1
|
Kanatani S, Stiffler D, Bousema T, Yenokyan G, Sinnis P. Revisiting the Plasmodium sporozoite inoculum and elucidating the efficiency with which malaria parasites progress through the mosquito. Nat Commun 2024; 15:748. [PMID: 38272943 PMCID: PMC10811227 DOI: 10.1038/s41467-024-44962-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 01/05/2024] [Indexed: 01/27/2024] Open
Abstract
Malaria is initiated when infected anopheline mosquitoes inoculate sporozoites as they probe for blood. It is thought that all infected mosquitoes are equivalent in terms of their infectious potential, with parasite burden having no role in transmission success. In this study, using mosquitoes harboring the entire range of salivary gland sporozoite loads observed in the field, we demonstrate a strong and highly significant correlation between mosquito parasite burden and inoculum size. We then link the inoculum data to oocyst counts, the most commonly-used metric to assess mosquito infection in the field, and determine the efficiency with which oocyst sporozoites enter mosquito salivary glands. Taken together our data support the conclusion that mosquitoes with higher parasite burdens are more likely to initiate infection and contribute to onward transmission. Overall these data may account for some of the unexplained heterogeneity in transmission and enable more precise benchmarks for transmission-blocking interventions.
Collapse
Affiliation(s)
- Sachie Kanatani
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Deborah Stiffler
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Teun Bousema
- Department of Medical Microbiology & Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Gayane Yenokyan
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Photini Sinnis
- Department of Molecular Microbiology & Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
- Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
2
|
Oke CE, Reece SE, Schneider P. Testing a non-destructive assay to track Plasmodium sporozoites in mosquitoes over time. Parasit Vectors 2023; 16:401. [PMID: 37925480 PMCID: PMC10625196 DOI: 10.1186/s13071-023-06015-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/14/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND The extrinsic incubation period (EIP), defined as the time it takes for malaria parasites in a mosquito to become infectious to a vertebrate host, is one of the most influential parameters for malaria transmission but remains poorly understood. The EIP is usually estimated by quantifying salivary gland sporozoites in subsets of mosquitoes, which requires terminal sampling. However, assays that allow repeated sampling of individual mosquitoes over time could provide better resolution of the EIP. METHODS We tested a non-destructive assay to quantify sporozoites of two rodent malaria species, Plasmodium chabaudi and Plasmodium berghei, expelled throughout 24-h windows, from sugar-soaked feeding substrates using quantitative-PCR. RESULTS The assay is able to quantify sporozoites from sugar-soaked feeding substrates, but the prevalence of parasite-positive substrates was low. Various methods were attempted to increase the detection of expelled parasites (e.g. running additional technical replicates; using groups rather than individual mosquitoes), but these did not increase the detection rate, suggesting that expulsion of sporozoites is variable and infrequent. CONCLUSIONS We reveal successful detection of expelled sporozoites from sugar-soaked feeding substrates. However, investigations of the biological causes underlying the low detection rate of sporozoites (e.g. mosquito feeding behaviour, frequency of sporozoite expulsion or sporozoite clumping) are needed to maximise the utility of using non-destructive assays to quantify sporozoite dynamics. Increasing detection rates will facilitate the detailed investigation on infection dynamics within mosquitoes, which is necessary to explain the highly variable EIP of Plasmodium and to improve understanding of malaria transmission dynamics.
Collapse
Affiliation(s)
- Catherine E Oke
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Sarah E Reece
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Petra Schneider
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
- Institute of Immunology and Infection Research, School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
3
|
Richie TL, Church LWP, Murshedkar T, Billingsley PF, James ER, Chen MC, Abebe Y, KC N, Chakravarty S, Dolberg D, Healy SA, Diawara H, Sissoko MS, Sagara I, Cook DM, Epstein JE, Mordmüller B, Kapulu M, Kreidenweiss A, Franke-Fayard B, Agnandji ST, López Mikue MSA, McCall MBB, Steinhardt L, Oneko M, Olotu A, Vaughan AM, Kublin JG, Murphy SC, Jongo S, Tanner M, Sirima SB, Laurens MB, Daubenberger C, Silva JC, Lyke KE, Janse CJ, Roestenberg M, Sauerwein RW, Abdulla S, Dicko A, Kappe SHI, Lee Sim BK, Duffy PE, Kremsner PG, Hoffman SL. Sporozoite immunization: innovative translational science to support the fight against malaria. Expert Rev Vaccines 2023; 22:964-1007. [PMID: 37571809 PMCID: PMC10949369 DOI: 10.1080/14760584.2023.2245890] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
INTRODUCTION Malaria, a devastating febrile illness caused by protozoan parasites, sickened 247,000,000 people in 2021 and killed 619,000, mostly children and pregnant women in sub-Saharan Africa. A highly effective vaccine is urgently needed, especially for Plasmodium falciparum (Pf), the deadliest human malaria parasite. AREAS COVERED Sporozoites (SPZ), the parasite stage transmitted by Anopheles mosquitoes to humans, are the only vaccine immunogen achieving >90% efficacy against Pf infection. This review describes >30 clinical trials of PfSPZ vaccines in the U.S.A., Europe, Africa, and Asia, based on first-hand knowledge of the trials and PubMed searches of 'sporozoites,' 'malaria,' and 'vaccines.' EXPERT OPINION First generation (radiation-attenuated) PfSPZ vaccines are safe, well tolerated, 80-100% efficacious against homologous controlled human malaria infection (CHMI) and provide 18-19 months protection without boosting in Africa. Second generation chemo-attenuated PfSPZ are more potent, 100% efficacious against stringent heterologous (variant strain) CHMI, but require a co-administered drug, raising safety concerns. Third generation, late liver stage-arresting, replication competent (LARC), genetically-attenuated PfSPZ are expected to be both safe and highly efficacious. Overall, PfSPZ vaccines meet safety, tolerability, and efficacy requirements for protecting pregnant women and travelers exposed to Pf in Africa, with licensure for these populations possible within 5 years. Protecting children and mass vaccination programs to block transmission and eliminate malaria are long-term objectives.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Sara A. Healy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Halimatou Diawara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mahamadou S. Sissoko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Issaka Sagara
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - David M. Cook
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Judith E. Epstein
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Benjamin Mordmüller
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
| | - Melissa Kapulu
- Biosciences Department, Kenya Medical Research Institute KEMRI-Wellcome Research Programme, Kilifi, Kenya
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Andrea Kreidenweiss
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
| | | | - Selidji T. Agnandji
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | | - Matthew B. B. McCall
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | - Laura Steinhardt
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Martina Oneko
- Kenya Medical Research Institute, Centre for Global Health Research, Kisumu, Kenya
| | - Ally Olotu
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Ashley M. Vaughan
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - James G. Kublin
- Department of Global Health, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sean C. Murphy
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, USA
- Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, Seattle, WA, USA
| | - Said Jongo
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Marcel Tanner
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Matthew B. Laurens
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Claudia Daubenberger
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Joana C. Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Kirsten E. Lyke
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chris J. Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
| | - Meta Roestenberg
- Department of Parasitology, Leiden University Medical Center, Leiden, The Netherlands
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Robert W. Sauerwein
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Salim Abdulla
- Bagamoyo Research and Training Center, Ifakara Health Institute, Bagamoyo, Tanzania
| | - Alassane Dicko
- Malaria Research and Training Center, Mali-NIAID ICER, University of Science, Techniques and Technologies of Bamako, Bamako, Mali
| | - Stefan H. I. Kappe
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA, USA
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | | | - Patrick E. Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Peter G. Kremsner
- Institut für Tropenmedizin, Universitätsklinikum Tübingen, Tübingen, Germany
- German Center for Infection Research (DZIF), partner site Tübingen, Tübingen, Germany
- Centre de Recherches Médicales de Lambaréné, Lambaréné, Gabon
| | | |
Collapse
|
4
|
Silveira ELVD, Rai U, Bonezi V, Zárate-Bladés CR, Claser C. CCR6 expression reduces mouse survival upon malarial challenge with Plasmodium berghei NK65 strain. Mem Inst Oswaldo Cruz 2022; 117:e210287. [PMID: 35730803 PMCID: PMC9208320 DOI: 10.1590/0074-02760210287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 04/26/2022] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND It has been demonstrated that proteins expressed by liver-stage Plasmodium parasites can inhibit the translocation of transcription factors to the nucleus of different cells. This process would hinder the expression of immune genes, such as the CCL20 chemokine. OBJECTIVE Since CCR6 is the only cognate receptor for CCL20, we investigated the importance of this chemokine-receptor axis against rodent malaria. METHODS CCR6-deficient (KO) and wild-type (WT) C57BL/6 mice were challenged with Plasmodium berghei (Pb) NK65 sporozoites or infected red blood cells (iRBCs). Liver parasitic cDNA, parasitemia and serum cytokine concentrations were respectively evaluated through reverse transcription-polymerase chain reaction (RT-PCR), staining thin-blood smears with Giemsa solution, and enzyme-linked immunosorbent assay (ELISA). FINDINGS Although the sporozoite challenges yielded similar liver parasitic cDNA and parasitemia, KO mice presented a prolonged survival than WT mice. After iRBC challenges, KO mice kept displaying higher survival rates as well as a decreased IL-12 p70 concentration in the serum than WT mice. CONCLUSION Our data suggest that malaria triggered by PbNK65 liver- or blood-stage forms elicit a pro-inflammatory environment that culminates with a decreased survival of infected C57BL/6 mice.
Collapse
Affiliation(s)
- Eduardo Lani Volpe da Silveira
- New York University School of Medicine, Department of Pathology, Michael Heidelberg Division of Immunology, New York, NY, United States of America
| | - Urvashi Rai
- New York University School of Medicine, Department of Pathology, Michael Heidelberg Division of Immunology, New York, NY, United States of America
| | - Vivian Bonezi
- Universidade de São Paulo, Faculdade de Ciências Farmacêuticas, Departamento de Análises Clínicas e Toxicológicas, Laboratório de Imunologia de Células B, São Paulo, SP, Brasil
| | - Carlos Rodrigo Zárate-Bladés
- Universidade Federal de Santa Catarina, Departamento de Microbiologia, Imunologia e Parasitologia, Laboratório de Imunorregulação, Florianópolis, SC, Brasil
| | - Carla Claser
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Parasitologia, São Paulo, SP, Brasil
| |
Collapse
|
5
|
Collins KA, Brod F, Snaith R, Ulaszewska M, Longley RJ, Salman AM, Gilbert SC, Spencer AJ, Franco D, Ballou WR, Hill AVS. Ultra-low dose immunization and multi-component vaccination strategies enhance protection against malaria in mice. Sci Rep 2021; 11:10792. [PMID: 34031479 PMCID: PMC8144388 DOI: 10.1038/s41598-021-90290-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 05/10/2021] [Indexed: 11/10/2022] Open
Abstract
An effective vaccine would be a valuable tool for malaria control and elimination; however, the leading malaria vaccine in development, RTS,S/AS01, provided only partial protection in a Phase 3 trial. R21 is a next-generation RTS,S-like vaccine. We have previously shown in mice that R21 administered in Matrix-M is highly immunogenic, able to elicit complete protection against sporozoite challenge, and can be successfully administered with TRAP based viral-vectors resulting in enhanced protection. In this study, we developed a novel, GMP-compatible purification process for R21, and evaluated the immunogenicity and protective efficacy of ultra-low doses of both R21 and RTS,S when formulated in AS01. We demonstrated that both vaccines are highly immunogenic and also elicit comparable high levels of protection against transgenic parasites in BALB/c mice. By lowering the vaccine dose there was a trend for increased immunogenicity and sterile protection, with the highest dose vaccine groups achieving the lowest efficacy (50% sterile protection). We also evaluated the ability to combine RTS,S/AS01 with TRAP based viral-vectors and observed concurrent induction of immune responses to both antigens with minimal interference when mixing the vaccines prior to administration. These studies suggest that R21 or RTS,S could be combined with viral-vectors for a multi-component vaccination approach and indicate that low dose vaccination should be fully explored in humans to maximize potential efficacy.
