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Vítor Borges
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | - Julian Pechstein
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Jan Schulze-Luehrmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Jonas Holzinger
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany
| | - Nicole Wagner
- Institut für Molekulare Pathogenese, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Christian Berens
- Institut für Molekulare Pathogenese, Friedrich-Loeffler-Institut, 07743, Jena, Germany
| | - Carsten Heydel
- Institut für Hygiene und Infektionskrankheiten der Tiere, Justus Liebig Universität Gießen, Frankfurter Straße 85-89, 35392, Gießen, Germany
| | - João Paulo Gomes
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Anja Lührmann
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany.
| |
Collapse
|
25
|
Coxiella burnetii Requires Host Eukaryotic Initiation Factor 2α Activity for Efficient Intracellular Replication. Infect Immun 2020; 88:IAI.00096-20. [PMID: 32284364 DOI: 10.1128/iai.00096-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/09/2020] [Indexed: 02/06/2023] Open
Abstract
Coxiella burnetii is the causative agent of human Q fever, eliciting symptoms that range from acute fever and fatigue to chronic fatal endocarditis. C. burnetii is a Gram-negative intracellular bacterium that replicates within an acidic lysosome-like parasitophorous vacuole (PV) in human macrophages. During intracellular growth, C. burnetii delivers bacterial proteins directly into the host cytoplasm using a Dot/Icm type IV secretion system (T4SS). Multiple T4SS effectors localize to and/or disrupt the endoplasmic reticulum (ER) and secretory transport, but their role in infection is unknown. During microbial infection, unfolded nascent proteins may exceed the folding capacity of the ER, activating the unfolded protein response (UPR) and restoring the ER to its normal physiological state. A subset of intracellular pathogens manipulates the UPR to promote survival and replication in host cells. In this study, we investigated the impact of C. burnetii infection on activation of the three arms of the UPR. An inhibitor of the UPR antagonized PV expansion in macrophages, indicating this process is needed for bacterial replication niche formation. Protein kinase RNA-like ER kinase (PERK) signaling was activated during infection, leading to increased levels of phosphorylated eukaryotic initiation factor α, which was required for C. burnetii growth. Increased production and nuclear translocation of the transcription factor ATF4 also occurred, which normally drives expression of the proapoptotic C/EBP homologous protein (CHOP). CHOP protein production increased during infection; however, C. burnetii actively prevented CHOP nuclear translocation and downstream apoptosis in a T4SS-dependent manner. The results collectively demonstrate interplay between C. burnetii and specific components of the eIF2α signaling cascade to parasitize human macrophages.
Collapse
|
26
|
FitzGerald ES, Luz NF, Jamieson AM. Competitive Cell Death Interactions in Pulmonary Infection: Host Modulation Versus Pathogen Manipulation. Front Immunol 2020; 11:814. [PMID: 32508813 PMCID: PMC7248393 DOI: 10.3389/fimmu.2020.00814] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 04/08/2020] [Indexed: 12/12/2022] Open
Abstract
In the context of pulmonary infection, both hosts and pathogens have evolved a multitude of mechanisms to regulate the process of host cell death. The host aims to rapidly induce an inflammatory response at the site of infection, promote pathogen clearance, quickly resolve inflammation, and return to tissue homeostasis. The appropriate modulation of cell death in respiratory epithelial cells and pulmonary immune cells is central in the execution of all these processes. Cell death can be either inflammatory or anti-inflammatory depending on regulated cell death (RCD) modality triggered and the infection context. In addition, diverse bacterial pathogens have evolved many means to manipulate host cell death to increase bacterial survival and spread. The multitude of ways that hosts and bacteria engage in a molecular tug of war to modulate cell death dynamics during infection emphasizes its relevance in host responses and pathogen virulence at the host pathogen interface. This narrative review outlines several current lines of research characterizing bacterial pathogen manipulation of host cell death pathways in the lung. We postulate that understanding these interactions and the dynamics of intracellular and extracellular bacteria RCD manipulation, may lead to novel therapeutic approaches for the treatment of intractable respiratory infections.
Collapse
Affiliation(s)
| | | | - Amanda M. Jamieson
- Division of Biology and Medicine, Department of Molecular Microbiology and Immunology, Brown University, Providence, RI, United States
| |
Collapse
|
27
|
Dragan AL, Voth DE. Coxiella burnetii: international pathogen of mystery. Microbes Infect 2020; 22:100-110. [PMID: 31574310 PMCID: PMC7101257 DOI: 10.1016/j.micinf.2019.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/17/2019] [Accepted: 09/18/2019] [Indexed: 12/19/2022]
Abstract
Coxiella burnetii is an intracellular bacterium that causes acute and chronic Q fever. This unique pathogen has been historically challenging to study due to obstacles in genetically manipulating the organism and the inability of small animal models to fully mimic human Q fever. Here, we review the current state of C. burnetii research, highlighting new approaches that allow the mechanistic study of infection in disease relevant settings.
Collapse
Affiliation(s)
- Amanda L Dragan
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA
| | - Daniel E Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, 72205, USA.
| |
Collapse
|
28
|
Cordsmeier A, Wagner N, Lührmann A, Berens C. Defying Death - How Coxiella burnetii Copes with Intentional Host Cell Suicide. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2019; 92:619-628. [PMID: 31866777 PMCID: PMC6913804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The obligate intracellular pathogen Coxiella burnetii is the causative agent of the worldwide zoonotic disease Q fever. This Gram-negative bacterium infects macrophages where it establishes a replicative niche in an acidic and phagolysosome-like vacuole. Establishing and maintaining the niche requires a functional type IV secretion system (T4SS) which translocates multiple effector proteins into the host cell. These effector proteins act by manipulating diverse cellular processes allowing the bacterium to establish an infection and complete its complex biphasic developmental cycle. The lengthy nature of this life cycle suggests that C. burnetii has to successfully deal with cellular defense processes. Cell death is one mechanism infected cells frequently utilize to control or to at least minimize the impact of an infection. To date, four effector proteins have been identified in C. burnetii, which interfere with the induction of cell death. Three, AnkG, CaeA, and CaeB, affect intrinsic apoptosis, CaeA additionally extrinsic apoptosis. The proteins target different steps of the apoptotic pathway and are not conserved among isolates suggesting redundancy as an important feature of cell death inhibition. The fourth effector protein, IcaA, interferes with the non-canonical pathway of pyroptosis, an important inflammatory cell death pathway for controlling infectious disease. Autophagy is relevant for the C. burnetii life-cycle, but to which extent autophagic cell death is a factor in bacterial survival and proliferation is still not clear. To convincingly understand how bacterial manipulation of autophagy affects cell death either directly or indirectly will require further experiments. Collectively, C. burnetii modulates the extrinsic and intrinsic apoptotic pathways and non-canonical pyroptosis to inhibit host cell death, thereby providing a stable, intracellular niche for the course of the pathogen's infectious cycle.
