1
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
2
|
Resta SC, Guerra F, Talà A, Bucci C, Alifano P. Beyond Inflammation: Role of Pyroptosis Pathway Activation by Gram-Negative Bacteria and Their Outer Membrane Vesicles (OMVs) in the Interaction with the Host Cell. Cells 2024; 13:1758. [PMID: 39513865 PMCID: PMC11545737 DOI: 10.3390/cells13211758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Pyroptosis is a gasdermin-mediated pro-inflammatory programmed cell death that, during microbial infections, aims to restrict the spreading of bacteria. Nevertheless, excessive pyroptosis activation leads to inflammation levels that are detrimental to the host. Pathogen-associated molecular patterns (PAMPs) present in bacteria and outer membrane vesicles (OMVs) can trigger pyroptosis pathways in different cell types with different outcomes. Moreover, some pathogens have evolved virulence factors that directly interfere with pyroptosis pathways, like Yersinia pestis YopM and Shigella flexneri IpaH7.8. Other virulence factors, such as those of Neisseria meningitidis, Neisseria gonorrhoeae, Salmonella enterica, and Helicobacter pylori affect pyroptosis pathways indirectly with important differences between pathogenic and commensal species of the same family. These pathogens deserve special attention because of the increasing antimicrobial resistance of S. flexneri and N. gonorrhoeae, the high prevalence of S. enterica and H. pylori, and the life-threatening diseases caused by N. meningitidis and Y. pestis. While inflammation due to macrophage pyroptosis has been extensively addressed, the effects of activation of pyroptosis pathways on modulation of cell cytoskeleton and cell-cell junctions in epithelia and endothelia and on the bacterial crossing of epithelial and endothelial barriers have only been partly investigated. Another important point is the diverse consequences of pyroptosis pathways on calcium influx, like activation of calcium-dependent enzymes and mitochondria dysregulation. This review will discuss the pyroptotic pathways activated by Gram-negative bacteria and their OMVs, analyzing the differences between pathogens and commensal bacteria. Particular attention will also be paid to the experimental models adopted and the main results obtained in the different models. Finally, strategies adopted by pathogens to modulate these pathways will be discussed with a perspective on the use of pyroptosis inhibitors as adjuvants in the treatment of infections.
Collapse
Affiliation(s)
- Silvia Caterina Resta
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Adelfia Talà
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy; (S.C.R.); (F.G.); (A.T.)
| | - Cecilia Bucci
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| | - Pietro Alifano
- Department of Experimental Medicine (DiMeS), University of Salento, Via Provinciale Lecce-Monteroni 165, 73100 Lecce, Italy;
| |
Collapse
|
3
|
Meng Y, Zhang Q, Xu M, Ding K, Yu Z, Li J. Pyroptosis regulation by Salmonella effectors. Front Immunol 2024; 15:1464858. [PMID: 39507539 PMCID: PMC11538000 DOI: 10.3389/fimmu.2024.1464858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 10/04/2024] [Indexed: 11/08/2024] Open
Abstract
The genus Salmonella contains the most common foodborne pathogens frequently isolated from food-producing animals and is responsible for zoonotic infections in humans and animals. Salmonella infection in humans and animals can cause intestinal damage, resulting in intestinal inflammation and disruption of intestinal homeostasis more severe cases can lead to bacteremia. Pyroptosis, a proinflammatory form of programmed cell death, is involved in many disease processes. Inflammasomes, pyroptosis, along with their respective signaling cascades, are instrumental in the preservation of intestinal homeostasis. In recent years, with the in-depth study of pyroptosis, our comprehension of the virulence factors and effector proteins in Salmonella has reached an extensive level, a deficit persists in our knowledge regarding the intrinsic pathogenic mechanisms about pyroptosis, necessitating a continued pursuit of understanding and investigation. In this review, we discuss the occurrence of pyroptosis induced by Salmonella effectors to provide new ideas for elucidating the regulatory mechanisms through which Salmonella virulence factors and effector proteins trigger pyroptosis could pave the way for novel concepts and strategies in the clinical prevention of Salmonella infections and the treatment of associated diseases.