Collapse
Affiliation(s)
- Katharine A Collins
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK. .,Radboud Institute for Health Science, Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Florian Brod
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rebecca Snaith
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Marta Ulaszewska
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Rhea J Longley
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Ahmed M Salman
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Sarah C Gilbert
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Alexandra J Spencer
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | | | | | - Adrian V S Hill
- Jenner Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
6
|
Clustering and Erratic Movement Patterns of Syringe-Injected versus Mosquito-Inoculated Malaria Sporozoites Underlie Decreased Infectivity. mSphere 2021; 6:6/2/e00218-21. [PMID: 33827910 PMCID: PMC8546700 DOI: 10.1128/msphere.00218-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Malaria vaccine candidates based on live, attenuated sporozoites have led to high levels of protection. However, their efficacy critically depends on the sporozoites' ability to reach and infect the host liver. Administration via mosquito inoculation is by far the most potent method for inducing immunity but highly impractical. Here, we observed that intradermal syringe-injected Plasmodium berghei sporozoites (syrSPZ) were 3-fold less efficient in migrating to and infecting mouse liver than mosquito-inoculated sporozoites (msqSPZ). This was related to a clustered dermal distribution (2-fold-decreased median distance between syrSPZ and msqSPZ) and, more importantly, a 1.4-fold (significantly)-slower and more erratic movement pattern. These erratic movement patterns were likely caused by alteration of dermal tissue morphology (>15-μm intercellular gaps) due to injection of fluid and may critically decrease sporozoite infectivity. These results suggest that novel microvolume-based administration technologies hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.IMPORTANCE Malaria still causes a major burden on global health and the economy. The efficacy of live, attenuated malaria sporozoites as vaccine candidates critically depends on their ability to migrate to and infect the host liver. This work sheds light on the effect of different administration routes on sporozoite migration. We show that the delivery of sporozoites via mosquito inoculation is more efficient than syringe injection; however, this route of administration is highly impractical for vaccine purposes. Using confocal microscopy and automated imaging software, we demonstrate that syringe-injected sporozoites do cluster, move more slowly, and display more erratic movement due to alterations in tissue morphology. These findings indicate that microneedle-based engineering solutions hold promise for replicating the success of mosquito-inoculated live, attenuated sporozoite vaccines.
Collapse
|
7
|
Ebert G, Lopaticki S, O'Neill MT, Steel RWJ, Doerflinger M, Rajasekaran P, Yang ASP, Erickson S, Ioannidis L, Arandjelovic P, Mackiewicz L, Allison C, Silke J, Pellegrini M, Boddey JA. Targeting the Extrinsic Pathway of Hepatocyte Apoptosis Promotes Clearance of Plasmodium Liver Infection. Cell Rep 2021; 30:4343-4354.e4. [PMID: 32234472 DOI: 10.1016/j.celrep.2020.03.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 01/30/2020] [Accepted: 03/11/2020] [Indexed: 02/08/2023] Open
Abstract
Plasmodium sporozoites infect the liver and develop into exoerythrocytic merozoites that initiate blood-stage disease. The hepatocyte molecular pathways that permit or abrogate parasite replication and merozoite formation have not been thoroughly explored, and a deeper understanding may identify therapeutic strategies to mitigate malaria. Cellular inhibitor of apoptosis (cIAP) proteins regulate cell survival and are co-opted by intracellular pathogens to support development. Here, we show that cIAP1 levels are upregulated during Plasmodium liver infection and that genetic or pharmacological targeting of cIAPs using clinical-stage antagonists preferentially kills infected hepatocytes and promotes immunity. Using gene-targeted mice, the mechanism was defined as TNF-TNFR1-mediated apoptosis via caspases 3 and 8 to clear parasites. This study reveals the importance of cIAPs to Plasmodium infection and demonstrates that host-directed antimalarial drugs can eliminate liver parasites and induce immunity while likely providing a high barrier to resistance in the parasite.
Collapse
Affiliation(s)
- Gregor Ebert
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sash Lopaticki
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Matthew T O'Neill
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ryan W J Steel
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marcel Doerflinger
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Pravin Rajasekaran
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Annie S P Yang
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Sara Erickson
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Lisa Ioannidis
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Philip Arandjelovic
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Liana Mackiewicz
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Cody Allison
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - John Silke
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia
| | - Marc Pellegrini
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| | - Justin A Boddey
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; Department of Medical Biology, The University of Melbourne, Parkville, VIC, Australia.
| |
Collapse
|
8
|
Fernandez-Ruiz D, de Menezes MN, Holz LE, Ghilas S, Heath WR, Beattie L. Harnessing liver-resident memory T cells for protection against malaria. Expert Rev Vaccines 2021; 20:127-141. [PMID: 33501877 DOI: 10.1080/14760584.2021.1881485] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Tissue-resident memory T cells (TRM cells) are powerful mediators of protracted adaptive immunity to infection in peripheral organs. Harnessing TRM cells through vaccination hence promises unprecedented potential for protection against infection. A paramount example of this is malaria, a major infectious disease for which immunity through traditional vaccination strategies remains challenging. Liver TRM cells appear to be highly protective against malaria, and recent developments in our knowledge of the biology of these cells have defined promising, novel strategies for their induction. AREAS COVERED Here, we describe the path that led to the discovery of TRM cells and discuss the importance of liver TRM cells in immunity against Plasmodium spp. infection; we summarize current knowledge on TRM cell biology and discuss the current state and potential of TRM-based vaccination against malaria. EXPERT OPINION TRM based vaccination has emerged as a promising means to achieve efficient protection against malaria. Recent advances provide a solid basis for continuing the development of this area of research. Deeper understanding of the mechanisms that mediate TRM formation and maintenance and identification of immunogenic and protective target epitopes suitable for human vaccination remain the main challenges for translation of these discoveries.
Collapse
Affiliation(s)
- Daniel Fernandez-Ruiz
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| | - Maria N de Menezes
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia
| | - Lauren E Holz
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| | - Sonia Ghilas
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| | - William R Heath
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| | - Lynette Beattie
- Dept. Of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, the University of Melbourne, Melbourne, Vic, Australia.,Australian Research Council Centre of Excellence in Advanced Molecular Imaging, University of Melbourne, Melbourne,Vic, Australia
| |
Collapse
|
9
|
Graumans W, Jacobs E, Bousema T, Sinnis P. When Is a Plasmodium-Infected Mosquito an Infectious Mosquito? Trends Parasitol 2020; 36:705-716. [PMID: 32620501 DOI: 10.1016/j.pt.2020.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/19/2022]
Abstract
Plasmodium parasites experience significant bottlenecks as they transit through the mosquito and are transmitted to their mammalian host. Oocyst prevalence on mosquito midguts and sporozoite prevalence in salivary glands are nevertheless commonly used to confirm successful malaria transmission, assuming that these are reliable indicators of the mosquito's capacity to give rise to secondary infections. Here we discuss recent insights in sporogonic development and transmission bottlenecks for Plasmodium. We highlight critical gaps in our knowledge and frame their importance in understanding the human and mosquito reservoirs of infection. A better understanding of the events that lead to successful inoculation of infectious sporozoites by mosquitoes is critical to designing effective interventions to shrink the malaria map.
Collapse
Affiliation(s)
- Wouter Graumans
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Medical Microbiology, Nijmegen, The Netherlands
| | - Ella Jacobs
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Teun Bousema
- Radboud University Medical Center, Radboud Institute for Health Sciences, Department of Medical Microbiology, Nijmegen, The Netherlands; Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK.
| | - Photini Sinnis
- Department of Molecular Microbiology and Immunology, and Johns Hopkins Malaria Institute, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
10
|
Hickey B, Teneza-Mora N, Lumsden J, Reyes S, Sedegah M, Garver L, Hollingdale MR, Banania JG, Ganeshan H, Dowler M, Reyes A, Tamminga C, Singer A, Simmons A, Belmonte M, Belmonte A, Huang J, Inoue S, Velasco R, Abot S, Vasquez CS, Guzman I, Wong M, Twomey P, Wojnarski M, Moon J, Alcorta Y, Maiolatesi S, Spring M, Davidson S, Chaudhury S, Villasante E, Richie TL, Epstein JE. IMRAS-A clinical trial of mosquito-bite immunization with live, radiation-attenuated P. falciparum sporozoites: Impact of immunization parameters on protective efficacy and generation of a repository of immunologic reagents. PLoS One 2020; 15:e0233840. [PMID: 32555601 PMCID: PMC7299375 DOI: 10.1371/journal.pone.0233840] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 05/12/2020] [Indexed: 12/31/2022] Open
Abstract
Background Immunization with radiation-attenuated sporozoites (RAS) by mosquito bite provides >90% sterile protection against Plasmodium falciparum (Pf) malaria in humans. RAS invade hepatocytes but do not replicate. CD8+ T cells recognizing parasite-derived peptides on the surface of infected hepatocytes are likely the primary protective mechanism. We conducted a randomized clinical trial of RAS immunization to assess safety, to achieve 50% vaccine efficacy (VE) against controlled human malaria infection (CHMI), and to generate reagents from protected and non-protected subjects for future identification of protective immune mechanisms and antigens. Methods Two cohorts (Cohort 1 and Cohort 2) of healthy, malaria-naïve, non-pregnant adults age 18–50 received five monthly immunizations with infected (true-immunized, n = 21) or non-infected (mock-immunized, n = 5) mosquito bites and underwent homologous CHMI at 3 weeks. Immunization parameters were selected for 50% protection based on prior clinical data. Leukapheresis was done to collect plasma and peripheral blood mononuclear cells. Results Adverse event rates were similar in true- and mock-immunized subjects. Two true- and two mock-immunized subjects developed large local reactions likely caused by mosquito salivary gland antigens. In Cohort 1, 11 subjects received 810–1235 infected bites; 6/11 (55%) were protected against CHMI vs. 0/3 mock-immunized and 0/6 infectivity controls (VE 55%). In Cohort 2, 10 subjects received 839–1131 infected bites with a higher first dose and a reduced fifth dose; 9/10 (90%) were protected vs. 0/2 mock-immunized and 0/6 controls (VE 90%). Three/3 (100%) protected subjects administered three booster immunizations were protected against repeat CHMI vs. 0/6 controls (VE 100%). Cohort 2 uniquely showed a significant rise in IFN-γ responses after the third and fifth immunizations and higher antibody responses to CSP. Conclusions PfRAS were generally safe and well tolerated. Cohort 2 had a higher first dose, reduced final dose, higher antibody responses to CSP and significant rise of IFN-γ responses after the third and fifth immunizations. Whether any of these factors contributed to increased protection in Cohort 2 requires further investigation. A cryobank of sera and cells from protected and non-protected individuals was generated for future immunological studies and antigen discovery. Trial registration ClinicalTrials.gov NCT01994525.
Collapse
Affiliation(s)
- Bradley Hickey
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Nimfa Teneza-Mora
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Joanne Lumsden
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Sharina Reyes
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Martha Sedegah
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Lindsey Garver
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Michael R. Hollingdale
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
- * E-mail:
| | - Jo Glenna Banania
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Harini Ganeshan
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Megan Dowler
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Anatalio Reyes
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Cindy Tamminga
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Alexandra Singer
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Alicia Simmons
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Maria Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Arnel Belmonte
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Jun Huang
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Sandra Inoue
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Rachel Velasco
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Steve Abot
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Carlos S. Vasquez
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Ivelese Guzman
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Mimi Wong
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Patrick Twomey
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Mariusz Wojnarski
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - James Moon
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Yolanda Alcorta
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Santina Maiolatesi
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
| | - Michele Spring
- Henry M. Jackson Foundation, Bethesda, MD, United States of America
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Silas Davidson
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
| | - Sidhartha Chaudhury
- Walter Reed Army Institute of Research, Silver Spring, MD, United States of America
- Biotechnology HPC Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Development Command, Frederick, MD, United States of America
| | - Eileen Villasante
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Thomas L. Richie
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| | - Judith E. Epstein
- Malaria Department, Naval Medical Research Center, Silver Spring, MD, United States of America
| |
Collapse
|
11
|
Parveen N, Bhanot P. Babesia microti- Borrelia Burgdorferi Coinfection. Pathogens 2019; 8:E117. [PMID: 31370180 PMCID: PMC6789475 DOI: 10.3390/pathogens8030117] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 12/31/2022] Open
Abstract
The incidence and geographic distribution of human babesiosis is growing in the U.S. Its major causative agent is the protozoan parasite, Babesia microti. B. microti is transmitted to humans primarily through the bite of Ixodes scapularis ticks, which are vectors for a number of other pathogens. Other routes of B. microti transmission are blood transfusion and in rare cases of mother-to-foetus transmission, through the placenta. This review discusses the current literature on mammalian coinfection with B. microti and Borrelia burgdorferi, the causative agent Lyme disease.