Collapse
Affiliation(s)
- Arne Cordsmeier
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Wagner
- Institut für molekulare Pathogenese, Friedrich-Loeffler-Institut, Jena, Germany
| | - Anja Lührmann
- Mikrobiologisches Institut, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Christian Berens
- Institut für molekulare Pathogenese, Friedrich-Loeffler-Institut, Jena, Germany,To whom all correspondence should be addressed: Christian Berens, Institut für molekulare Pathogenese, Friedrich-Loeffler-Institut, Naumburger Str. 96a, 07743 Jena, Germany; Tel: +49-3641-804-2500, Fax: +49-3641-804-2482, E-mail:
| |
Collapse
|
29
|
Coxiella burnetii Intratracheal Aerosol Infection Model in Mice, Guinea Pigs, and Nonhuman Primates. Infect Immun 2019; 87:IAI.00178-19. [PMID: 31501249 DOI: 10.1128/iai.00178-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 08/27/2019] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii, the etiological agent of Q fever, is a Gram-negative bacterium transmitted to humans by inhalation of contaminated aerosols. Acute Q fever is often self-limiting, presenting as a febrile illness that can result in atypical pneumonia. In some cases, Q fever becomes chronic, leading to endocarditis that can be life threatening. The formalin-inactivated whole-cell vaccine (WCV) confers long-term protection but has significant side effects when administered to presensitized individuals. Designing new vaccines against C. burnetii remains a challenge and requires the use of clinically relevant modes of transmission in appropriate animal models. We have developed a safe and reproducible C. burnetii aerosol challenge in three different animal models to evaluate the effects of pulmonary acquired infection. Using a MicroSprayer aerosolizer, BL/6 mice and Hartley guinea pigs were infected intratracheally with C. burnetii Nine Mile phase I (NMI) and demonstrated susceptibility as determined by measuring bacterial growth in the lungs and subsequent dissemination to the spleen. Histological analysis of lung tissue showed significant pathology associated with disease, which was more severe in guinea pigs. Infection using large-particle aerosol (LPA) delivery was further confirmed in nonhuman primates, which developed fever and pneumonia. We also demonstrate that vaccinating mice and guinea pigs with WCV prior to LPA challenge is capable of eliciting protective immunity that significantly reduces splenomegaly and the bacterial burden in spleen and lung tissues. These data suggest that these models can have appreciable value in using the LPA delivery system to study pulmonary Q fever pathogenesis as well as designing vaccine countermeasures to C. burnetii aerosol transmission.
Collapse
|
30
|
Ganesan S, Roy CR. Host cell depletion of tryptophan by IFNγ-induced Indoleamine 2,3-dioxygenase 1 (IDO1) inhibits lysosomal replication of Coxiella burnetii. PLoS Pathog 2019; 15:e1007955. [PMID: 31461509 PMCID: PMC6736304 DOI: 10.1371/journal.ppat.1007955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 09/10/2019] [Accepted: 07/01/2019] [Indexed: 12/20/2022] Open
Abstract
Most intracellular pathogens that reside in a vacuole prevent transit of their compartment to lysosomal organelles. Effector mechanisms induced by the pro-inflammatory cytokine Interferon-gamma (IFNγ) can promote the delivery of pathogen-occupied vacuoles to lysosomes for proteolytic degradation and are therefore important for host defense against intracellular pathogens. The bacterial pathogen Coxiella burnetii is unique in that, transport to the lysosome is essential for replication. The bacterium modulates membrane traffic to create a specialized autophagolysosomal compartment called the Coxiella-containing vacuole (CCV). Importantly, IFNγ signaling inhibits intracellular replication of C. burnetii, raising the question of which IFNγ-activated mechanisms restrict replication of a lysosome-adapted pathogen. To address this question, siRNA was used to silence a panel of IFNγ-induced genes in HeLa cells to identify genes required for restriction of C. burnetii intracellular replication. This screen demonstrated that Indoleamine 2,3-dioxygenase 1 (IDO1) contributes to IFNγ-mediated restriction of C. burnetii. IDO1 is an enzyme that catabolizes cellular tryptophan to kynurenine metabolites thereby reducing tryptophan availability in cells. Cells deficient in IDO1 function were more permissive for C. burnetii replication when treated with IFNγ, and supplementing IFNγ-treated cells with tryptophan enhanced intracellular replication. Additionally, ectopic expression of IDO1 in host cells was sufficient to restrict replication of C. burnetii in the absence of IFNγ signaling. Using differentiated THP1 macrophage-like cells it was determined that IFNγ-activation resulted in IDO1 production, and that supplementation of IFNγ-activated THP1 cells with tryptophan enhanced C. burnetii replication. Thus, this study identifies IDO1 production as a key cell-autonomous defense mechanism that limits infection by C. burnetii, which suggests that peptides derived from hydrolysis of proteins in the CCV do not provide an adequate supply of tryptophan for bacterial replication.