Collapse
Affiliation(s)
- Yuan Meng
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Qianjin Zhang
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Mengen Xu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Ke Ding
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
| | - Zuhua Yu
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| | - Jing Li
- College of Animal Science and Technology/Laboratory of Functional Microbiology and Animal Health, Henan University of Science and Technology, Luoyang, Henan, China
- The Key Lab of Animal Disease and Public Health/Luoyang Key Laboratory of Live Carrier Biomaterial and Animal Disease Prevention and Control, Henan University of Science and Technology, Luoyang, Henan, China
| |
Collapse
|
4
|
Klein JA, Predeus AV, Greissl AR, Clark-Herrera MM, Cruz E, Cundiff JA, Haeberle AL, Howell M, Lele A, Robinson DJ, Westerman TL, Wrande M, Wright SJ, Green NM, Vallance BA, McClelland M, Mejia A, Goodman AG, Elfenbein JR, Knodler LA. Pathogenic diversification of the gut commensal Providencia alcalifaciens via acquisition of a second type III secretion system. Infect Immun 2024; 92:e0031424. [PMID: 39254346 PMCID: PMC11477908 DOI: 10.1128/iai.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Providencia alcalifaciens is a Gram-negative bacterium found in various water and land environments and organisms, including insects and mammals. Some P. alcalifaciens strains encode gene homologs of virulence factors found in pathogenic Enterobacterales members, such as Salmonella enterica serovar Typhimurium and Shigella flexneri. Whether these genes are pathogenic determinants in P. alcalifaciens is not known. In this study, we investigated P. alcalifaciens-host interactions at the cellular level, focusing on the role of two type III secretion systems (T3SS) belonging to the Inv-Mxi/Spa family. T3SS1b is widespread in Providencia spp. and encoded on the chromosome. A large plasmid that is present in a subset of P. alcalifaciens strains, primarily isolated from diarrheal patients, encodes for T3SS1a. We show that P. alcalifaciens 205/92 is internalized into eukaryotic cells, lyses its internalization vacuole, and proliferates in the cytosol. This triggers caspase-4-dependent inflammasome responses in gut epithelial cells. The requirement for the T3SS1a in entry, vacuole lysis, and cytosolic proliferation is host cell type-specific, playing a more prominent role in intestinal epithelial cells than in macrophages or insect cells. In a bovine ligated intestinal loop model, P. alcalifaciens colonizes the intestinal mucosa and induces mild epithelial damage with negligible fluid accumulation in a T3SS1a- and T3SS1b-independent manner. However, T3SS1b was required for the rapid killing of Drosophila melanogaster. We propose that the acquisition of two T3SS has allowed P. alcalifaciens to diversify its host range, from a highly virulent pathogen of insects to an opportunistic gastrointestinal pathogen of animals.
Collapse
Affiliation(s)
- Jessica A. Klein
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | - Aimee R. Greissl
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mattie M. Clark-Herrera
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Eddy Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Maya Howell
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Aaditi Lele
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Donna J. Robinson
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Trina L. Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Marie Wrande
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Sarah J. Wright
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nicole M. Green
- Public Health Laboratory, Los Angeles County Department of Public Health, Downey, California, USA
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Andres Mejia
- Comparative Pathology Laboratory, Research Animal Resources and Compliance, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alan G. Goodman
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Johanna R. Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine at The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
5
|
Tong G, Shen Y, Li H, Qian H, Tan Z. NLRC4, inflammation and colorectal cancer (Review). Int J Oncol 2024; 65:99. [PMID: 39239759 PMCID: PMC11387119 DOI: 10.3892/ijo.2024.5687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 08/19/2024] [Indexed: 09/07/2024] Open
Abstract
Chronic inflammation is recognized as a major risk factor for cancer and is involved in every phase of the disease. Inflammasomes are central to the inflammatory response and play a crucial role in cancer development. The present review summarizes the role of Nod‑like receptor C4 (NLRC4) in inflammation and colorectal cancer (CRC). Reviews of the literature were conducted using Web of Science, PubMed and CNKI, with search terms including 'NLRC4', 'colorectal cancer', 'auto‑inflammatory diseases' and 'prognosis'. Variants of NLRC4 can cause recessive immune dysregulation and autoinflammation or lead to ulcerative colitis as a heterozygous risk factor. Additionally, genetic mutations in inflammasome components may increase susceptibility to cancer. NLRC4 is considered a tumor suppressor in CRC. The role of NLRC4 in CRC signaling pathways is currently understood to involve five key aspects (caspase 1, NLRP3/IL‑8, IL‑1β/IL‑1, NAIP and p53). The mechanisms by which NLRC4 is involved in CRC are considered to be threefold (through pyroptosis, apoptosis, necroptosis and PANoptosis; regulating the immune response; and protecting intestinal epithelial cells to prevent CRC). However, the impact of NLRC4 mutations on CRC remains unclear. In conclusion, NLRC4 is a significant inflammasome that protects against CRC through various signaling pathways and mechanisms. The association between NLRC4 mutations and CRC warrants further investigation.
Collapse
Affiliation(s)
- Guojun Tong
- Department of Colorectal Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
- Central Laboratory, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Yan Shen
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Hui Li
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Hai Qian
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| | - Zhenhua Tan
- Department of General Surgery, Huzhou Central Hospital, The Affiliated Central Hospital of Huzhou University, Huzhou, Zhejiang 313003, P.R. China
| |
Collapse
|
6
|
Li J, Wang M, Zhou H, Jin Z, Yin H, Yang S. The role of pyroptosis in the occurrence and development of pregnancy-related diseases. Front Immunol 2024; 15:1400977. [PMID: 39351226 PMCID: PMC11439708 DOI: 10.3389/fimmu.2024.1400977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/28/2024] [Indexed: 10/04/2024] Open
Abstract
Pyroptosis is a form of programmed cell death that is crucial in the development of various diseases, including autoimmune diseases, atherosclerotic diseases, cancer, and pregnancy complications. In recent years, it has gained significant attention in national and international research due to its association with inflammatory immune overactivation and its involvement in pregnancy complications such as miscarriage and preeclampsia (PE). The mechanisms discussed include the canonical pyroptosis pathway of gasdermin activation and pore formation (caspase-1-dependent pyroptosis) and the non-canonical pyroptosis pathway (cysteoaspartic enzymes other than caspase-1). These pathways work on various cellular and factorial levels to influence normal pregnancy. This review aims to summarize and analyze the pyroptosis pathways associated with abnormal pregnancies and pregnancy complications. The objective is to enhance pregnancy outcomes by identifying various targets to prevent the onset of pyroptosis.