Collapse
Affiliation(s)
- Nikhat Parveen
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA.
| | - Purnima Bhanot
- Rutgers New Jersey Medical School, Department of Microbiology, Biochemistry and Molecular Genetics, Newark, NJ 07103, USA.
| |
Collapse
|
12
|
De Niz M, Meehan GR, Brancucci NM, Marti M, Rotureau B, Figueiredo LM, Frischknecht F. Intravital imaging of host-parasite interactions in skin and adipose tissues. Cell Microbiol 2019; 21:e13023. [PMID: 30825872 PMCID: PMC6590052 DOI: 10.1111/cmi.13023] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/06/2019] [Accepted: 02/08/2019] [Indexed: 12/20/2022]
Abstract
Intravital microscopy allows the visualisation of how pathogens interact with host cells and tissues in living animals in real time. This method has enabled key advances in our understanding of host-parasite interactions under physiological conditions. A combination of genetics, microscopy techniques, and image analysis have recently facilitated the understanding of biological phenomena in living animals at cellular and subcellular resolution. In this review, we summarise findings achieved by intravital microscopy of the skin and adipose tissues upon infection with various parasites, and we present a view into possible future applications of this method.
Collapse
Affiliation(s)
- Mariana De Niz
- Institute of Cell Biology, Heussler GroupUniversity of BernBernSwitzerland
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Gavin R. Meehan
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Nicolas M.B. Brancucci
- Malaria Gene Regulation Unit, Department of Medical Parasitology and Infection BiologySwiss Tropical and Public Health InstituteBaselSwitzerland
- University of BaselBaselSwitzerland
| | - Matthias Marti
- Wellcome Centre for Integrative ParasitologyUniversity of GlasgowGlasgowUK
| | - Brice Rotureau
- Trypanosome Transmission Group, Trypanosome Cell Biology Unit, Department of Parasites and Insect Vectors, INSERM U1201Institut PasteurParisFrance
| | - Luisa M. Figueiredo
- Faculdade de Medicina, Instituto de Medicina Molecular João Lobo AntunesUniversidade de LisboaLisbonPortugal
| | - Friedrich Frischknecht
- Integrative Parasitology, Centre for Infectious DiseasesUniversity of Heidelberg Medical SchoolHeidelbergGermany
| |
Collapse
|
13
|
Rathore APS, St John AL. Immune responses to dengue virus in the skin. Open Biol 2019; 8:rsob.180087. [PMID: 30135238 PMCID: PMC6119867 DOI: 10.1098/rsob.180087] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/13/2018] [Indexed: 12/12/2022] Open
Abstract
Dengue virus (DENV) causes infection in humans and current estimates place 40% of the world population at risk for contracting disease. There are four DENV serotypes that induce a febrile illness, which can develop into a severe and life-threatening disease in some cases, characterized primarily by vascular dysregulation. As a mosquito-borne infection, the skin is the initial site of DENV inoculation and also where primary host immune responses are initiated. This review discusses the early immune response to DENV in the skin by both infection target cells such as dendritic cells and by immune sentinels such as mast cells. We provide an overview of the mechanisms of immune sensing and functional immune responses that have been shown to aid clearance of DENV in vivo. Finally, we discuss factors that can influence the immune response to DENV in the skin, such as mosquito saliva, which is co-injected with virus during natural route infection, and pre-existing immunity to other DENV serotypes or to related flaviviruses.
Collapse
Affiliation(s)
- Abhay P S Rathore
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ashley L St John
- Program in Emerging Infectious Diseases, Duke-National University of Singapore, Republic of Singapore .,Department of Pathology, Duke University Medical Center, Durham, NC, USA.,Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Republic of Singapore
| |
Collapse
|
14
|
Roth A, Maher SP, Conway AJ, Ubalee R, Chaumeau V, Andolina C, Kaba SA, Vantaux A, Bakowski MA, Thomson-Luque R, Adapa SR, Singh N, Barnes SJ, Cooper CA, Rouillier M, McNamara CW, Mikolajczak SA, Sather N, Witkowski B, Campo B, Kappe SHI, Lanar DE, Nosten F, Davidson S, Jiang RHY, Kyle DE, Adams JH. A comprehensive model for assessment of liver stage therapies targeting Plasmodium vivax and Plasmodium falciparum. Nat Commun 2018; 9:1837. [PMID: 29743474 PMCID: PMC5943321 DOI: 10.1038/s41467-018-04221-9] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/10/2018] [Indexed: 12/26/2022] Open
Abstract
Malaria liver stages represent an ideal therapeutic target with a bottleneck in parasite load and reduced clinical symptoms; however, current in vitro pre-erythrocytic (PE) models for Plasmodium vivax and P. falciparum lack the efficiency necessary for rapid identification and effective evaluation of new vaccines and drugs, especially targeting late liver-stage development and hypnozoites. Herein we report the development of a 384-well plate culture system using commercially available materials, including cryopreserved primary human hepatocytes. Hepatocyte physiology is maintained for at least 30 days and supports development of P. vivax hypnozoites and complete maturation of P. vivax and P. falciparum schizonts. Our multimodal analysis in antimalarial therapeutic research identifies important PE inhibition mechanisms: immune antibodies against sporozoite surface proteins functionally inhibit liver stage development and ion homeostasis is essential for schizont and hypnozoite viability. This model can be implemented in laboratories in disease-endemic areas to accelerate vaccine and drug discovery research.
Collapse
Affiliation(s)
- Alison Roth
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Steven P Maher
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Amy J Conway
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Ratawan Ubalee
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Rd, Bangkok, 10400, Thailand
| | - Victor Chaumeau
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Chiara Andolina
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Stephen A Kaba
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - Amélie Vantaux
- Malaria Molecular Epidemiology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong-PO Box 983, Phnom Penh, 12 201, Cambodia
| | - Malina A Bakowski
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Richard Thomson-Luque
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Swamy Rakesh Adapa
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Naresh Singh
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Samantha J Barnes
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Caitlin A Cooper
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - Mélanie Rouillier
- Medicines for Malaria Venture, Pré-Bois Rd 20, Meyrin, 1215, Switzerland
| | - Case W McNamara
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Sebastian A Mikolajczak
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Noah Sather
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - Benoît Witkowski
- California Institute for Biomedical Research (Calibr), 11119N. Torrey Pines Rd, Suite 100, La Jolla, CA, 92037, USA
| | - Brice Campo
- Medicines for Malaria Venture, Pré-Bois Rd 20, Meyrin, 1215, Switzerland
| | - Stefan H I Kappe
- Center for Infectious Disease Research, 307 Westlake Ave N Suite 500, Seattle, WA, 98109, USA
| | - David E Lanar
- Malaria Vaccine Branch, Walter Reed Army Institute of Research, 503 Robert Grant Ave, Silver Spring, MD, 20910, USA
| | - François Nosten
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
- Shoklo Malaria Research Unit, Mahidol Oxford Research Unit, Faculty of Tropical Medicine, Mahidol University, 68/30 Bantung Rd, Mae Sot, Tak, 63110, Thailand
| | - Silas Davidson
- Department of Entomology, Armed Forces Research Institute of Medical Sciences (AFRIMS), 315/6 Rajvithi Rd, Bangkok, 10400, Thailand
| | - Rays H Y Jiang
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
| | - Dennis E Kyle
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA
- Center for Tropical and Emerging Global Diseases, University of Georgia, 500 DW Brooks Dr. Suite 370, Athens, GA, 30602, USA
| | - John H Adams
- Department of Global Health, College of Public Health, Center for Global Health and Infectious Diseases Research, University of South Florida, 3720 Spectrum Blvd 404, Tampa, FL, 33612, USA.
| |
Collapse
|
15
|
Kublin JG, Mikolajczak SA, Sack BK, Fishbaugher ME, Seilie A, Shelton L, VonGoedert T, Firat M, Magee S, Fritzen E, Betz W, Kain HS, Dankwa DA, Steel RWJ, Vaughan AM, Noah Sather D, Murphy SC, Kappe SHI. Complete attenuation of genetically engineered Plasmodium falciparum sporozoites in human subjects. Sci Transl Med 2018; 9:9/371/eaad9099. [PMID: 28053159 DOI: 10.1126/scitranslmed.aad9099] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Accepted: 11/21/2016] [Indexed: 12/27/2022]
Abstract
Immunization of humans with whole sporozoites confers complete, sterilizing immunity against malaria infection. However, achieving consistent safety while maintaining immunogenicity of whole parasite vaccines remains a formidable challenge. We generated a genetically attenuated Plasmodium falciparum (Pf) malaria parasite by deleting three genes expressed in the pre-erythrocytic stage (Pf p52-/p36-/sap1-). We then tested the safety and immunogenicity of the genetically engineered (Pf GAP3KO) sporozoites in human volunteers. Pf GAP3KO sporozoites were delivered to 10 volunteers using infected mosquito bites with a single exposure consisting of 150 to 200 bites per subject. All subjects remained blood stage-negative and developed inhibitory antibodies to sporozoites. GAP3KO rodent malaria parasites engendered complete, protracted immunity against infectious sporozoite challenge in mice. The results warrant further clinical testing of Pf GAP3KO and its potential development into a vaccine strain.
Collapse
Affiliation(s)
- James G Kublin
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA. .,Department of Global Health, University of Washington, Seattle, WA 98195, USA.,Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA
| | - Sebastian A Mikolajczak
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Brandon K Sack
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Matt E Fishbaugher
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Annette Seilie
- Department of Laboratory Medicine, University of Washington, 1959 Northeast Pacific Street, NW150, Seattle, WA 98195-7110, USA
| | - Lisa Shelton
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Tracie VonGoedert
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Melike Firat
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Sara Magee
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Emma Fritzen
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Will Betz
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Heather S Kain
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Dorender A Dankwa
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Ryan W J Steel
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Ashley M Vaughan
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - D Noah Sather
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA
| | - Sean C Murphy
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA.,Department of Laboratory Medicine, University of Washington, 1959 Northeast Pacific Street, NW150, Seattle, WA 98195-7110, USA.,Center for Emerging and Re-emerging Infectious Diseases and Department of Microbiology, University of Washington, 750 Republican Street, E630, Seattle, WA 98109, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research, formerly Seattle Biomedical Research Institute, 307 Westlake Avenue North, Suite 500, Seattle, WA 98109, USA. .,Department of Global Health, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
16
|
Moriyasu T, Nakamura R, Deloer S, Senba M, Kubo M, Inoue M, Culleton R, Hamano S. Schistosoma mansoni infection suppresses the growth of Plasmodium yoelii parasites in the liver and reduces gametocyte infectivity to mosquitoes. PLoS Negl Trop Dis 2018; 12:e0006197. [PMID: 29373600 PMCID: PMC5802944 DOI: 10.1371/journal.pntd.0006197] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 02/07/2018] [Accepted: 12/28/2017] [Indexed: 11/19/2022] Open
Abstract
Malaria and schistosomiasis are major parasitic diseases causing morbidity and mortality in the tropics. Epidemiological surveys have revealed coinfection rates of up to 30% among children in Sub-Saharan Africa. To investigate the impact of coinfection of these two parasites on disease epidemiology and pathology, we carried out coinfection studies using Plasmodium yoelii and Schistosoma mansoni in mice. Malaria parasite growth in the liver following sporozoite inoculation is significantly inhibited in mice infected with S. mansoni, so that when low numbers of sporozoites are inoculated, there is a large reduction in the percentage of mice that go on to develop blood stage malaria. Furthermore, gametocyte infectivity is much reduced in mice with S. mansoni infections. These results have profound implications for understanding the interactions between Plasmodium and Schistosoma species, and have implications for the control of malaria in schistosome endemic areas. Malaria and schistosomiasis are parasitic infectious diseases that cause severe morbidity and mortality in the tropics. Chronic schistosomiasis causes malnutrition and impaired intellectual development to children while malaria can cause fatal acute infections. Since coinfection of these two parasites is common in the tropics, many studies of both epidemiology and coinfection in animal models have been performed in order to reveal interactions between them. Previous animal studies on the interactions between Plasmodium and Schistosoma parasites have focused on the blood stage pathology of the malaria infection, and have consistently shown that parasitaemia can be enhanced in the presence of the helminth. In contrast, we focused on liver immunopathology in mice during coinfection between with Schistosoma and Plasmodium. We show that S. mansoni infection inhibits Plasmodium parasite growth in the liver resulting in a large reduction in the percentage of mice that go on to develop blood stage malaria following inoculation of low numbers of sporozoites. We also demonstrate that gametocyte infectivity is much reduced in mice with S. mansoni infections. Our results imply that S. mansoni infection can reduce malaria transmission both from mosquitoes to mice, and from mice to mosquitoes.