Collapse
Affiliation(s)
- Sandhya Ganesan
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Craig R. Roy
- Department of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut, United States of America
| |
Collapse
|
31
|
Infection of Primary Human Alveolar Macrophages Alters Staphylococcus aureus Toxin Production and Activity. Infect Immun 2019; 87:IAI.00167-19. [PMID: 31010814 DOI: 10.1128/iai.00167-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/15/2019] [Indexed: 11/20/2022] Open
Abstract
Pulmonary pathogens encounter numerous insults, including phagocytic cells designed to degrade bacteria, while establishing infection in the human lung. Staphylococcus aureus is a versatile, opportunistic pathogen that can cause severe pneumonia, and methicillin-resistant isolates are of particular concern. Recent reports present conflicting data regarding the ability of S. aureus to survive and replicate within macrophages. However, due to use of multiple strains and macrophage sources, making comparisons between reports remains difficult. Here, we established a disease-relevant platform to study innate interactions between S. aureus and human lungs. Human precision-cut lung slices (hPCLS) were subjected to infection by S. aureus LAC (methicillin-resistant) or UAMS-1 (methicillin-sensitive) isolates. Additionally, primary human alveolar macrophages (hAMs) were infected with S. aureus, and antibacterial activity was assessed. Although both S. aureus isolates survived within hAM phagosomes, neither strain replicated efficiently in these cells. S. aureus was prevalent within the epithelial and interstitial regions of hPCLS, with limited numbers present in a subset of hAMs, suggesting that the pathogen may not target phagocytic cells for intracellular growth during natural pulmonary infection. S. aureus-infected hAMs mounted a robust inflammatory response that reflected natural human disease. S. aureus LAC was significantly more cytotoxic to hAMs than UAMS-1, potentially due to isolate-specific virulence factors. The bicomponent toxin Panton-Valentine leukocidin was not produced during intracellular infection, while alpha-hemolysin was produced but was not hemolytic, suggesting that hAMs alter toxin activity. Overall, this study defined a new disease-relevant infection platform to study S. aureus interaction with human lungs and to define virulence factors that incapacitate pulmonary cells.
Collapse
|
32
|
Behar SM, Briken V. Apoptosis inhibition by intracellular bacteria and its consequence on host immunity. Curr Opin Immunol 2019; 60:103-110. [PMID: 31228759 DOI: 10.1016/j.coi.2019.05.007] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 05/07/2019] [Accepted: 05/11/2019] [Indexed: 02/08/2023]
Abstract
Regulated cell death via apoptosis not only is important for organismal homeostasis but also serves as an innate defense mechanism. The engulfment of apoptotic infected cells, a process known as efferocytosis, is a common pathway for the destruction of many intracellular bacteria. Some pathogens take advantage of efferocytosis to prevent activation of macrophages and thereby facilitate their dissemination. Conversely, many obligate intracellular bacterial pathogens and some facultative-intracellular bacteria inhibit apoptosis, preventing efferocytosis, and evading innate host defenses. The molecular mechanism of bacterial effectors includes secreted proteins that bind to and inhibit apoptosis cell signaling pathways. We provide an overview of the known bacterial effectors, their host cell targets and their importance for the virulence of human pathogens.
Collapse
Affiliation(s)
- Samuel M Behar
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, MA, USA.
| | - Volker Briken
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA.
| |
Collapse
|
33
|
A transcriptional signature associated with non-Hodgkin lymphoma in the blood of patients with Q fever. PLoS One 2019; 14:e0217542. [PMID: 31181104 PMCID: PMC6557487 DOI: 10.1371/journal.pone.0217542] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 05/14/2019] [Indexed: 12/14/2022] Open
Abstract
Coxiella burnetii, the agent causing Q fever, has been associated with B-cell non-Hodgkin lymphoma (NHL). To better clarify this link, we analysed the genetic transcriptomic profile of peripheral blood leukocytes from patients with C. burnetii infection to identify possible links to lymphoma. Microarray analyses revealed that 1189 genes were expressed differently (p <.001 and fold change ≥4) in whole blood of patients with C. burnetii infection compared to controls. In addition, 95 genes expressed in patients with non-Hodgkin lymphoma (NHL) and in patients with C. burnetii persistent infection have allowed us to establish the 'C. burnetii-associated NHL signature'. Among these, 33 genes previously found modulated in C. burnetii-associated -NHL by the microarray analysis were selected and their mRNA expression levels were measured in distinct C. burnetii-induced pathologies, namely, acute Q fever, focalized persistent infection, lymphadenitis and C.burnetii-associated NHL. Specific genes involved in anti-apoptotic process were found highly expressed in leukocytes from patients with C. burnetii associated-NHL: MIR17HG, REL and SP100. This signature differed from that found for NHL-control group. Patients with C. burnetii lymphadenitis presented significant elevated levels of BCL2 and ETS1 mRNAs. Altogether, we identified a specific transcriptionnal signature for NHL during C. burnetii infection reflecting the up-regulation of anti-apoptotic processes and the fact that lymphadenitis might constitute a critical step towards lymphomagenesis.
Collapse
|
34
|
Khaliullin TO, Kisin ER, Yanamala N, Guppi S, Harper M, Lee T, Shvedova AA. Comparative cytotoxicity of respirable surface-treated/untreated calcium carbonate rock dust particles in vitro. Toxicol Appl Pharmacol 2018; 362:67-76. [PMID: 30393145 DOI: 10.1016/j.taap.2018.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/20/2018] [Accepted: 10/23/2018] [Indexed: 01/17/2023]
Abstract
Calcium carbonate rock dust (RD) is used in mining to reduce the explosivity of aerosolized coal. During the dusting procedures, potential for human exposure occurs, raising health concerns. To improve RD aerosolization, several types of anti-caking surface treatments exist. The aim of the study was to evaluate cytotoxicity of four respirable RD samples: untreated/treated limestone (UL/TL), untreated/treated marble (UM/TM), and crystalline silica (SiO2) as a positive control in A549 and THP-1 transformed human cell lines. Respirable fractions were generated and collected using FSP10 high flow-rate cyclone samplers. THP-1 cells were differentiated with phorbol-12-myristate-13-acetate (20 ng/ml, 48 h). Cells were exposed to seven different concentrations of RD and SiO2 (0-0.2 mg/ml). RD caused a slight decrease in viability at 24 or 72 h post-exposure and were able to induce inflammatory cytokine production in A549 cells, however, with considerably less potency than SiO2. In THP-1 cells at 24 h, there was significant dose-dependent lactate dehydrogenase, inflammatory cytokine and chemokine release. Caspase-1 activity was increased in SiO2- and, on a lesser scale, in TM- exposed cells. To test if the increased toxicity of TM was uptake-related, THP-1 cells were pretreated with Cytochalasin D (CytD) or Bafilomycin A (BafA), followed by exposure to RD or SiO2 for 6 h. CytD blocked the uptake and significantly decreased cytotoxicity of all particles, while BafA prevented caspase-1 activation but not cytotoxic effects of TM. Only TM was able to induce an inflammatory response in THP-1 cells, however it was much less pronounced compared to silica.