Collapse
Affiliation(s)
| | | | | | | | | | - Shuli Yang
- Department of Gynecology and Obstetrics, The Second Hospital of Jilin
University, Changchun, Jilin, China
| |
Collapse
|
7
|
Fu J, Schroder K, Wu H. Mechanistic insights from inflammasome structures. Nat Rev Immunol 2024; 24:518-535. [PMID: 38374299 PMCID: PMC11216901 DOI: 10.1038/s41577-024-00995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Inflammasomes are supramolecular complexes that form in the cytosol in response to pathogen-associated and damage-associated stimuli, as well as other danger signals that perturb cellular homoeostasis, resulting in host defence responses in the form of cytokine release and programmed cell death (pyroptosis). Inflammasome activity is closely associated with numerous human disorders, including rare genetic syndromes of autoinflammation, cardiovascular diseases, neurodegeneration and cancer. In recent years, a range of inflammasome components and their functions have been discovered, contributing to our knowledge of the overall machinery. Here, we review the latest advances in inflammasome biology from the perspective of structural and mechanistic studies. We focus on the most well-studied components of the canonical inflammasome - NAIP-NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 - as well as caspase-4, caspase-5 and caspase-11 of the noncanonical inflammasome, and the inflammasome effectors GSDMD and NINJ1. These structural studies reveal important insights into how inflammasomes are assembled and regulated, and how they elicit the release of IL-1 family cytokines and induce membrane rupture in pyroptosis.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
8
|
Cheng Y, Xiao X, Fu J, Zong X, Lu Z, Wang Y. Escherichia coli K88 activates NLRP3 inflammasome-mediated pyroptosis in vitro and in vivo. Biochem Biophys Rep 2024; 38:101665. [PMID: 38419757 PMCID: PMC10900769 DOI: 10.1016/j.bbrep.2024.101665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/02/2024] Open
Abstract
Pyroptosis induced by lipopolysaccharide (LPS) has an obvious impact on intestinal inflammation and immune regulation. Enterotoxigenic Escherichia coli (ETEC) K88 has been proved to induce inflammatory responses in several models, but whether E. coli K88 participates in the same process of pyroptotic cell death as LPS remains to be identified. We conducted a pilot experiment to confirm that E. coli K88, instead of Escherichia coli O157 and Salmonella typhimurium, promotes the secretion of interleukin-1 beta (IL-1β) and interleukin-18 (IL-18) in macrophages. Further experiments were carried out to dissect the molecular mechanism both in vitro and in vivo. The Enzyme-Linked Immunosorbent Assay (ELISA) results suggested that E. coli K88 treatment increased the expression of pro-inflammatory cytokines IL-18 and IL-1β in both C57BL/6 mice and the supernatant of J774A.1 cells. Intestinal morphology observations revealed that E. coli K88 treatment mainly induced inflammation in the colon. Real-time PCR and Western blot analysis showed that the mRNA and protein expressions of pyroptosis-related factors, such as NLRP3, ASC, and Caspase1, were significantly upregulated by E. coli K88 treatment. The RNA-seq results confirmed that the effect was associated with the activation of NLRP3, ASC, Caspase1, GSDMD, IL-18, and IL-1β, and might also be related to inflammatory bowel disease and the tumor necrosis factor pathway. The pyroptosis-activated effect of E. coli K88 was significantly blocked by NLRP3 siRNA. Our data suggested that E. coli K88 caused inflammation by triggering pyroptosis, which provides a theoretical basis for the prevention and treatment of ETEC in intestinal infection.
Collapse
Affiliation(s)
- Yuanzhi Cheng
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Xiao Xiao
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang A&F University, Hangzhou, 311300, China
| | - Jie Fu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Xin Zong
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Zeqing Lu
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| | - Yizhen Wang
- Key Laboratory of Molecular Animal Nutrition (Zhejiang University), Ministry of Education, Hangzhou, 310058, China
- Key Laboratory of Animal Nutrition and Feed Science (Eastern of China), Ministry of Agriculture and Rural Affairs, Hangzhou, 310058, China
| |
Collapse
|
9
|
Jastrab JB, Kagan JC. Strategies of bacterial detection by inflammasomes. Cell Chem Biol 2024; 31:835-850. [PMID: 38636521 PMCID: PMC11103797 DOI: 10.1016/j.chembiol.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/09/2024] [Accepted: 03/26/2024] [Indexed: 04/20/2024]
Abstract
Mammalian innate immunity is regulated by pattern-recognition receptors (PRRs) and guard proteins, which use distinct strategies to detect infections. PRRs detect bacterial molecules directly, whereas guards detect host cell manipulations by microbial virulence factors. Despite sensing infection through different mechanisms, both classes of innate immune sensors can activate the inflammasome, an immune complex that can mediate cell death and inflammation. Inflammasome-mediated immune responses are crucial for host defense against many bacterial pathogens and prevent invasion by non-pathogenic organisms. In this review, we discuss the mechanisms by which inflammasomes are stimulated by PRRs and guards during bacterial infection, and the strategies used by virulent bacteria to evade inflammasome-mediated immunity.