Collapse
Affiliation(s)
- Taeko Moriyasu
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Risa Nakamura
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Sharmina Deloer
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masachika Senba
- Pathology Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda, Japan
| | - Megumi Inoue
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Richard Culleton
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Malaria Unit, Department of Pathology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- * E-mail: (RC); (SH)
| | - Shinjiro Hamano
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
- Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- The Joint Usage/Research Center on Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
- * E-mail: (RC); (SH)
| |
Collapse
|
17
|
Ha YR, Kim JH, Ryu J, Lee SJ. Superb feeding behavior of Aedes albopictus transmitting Zika virus. PLoS One 2017; 12:e0184871. [PMID: 28957351 PMCID: PMC5619709 DOI: 10.1371/journal.pone.0184871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Accepted: 09/03/2017] [Indexed: 11/18/2022] Open
Abstract
Disease-mediated mosquitoes have been receiving much attention, as the World Health Organization recently declared the Zika virus a global public health emergency. Mosquitoes transmit pathogens that cause various tropical diseases including malaria, dengue fever and yellow fever as well as Zika virus. The vector efficiency of mosquitoes depends on their blood-feeding characteristics and the mechanics of their blood-sucking pump system, but only a few studies have attempted to investigate these key issues. In this study, we demonstrate the rapid and gluttonous liquid-feeding characteristics of Ae. albopictus which transmits Zika virus can be explained by similar proportion of two blood-sucking pumps and accelerated liquid intake driven by fast expanding of pumps. Our results provide insight into the vector efficiency of Ae. albopictus in terms of feeding velocity, pumping frequency, liquid-intake rate, and wall shear stress.
Collapse
Affiliation(s)
- Young Ran Ha
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jun Ho Kim
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Jeongeun Ryu
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, Republic of Korea
| | - Sang Joon Lee
- Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, Republic of Korea
- Department of Mechanical Engineering, Center for Biofluid and Biomimic Research, Pohang University of Science and Technology, Pohang, Republic of Korea
| |
Collapse
|
18
|
Jacquet M, Genné D, Belli A, Maluenda E, Sarr A, Voordouw MJ. The abundance of the Lyme disease pathogen Borrelia afzelii declines over time in the tick vector Ixodes ricinus. Parasit Vectors 2017; 10:257. [PMID: 28545520 PMCID: PMC5445446 DOI: 10.1186/s13071-017-2187-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 05/11/2017] [Indexed: 11/28/2022] Open
Abstract
Background The population dynamics of vector-borne pathogens inside the arthropod vector can have important consequences for vector-to-host transmission. Tick-borne spirochete bacteria of the Borrelia burgdorferi (sensu lato) species complex cause Lyme borreliosis in humans and spend long periods of time (>12 months) in their Ixodes tick vectors. To date, few studies have investigated the dynamics of Borrelia spirochete populations in unfed Ixodes nymphal ticks. Methods Larval ticks from our laboratory colony of I. ricinus were experimentally infected with B. afzelii, and killed at 1 month and 4 months after the larva-to-nymph moult. The spirochete load was also compared between engorged larval ticks and unfed nymphs (from the same cohort) and between unfed nymphs and unfed adult ticks (from the same cohort). The spirochete load of B. afzelii in each tick was estimated using qPCR. Results The mean spirochete load in the 1-month-old nymphs (~14,000 spirochetes) was seven times higher than the 4-month-old nymphs (~2000 spirochetes). Thus, the nymphal spirochete load declined by 80% over a period of 3 months. An engorged larval tick acquired ~100 spirochetes, and this population was 20 times larger in a young, unfed nymph. The spirochete load also appeared to decline in adult ticks. Comparison between wild and laboratory populations found that lab ticks were more susceptible to acquiring B. afzelii. Conclusion The spirochete load of B. afzelii declines dramatically over time in domesticated I. ricinus nymphs under laboratory conditions. Future studies should investigate whether temporal declines in spirochete load occur in wild Ixodes ticks under natural conditions and whether these declines influence the tick-to-host transmission of Borrelia. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2187-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Maxime Jacquet
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Dolores Genné
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Alessandro Belli
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Elodie Maluenda
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Anouk Sarr
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Maarten J Voordouw
- Laboratory of Ecology and Evolution of Parasites, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
19
|
Churcher TS, Sinden RE, Edwards NJ, Poulton ID, Rampling TW, Brock PM, Griffin JT, Upton LM, Zakutansky SE, Sala KA, Angrisano F, Hill AVS, Blagborough AM. Probability of Transmission of Malaria from Mosquito to Human Is Regulated by Mosquito Parasite Density in Naïve and Vaccinated Hosts. PLoS Pathog 2017; 13:e1006108. [PMID: 28081253 PMCID: PMC5230737 DOI: 10.1371/journal.ppat.1006108] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 12/02/2016] [Indexed: 11/19/2022] Open
Abstract
Over a century since Ronald Ross discovered that malaria is caused by the bite of an infectious mosquito it is still unclear how the number of parasites injected influences disease transmission. Currently it is assumed that all mosquitoes with salivary gland sporozoites are equally infectious irrespective of the number of parasites they harbour, though this has never been rigorously tested. Here we analyse >1000 experimental infections of humans and mice and demonstrate a dose-dependency for probability of infection and the length of the host pre-patent period. Mosquitoes with a higher numbers of sporozoites in their salivary glands following blood-feeding are more likely to have caused infection (and have done so quicker) than mosquitoes with fewer parasites. A similar dose response for the probability of infection was seen for humans given a pre-erythrocytic vaccine candidate targeting circumsporozoite protein (CSP), and in mice with and without transfusion of anti-CSP antibodies. These interventions prevented infection more efficiently from bites made by mosquitoes with fewer parasites. The importance of parasite number has widespread implications across malariology, ranging from our basic understanding of the parasite, how vaccines are evaluated and the way in which transmission should be measured in the field. It also provides direct evidence for why the only registered malaria vaccine RTS,S was partially effective in recent clinical trials. Malaria is transmitted to humans by the bite of an infectious mosquito though it is unclear whether a mosquito with a high number of parasites is more infectious than one with only a few. Here we show that the greater the number of parasites within the salivary gland of the mosquito following blood-feeding the more likely it is to have transmitted the disease. A clear dose-response is seen with highly infected mosquitoes being more likely to have caused infection (and to have done so quicker) than lightly infected mosquitoes. This suggesting that mosquito-based methods for measuring transmission in the field need to be refined as they currently only consider whether a mosquito is infected or not (and not how heavily infected the mosquito is). Novel transmission reducing drugs and vaccines are tested by experimentally infecting people using infectious mosquitoes. This work indicates that it is important to further standardise infectious dose in malaria experimental infections to enable the efficacy of new interventions to be accurately compared. The work also provides direct evidence to suggest that the world’s first licenced malaria vaccine may be partially effective because it fails to provide protection against highly infected mosquitoes.
Collapse
Affiliation(s)
- Thomas S. Churcher
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- * E-mail:
| | - Robert E. Sinden
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Ian D. Poulton
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Thomas W. Rampling
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Patrick M. Brock
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
- Institute of Biodiversity Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jamie T. Griffin
- MRC Centre for Outbreak Analysis and Modelling, Infectious Disease Epidemiology, Imperial College London, London, United Kingdom
| | - Leanna M. Upton
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Sara E. Zakutansky
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Katarzyna A. Sala
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Fiona Angrisano
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| | - Adrian V. S. Hill
- The Jenner Institute, University of Oxford, Roosevelt Drive, Oxford, United Kingdom
| | - Andrew M. Blagborough
- Department of Life Sciences, Imperial College London, South Kensington, London, United Kingdom
| |
Collapse
|
20
|
Billman ZP, Seilie AM, Murphy SC. Purification of Plasmodium Sporozoites Enhances Parasite-Specific CD8+ T Cell Responses. Infect Immun 2016; 84:2233-2242. [PMID: 27217420 PMCID: PMC4962643 DOI: 10.1128/iai.01439-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 05/14/2016] [Indexed: 01/26/2023] Open
Abstract
Malaria infection caused by Plasmodium parasites continues to cause enormous morbidity and mortality in areas where it is endemic, and there is no licensed vaccine capable of inducing sterile protection. Hyperimmunization with attenuated whole sporozoites can induce sterile protective immune responses targeting preerythrocytic antigens. Most animal models of hyperimmunization rely on sporozoites dissected from mosquito salivary glands and injected without further purification. In BALB/c mice, repeated small doses of P. yoelii sporozoites progressively expand the population of sporozoite-specific CD8(+) T cells. In this study, large secondary doses of unpurified sporozoites unexpectedly led to contraction of sporozoite-specific CD8(+) T cell responses in sporozoite-primed mice. While sporozoite-primed CD8(+) T cells alternatively can be expanded by secondary exposure to Listeria monocytogenes expressing recombinant Plasmodium antigens, such expansion was potently inhibited by coinjection of large doses of unpurified sporozoites and by uninfected salivary glands alone. Purification of sporozoites away from mosquito salivary gland debris by density gradient centrifugation eliminated salivary gland-associated inhibition. Thus, the inhibitory effect appears to be due to exposure to uninfected mosquito salivary glands rather than sporozoites. To further assess the effect of salivary gland exposure on later sporozoite vaccinations, mice were immunized with uninfected salivary glands from a single mosquito. Compared to naive mice, salivary gland presensitization reduced subsequent liver burdens by 71%. These data show that a component(s) in mosquito salivary glands reduces liver infection, thereby limiting antigen dose and contributing to lower-magnitude T cell responses. These findings suggest that sporozoite immunogenicity studies be performed using purified sporozoites whenever feasible.
Collapse
Affiliation(s)
- Zachary P Billman
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Annette M Seilie
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| | - Sean C Murphy
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
- Department of Microbiology, University of Washington, Seattle, Washington, USA
- Center for Emerging and Re-emerging Infectious Diseases, University of Washington, Seattle, Washington, USA
| |
Collapse
|
21
|
Wu JH, Li B, Wu MX. Laser-induced capillary leakage for blood biomarker detection and vaccine delivery via the skin. JOURNAL OF BIOPHOTONICS 2016; 9:676-682. [PMID: 26776718 PMCID: PMC4929029 DOI: 10.1002/jbio.201500226] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/06/2015] [Accepted: 01/02/2016] [Indexed: 06/05/2023]
Abstract
Circulation system is the center for coordination and communication of all organs in our body. Examination of any change in its analytes or delivery of therapeutic drugs into the system consists of important medical practice in today's medicine. Two recent studies prove that brief illumination of skin with a low powered laser, at wavelengths preferentially absorbed by hemoglobin, increases the amount of circulating biomarkers in the epidermis and upper dermis by more than 1,000-fold. When probe-coated microneedle arrays are applied into laser-treated skin, plasma blood biomarkers can be reliably, accurately, and sufficiently quantified in 15∼30 min assays, with a maximal detection in one hr in a manner independent of penetration depth or a molecular mass of the biomarker. Moreover, the laser treatment permits a high efficient delivery of radiation-attenuated malarial sporozoites (RAS) into the circulation, leading to robust immunity against malaria infections, whereas similar immunization at sham-treated skin elicits poor immune responses. Thus this technology can potentially instruct designs of small, portable devices for onsite, in mobile clinics, or at home for point-of-care diagnosis and drug/vaccine delivery via the skin. Laser-induced capillary leakage (a) to induce extravasation of circualing molecules only (b) or facilitate entry of attenuated malaria sporozoites into the capillary (c). Skin illumination with a laser preferably absorbed by hemoglobin causes dilation of the capillary beneath the skin. The extravasated molecules can be sufficiently measured in the skin or guide sporozoites to enter the vessel.