Collapse
Affiliation(s)
- Timur O Khaliullin
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA; West Virginia University, Department of Physiology and Pharmacology, PO Box 9229, Morgantown, WV, USA.
| | - Elena R Kisin
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Naveena Yanamala
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Supraja Guppi
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA.
| | - Martin Harper
- Zefon International, 5350 SW 1st Lane, Ocala, FL 34474, USA.
| | - Taekhee Lee
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Pittsburgh Mining Research Division, 626 Cochrans Mill Road, Pittsburgh, PA 15236, USA.
| | - Anna A Shvedova
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Exposure Assessment Branch, 1095 Willowdale road, Morgantown, WV 26505, USA; West Virginia University, Department of Physiology and Pharmacology, PO Box 9229, Morgantown, WV, USA.
| |
Collapse
|
35
|
Coxiella burnetii Subverts p62/Sequestosome 1 and Activates Nrf2 Signaling in Human Macrophages. Infect Immun 2018; 86:IAI.00608-17. [PMID: 29483292 PMCID: PMC5913852 DOI: 10.1128/iai.00608-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/19/2018] [Indexed: 12/31/2022] Open
Abstract
Coxiella burnetii is the causative agent of human Q fever, a debilitating flu-like illness that can progress to chronic disease presenting as endocarditis. Following inhalation, C. burnetii is phagocytosed by alveolar macrophages and generates a lysosome-like replication compartment termed the parasitophorous vacuole (PV). A type IV secretion system (T4SS) is required for PV generation and is one of the pathogen's few known virulence factors. We previously showed that C. burnetii actively recruits autophagosomes to the PV using the T4SS but does not alter macroautophagy. In the current study, we confirmed that the cargo receptor p62/sequestosome 1 (SQSTM-1) localizes near the PV in primary human alveolar macrophages infected with virulent C. burnetii p62 and LC3 typically interact to select cargo for autophagy-mediated degradation, resulting in p62 degradation and LC3 recycling. However, in C. burnetii-infected macrophages, p62 was not degraded when cells were starved, suggesting that the pathogen stabilizes the protein. In addition, phosphorylated p62 levels increased, indicative of activation, during infection. Small interfering RNA experiments indicated that p62 is not absolutely required for intracellular growth, suggesting that the protein serves a signaling role during infection. Indeed, the Nrf2-Keap1 cytoprotective pathway was activated during infection, as evidenced by sustained maintenance of Nrf2 levels and translocation of the protein to the nucleus in C. burnetii-infected cells. Collectively, our studies identify a new p62-regulated host signaling pathway exploited by C. burnetii during intramacrophage growth.
Collapse
|
36
|
Coxiella burnetii Inhibits Neutrophil Apoptosis by Exploiting Survival Pathways and Antiapoptotic Protein Mcl-1. Infect Immun 2018; 86:IAI.00504-17. [PMID: 29311244 DOI: 10.1128/iai.00504-17] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 12/18/2017] [Indexed: 12/26/2022] Open
Abstract
Our previous study demonstrated that neutrophils play an important role in host defense against Coxiella burnetii infection in mice. In this study, avirulent strain C. burnetii Nine Mile phase II (NMII) was used to examine if C. burnetii can modulate mouse bone marrow-derived neutrophil apoptosis. The results indicated that NMII can inhibit neutrophil apoptosis. Western blotting demonstrated that caspase-3 cleavage was decreased in NMII-infected neutrophils, while phosphorylated mitogen-activated protein kinase (MAPK) p38 and extracellular signal-regulated kinase 1 (Erk1) were increased. Additionally, p38, Erk1/2, phosphoinositide 3-kinase (PI3K), or NF-κB inhibitors reduced the ability of NMII to inhibit neutrophil apoptosis. These results suggest that NMII-mediated inhibition of neutrophil apoptosis depends on its ability to activate neutrophil MAPK pathways. Antiapoptotic protein myeloid cell leukemia-1 (Mcl-1) was significantly increased in NMII-infected neutrophils, and an Mcl-1 inhibitor significantly reduced the ability of NMII to inhibit neutrophil apoptosis. Mcl-1 protein stability was enhanced by phosphorylation at Thr-163 by Erk, and the protein levels were regulated by p38, Erk, PI3K, and NF-κB. Furthermore, the observation that a type IV secretion system (T4SS)-deficient dotA mutant showed a significantly reduced ability to inhibit neutrophil apoptosis compared to wild-type (WT) NMII suggests that T4SS-secreted factors may be involved in NMII-induced inhibition of neutrophil apoptosis. Collectively, these results demonstrate that NMII inhibits neutrophil apoptosis through inhibition of caspase-3 cleavage and activation of MAPK survival pathways with subsequent expression and stabilization of antiapoptotic protein Mcl-1, a process that may partially require the T4SS.