Collapse
Affiliation(s)
- Jordan B Jastrab
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
10
|
Liu Z, Du J, Wang Y, Song H, Lu L, Wu R, Jin C. The NLRP3 molecule is responsible for mediating the pyroptosis of intestinal mucosa cells and plays a crucial role in salmonellosis enteritis in chicks. Mol Immunol 2024; 168:47-50. [PMID: 38422886 DOI: 10.1016/j.molimm.2024.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 03/02/2024]
Abstract
Salmonella enteritis in poultry can result in reduced immune function, decreased growth rate, and increased mortality. Many farm salmonella strains have developed severe drug resistance and are less susceptible to multiple antibiotics. In the post-antibiotic era, it is of great significance to identify the mechanism of salmonella-induced enteritis in chicks to protect their health and ensure food safety. This article will elucidate the activation mechanism of NOD-like receptor protein 3 (NLRP3) inflammasomes in Salmonella enteritis and review the research on interventions targeting NLRP3 inflammasomes.
Collapse
Affiliation(s)
- Zhe Liu
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China
| | - Juan Du
- Department of Geriatrics, Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Yanhong Wang
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China
| | - Haoyu Song
- Department of Geriatrics, Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Ligong Lu
- Zhuhai People's Hospital (Zhuhai Clinical Medical College of JinanUniversity), No. 79 Kangning Road, Xiangzhou District, Zhuhai, Guangdong Province 519000, China
| | - Rui Wu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, 163319, People's Republic of China
| | - Chenghao Jin
- College of Life Sciences and Biotechnology, Heilongjiang Bayi Agricultural University, No. 5 Xinfeng Road, Daqing, Heilongjiang Province 163319, P.R. China; National Coarse Cereals Engineering Research Center, Daqing 163319, PR China; Department of Food Science and Engineering, College of Food Science & Technology, Heilongjiang Bayi Agricultural University, Daqing 163319, PR China
| |
Collapse
|
11
|
Tsukalov I, Sánchez-Cerrillo I, Rajas O, Avalos E, Iturricastillo G, Esparcia L, Buzón MJ, Genescà M, Scagnetti C, Popova O, Martin-Cófreces N, Calvet-Mirabent M, Marcos-Jimenez A, Martínez-Fleta P, Delgado-Arévalo C, de Los Santos I, Muñoz-Calleja C, Calzada MJ, González Álvaro I, Palacios-Calvo J, Alfranca A, Ancochea J, Sánchez-Madrid F, Martin-Gayo E. NFκB and NLRP3/NLRC4 inflammasomes regulate differentiation, activation and functional properties of monocytes in response to distinct SARS-CoV-2 proteins. Nat Commun 2024; 15:2100. [PMID: 38453949 PMCID: PMC10920883 DOI: 10.1038/s41467-024-46322-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 02/22/2024] [Indexed: 03/09/2024] Open
Abstract
Increased recruitment of transitional and non-classical monocytes in the lung during SARS-CoV-2 infection is associated with COVID-19 severity. However, whether specific innate sensors mediate the activation or differentiation of monocytes in response to different SARS-CoV-2 proteins remain poorly characterized. Here, we show that SARS-CoV-2 Spike 1 but not nucleoprotein induce differentiation of monocytes into transitional or non-classical subsets from both peripheral blood and COVID-19 bronchoalveolar lavage samples in a NFκB-dependent manner, but this process does not require inflammasome activation. However, NLRP3 and NLRC4 differentially regulated CD86 expression in monocytes in response to Spike 1 and Nucleoprotein, respectively. Moreover, monocytes exposed to Spike 1 induce significantly higher proportions of Th1 and Th17 CD4 + T cells. In contrast, monocytes exposed to Nucleoprotein reduce the degranulation of CD8 + T cells from severe COVID-19 patients. Our study provides insights in the differential impact of innate sensors in regulating monocytes in response to different SARS-CoV-2 proteins, which might be useful to better understand COVID-19 immunopathology and identify therapeutic targets.
Collapse
Affiliation(s)
- Ilya Tsukalov
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Ildefonso Sánchez-Cerrillo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - Olga Rajas
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Elena Avalos
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | | | - Laura Esparcia
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - María José Buzón
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Meritxell Genescà
- Infectious Diseases Department, Institut de Recerca Hospital Univesritari Vall d'Hebrón (VHIR), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Camila Scagnetti
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Olga Popova
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
| | - Noa Martin-Cófreces
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Marta Calvet-Mirabent
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ana Marcos-Jimenez
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Pedro Martínez-Fleta
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Cristina Delgado-Arévalo
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - Ignacio de Los Santos
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
- Infectious Diseases Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Cecilia Muñoz-Calleja
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain
| | - María José Calzada
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Isidoro González Álvaro
- Rheumatology Department from Hospital Universitario La Princesa. Instituto de Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
| | - José Palacios-Calvo
- Department of Pathology, Hospital Universitario Ramón y Cajal. Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Universidad de Alcalá. Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Arantzazu Alfranca
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Julio Ancochea
- Pneumology Unit from Hospital Universitario La Princesa, Madrid, Spain
| | - Francisco Sánchez-Madrid
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain
- CIBER Cardiovascular, Instituto de Salud Carlos III, Madrid, Spain
| | - Enrique Martin-Gayo
- Medicine Faculty, Universidad Autónoma de Madrid, Madrid, Spain.