Collapse
Affiliation(s)
- Jeffrey H Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Edwards 222, Boston, MA 02114, USA
| | - Bo Li
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Edwards 222, Boston, MA 02114, USA
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital, Department of Dermatology, Harvard Medical School, 50 Blossom Street, Edwards 222, Boston, MA 02114, USA.
| |
Collapse
|
22
|
Doll KL, Pewe LL, Kurup SP, Harty JT. Discriminating Protective from Nonprotective Plasmodium-Specific CD8+ T Cell Responses. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4253-62. [PMID: 27084099 PMCID: PMC4868661 DOI: 10.4049/jimmunol.1600155] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 03/19/2016] [Indexed: 11/19/2022]
Abstract
Despite decades of research, malaria remains a global health crisis. Current subunit vaccine approaches do not provide efficient long-term, sterilizing immunity against Plasmodium infections in humans. Conversely, whole parasite vaccinations with their larger array of target Ags have conferred long-lasting sterilizing protection to humans. Similar studies in rodent models of malaria reveal that CD8(+) T cells play a critical role in liver-stage immunity after whole parasite vaccination. However, it is unknown whether all CD8(+) T cell specificities elicited by whole parasite vaccination contribute to protection, an issue of great relevance for enhanced subunit vaccination. In this article, we show that robust CD8(+) T cell responses of similar phenotype are mounted after prime-boost immunization against Plasmodium berghei glideosome-associated protein 5041-48-, sporozoite-specific protein 20318-325-, thrombospondin-related adhesion protein (TRAP) 130-138-, or circumsporozoite protein (CSP) 252-260-derived epitopes in mice, but only CSP252-260- and TRAP130-138-specific CD8(+) T cells provide sterilizing immunity and reduce liver parasite burden after sporozoite challenge. Further, CD8(+) T cells specific to sporozoite surface-expressed CSP and TRAP proteins, but not intracellular glideosome-associated protein 50 and sporozoite-specific protein 20, efficiently recognize sporozoite-infected hepatocytes in vitro. These results suggest that: 1) protection-relevant antigenic targets, regardless of their immunogenic potential, must be efficiently presented by infected hepatocytes for CD8(+) T cells to eliminate liver-stage Plasmodium infection; and 2) proteins expressed on the surface of sporozoites may be good target Ags for protective CD8(+) T cells.
Collapse
Affiliation(s)
- Katherine L Doll
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | - Lecia L Pewe
- Department of Microbiology, University of Iowa, Iowa City, IA 52242
| | | | - John T Harty
- Department of Microbiology, University of Iowa, Iowa City, IA 52242; Department of Pathology, University of Iowa, Iowa City, IA 52242; and Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA 52242
| |
Collapse
|
23
|
Peculiar liquid-feeding and pathogen transmission behavior of Aedes togoi and comparison with Anopheles sinensis. Sci Rep 2016; 6:20464. [PMID: 26839008 PMCID: PMC4738329 DOI: 10.1038/srep20464] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 01/04/2016] [Indexed: 01/12/2023] Open
Abstract
Female mosquitoes transmit various diseases as vectors during liquid-feeding. Identifying the determinants of vector efficiency is a major scientific challenge in establishing strategies against these diseases. Infection rate and transmission efficiency are interconnected with the mosquito-induced liquid-feeding flow as main indexes of vector efficiency. However, the relationship between liquid-feeding characteristics and pathogen remains poorly understood. The liquid-feeding behavior of Aedes togoi and Anopheles sinensis was comparatively investigated in conjunction with vector efficiency via micro-particle image velocimetry. The flow rates and ratio of the ejection volume of Aedes togoi were markedly higher than those of Anophels sinensis. These differences would influence pathogen re-ingestion. Wall shear stresses of these mosquito species were also clearly discriminatory affecting the infective rates of vector-borne diseases. The variations in volume of two pump chambers and diameter of proboscis of these mosquito species were compared to determine the differences in the liquid-feeding process. Liquid-feeding characteristics influence vector efficiency; hence, this study can elucidate the vector efficiency of mosquitoes and the vector-pathogen interactions and contribute to the development of strategies against vector-borne diseases.
Collapse
|
24
|
Khan F, Porter M, Schwenk R, DeBot M, Saudan P, Dutta S. Head-to-Head Comparison of Soluble vs. Qβ VLP Circumsporozoite Protein Vaccines Reveals Selective Enhancement of NANP Repeat Responses. PLoS One 2015; 10:e0142035. [PMID: 26571021 PMCID: PMC4646581 DOI: 10.1371/journal.pone.0142035] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/17/2015] [Indexed: 11/23/2022] Open
Abstract
Circumsporozoite protein (CSP) of Plasmodium falciparum is a promising malaria vaccine target. RTS,S, the most advanced malaria vaccine candidate consists of the central NANP repeat and carboxy-terminal region of CSP displayed on a hepatitis B virus-like particle (VLP). To build upon the success of RTS,S, we produced a near full-length Plasmodium falciparum CSP that also includes the conserved amino-terminal region of CSP. We recently showed that this soluble CSP, combined with a synthetic Toll-like-receptor-4 (TLR4) agonist in stable oil-in-water emulsion (GLA/SE), induces a potent and protective immune response in mice against transgenic parasite challenge. Here we have investigated whether the immunogenicity of soluble CSP could be further augmented by presentation on a VLP. Bacteriophage Qβ VLPs can be readily produced in E.coli, they have a diameter of 25 nm and contain packaged E. coli RNA which serves as a built in adjuvant through the activation of TLR7/8. CSP was chemically conjugated to Qβ and the CSP-Qβ vaccine immunogenicity and efficacy were compared to adjuvanted soluble CSP in the C57Bl/6 mouse model. When formulated with adjuvants lacking a TLR4 agonist (Alum, SE and Montanide) the Qβ-CSP induced higher anti-NANP repeat titers, higher levels of cytophilic IgG2b/c antibodies and a trend towards higher protection against transgenic parasite challenge as compared to soluble CSP formulated in the same adjuvant. The VLP and soluble CSP immunogenicity difference was most pronounced at low antigen dose, and within the CSP molecule, the titers against the NANP repeats were preferentially enhanced by Qβ presentation. While a TLR4 agonist enhanced the immunogenicity of soluble CSP to levels comparable to the VLP vaccine, the TLR4 agonist did not further improve the immunogenicity of the Qβ-CSP vaccine. The data presented here pave the way for further improvement in the Qβ conjugation chemistry and evaluation of both the Qβ-CSP and soluble CSP vaccines in the non-human primate model.
Collapse
Affiliation(s)
- Farhat Khan
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Mike Porter
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Robert Schwenk
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Margot DeBot
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
| | - Philippe Saudan
- Cytos Biotechnology, Wagistrasse 25, 8952 Schlieren, Switzerland
| | - Sheetij Dutta
- Structural Vaccinology Laboratory, Malaria Vaccine Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, United States of America
- * E-mail:
| |
Collapse
|
25
|
Groat-Carmona AM, Kain H, Brownell J, Douglass AN, Aly ASI, Kappe SHI. A Plasmodium α/β-hydrolase modulates the development of invasive stages. Cell Microbiol 2015; 17:1848-67. [PMID: 26118838 DOI: 10.1111/cmi.12477] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 06/19/2015] [Accepted: 06/23/2015] [Indexed: 11/26/2022]
Abstract
The bud emergence (BEM)46 proteins are evolutionarily conserved members of the α/β-hydrolase superfamily, which includes enzymes with diverse functions and a wide range of substrates. Here, we identified a Plasmodium BEM46-like protein (PBLP) and characterized it throughout the life cycle of the rodent malaria parasite Plasmodium yoelii. The Plasmodium BEM46-like protein is shown to be closely associated with the parasite plasma membrane of asexual erythrocytic stage schizonts and exo-erythrocytic schizonts; however, PBLP localizes to unique intracellular structures in sporozoites. Generation and analysis of P. yoelii knockout (Δpblp) parasite lines showed that PBLP has an important role in erythrocytic stage merozoite development with Δpblp parasites forming fewer merozoites during schizogony, which results in decreased parasitemia when compared with wild-type (WT) parasites. Δpblp parasites showed no defects in gametogenesis or transmission to mosquitoes; however, because they formed fewer oocysts there was a reduction in the number of developed sporozoites in infected mosquitoes when compared with WT. Although Δpblp sporozoites showed no apparent defect in mosquito salivary gland infection, they showed decreased infectivity in hepatocytes in vitro. Similarly, mice infected with Δpblp sporozoites exhibited a delay in the onset of blood-stage patency, which is likely caused by reduced sporozoite infectivity and a discernible delay in exo-erythrocytic merozoite formation. These data are consistent with the model that PBLP has an important role in parasite invasive-stage morphogenesis throughout the parasite life cycle.
Collapse
Affiliation(s)
- Anna M Groat-Carmona
- Center for Infectious Disease Research, formerly Seattle BioMedical Research Institute, Seattle, WA, USA
| | - Heather Kain
- Center for Infectious Disease Research, formerly Seattle BioMedical Research Institute, Seattle, WA, USA
| | - Jessica Brownell
- Center for Infectious Disease Research, formerly Seattle BioMedical Research Institute, Seattle, WA, USA
| | - Alyse N Douglass
- Center for Infectious Disease Research, formerly Seattle BioMedical Research Institute, Seattle, WA, USA
| | - Ahmed S I Aly
- School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA, USA
| | - Stefan H I Kappe
- Center for Infectious Disease Research, formerly Seattle BioMedical Research Institute, Seattle, WA, USA.,Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Mo AXY, Pesce J, Hall BF. Exploring immunological mechanisms of the whole sporozoite vaccination against P. falciparum malaria. Vaccine 2015; 33:2851-7. [PMID: 25917675 DOI: 10.1016/j.vaccine.2015.04.056] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 03/13/2015] [Accepted: 04/13/2015] [Indexed: 11/24/2022]
Abstract
Great progress has been made in the development of whole sporozoite vaccines including the manufacturing of cryopreserved Plasmodium falciparum sporozoites (PfSPZ) suitable for clinical application. Such whole sporozoites are being used for clinical studies of controlled human malaria infection (CHMI) as well as for evaluation of candidate vaccine approaches (both attenuated sporozoites and infectious sporozoites administered with chemoprophylaxis) and as reagents for immunology and cell biology assays. CHMI studies with whole sporozoites provide a great opportunity to better understand the intrinsic mechanisms of resistance to P. falciparum (e.g. due to sickle cell trait and other hemoglobinopathies) as well as host responses to an initial P. falciparum infection. High-level protective efficacy has been demonstrated in a small number of volunteers after intravenous (IV) inoculation of radiation-attenuated PfSPZ or in those who were exposed to live PfSPZ while on malaria chemoprophylaxis. These advances and data warrant further investigations of the immunological mechanism(s) whereby whole sporozoite inoculation elicits protective immunity in order to facilitate whole sporozoite vaccine development. The National Institute of Allergy and Infectious Diseases (NIAID) convened a workshop on Sept. 2-3, 2014 involving participation of international experts in the field of malaria vaccine development, and in basic and clinical immunology research. The workshop discussed the current understanding of host immune responses to whole malaria sporozoite inoculation, identified gaps in knowledge, resources to facilitate progress, and applicable new technologies and approaches to accelerate immunologic and vaccinologic studies and biomarker identification. This report summarizes the discussions and major conclusions from the workshop participants.
Collapse
Affiliation(s)
- Annie X Y Mo
- National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health, Department of Health and Human Service, 5601 Fishers Lane, Rockville, MD 20852, USA.
| | - John Pesce
- National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health, Department of Health and Human Service, 5601 Fishers Lane, Rockville, MD 20852, USA
| | - B Fenton Hall
- National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health, Department of Health and Human Service, 5601 Fishers Lane, Rockville, MD 20852, USA
| |
Collapse
|
27
|
Abstract
The development of a highly effective malaria vaccine remains a key goal to aid in the control and eventual eradication of this devastating parasitic disease. The field has made huge strides in recent years, with the first-generation vaccine RTS,S showing modest efficacy in a Phase III clinical trial. The updated 2030 Malaria Vaccine Technology Roadmap calls for a second generation vaccine to achieve 75% efficacy over two years for both Plasmodium falciparum and Plasmodium vivax, and for a vaccine that can prevent malaria transmission. Whole-parasite immunisation approaches and combinations of pre-erythrocytic subunit vaccines are now reporting high-level efficacy, whilst exciting new approaches to the development of blood-stage and transmission-blocking vaccine subunit components are entering clinical development. The development of a highly effective multi-component multi-stage subunit vaccine now appears to be a realistic ambition. This review will cover these recent developments in malaria vaccinology.