Collapse
|
37
|
Ryerson MR, Shisler JL. Characterizing the effects of insertion of a 5.2 kb region of a VACV genome, which contains known immune evasion genes, on MVA immunogenicity. Virus Res 2018; 246:55-64. [PMID: 29341877 DOI: 10.1016/j.virusres.2018.01.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/11/2018] [Accepted: 01/12/2018] [Indexed: 01/07/2023]
Abstract
Modified Vaccinia virus Ankara (MVA) is an attenuated Vaccinia virus (VACV) that is a popular vaccine vector candidate against many different pathogens. Its replication-restricted nature makes it a safe vaccine. However, higher doses or multiple boosts of MVA are necessary to elicit an immune response similar to wild-type VACV. Multiple strategies have been used to create modified MVA viruses that remain safe, but have increased immunogenicity. For example, one common strategy is to delete MVA immunomodulatory proteins in hopes of increasing the host immune response. Here, we take the opposite approach and examine, for the first time, how re-introduction of a 5.2 kb region of VACV DNA (that codes for multiple immunomodulatory proteins) into MVA alters viral immunogenicity. Since antigen presenting cells (APCs) are critical connectors between the innate and adaptive immune system, we examined the effect of MVA/5.2 kb infection in these cells in vitro. MVA/5.2 kb infection decreased virus-induced apoptosis and virus-induced NF-κB activation. MVA.5.2 kb infection decreased TNF production. However, MVA/5.2 kb infection did not alter APC maturation or IL-6 and IL-8 production in vitro. We further explored MVA/5.2 kb immunogenicity in vivo. VACV-specific CD8+ T cells were decreased after in vivo infection with MVA/5.2 kb versus MVA, suggesting that the MVA/5.2 kb construct is less immunogenic than MVA. These results demonstrate the limitations of in vitro studies for predicting the effects of genetic manipulation of MVA on immunogenicity. Although MVA/5.2 kb did not enhance MVA's immunogenicity, this study examined an unexplored strategy for optimizing MVA, and the insight gained from these results can help direct how to modify MVA in the future.
Collapse
Affiliation(s)
- Melissa R Ryerson
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA
| | - Joanna L Shisler
- Department of Microbiology, B103 Chemical and Life Science Building, 601 South Goodwin Avenue, University of Illinois, Urbana, IL 61801, USA.
| |
Collapse
|
38
|
Weber MM, Faris R, van Schaik EJ, Samuel JE. Identification and characterization of arginine finger-like motifs, and endosome-lysosome basolateral sorting signals within the Coxiella burnetii type IV secreted effector protein CirA. Microbes Infect 2018; 20:302-307. [PMID: 29331581 PMCID: PMC6021133 DOI: 10.1016/j.micinf.2017.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 10/17/2017] [Accepted: 12/20/2017] [Indexed: 01/20/2023]
Abstract
Coxiella burnetii is an obligate intracellular pathogen that replicates in an endolysosome-like compartment termed the Coxiella-containing vacuole (CCV). Formation of this unique replicative niche requires delivery of bacterial effector proteins into the host cytosol where they mediate crucial interactions with the host. We previously identified an essential Dot/Icm effector, CirA that is required for intracellular replication and CCV formation. Furthermore, CirA was shown to stimulate the GTPase activity of RhoA in vitro. In the current study, we used a bioinformatics-guided approach and identified three arginine finger-like motifs, often found in Rho GTPase-activating proteins (GAPs) and endosome-lysosome basolateral sorting signals associated with vesicle trafficking. When expressed in mammalian cells, mutation of either endosome-lysosome-basolateral sorting signals or the arginine finger-like motifs rescued stress phenotypes and decreased plasma membrane localization of ectopically expressed CirA. We further demonstrate that endosome-lysosome sorting signals are required for co-localization with Rab5 and Rab7. Collectively our data indicate that arginine finger-like motifs and endosome-lysosome-basolateral sorting signals within CirA are essential for interaction with the host cytoskeleton.
Collapse
Affiliation(s)
- Mary M Weber
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA
| | - Robert Faris
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA
| | - Erin J van Schaik
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA
| | - James E Samuel
- Department of Microbial Pathogenesis and Immunology, Texas A&M Health Science Center, College of Medicine, Bryan, TX, 77807, USA.
| |
Collapse
|
39
|
Melenotte C, Raoult D. Pro-apoptotic effect of doxycycline and hydroxychloroquine on B-cell lymphoma induced by C. burnetii. Oncotarget 2017; 9:2726-2727. [PMID: 29416805 PMCID: PMC5788673 DOI: 10.18632/oncotarget.23397] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 12/16/2017] [Indexed: 11/25/2022] Open
Affiliation(s)
- Cléa Melenotte
- Aix Marseille Université, CNRS, IRD, INSERM, AP-HM, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut Hospitalier Universitaire Méditerranée-Infection, Marseille, France
| | - Didier Raoult
- Aix Marseille Université, CNRS, IRD, INSERM, AP-HM, Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Institut Hospitalier Universitaire Méditerranée-Infection, Marseille, France
| |
Collapse
|
40
|
Vaccinia Virus Encodes a Novel Inhibitor of Apoptosis That Associates with the Apoptosome. J Virol 2017; 91:JVI.01385-17. [PMID: 28904196 DOI: 10.1128/jvi.01385-17] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/08/2017] [Indexed: 12/29/2022] Open
Abstract
Apoptosis is an important antiviral host defense mechanism. Here we report the identification of a novel apoptosis inhibitor encoded by the vaccinia virus (VACV) M1L gene. M1L is absent in the attenuated modified vaccinia virus Ankara (MVA) strain of VACV, a strain that stimulates apoptosis in several types of immune cells. M1 expression increased the viability of MVA-infected THP-1 and Jurkat cells and reduced several biochemical hallmarks of apoptosis, such as PARP-1 and procaspase-3 cleavage. Furthermore, ectopic M1L expression decreased staurosporine-induced (intrinsic) apoptosis in HeLa cells. We then identified the molecular basis for M1 inhibitory function. M1 allowed mitochondrial depolarization but blocked procaspase-9 processing, suggesting that M1 targeted the apoptosome. In support of this model, we found that M1 promoted survival in Saccharomyces cerevisiae overexpressing human Apaf-1 and procaspase-9, critical components of the apoptosome, or overexpressing only conformationally active caspase-9. In mammalian cells, M1 coimmunoprecipitated with Apaf-1-procaspase-9 complexes. The current model is that M1 associates with and allows the formation of the apoptosome but prevents apoptotic functions of the apoptosome. The M1 protein features 14 predicted ankyrin (ANK) repeat domains, and M1 is the first ANK-containing protein reported to use this inhibitory strategy. Since ANK-containing proteins are encoded by many large DNA viruses and found in all domains of life, studies of M1 may lead to a better understanding of the roles of ANK proteins in virus-host interactions.IMPORTANCE Apoptosis selectively eliminates dangerous cells such as virus-infected cells. Poxviruses express apoptosis antagonists to neutralize this antiviral host defense. The vaccinia virus (VACV) M1 ankyrin (ANK) protein, a protein with no previously ascribed function, inhibits apoptosis. M1 interacts with the apoptosome and prevents procaspase-9 processing as well as downstream procaspase-3 cleavage in several cell types and under multiple conditions. M1 is the first poxviral protein reported to associate with and prevent the function of the apoptosome, giving a more detailed picture of the threats VACV encounters during infection. Dysregulation of apoptosis is associated with several human diseases. One potential treatment of apoptosis-related diseases is through the use of designed ANK repeat proteins (DARPins), similar to M1, as caspase inhibitors. Thus, the study of the novel antiapoptosis effects of M1 via apoptosome association will be helpful for understanding how to control apoptosis using either natural or synthetic molecules.