- Immunology Unit from Hospital Universitario La Princesa, Instituto Investigación Sanitaria-Princesa IIS-IP, Madrid, Spain.
- CIBER Infectious Diseases (CIBERINFECC), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
12
|
Exconde PM, Hernandez-Chavez C, Bourne CM, Richards RM, Bray MB, Lopez JL, Srivastava T, Egan MS, Zhang J, Yoo W, Shin S, Discher BM, Taabazuing CY. The tetrapeptide sequence of IL-18 and IL-1β regulates their recruitment and activation by inflammatory caspases. Cell Rep 2023; 42:113581. [PMID: 38103201 PMCID: PMC11158830 DOI: 10.1016/j.celrep.2023.113581] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 08/24/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Inflammasomes are multiprotein signaling complexes that activate the innate immune system. Canonical inflammasomes recruit and activate caspase-1, which then cleaves and activates IL-1β and IL-18, as well as gasdermin D (GSDMD) to induce pyroptosis. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are known to cleave GSDMD, but their role in direct processing of other substrates besides GSDMD has remained unknown. Here, we show that CASP4/5 but not CASP11 can directly cleave and activate IL-18. However, CASP4/5/11 can all cleave IL-1β to generate a 27-kDa fragment that deactivates IL-1β signaling. Mechanistically, we demonstrate that the sequence identity of the tetrapeptide sequence adjacent to the caspase cleavage site regulates IL-18 and IL-1β recruitment and activation. Altogether, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation that may aid in developing new therapeutics for immune-related disorders.
Collapse
Affiliation(s)
- Patrick M Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Claudia Hernandez-Chavez
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Christopher M Bourne
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Rachel M Richards
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Mark B Bray
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jan L Lopez
- Department of Biology, Boston University, Boston, MA, USA
| | - Tamanna Srivastava
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Marisa S Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William Yoo
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Bohdana M Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Cornelius Y Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Devant P, Dong Y, Mintseris J, Ma W, Gygi SP, Wu H, Kagan JC. Structural insights into cytokine cleavage by inflammatory caspase-4. Nature 2023; 624:451-459. [PMID: 37993712 PMCID: PMC10807405 DOI: 10.1038/s41586-023-06751-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 10/16/2023] [Indexed: 11/24/2023]
Abstract
Inflammatory caspases are key enzymes in mammalian innate immunity that control the processing and release of interleukin-1 (IL-1)-family cytokines1,2. Despite the biological importance, the structural basis for inflammatory caspase-mediated cytokine processing has remained unclear. To date, catalytic cleavage of IL-1-family members, including pro-IL-1β and pro-IL-18, has been attributed primarily to caspase-1 activities within canonical inflammasomes3. Here we demonstrate that the lipopolysaccharide receptor caspase-4 from humans and other mammalian species (except rodents) can cleave pro-IL-18 with an efficiency similar to pro-IL-1β and pro-IL-18 cleavage by the prototypical IL-1-converting enzyme caspase-1. This ability of caspase-4 to cleave pro-IL-18, combined with its previously defined ability to cleave and activate the lytic pore-forming protein gasdermin D (GSDMD)4,5, enables human cells to bypass the need for canonical inflammasomes and caspase-1 for IL-18 release. The structure of the caspase-4-pro-IL-18 complex determined using cryogenic electron microscopy reveals that pro-lL-18 interacts with caspase-4 through two distinct interfaces: a protease exosite and an interface at the caspase-4 active site involving residues in the pro-domain of pro-IL-18, including the tetrapeptide caspase-recognition sequence6. The mechanisms revealed for cytokine substrate capture and cleavage differ from those observed for the caspase substrate GSDMD7,8. These findings provide a structural framework for the discussion of caspase activities in health and disease.