Collapse
|
28
|
Zhou C, Chen X, Zhang Q, Wang J, Wu MX. Laser mimicking mosquito bites for skin delivery of malaria sporozoite vaccines. J Control Release 2015; 204:30-7. [PMID: 25725360 DOI: 10.1016/j.jconrel.2015.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 01/27/2015] [Accepted: 02/21/2015] [Indexed: 10/23/2022]
Abstract
Immunization with radiation-attenuated sporozoites (RAS) via mosquito bites has been shown to induce sterile immunity against malaria in humans, but this route of vaccination is neither practical nor ethical. The importance of delivering RAS to the liver through circulation in eliciting immunity against this parasite has been recently verified by human studies showing that high-level protection was achieved only by intravenous (IV) administration of RAS, not by intradermal (ID) or subcutaneous (SC) vaccination. Here, we report in a murine model that ID inoculation of RAS into laser-illuminated skin confers immune protection against malarial infection almost as effectively as IV immunization. Brief illumination of the inoculation site with a low power 532 nm Nd:YAG laser enhanced the permeability of the capillary beneath the skin, owing to hemoglobin-specific absorbance of the light. The increased blood vessel permeability appeared to facilitate an association of RAS with blood vessel walls by an as-yet-unknown mechanism, ultimately promoting a 7-fold increase in RAS entering circulation and reaching the liver over ID administration. Accordingly, ID immunization of RAS at a laser-treated site stimulated much stronger sporozoite-specific antibody and CD8(+)IFN-γ(+) T cell responses than ID vaccination and provided nearly full protection against malarial infection, whereas ID immunization alone was ineffective. This novel, safe, and convenient strategy to augment efficacy of ID sporozoite-based vaccines warrants further investigation in large animals and in humans.
Collapse
Affiliation(s)
- Chang Zhou
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Xinyuan Chen
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Qi Zhang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Ji Wang
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States
| | - Mei X Wu
- Wellman Center for Photomedicine, Massachusetts General Hospital and Department of Dermatology, Harvard Medical School, Boston, MA 02114, United States; Affiliated faculty member of the Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA 02115, United States.
| |
Collapse
|
29
|
Bertolino P, Bowen DG. Malaria and the liver: immunological hide-and-seek or subversion of immunity from within? Front Microbiol 2015; 6:41. [PMID: 25741320 PMCID: PMC4332352 DOI: 10.3389/fmicb.2015.00041] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/12/2015] [Indexed: 12/28/2022] Open
Abstract
During the pre-erythrocytic asymptomatic phase of malarial infection, sporozoites develop transiently inside less than 100 hepatocytes that subsequently release thousands of merozoites. Killing of these hepatocytes by cytotoxic T cells (CTLs) confers protection to subsequent malarial infection, suggesting that this bottleneck phase in the parasite life cycle can be targeted by vaccination. During natural transmission, although some CTLs are generated in the skin draining lymph nodes, they are unable to eliminate the parasite, suggesting that the liver is important for the sporozoite to escape immune surveillance. The contribution of the organ to this process is unclear. Based on the known ability of several hepatic antigen-presenting cells (APCs) to induce primary activation of CD8 T cells and tolerance, malarial antigens presented by both infected hepatocytes and/or hepatic cross-presenting APCs should result in tolerance. However, our latest model predicts that due to the low frequency of infected hepatocytes, some T cells recognizing sporozoite epitopes with high affinity should differentiate into CTLs. In this review, we discuss two possible models to explain why CTLs generated in the liver and skin draining lymph nodes are unable to eliminate the parasite: (1) sporozoites harness the tolerogenic property of the liver; (2) CTLs are not tolerized but fail to detect infected cells due to sparse infection of hepatocytes and the very short liver stage. We propose that while malaria sporozoites might use the ability of the liver to tolerize both naive and effector cells, they have also developed strategies to decrease the probability of encounter between CTLs and infected liver cells. Thus, we predict that to achieve protection, vaccination strategies should aim to boost intrahepatic activation and/or increase the chance of encounter between sporozoite-specific CTLs and infected hepatocytes.
Collapse
Affiliation(s)
- Patrick Bertolino
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital Sydney, NSW, Australia
| | - David G Bowen
- Liver Immunology Group, Centenary Institute and AW Morrow Gastroenterology and Liver Centre, University of Sydney and Royal Prince Alfred Hospital Sydney, NSW, Australia
| |
Collapse
|
30
|
Foquet L, Hermsen CC, Verhoye L, van Gemert GJ, Cortese R, Nicosia A, Sauerwein RW, Leroux-Roels G, Meuleman P. Anti-CD81 but not anti-SR-BI blocks Plasmodium falciparum liver infection in a humanized mouse model. J Antimicrob Chemother 2015; 70:1784-7. [PMID: 25656410 DOI: 10.1093/jac/dkv019] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 01/12/2015] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVES Plasmodium falciparum sporozoites, deposited in the skin by infected Anopheles mosquitoes taking a blood meal, cross the endothelium of skin capillaries and travel to the liver where they traverse Kupffer cells and hepatocytes to finally invade a small number of the latter. In hepatocytes, sporozoites replicate, differentiate and give rise to large numbers of merozoites that are released into the bloodstream where they invade red blood cells, thus initiating the symptomatic blood stage. Using in vitro systems and rodent models, it has been shown that the hepatocyte receptors CD81 and scavenger receptor type B class I (SR-BI) play a pivotal role during sporozoite invasion. We wanted to evaluate whether these two entry factors are genuine drug targets for the prevention of P. falciparum infection in humans. METHODS Immunodeficient mice of which the liver is largely repopulated by human hepatocytes were treated with monoclonal antibodies blocking either CD81 or SR-BI 1 day prior to challenge with infected mosquitoes. P. falciparum infection of the liver was demonstrated using a qPCR assay. RESULTS In human liver chimeric mice, an antibody directed against CD81 completely blocked P. falciparum sporozoite invasion while SR-BI-specific monoclonal antibodies did not influence in vivo infection. CONCLUSIONS These observations confirm the role of CD81 in liver-stage malaria and question that of SR-BI. CD81 might be a valuable drug target for the prevention of malaria.
Collapse
Affiliation(s)
- Lander Foquet
- Center for Vaccinology, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | - Cornelus C Hermsen
- Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Lieven Verhoye
- Center for Vaccinology, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | - Geert-Jan van Gemert
- Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | | | - Alfredo Nicosia
- CEINGE, Via Comunale Margherita, 484-538, 80131 Naples, Italy Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Corso Umberto I, 80138 Naples, Italy
| | - Robert W Sauerwein
- Radboud University Medical Center, Geert Grooteplein 28, 6525 GA Nijmegen, The Netherlands
| | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| | - Philip Meuleman
- Center for Vaccinology, Ghent University, De Pintelaan 185, 9000 Gent, Belgium
| |
Collapse
|
31
|
Foquet L, Meuleman P, Hermsen CC, Sauerwein R, Leroux-Roels G. Assessment of Parasite Liver-Stage Burden in Human-Liver Chimeric Mice. Methods Mol Biol 2015; 1325:59-68. [PMID: 26450379 DOI: 10.1007/978-1-4939-2815-6_5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Humanized mice with a chimeric liver are a promising tool to evaluate the "in vivo" efficacy of novel compounds or vaccine-induced antibodies directed against the pre-erythrocytic stages of Plasmodium falciparum. The absence of human red blood cells in these humanized mice precludes the transition from liver to blood stage. The qPCR-based method described below allows for a sensitive and reliable quantification of parasite DNA in the chimeric liver following a challenge via infected mosquito bite or intravenous injection of sporozoites. With this method approximately 25 % of the total chimeric liver is examined and a single infected hepatocyte can be detected in the analyzed tissue. The use of appropriate species-specific probes can also allow for the detection of other Plasmodium species in vivo.
Collapse
Affiliation(s)
- Lander Foquet
- Center for Vaccinology, Ghent University and University Hospital, De Pintelaan 185, Ghent, 9000, Belgium
| | - Philip Meuleman
- Center for Vaccinology, Ghent University and University Hospital, De Pintelaan 185, Ghent, 9000, Belgium
| | - Cornelus C Hermsen
- Medical Centre, Radboud University Nijmegen, Geert Grooteplein 28, GA 6525, Nijmegen, The Netherlands
| | - Robert Sauerwein
- Medical Centre, Radboud University Nijmegen, Geert Grooteplein 28, GA 6525, Nijmegen, The Netherlands
| | - Geert Leroux-Roels
- Center for Vaccinology, Ghent University and University Hospital, De Pintelaan 185, Ghent, 9000, Belgium.
| |
Collapse
|
32
|
Matsuoka H, Tomita H, Hattori R, Arai M, Hirai M. Visualization of Malaria Parasites in the Skin Using the Luciferase Transgenic Parasite, Plasmodium berghei. Trop Med Health 2014; 43:53-61. [PMID: 25859153 PMCID: PMC4361344 DOI: 10.2149/tmh.2014-18] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 11/13/2014] [Indexed: 01/25/2023] Open
Abstract
We produced a transgenic rodent malaria parasite (Plasmodium berghei) that contained the luciferase gene under a promoter region of elongation factor-1α. These transgenic (TG) parasites expressed luciferase in all stages of their life cycle, as previously reported. However, we were the first to succeed in observing sporozoites as a mass in mouse skin following their deposition by the probing of infective mosquitoes. Our transgenic parasites may have emitted stronger bioluminescence than previous TG parasites. The estimated number of injected sporozoites by mosquitoes was between 34 and 775 (median 80). Since luciferase activity diminished immediately after the death of the parasites, luciferase activity could be an indicator of the existence of live parasites. Our results indicated that sporozoites survived at the probed site for more than 42 hours. We also detected sporozoites in the liver within 15 min of the intravenous injection. Bioluminescence was not observed in the lung, kidney or spleen. We confirmed the observation that the liver was the first organ in which malaria parasites entered and increased in number.
Collapse
Affiliation(s)
- Hiroyuki Matsuoka
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Hiroyuki Tomita
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Ryuta Hattori
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan
| | - Meiji Arai
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan ; Department of International Medical Zoology, Graduate School of Medicine, Kagawa University , Miki-cho 761-0793, Japan
| | - Makoto Hirai
- Division of Medical Zoology, Jichi Medical University , 3311-1 Yakushiji, Shimotsuke-shi 329-0498, Japan ; Department of Parasitology, School of Medicine, Juntendo University , Bunkyo-ku, Tokyo 113-8421, Japan
| |
Collapse
|
33
|
Susceptibility to Plasmodium yoelii preerythrocytic infection in BALB/c substrains is determined at the point of hepatocyte invasion. Infect Immun 2014; 83:39-47. [PMID: 25312960 DOI: 10.1128/iai.02230-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
After transmission by Anopheles mosquitoes, Plasmodium sporozoites travel to the liver, infect hepatocytes, and rapidly develop as intrahepatocytic liver stages (LS). Rodent models of malaria exhibit large differences in the magnitude of liver infection, both between parasite species and between strains of mice. This has been mainly attributed to differences in innate immune responses and parasite infectivity. Here, we report that BALB/cByJ mice are more susceptible to Plasmodium yoelii preerythrocytic infection than BALB/cJ mice. This difference occurs at the level of early hepatocyte infection, but expression levels of reported host factors that are involved in infection do not correlate with susceptibility. Interestingly, BALB/cByJ hepatocytes are more frequently polyploid; thus, their susceptibility converges on the previously observed preference of sporozoites to infect polyploid hepatocytes. Gene expression analysis demonstrates hepatocyte-specific differences in mRNA abundance for numerous genes between BALB/cByJ and BALB/cJ mice, some of which encode hepatocyte surface molecules. These data suggest that a yet-unknown receptor for sporozoite infection, present at elevated levels on BALB/cByJ hepatocytes and also polyploid hepatocytes, might facilitate Plasmodium liver infection.