Collapse
|
41
|
Strickertsson JAB, Desler C, Rasmussen LJ. Bacterial infection increases risk of carcinogenesis by targeting mitochondria. Semin Cancer Biol 2017; 47:95-100. [PMID: 28754330 DOI: 10.1016/j.semcancer.2017.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 07/17/2017] [Accepted: 07/20/2017] [Indexed: 01/19/2023]
Abstract
As up to a fifth of all cancers worldwide, have now been linked to microbial infections, it is essential to understand the carcinogenic nature of the bacterial/host interaction. This paper reviews the bacterial targeting of mediators of mitochondrial genomic fidelity and of mitochondrial apoptotic pathways, and compares the impact of the bacterial alteration of mitochondrial function to that of cancer. Bacterial virulence factors have been demonstrated to induce mutations of mitochondrial DNA (mtDNA) and to modulate DNA repair pathways of the mitochondria. Furthermore, virulence factors can induce or impair the intrinsic apoptotic pathway. The effect of bacterial targeting of mitochondria is analogous to behavior of mitochondria in a wide array of tumours, and this strongly suggests that mitochondrial targeting of bacteria is a risk factor for carcinogenesis.
Collapse
Affiliation(s)
| | - Claus Desler
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark
| | - Lene Juel Rasmussen
- Center for Healthy Aging, University of Copenhagen, Blegdamsvej 3B, 2200 Copenhagen, Denmark.
| |
Collapse
|
42
|
Sobotta K, Bonkowski K, Liebler-Tenorio E, Germon P, Rainard P, Hambruch N, Pfarrer C, Jacobsen ID, Menge C. Permissiveness of bovine epithelial cells from lung, intestine, placenta and udder for infection with Coxiella burnetii. Vet Res 2017; 48:23. [PMID: 28403908 PMCID: PMC5389005 DOI: 10.1186/s13567-017-0430-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 03/12/2017] [Indexed: 02/23/2023] Open
Abstract
Ruminants are the main source of human infections with the obligate intracellular bacterium Coxiella (C.) burnetii. Infected animals shed high numbers of C. burnetii by milk, feces, and birth products. In goats, shedding by the latter route coincides with C. burnetii replication in epithelial (trophoblast) cells of the placenta, which led us to hypothesize that epithelial cells are generally implicated in replication and shedding of C. burnetii. We therefore aimed at analyzing the interactions of C. burnetii with epithelial cells of the bovine host (1) at the entry site (lung epithelium) which govern host immune responses and (2) in epithelial cells of gut, udder and placenta decisive for the quantity of pathogen excretion. Epithelial cell lines [PS (udder), FKD-R 971 (small intestine), BCEC (maternal placenta), F3 (fetal placenta), BEL-26 (lung)] were inoculated with C. burnetii strains Nine Mile I (NMI) and NMII at different cultivation conditions. The cell lines exhibited different permissiveness for C. burnetii. While maintaining cell viability, udder cells allowed the highest replication rates with formation of large cell-filling Coxiella containing vacuoles. Intestinal cells showed an enhanced susceptibility to invasion but supported C. burnetii replication only at intermediate levels. Lung and placental cells also internalized the bacteria but in strikingly smaller numbers. In any of the epithelial cells, both Coxiella strains failed to trigger a substantial IL-1β, IL-6 and TNF-α response. Epithelial cells, with mammary epithelial cells in particular, may therefore serve as a niche for C. burnetii replication in vivo without alerting the host’s immune response.
Collapse
Affiliation(s)
- Katharina Sobotta
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (FLI), Naumburger Strasse 96a, 07743, Jena, Germany
| | - Katharina Bonkowski
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (FLI), Naumburger Strasse 96a, 07743, Jena, Germany
| | - Elisabeth Liebler-Tenorio
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (FLI), Naumburger Strasse 96a, 07743, Jena, Germany
| | - Pierre Germon
- ISP, INRA, Université Tours, UMR 1282, 37380, Nouzilly, France
| | - Pascal Rainard
- ISP, INRA, Université Tours, UMR 1282, 37380, Nouzilly, France
| | - Nina Hambruch
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Christiane Pfarrer
- Department of Anatomy, University of Veterinary Medicine Hannover, Bischofsholer Damm 15, 30173, Hannover, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology/Hans Knoell Institute, Beutenbergstrasse 11a, 07745, Jena, Germany
| | - Christian Menge
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-Institut (FLI), Naumburger Strasse 96a, 07743, Jena, Germany.
| |
Collapse
|
43
|
|
44
|
Lührmann A, Newton HJ, Bonazzi M. Beginning to Understand the Role of the Type IV Secretion System Effector Proteins in Coxiella burnetii Pathogenesis. Curr Top Microbiol Immunol 2017. [PMID: 29536362 DOI: 10.1007/978-3-319-75241-9_10] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Coxiella burnetii is the etiological agent of the zoonotic disease Q fever, which manifests in severe outbreaks and is associated with important health and economic burden. Moreover, C. burnetii belongs to the list of class B bioterrorism organisms, as it is an airborne and highly infective pathogen with remarkable resistance to environmental stresses. Detailed study of the host-pathogen interaction during C. burnetii infection has been hampered due to the obligate intracellular nature of this pathogen. However, the development of an axenic culture medium, together with the implementation of bioinformatics tools and high-content screening approaches, have significantly progressed C. burnetii research in the last decade. This has facilitated identification of the Dot/Icm type IV secretion system (T4SS) as an essential virulence factor. T4SS is used to deliver an arsenal of effector proteins into the cytoplasm of the host cell. These effectors mediate the survival of the host cell and the development of very large replicative compartments called Coxiella-containing vacuoles (CCVs). Biogenesis of the CCV relies on T4SS-dependent re-routing of numerous intracellular trafficking pathways to deliver membranes and nutrients that are essential for bacterial replication. This review aims to illustrate the key milestones that have contributed to ascribe C. burnetii as a model organism for the study of host/pathogen interactions as well as presenting an up-to-date description of our knowledge of the cell biology of C. burnetii infections.