Collapse
Affiliation(s)
- Pascal Devant
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ying Dong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Julian Mintseris
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Weiyi Ma
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| | - Jonathan C Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
14
|
Zhong B, Sun S, Tan KS, Ong HH, Du J, Liu F, Liu Y, Liu S, Ba L, Li J, Wang DY, Liu J. Hypoxia-inducible factor 1α activates the NLRP3 inflammasome to regulate epithelial differentiation in chronic rhinosinusitis. J Allergy Clin Immunol 2023; 152:1444-1459.e14. [PMID: 37777019 DOI: 10.1016/j.jaci.2023.09.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 08/09/2023] [Accepted: 09/08/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Chronic rhinosinusitis (CRS) is an upper airway inflammation disease associated with hypoxia-mediated inflammation. The effect of hypoxia-inducible factor 1α (HIF-1α) on NOD-like receptor family pyrin domain containing 3 (NLRP3) inflammasome activation in the pathogenesis of sinonasal mucosa is unclear. OBJECTIVE We investigated the effect and mechanism of HIF-1α on NLRP3 inflammasome activation in the primary human nasal epithelial cells (hNECs). METHODS We measured the expression levels of HIF-1α and the NLRP3 inflammasome in nasal biopsy samples and hNECs derived from negative controls (healthy) and patients with CRS with and without nasal polyps, then further analyzed the specific mechanism of HIF-1α regulation of the NLRP3 inflammasome and its effect on hNEC differentiation. RESULTS Increased mRNA and protein expression levels of HIF-1α and the NLRP3 inflammasome were found in all CRS biopsy samples. HIF-1α enhanced expression of phosphorylated NLRP3 (S295) in both HEK293T cells and hNECs; it also promoted recruitment of caspase-1 and apoptotic speck-like protein containing caspase recruitment domain (aka ASC) by NLRP3. HIF-1α also improved NLRP3's stability by preventing NLRP3 degradation caused by hypoxia-mediated inflammation. In addition, HIF-1α could also increase expression of Mucin5AC and decrease expression of α-tubulin by promoting activation of the NLRP3 inflammasome in hNECs. In addition, HIF-1α could also directly promote P63 expression in hNECs. CONCLUSION HIF-1α could potentially induce cilia loss and enhance the proliferation of goblet cells, possibly mediated by the regulation of NLRP3 phosphorylation in CRS inflammation.
Collapse
Affiliation(s)
- Bing Zhong
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Silu Sun
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Kai Sen Tan
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Department of Microbiology and Immunology, National University of Singapore, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Biosafety Level 3 Core Facility, Yong Loo Lin School of Medicine, National University Health System, National University of Singapore, Singapore
| | - Hsiao Hui Ong
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Jintao Du
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Feng Liu
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yafeng Liu
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shixi Liu
- Upper Airways Research Laboratory, Department of Otolaryngology-Head and Neck Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Luo Ba
- Department of Otolaryngology, People's Hospital of Tibet Autonomous Region, Lhasa, Tibet, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| | - De Yun Wang
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| | - Jing Liu
- Department of Otolaryngology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore; Infectious Diseases Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.
| |
Collapse
|
15
|
Gül E, Fattinger SA, Sellin ME, Hardt WD. Epithelial inflammasomes, gasdermins, and mucosal inflammation - Lessons from Salmonella and Shigella infected mice. Semin Immunol 2023; 70:101812. [PMID: 37562110 DOI: 10.1016/j.smim.2023.101812] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 08/12/2023]
Abstract
Besides its crucial function in nutrient absorbance and as barrier against the microbiota, the gut epithelium is essential for sensing pathogenic insults and mounting of an appropriate early immune response. In mice, the activation of the canonical NAIP/NLRC4 inflammasome is critical for the defense against enterobacterial infections. Activation of the NAIP/NLRC4 inflammasome triggers the extrusion of infected intestinal epithelial cells (IEC) into the gut lumen, concomitant with inflammasome-mediated lytic cell death. The membrane permeabilization, a hallmark of pyroptosis, is caused by the pore-forming proteins called gasdermins (GSDMs). Recent work has revealed that NAIP/NLRC4-dependent extrusion of infected IECs can, however, also be executed in the absence of GSDMD. In fact, several reports highlighted that various cell death pathways (e.g., pyroptosis or apoptosis) and unique mechanisms specific to particular infection models and stages of gut infection are in action during epithelial inflammasome defense against intestinal pathogens. Here, we summarize the current knowledge regarding the underlying mechanisms and speculate on the putative functions of the epithelial inflammasome activation and cell death, with a particular emphasis on mouse infection models for two prominent enterobacterial pathogens, Salmonella Typhimurium and Shigella flexneri.
Collapse
Affiliation(s)
- Ersin Gül
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Stefan A Fattinger
- Division of Immunology and Molecular Medicine, Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
| | - Mikael E Sellin
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Wolf-Dietrich Hardt
- Institute of Microbiology, Department of Biology, ETH Zurich, Zurich, Switzerland.
| |
Collapse
|
16
|
Zhang J, Brodsky IE, Shin S. Yersinia deploys type III-secreted effectors to evade caspase-4 inflammasome activation in human cells. mBio 2023; 14:e0131023. [PMID: 37615436 PMCID: PMC10653943 DOI: 10.1128/mbio.01310-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 07/06/2023] [Indexed: 08/25/2023] Open
Abstract
IMPORTANCE Yersinia are responsible for significant disease burden in humans, ranging from recurrent disease outbreaks (yersiniosis) to pandemics (Yersinia pestis plague). Together with rising antibiotic resistance rates, there is a critical need to better understand Yersinia pathogenesis and host immune mechanisms, as this information will aid in developing improved immunomodulatory therapeutics. Inflammasome responses in human cells are less studied relative to murine models of infection, though recent studies have uncovered key differences in inflammasome responses between mice and humans. Here, we dissect human intestinal epithelial cell and macrophage inflammasome responses to Yersinia pseudotuberculosis. Our findings provide insight into species- and cell type-specific differences in inflammasome responses to Yersinia.