Collapse
|
34
|
Good MF. The ability to inoculate purified malaria sporozoites will accelerate vaccine and drug discovery. Am J Trop Med Hyg 2014; 91:437-438. [PMID: 25070994 PMCID: PMC4155540 DOI: 10.4269/ajtmh.14-0395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Michael F. Good
- *Address correspondence to Michael F. Good, G26, 4.18, Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia 4222. E-mail:
| |
Collapse
|
35
|
Murphy JR, Weiss WR, Fryauff D, Dowler M, Savransky T, Stoyanov C, Muratova O, Lambert L, Orr-Gonzalez S, Zeleski KL, Hinderer J, Fay MP, Joshi G, Gwadz RW, Richie TL, Villasante EF, Richardson JH, Duffy PE, Chen J. Using infective mosquitoes to challenge monkeys with Plasmodium knowlesi in malaria vaccine studies. Malar J 2014; 13:215. [PMID: 24893777 PMCID: PMC4070636 DOI: 10.1186/1475-2875-13-215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Accepted: 03/03/2014] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND When rhesus monkeys (Macaca mulatta) are used to test malaria vaccines, animals are often challenged by the intravenous injection of sporozoites. However, natural exposure to malaria comes via mosquito bite, and antibodies can neutralize sporozoites as they traverse the skin. Thus, intravenous injection may not fairly assess humoral immunity from anti-sporozoite malaria vaccines. To better assess malaria vaccines in rhesus, a method to challenge large numbers of monkeys by mosquito bite was developed. METHODS Several species and strains of mosquitoes were tested for their ability to produce Plasmodium knowlesi sporozoites. Donor monkey parasitaemia effects on oocyst and sporozoite numbers and mosquito mortality were documented. Methylparaben added to mosquito feed was tested to improve mosquito survival. To determine the number of bites needed to infect a monkey, animals were exposed to various numbers of P. knowlesi-infected mosquitoes. Finally, P. knowlesi-infected mosquitoes were used to challenge 17 monkeys in a malaria vaccine trial, and the effect of number of infectious bites on monkey parasitaemia was documented. RESULTS Anopheles dirus, Anopheles crascens, and Anopheles dirus X (a cross between the two species) produced large numbers of P. knowlesi sporozoites. Mosquito survival to day 14, when sporozoites fill the salivary glands, averaged only 32% when donor monkeys had a parasitaemia above 2%. However, when donor monkey parasitaemia was below 2%, mosquitoes survived twice as well and contained ample sporozoites in their salivary glands. Adding methylparaben to sugar solutions did not improve survival of infected mosquitoes. Plasmodium knowlesi was very infectious, with all monkeys developing blood stage infections if one or more infected mosquitoes successfully fed. There was also a dose-response, with monkeys that received higher numbers of infected mosquito bites developing malaria sooner. CONCLUSIONS Anopheles dirus, An. crascens and a cross between these two species all were excellent vectors for P. knowlesi. High donor monkey parasitaemia was associated with poor mosquito survival. A single infected mosquito bite is likely sufficient to infect a monkey with P. knowlesi. It is possible to efficiently challenge large groups of monkeys by mosquito bite, which will be useful for P. knowlesi vaccine studies.
Collapse
|
36
|
Karunamoorthi K. Malaria vaccine: a future hope to curtail the global malaria burden. Int J Prev Med 2014; 5:529-38. [PMID: 24932383 PMCID: PMC4050672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 11/11/2013] [Indexed: 11/19/2022] Open
Abstract
It has been estimated that nearly half of the world's population is at the risk of contracting malaria with sub Saharan Africa being the most risky area. The existing frontline malaria control interventions are not only expensive but also become ineffective owing to the emergence of insecticide and drug resistance. It calls for an innovative approach in terms of potential and reliable vaccine as an additional tool. Over centuries, the public health experts have been actively engaged to formulate a safe, affordable and potential malaria vaccine and accordingly a notable achievement has also been attained. However, many challenges are required to be flagged immediately and effectively to devise an ideal prophylactic malaria vaccine. Therefore, the global community has to remain waiting quite a few more years to build a wannabe malaria-free world in the near future.
Collapse
Affiliation(s)
- Kaliyaperumal Karunamoorthi
- Department of Environmental Health Science and Technology, Unit of Medical Entomology and Vector Control, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia,Department of Life Sciences, Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India,Correspondence to: Dr. Kaliyaperumal Karunamoorthi, Department of Environmental Health Science and Technology, Unit of Medical Entomology and Vector Control, College of Public Health and Medical Sciences, Jimma University, Jimma, Ethiopia. E-mail:
| |
Collapse
|
37
|
Foquet L, Hermsen CC, van Gemert GJ, Van Braeckel E, Weening KE, Sauerwein R, Meuleman P, Leroux-Roels G. Vaccine-induced monoclonal antibodies targeting circumsporozoite protein prevent Plasmodium falciparum infection. J Clin Invest 2014; 124:140-4. [PMID: 24292709 DOI: 10.1172/jci70349] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 09/26/2013] [Indexed: 11/17/2022] Open
Abstract
Malaria, which is the result of Plasmodium falciparum infection, is a global health threat that resulted in 655,000 deaths and 216 million clinical cases in 2010 alone. Recent phase 3 trials with malaria vaccine candidate RTS,S/AS01 (RTS,S) in children has demonstrated modest efficacy against clinical and severe malaria. RTS,S targets the pre-erythrocytic phase of the disease and induces high antibody titers against the P. falciparum circumsporozoite protein (CSP) and a moderate CD4(+) T cell response. The individual contribution of these adaptive immune responses to protection from infection remains unknown. Here, we found that prophylactic administration of anti-CSP mAbs derived from an RTS,S-vaccinated recipient fully protected mice with humanized livers from i.v.- and mosquito bite–delivered P. falciparum sporozoite challenge. Titers of anti-CSP that conveyed full protection were within the range observed in human RTS,S vaccine recipients. Increasing anti-CSP titers resulted in a dose-dependent reduction of the liver parasite burden. These data indicate that RTS,S-induced antibodies are protective and provide sterilizing immunity against P. falciparum infection when reaching or exceeding a critical plasma concentration.
Collapse
|
38
|
Re-assessing the relationship between sporozoite dose and incubation period in Plasmodium vivax malaria: a systematic re-analysis. Parasitology 2014; 141:859-68. [PMID: 24524462 DOI: 10.1017/s0031182013002369] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Infections with the malaria parasite Plasmodium vivax are noteworthy for potentially very long incubation periods (6-9 months), which present a major barrier to disease elimination. Increased sporozoite challenge has been reported to be associated with both shorter incubation and pre-patent periods in a range of human challenge studies. However, this evidence base has scant empirical foundation, as these historical analyses were limited by available analytic methods, and provides no quantitative estimates of effect size. Following a comprehensive literature search, we re-analysed all identified studies using survival and/or logistic models plus contingency tables. We have found very weak evidence for dose-dependence at entomologically plausible inocula levels. These results strongly suggest that sporozoite dosage is not an important driver of long-latency. Evidence presented suggests that parasite strain and vector species have quantitatively greater impacts, and the potential existence of a dose threshold for human dose-response to sporozoites. Greater consideration of the complex interplay between these aspects of vectors and parasites are important for human challenge experiments, vaccine trials, and epidemiology towards global malaria elimination.
Collapse
|
39
|
CD8+ T cells eliminate liver-stage Plasmodium berghei parasites without detectable bystander effect. Infect Immun 2014; 82:1460-4. [PMID: 24421043 DOI: 10.1128/iai.01500-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Immunization with attenuated Plasmodium sporozoites or viral vectored vaccines can induce protective CD8(+) T cells that can find and eliminate liver-stage malaria parasites. A key question is whether CD8(+) T cells must recognize and eliminate each parasite in the liver or whether bystander killing can occur. To test this, we transferred antigen-specific effector CD8(+) T cells to mice that were then coinfected with two Plasmodium berghei strains, only one of which could be recognized directly by the transferred T cells. We found that the noncognate parasites developed normally in these mice, demonstrating that bystander killing of parasites does not occur during the CD8(+) T cell response to malaria parasites. Rather, elimination of infected parasites is likely mediated by direct recognition of infected hepatocytes by antigen-specific CD8(+) T cells.
Collapse
|
40
|
Yamamoto DS, Yokomine T, Sumitani M, Yagi K, Matsuoka H, Yoshida S. Visualization and live imaging analysis of a mosquito saliva protein in host animal skin using a transgenic mosquito with a secreted luciferase reporter system. INSECT MOLECULAR BIOLOGY 2013; 22:685-693. [PMID: 24118655 DOI: 10.1111/imb.12055] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mosquitoes inject saliva into a vertebrate host during blood feeding. The analysis of mosquito saliva in host skin is important for the elucidation of the inflammatory responses to mosquito bites, the development of antithrombotic drugs, and the transmission-blocking of vector-borne diseases. We produced transgenic Anopheles stephensi mosquitoes expressing the secretory luciferase protein (MetLuc) fused to a saliva protein (AAPP) in the salivary glands. The transgene product (AAPP-MetLuc) of transgenic mosquitoes exhibited both luciferase activity as a MetLuc and binding activity to collagen as an AAPP. The detection of luminescence in the skin of mice bitten by transgenic mosquitoes showed that AAPP-MetLuc was injected into the skin as a component of saliva via blood feeding. AAPP-MetLuc remained at the mosquito bite site in host skin with luciferase activity for at least 4 h after blood feeding. AAPP was also suspected of remaining at the site of injury caused by the mosquito bite and blocking platelet aggregation by binding to collagen. These results demonstrated the establishment of visualization and time-lapse analysis of mosquito saliva in living vertebrate host skin. This technique may facilitate the analysis of mosquito saliva after its injection into host skin, and the development of new drugs and disease control strategies.
Collapse
Affiliation(s)
- D S Yamamoto
- Division of Medical Zoology, Department of Infection and Immunity, Jichi Medical University, Shimotsuke, Japan
| | | | | | | | | | | |
Collapse
|
41
|
Foquet L, Hermsen CC, van Gemert GJ, Libbrecht L, Sauerwein R, Meuleman P, Leroux-Roels G. Molecular detection and quantification of Plasmodium falciparum-infected human hepatocytes in chimeric immune-deficient mice. Malar J 2013; 12:430. [PMID: 24267791 PMCID: PMC4222492 DOI: 10.1186/1475-2875-12-430] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 11/10/2013] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND Chimeric mice with humanized livers represent a promising tool for infections with Plasmodium falciparum to evaluate novel methods for prevention and treatment of pre-erythrocytic stages. Adequate assessment of hepatic infections is generally compromised by the limited number of human hepatocytes infected by developing parasites. METHODS A qPCR-based method has been developed that sensitively and reliably detects P. falciparum liver stage infection of humanized mice and quantitatively expresses the results as the number of parasites per human hepatocyte. RESULTS This assay allows for detection of liver stage parasites after challenging humanized mice with infected mosquito bites or after intravenous injection with sporozoites. The sensitivity of the protocol, which comprises approximately 25% of the total chimeric liver, allows for the detection of a single infected hepatocyte in the analysed tissue. CONCLUSIONS This method allows for the detection and quantification of P. falciparum parasites in chimeric mice repopulated with human hepatocytes. It will be a useful tool when studying the in vivo therapeutic and/or prophylactic qualities of novel compounds, small molecules or antibodies directed against the liver stage of P. falciparum infections.
Collapse
Affiliation(s)
- Lander Foquet
- Center for Vaccinology, Ghent University and University Hospital, De Pintelaan 185, Ghent 9000, Belgium.
| | | | | | | | | | | | | |
Collapse
|
42
|
Abstract
Malaria, which is caused by Plasmodium spp., starts with an asymptomatic phase, during which sporozoites, the parasite form that is injected into the skin by a mosquito, develop into merozoites, the form that infects erythrocytes. This pre-erythrocytic phase is still the most enigmatic in the parasite life cycle, but has long been recognized as an attractive vaccination target. In this Review, we present what has been learned in recent years about the natural history of the pre-erythrocytic stages, mainly using intravital imaging in rodents. We also consider how this new knowledge is in turn changing our understanding of the immune response mounted by the host against the pre-erythrocytic forms.
Collapse
|
43
|
Vanderberg JP. Imaging mosquito transmission of Plasmodium sporozoites into the mammalian host: immunological implications. Parasitol Int 2013; 63:150-64. [PMID: 24060541 DOI: 10.1016/j.parint.2013.09.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 09/11/2013] [Indexed: 10/26/2022]
Abstract
The malaria infection is initiated in mammals by injection of the sporozoite stage of the parasite through the bite of Plasmodium-infected, female Anopheles mosquitoes. Sporozoites are injected into extravascular portions of the skin while the mosquito is probing for a blood source. Sporozoite gliding motility allows them to locate and penetrate blood vessels of the dermis or subcutaneous tissues; once in the blood, they reach the liver, within which they continue their development. Some of the injected parasites invade dermal lymph vessels and travel to the proximal draining lymphatic node, where they interact with host immunocytes. The host responds to viable or attenuated sporozoites with antibodies directed against the immunodominant circumsporozoite protein (CSP), as well as against other sporozoite proteins. These CSP antibodies can inhibit the numbers of sporozoites injected by mosquitoes and the motility of those injected into the skin. This first phase of the immune response is followed by cell-mediated immunity involving CD8 T-cells directed against the developing liver stage of the parasite. This review discusses the early history of imaging studies, and focuses on the role that imaging has played in enabling a better understanding of both the induction and effector functions of the immune responses against sporozoites.