Collapse
Affiliation(s)
- Anja Lührmann
- Mikrobiologisches Institut-Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen, Friedrich-Alexander Universität Erlangen-Nürnberg, Wasserturmstraße 3/5, 91054, Erlangen, Germany.
| | - Hayley J Newton
- Department of Microbiology and Immunology, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, VIC, Australia.
| | - Matteo Bonazzi
- Institut de Recherche En Infectiologie de Montpellier (IRIM), CNRS, UMR9004, Université de Montpellier, Montpellier, France.
| |
Collapse
|
45
|
Marcos CM, de Oliveira HC, de Melo WDCMA, da Silva JDF, Assato PA, Scorzoni L, Rossi SA, de Paula E Silva ACA, Mendes-Giannini MJS, Fusco-Almeida AM. Anti-Immune Strategies of Pathogenic Fungi. Front Cell Infect Microbiol 2016; 6:142. [PMID: 27896220 PMCID: PMC5108756 DOI: 10.3389/fcimb.2016.00142] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/13/2016] [Indexed: 12/24/2022] Open
Abstract
Pathogenic fungi have developed many strategies to evade the host immune system. Multiple escape mechanisms appear to function together to inhibit attack by the various stages of both the adaptive and the innate immune response. Thus, after entering the host, such pathogens fight to overcome the immune system to allow their survival, colonization and spread to different sites of infection. Consequently, the establishment of a successful infectious process is closely related to the ability of the pathogen to modulate attack by the immune system. Most strategies employed to subvert or exploit the immune system are shared among different species of fungi. In this review, we summarize the main strategies employed for immune evasion by some of the major pathogenic fungi.
Collapse
Affiliation(s)
- Caroline M Marcos
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Haroldo C de Oliveira
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Wanessa de Cássia M Antunes de Melo
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Julhiany de Fátima da Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Patrícia A Assato
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Liliana Scorzoni
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Suélen A Rossi
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana C A de Paula E Silva
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Maria J S Mendes-Giannini
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| | - Ana M Fusco-Almeida
- Laboratório de Micologia Clínica, Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Univ Estadual Paulista São Paulo, Brasil
| |
Collapse
|
46
|
Colonne PM, Winchell CG, Graham JG, Onyilagha FI, MacDonald LJ, Doeppler HR, Storz P, Kurten RC, Beare PA, Heinzen RA, Voth DE. Vasodilator-Stimulated Phosphoprotein Activity Is Required for Coxiella burnetii Growth in Human Macrophages. PLoS Pathog 2016; 12:e1005915. [PMID: 27711191 PMCID: PMC5053435 DOI: 10.1371/journal.ppat.1005915] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/05/2016] [Indexed: 11/18/2022] Open
Abstract
Coxiella burnetii is an intracellular bacterial pathogen that causes human Q fever, an acute flu-like illness that can progress to chronic endocarditis and liver and bone infections. Humans are typically infected by aerosol-mediated transmission, and C. burnetii initially targets alveolar macrophages wherein the pathogen replicates in a phagolysosome-like niche known as the parasitophorous vacuole (PV). C. burnetii manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation, cell survival, and bacterial replication. In this study, we identified the actin regulatory protein vasodilator-stimulated phosphoprotein (VASP) as a PKA substrate that is increasingly phosphorylated at S157 and S239 during C. burnetii infection. Avirulent and virulent C. burnetii triggered increased levels of phosphorylated VASP in macrophage-like THP-1 cells and primary human alveolar macrophages, and this event required the Cα subunit of PKA. VASP phosphorylation also required bacterial protein synthesis and secretion of effector proteins via a type IV secretion system, indicating the pathogen actively triggers prolonged VASP phosphorylation. Optimal PV formation and intracellular bacterial replication required VASP activity, as siRNA-mediated depletion of VASP reduced PV size and bacterial growth. Interestingly, ectopic expression of a phospho-mimetic VASP (S239E) mutant protein prevented optimal PV formation, whereas VASP (S157E) mutant expression had no effect. VASP (S239E) expression also prevented trafficking of bead-containing phagosomes to the PV, indicating proper VASP activity is critical for heterotypic fusion events that control PV expansion in macrophages. Finally, expression of dominant negative VASP (S157A) in C. burnetii-infected cells impaired PV formation, confirming importance of the protein for proper infection. This study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen via activation of PKA in human macrophages. Q fever, caused by the intracellular bacterial pathogen Coxiella burnetii, is an aerosol-transmitted infection that can develop into life-threatening chronic infections such as endocarditis. The pathogen preferentially grows within alveolar macrophages in a phagolysosome-like compartment termed the parasitophorous vacuole (PV). C. burnetii actively manipulates host cAMP-dependent protein kinase (PKA) signaling to promote PV formation and cell survival. Identification of bacterial effector proteins that manipulate PKA and downstream target proteins is critical to fully understand pathogen-mediated signaling circuits and develop new therapeutic strategies. Here, we found that PKA controls vasodilator-stimulated phosphoprotein (VASP) activity to promote PV formation and bacterial replication. VASP regulates actin-based motility used by a subset of intracellular bacteria for propulsion through the host cell cytosol and into bystander cells. However, C. burnetii does not use actin-based motility and replicates throughout its life cycle within a membrane bound vacuole. Thus, this study provides the first evidence of VASP manipulation by an intravacuolar bacterial pathogen. Characterization of VASP function in PV formation and identification of additional PKA substrates that promote infection will provide new insight into host-pathogen interactions during Q fever.