Collapse
Affiliation(s)
- Jenna Zhang
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania, Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
17
|
Abstract
The immune system of multicellular organisms protects them from harmful microbes. To establish an infection in the face of host immune responses, pathogens must evolve specific strategies to target immune defense mechanisms. One such defense is the formation of intracellular protein complexes, termed inflammasomes, that are triggered by the detection of microbial components and the disruption of homeostatic processes that occur during bacterial infection. Formation of active inflammasomes initiates programmed cell death pathways via activation of inflammatory caspases and cleavage of target proteins. Inflammasome-activated cell death pathways such as pyroptosis lead to proinflammatory responses that protect the host. Bacterial infection has the capacity to influence inflammasomes in two distinct ways: activation and perturbation. In this review, we discuss how bacterial activities influence inflammasomes, and we discuss the consequences of inflammasome activation or evasion for both the host and pathogen.
Collapse
Affiliation(s)
- Beatrice I Herrmann
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - James P Grayczyk
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Current affiliation: Oncology Discovery, Abbvie, Inc., Chicago, Illinois, USA;
| | - Igor E Brodsky
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA; ,
- Cell and Molecular Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
18
|
López-Yglesias AH, Lu CC, Lai MA, Quarles EK, Zhao X, Hajjar AM, Smith KD. FlgM is required to evade NLRC4-mediated host protection against flagellated Salmonella. Infect Immun 2023; 91:e0025523. [PMID: 37638725 PMCID: PMC10501211 DOI: 10.1128/iai.00255-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 08/29/2023] Open
Abstract
Salmonella enterica serovar Typhimurium is a leading cause of gastroenteritis worldwide and a deadly pathogen in children, immunocompromised patients, and the elderly. Salmonella induces innate immune responses through the NLRC4 inflammasome, which has been demonstrated to have distinct roles during systemic and mucosal detections of flagellin and non-flagellin molecules. We hypothesized that NLRC4 recognition of Salmonella flagellin is the dominant protective pathway during infection. To test this hypothesis, we used wild-type, flagellin-deficient, and flagellin-overproducing Salmonella to establish the role of flagellin in mediating NLRC4-dependent host resistance during systemic and mucosal infections in mice. We observed that during the systemic phase of infection, Salmonella efficiently evades NLRC4-mediated innate immunity. During mucosal Salmonella infection, flagellin recognition by the NLRC4 inflammasome pathway is the dominant mediator of protective innate immunity. Deletion of flgM results in constitutive expression of flagellin and severely limits systemic and mucosal Salmonella infections in an NLRC4 inflammasome-dependent manner. These data establish that recognition of Salmonella's flagellin by the NLRC4 inflammasome during mucosal infection is the dominant innate protective pathway for host resistance against the enteric pathogen and that FlgM-mediated evasion of the NLRC4 inflammasome enhances virulence and intestinal tissue destruction.
Collapse
Affiliation(s)
| | - Chun-Chi Lu
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Marvin A. Lai
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Ellen K. Quarles
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Xiaodan Zhao
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| | - Adeline M. Hajjar
- Department of Comparative Medicine, University of Washington, Seattle, Washington, USA
| | - Kelly D. Smith
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Zheng Q, Hua C, Liang Q, Cheng H. The NLRP3 inflammasome in viral infection (Review). Mol Med Rep 2023; 28:160. [PMID: 37417336 PMCID: PMC10407610 DOI: 10.3892/mmr.2023.13047] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/20/2023] [Indexed: 07/08/2023] Open
Abstract
The interplay between pathogen and host determines the immune response during viral infection. The Nod‑like receptor (NLR) protein 3 inflammasome is a multiprotein complex that induces the activation of inflammatory caspases and the release of IL‑1β, which play an important role in the innate immune responses. In the present review, the mechanisms of the NLR family pyrin domain containing 3 inflammasome activation and its dysregulation in viral infection were addressed.
Collapse
Affiliation(s)
- Qiaoli Zheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Chunting Hua
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Qichang Liang
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| | - Hao Cheng
- Department of Dermatology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang 310016, P.R. China
| |
Collapse
|
20
|
Turton K, Parks HJ, Zarodkiewicz P, Hamad MA, Dwane R, Parau G, Ingram RJ, Coll RC, Bryant CE, Valvano MA. The Achromobacter type 3 secretion system drives pyroptosis and immunopathology via independent activation of NLRC4 and NLRP3 inflammasomes. Cell Rep 2023; 42:113012. [PMID: 37598340 PMCID: PMC7614980 DOI: 10.1016/j.celrep.2023.113012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/19/2023] [Accepted: 08/04/2023] [Indexed: 08/22/2023] Open
Abstract
How the opportunistic Gram-negative pathogens of the genus Achromobacter interact with the innate immune system is poorly understood. Using three Achromobacter clinical isolates from two species, we show that the type 3 secretion system (T3SS) is required to induce cell death in human macrophages by inflammasome-dependent pyroptosis. Macrophages deficient in the inflammasome sensors NLRC4 or NLRP3 undergo pyroptosis upon bacterial internalization, but those deficient in both NLRC4 and NLRP3 do not, suggesting either sensor mediates pyroptosis in a T3SS-dependent manner. Detailed analysis of the intracellular trafficking of one isolate indicates that the intracellular bacteria reside in a late phagolysosome. Using an intranasal mouse infection model, we observe that Achromobacter damages lung structure and causes severe illness, contingent on a functional T3SS. Together, we demonstrate that Achromobacter species can survive phagocytosis by promoting macrophage cell death and inflammation by redundant mechanisms of pyroptosis induction in a T3SS-dependent manner.