Collapse
Affiliation(s)
- Jerome P Vanderberg
- Division of Medical Parasitology, Department of Microbiology, New York University School of Medicine, 341 E 25th Street, New York, NY 10010, USA.
| |
Collapse
|
44
|
Sheehy SH, Spencer AJ, Douglas AD, Sim BKL, Longley RJ, Edwards NJ, Poulton ID, Kimani D, Williams AR, Anagnostou NA, Roberts R, Kerridge S, Voysey M, James ER, Billingsley PF, Gunasekera A, Lawrie AM, Hoffman SL, Hill AVS. Optimising Controlled Human Malaria Infection Studies Using Cryopreserved P. falciparum Parasites Administered by Needle and Syringe. PLoS One 2013; 8:e65960. [PMID: 23823332 PMCID: PMC3688861 DOI: 10.1371/journal.pone.0065960] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Accepted: 04/29/2013] [Indexed: 11/18/2022] Open
Abstract
Background Controlled human malaria infection (CHMI) studies have become a routine tool to evaluate efficacy of candidate anti-malarial drugs and vaccines. To date, CHMI trials have mostly been conducted using the bite of infected mosquitoes, restricting the number of trial sites that can perform CHMI studies. Aseptic, cryopreserved P. falciparum sporozoites (PfSPZ Challenge) provide a potentially more accurate, reproducible and practical alternative, allowing a known number of sporozoites to be administered simply by injection. Methodology We sought to assess the infectivity of PfSPZ Challenge administered in different dosing regimens to malaria-naive healthy adults (n = 18). Six participants received 2,500 sporozoites intradermally (ID), six received 2,500 sporozoites intramuscularly (IM) and six received 25,000 sporozoites IM. Findings Five out of six participants receiving 2,500 sporozoites ID, 3/6 participants receiving 2,500 sporozoites IM and 6/6 participants receiving 25,000 sporozoites IM were successfully infected. The median time to diagnosis was 13.2, 17.8 and 12.7 days for 2,500 sporozoites ID, 2,500 sporozoites IM and 25,000 sporozoites IM respectively (Kaplan Meier method; p = 0.024 log rank test). Conclusions 2,500 sporozoites ID and 25,000 sporozoites IM have similar infectivities. Given the dose response in infectivity seen with IM administration, further work should evaluate increasing doses of PfSPZ Challenge IM to identify a dosing regimen that reliably infects 100% of participants. Trial Registration ClinicalTrials.gov NCT01465048
Collapse
Affiliation(s)
- Susanne H. Sheehy
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
- * E-mail:
| | | | | | - B. Kim Lee Sim
- Sanaria Inc., Rockville, Maryland, United States of America
| | - Rhea J. Longley
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Nick J. Edwards
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Ian D. Poulton
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Domtila Kimani
- Centre for Geographical Medical Research (Coast), Kenya Medical Research Institute, Kilifi, Kenya
| | - Andrew R. Williams
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| | - Nicholas A. Anagnostou
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Rachel Roberts
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Kerridge
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | - Merryn Voysey
- Centre for Statistics in Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric R. James
- Sanaria Inc., Rockville, Maryland, United States of America
| | | | | | - Alison M. Lawrie
- Centre for Clinical Vaccinology and Tropical Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Adrian V. S. Hill
- The Jenner Institute Laboratories, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
45
|
Duffy PE, Sahu T, Akue A, Milman N, Anderson C. Pre-erythrocytic malaria vaccines: identifying the targets. Expert Rev Vaccines 2013; 11:1261-80. [PMID: 23176657 DOI: 10.1586/erv.12.92] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Pre-erythrocytic malaria vaccines target Plasmodium during its sporozoite and liver stages, and can prevent progression to blood-stage disease, which causes a million deaths each year. Whole organism sporozoite vaccines induce sterile immunity in animals and humans and guide subunit vaccine development. A recombinant protein-in-adjuvant pre-erythrocytic vaccine called RTS,S reduces clinical malaria without preventing infection in field studies and additional antigens may be required to achieve sterile immunity. Although few vaccine antigens have progressed to human testing, new insights into parasite biology, expression profiles and immunobiology have offered new targets for intervention. Future advances require human trials of additional antigens, as well as platforms to induce the durable antibody and cellular responses including CD8(+) T cells that contribute to sterile protection.
Collapse
Affiliation(s)
- Patrick E Duffy
- Laboratory of Malaria Immunology & Vaccinology, Division of Intramural Research, NIAID, NIH, Rockville, MD, USA.
| | | | | | | | | |
Collapse
|
46
|
Xu J, Hillyer JF, Coulibaly B, Sacko M, Dao A, Niaré O, Riehle MM, Traoré SF, Vernick KD. Wild Anopheles funestus mosquito genotypes are permissive for infection with the rodent malaria parasite, Plasmodium berghei. PLoS One 2013; 8:e61181. [PMID: 23593423 PMCID: PMC3620233 DOI: 10.1371/journal.pone.0061181] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 03/06/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Malaria parasites undergo complex developmental transitions within the mosquito vector. A commonly used laboratory model for studies of mosquito-malaria interaction is the rodent parasite, P. berghei. Anopheles funestus is a major malaria vector in sub-Saharan Africa but has received less attention than the sympatric species, Anopheles gambiae. The imminent completion of the A. funestus genome sequence will provide currently lacking molecular tools to describe malaria parasite interactions in this mosquito, but previous reports suggested that A. funestus is not permissive for P. berghei development. METHODS An A. funestus population was generated in the laboratory by capturing female wild mosquitoes in Mali, allowing them to oviposit, and rearing the eggs to adults. These F1 progeny of wild mosquitoes were allowed to feed on mice infected with a fluorescent P. berghei strain. Fluorescence microscopy was used to track parasite development inside the mosquito, salivary gland sporozoites were tested for infectivity to mice, and parasite development in A. funestus was compared to A. gambiae. RESULTS P. berghei oocysts were detectable on A. funestus midguts by 7 days post-infection. By 18-20 days post-infection, sporozoites had invaded the median and distal lateral lobes of the salivary glands, and hemocoel sporozoites were observed in the hemolymph. Mosquitoes were capable of infecting mice via bite, demonstrating that A. funestus supports the complete life cycle of P. berghei. In a random sample of wild mosquito genotypes, A. funestus prevalence of infection and the characteristics of parasite development were similar to that observed in A. gambiae-P. berghei infections. CONCLUSIONS The data presented in this study establish an experimental laboratory model for Plasmodium infection of A. funestus, an important vector of human malaria. Studying A. funestus-Plasmodium interactions is now feasible in a laboratory setting. This information lays the groundwork for exploitation of the awaited genome sequence of A. funestus.
Collapse
Affiliation(s)
- Jiannong Xu
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, Institut Pasteur, Paris, France.
| | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Transgenic parasites stably expressing full-length Plasmodium falciparum circumsporozoite protein as a model for vaccine down-selection in mice using sterile protection as an endpoint. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2013; 20:803-10. [PMID: 23536694 DOI: 10.1128/cvi.00066-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Circumsporozoite protein (CSP) of Plasmodium falciparum is a protective human malaria vaccine candidate. There is an urgent need for models that can rapidly down-select novel CSP-based vaccine candidates. In the present study, the mouse-mosquito transmission cycle of a transgenic Plasmodium berghei malaria parasite stably expressing a functional full-length P. falciparum CSP was optimized to consistently produce infective sporozoites for protection studies. A minimal sporozoite challenge dose was established, and protection was defined as the absence of blood-stage parasites 14 days after intravenous challenge. The specificity of protection was confirmed by vaccinating mice with multiple CSP constructs of differing lengths and compositions. Constructs that induced high NANP repeat-specific antibody titers in enzyme-linked immunosorbent assays were protective, and the degree of protection was dependent on the antigen dose. There was a positive correlation between antibody avidity and protection. The antibodies in the protected mice recognized the native CSP on the parasites and showed sporozoite invasion inhibitory activity. Passive transfer of anti-CSP antibodies into naive mice also induced protection. Thus, we have demonstrated the utility of a mouse efficacy model to down-select human CSP-based vaccine formulations.
Collapse
|
48
|
Comparison of clinical and parasitological data from controlled human malaria infection trials. PLoS One 2012; 7:e38434. [PMID: 22701640 PMCID: PMC3372522 DOI: 10.1371/journal.pone.0038434] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Accepted: 05/09/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Exposing healthy human volunteers to Plasmodium falciparum-infected mosquitoes is an accepted tool to evaluate preliminary efficacy of malaria vaccines. To accommodate the demand of the malaria vaccine pipeline, controlled infections are carried out in an increasing number of centers worldwide. We assessed their safety and reproducibility. METHODS We reviewed safety and parasitological data from 128 malaria-naïve subjects participating in controlled malaria infection trials conducted at the University of Oxford, UK, and the Radboud University Nijmegen Medical Center, The Netherlands. Results were compared to a report from the US Military Malaria Vaccine Program. RESULTS We show that controlled human malaria infection trials are safe and demonstrate a consistent safety profile with minor differences in the frequencies of arthralgia, fatigue, chills and fever between institutions. But prepatent periods show significant variation. Detailed analysis of Q-PCR data reveals highly synchronous blood stage parasite growth and multiplication rates. CONCLUSIONS Procedural differences can lead to some variation in safety profile and parasite kinetics between institutions. Further harmonization and standardization of protocols will be useful for wider adoption of these cost-effective small-scale efficacy trials. Nevertheless, parasite growth rates are highly reproducible, illustrating the robustness of controlled infections as a valid tool for malaria vaccine development.
Collapse
|
49
|
Voza T, Miller JL, Kappe SHI, Sinnis P. Extrahepatic exoerythrocytic forms of rodent malaria parasites at the site of inoculation: clearance after immunization, susceptibility to primaquine, and contribution to blood-stage infection. Infect Immun 2012; 80:2158-64. [PMID: 22431651 PMCID: PMC3370592 DOI: 10.1128/iai.00246-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2012] [Accepted: 03/12/2012] [Indexed: 02/04/2023] Open
Abstract
Plasmodium sporozoites are inoculated into the skin of the mammalian host as infected mosquitoes probe for blood. A proportion of the inoculum enters the bloodstream and goes to the liver, where the sporozoites invade hepatocytes and develop into the next life cycle stage, the exoerythrocytic, or liver, stage. Here, we show that a small fraction of the inoculum remains in the skin and begins to develop into exoerythrocytic forms that can persist for days. Skin exoerythrocytic forms were observed for both Plasmodium berghei and Plasmodium yoelii, two different rodent malaria parasites, suggesting that development in the skin of the mammalian host may be a common property of plasmodia. Our studies demonstrate that skin exoerythrocytic stages are susceptible to destruction in immunized mice, suggesting that their aberrant location does not protect them from the host's adaptive immune response. However, in contrast to their hepatic counterparts, they are not susceptible to primaquine. We took advantage of their resistance to primaquine to test whether they could initiate a blood-stage infection directly from the inoculation site, and our data indicate that these stages are not able to initiate malaria infection.
Collapse
Affiliation(s)
- Tatiana Voza
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| | | | | | - Photini Sinnis
- Department of Medical Parasitology, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
50
|
Epstein JE, Tewari K, Lyke KE, Sim BKL, Billingsley PF, Laurens MB, Gunasekera A, Chakravarty S, James ER, Sedegah M, Richman A, Velmurugan S, Reyes S, Li M, Tucker K, Ahumada A, Ruben AJ, Li T, Stafford R, Eappen AG, Tamminga C, Bennett JW, Ockenhouse CF, Murphy JR, Komisar J, Thomas N, Loyevsky M, Birkett A, Plowe CV, Loucq C, Edelman R, Richie TL, Seder RA, Hoffman SL. Live Attenuated Malaria Vaccine Designed to Protect Through Hepatic CD8+ T Cell Immunity. Science 2011; 334:475-80. [PMID: 21903775 DOI: 10.1126/science.1211548] [Citation(s) in RCA: 399] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- J E Epstein
- U.S. Military Malaria Vaccine Program, Naval Medical Research Center, Silver Spring, MD 20910, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|