Collapse
Affiliation(s)
- Punsiri M. Colonne
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Caylin G. Winchell
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Joseph G. Graham
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Frances I. Onyilagha
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Laura J. MacDonald
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Heike R. Doeppler
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Peter Storz
- Department of Cancer Biology, Mayo Clinic, Jacksonville, Florida, United States of America
| | - Richard C. Kurten
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- Arkansas Children’s Hospital Research Institute, Little Rock, Arkansas, United States of America
| | - Paul A. Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Robert A. Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana, United States of America
| | - Daniel E. Voth
- Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|
47
|
Murine Alveolar Macrophages Are Highly Susceptible to Replication of Coxiella burnetii Phase II In Vitro. Infect Immun 2016; 84:2439-48. [PMID: 27297388 DOI: 10.1128/iai.00411-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 06/07/2016] [Indexed: 12/18/2022] Open
Abstract
Coxiella burnetii is a Gram-negative bacterium that causes Q fever in humans. Q fever is an atypical pneumonia transmitted through inhalation of contaminated aerosols. In mammalian lungs, C. burnetii infects and replicates in several cell types, including alveolar macrophages (AMs). The innate immunity and signaling pathways operating during infection are still poorly understood, in part because of the lack of relevant host cell models for infection in vitro In the study described here, we investigated and characterized the infection of primary murine AMs by C. burnetii phase II in vitro Our data reveal that AMs show a pronounced M2 polarization and are highly permissive to C. burnetii multiplication in vitro Murine AMs present an increased susceptibility to infection in comparison to primary bone marrow-derived macrophages. AMs support more than 2 logs of bacterial replication during 12 days of infection in culture, similar to highly susceptible host cells, such as Vero and THP-1 cells. As a proof of principle that AMs are useful for investigation of C. burnetii replication, we performed experiments with AMs from Nos2(-/-) or Ifng(-/-) mice. In the absence of gamma interferon and nitric oxide synthase 2 (NOS2), AMs were significantly more permissive than wild-type cells. In contrast, AMs from Il4(-/-) mice were more restrictive to C. burnetii replication, supporting the importance of M2 polarization for the permissiveness of AMs to C. burnetii replication. Collectively, our data account for understanding the high susceptibility of alveolar macrophages to bacterial replication and support the use of AMs as a relevant model of C. burnetii growth in primary macrophages.
Collapse
|
48
|
Larson CL, Martinez E, Beare PA, Jeffrey B, Heinzen RA, Bonazzi M. Right on Q: genetics begin to unravel Coxiella burnetii host cell interactions. Future Microbiol 2016; 11:919-39. [PMID: 27418426 DOI: 10.2217/fmb-2016-0044] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Invasion of macrophages and replication within an acidic and degradative phagolysosome-like vacuole are essential for disease pathogenesis by Coxiella burnetii, the bacterial agent of human Q fever. Previous experimental constraints imposed by the obligate intracellular nature of Coxiella limited knowledge of pathogen strategies that promote infection. Fortunately, new genetic tools facilitated by axenic culture now allow allelic exchange and transposon mutagenesis approaches for virulence gene discovery. Phenotypic screens have illuminated the critical importance of Coxiella's type 4B secretion system in host cell subversion and discovered genes encoding translocated effector proteins that manipulate critical infection events. Here, we highlight the cellular microbiology and genetics of Coxiella and how recent technical advances now make Coxiella a model organism to study macrophage parasitism.
Collapse
Affiliation(s)
- Charles L Larson
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Eric Martinez
- CNRS, FRE3698, CPBS, 1919 Route de Mende, 34293 Montpellier, France.,Université de Montpellier, Montpellier, France
| | - Paul A Beare
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Brendan Jeffrey
- Bioinformatics & Computational Biosciences Branch, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Robert A Heinzen
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy & Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | - Matteo Bonazzi
- CNRS, FRE3698, CPBS, 1919 Route de Mende, 34293 Montpellier, France.,Université de Montpellier, Montpellier, France
| |
Collapse
|
49
|
Coxiella burnetii Infects Primary Bovine Macrophages and Limits Their Host Cell Response. Infect Immun 2016; 84:1722-1734. [PMID: 27021246 DOI: 10.1128/iai.01208-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/18/2016] [Indexed: 12/21/2022] Open
Abstract
Although domestic ruminants have long been recognized as the main source of human Q fever, little is known about the lifestyle that the obligate intracellular Gram-negative bacterium Coxiella burnetii adopts in its animal host. Because macrophages are considered natural target cells of the pathogen, we established primary bovine monocyte-derived macrophages (MDM) as an in vitro infection model to study reservoir host-pathogen interactions at the cellular level. In addition, bovine alveolar macrophages were included to take cell type peculiarities at a host entry site into account. Cell cultures were inoculated with the virulent strain Nine Mile I (NMI; phase I) or the avirulent strain Nine Mile II (NMII; phase II). Macrophages from both sources internalized NMI and NMII. MDM were particularly permissive for NMI internalization, but NMI and NMII replicated with similar kinetics in these cells. MDM responded to inoculation with a general upregulation of Th1-related cytokines such as interleukin-1β (IL-1β), IL-12, and tumor necrosis factor alpha (TNF-α) early on (3 h postinfection). However, inflammatory responses rapidly declined when C. burnetii replication started. C. burnetii infection inhibited translation and release of IL-1β and vastly failed to stimulate increased expression of activation markers, such as CD40, CD80, CD86, and major histocompatibility complex (MHC) molecules. Such capability of limiting proinflammatory responses may help Coxiella to protect itself from clearance by the host immune system. The findings provide the first detailed insight into C. burnetii-macrophage interactions in ruminants and may serve as a basis for assessing the virulence and the host adaptation of C. burnetii strains.
Collapse
|
50
|
Raghavan R. A repeat motif on a Coxiella effector protein facilitates apoptosis inhibition. Virulence 2016; 7:369-71. [PMID: 26949987 DOI: 10.1080/21505594.2016.1156834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Affiliation(s)
- Rahul Raghavan
- a Department of Biology and Center for Life in Extreme Environments , Portland State University , Portland , OR , USA
| |
Collapse
|