Collapse
Affiliation(s)
- Keren Turton
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Hannah J Parks
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Paulina Zarodkiewicz
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Mohamad A Hamad
- Department of Medical Laboratory Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rachel Dwane
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Georgiana Parau
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Rebecca J Ingram
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Rebecca C Coll
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK
| | - Clare E Bryant
- Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; Department of Medicine, Addenbrooke's Hospital, Cambridge Biomedical Campus, Cambridge CB2 0QQ, UK
| | - Miguel A Valvano
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University Belfast, Belfast BT9 7BL, UK.
| |
Collapse
|
21
|
Zhang J, Brodsky IE, Shin S. Yersinia Type III-Secreted Effectors Evade the Caspase-4 Inflammasome in Human Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.24.525473. [PMID: 36747770 PMCID: PMC9900831 DOI: 10.1101/2023.01.24.525473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Yersinia are gram-negative zoonotic bacteria that use a type III secretion system (T3SS) to inject Yersinia outer proteins (Yops) into the host cytosol to subvert essential components of innate immune signaling. However, Yersinia virulence activities can elicit activation of inflammasomes, which lead to inflammatory cell death and cytokine release to contain infection. Yersinia activation and evasion of inflammasomes have been characterized in murine macrophages but remain poorly defined in human cells, particularly intestinal epithelial cells (IECs), a primary site of intestinal Yersinia infection. In contrast to murine macrophages, we find that in both human IECs and macrophages, Yersinia pseudotuberculosis T3SS effectors enable evasion of the caspase-4 inflammasome, which senses cytosolic lipopolysaccharide (LPS). The antiphagocytic YopE and YopH, as well as the translocation regulator YopK, were collectively responsible for evading inflammasome activation, in part by inhibiting Yersinia internalization mediated by YadA and β1-integrin signaling. These data provide insight into the mechanisms of Yersinia-mediated inflammasome activation and evasion in human cells, and reveal species-specific differences underlying regulation of inflammasome responses to Yersinia .
Collapse
Affiliation(s)
- Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, Pennsylvania 19104
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|
22
|
Egan MS, Zhang J, Shin S. Human and mouse NAIP/NLRC4 inflammasome responses to bacterial infection. Curr Opin Microbiol 2023; 73:102298. [PMID: 37058933 PMCID: PMC10225321 DOI: 10.1016/j.mib.2023.102298] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/15/2023] [Accepted: 02/22/2023] [Indexed: 04/16/2023]
Abstract
Intracellular immune complexes known as inflammasomes sense breaches of cytosolic sanctity. Inflammasomes promote downstream proinflammatory events, including interleukin-1 (IL-1) family cytokine release and pyroptotic cell death. The nucleotide-binding leucine-rich repeat family, apoptosis inhibitory protein/nucleotide-binding leucine-rich repeat family, caspase recruitment domain (CARD) domain-containing protein 4 (NAIP/NLRC4) inflammasome is involved in a range of pathogenic and protective inflammatory processes in mammalian hosts. In particular, the NAIP/NLRC4 inflammasome responds to flagellin and components of the virulence-associated type III secretion (T3SS) apparatus in the host cytosol, thereby allowing it to be a critical mediator of host defense during bacterial infection. Notable species- and cell type-specific differences exist in NAIP/NLRC4 inflammasome responses to bacterial pathogens. With a focus on Salmonella enterica serovar Typhimurium as a model pathogen, we review differences between murine and human NAIP/NLRC4 inflammasome responses. Differences in NAIP/NLRC4 inflammasome responses across species and cell types may have arisen in part due to evolutionary pressures.
Collapse
Affiliation(s)
- Marisa S Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA.
| |
Collapse
|
23
|
Dickinson M, Kutsch M, Sistemich L, Hernandez D, Piro A, Needham D, Lesser C, Herrmann C, Coers J. LPS-aggregating proteins GBP1 and GBP2 are each sufficient to enhance caspase-4 activation both in cellulo and in vitro. Proc Natl Acad Sci U S A 2023; 120:e2216028120. [PMID: 37023136 PMCID: PMC10104521 DOI: 10.1073/pnas.2216028120] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 02/26/2023] [Indexed: 04/07/2023] Open
Abstract
The gamma-interferon (IFNγ)-inducible guanylate-binding proteins (GBPs) promote host defense against gram-negative cytosolic bacteria in part through the induction of an inflammatory cell death pathway called pyroptosis. To activate pyroptosis, GBPs facilitate sensing of the gram-negative bacterial outer membrane component lipopolysaccharide (LPS) by the noncanonical caspase-4 inflammasome. There are seven human GBP paralogs, and it is unclear how each GBP contributes to LPS sensing and pyroptosis induction. GBP1 forms a multimeric microcapsule on the surface of cytosolic bacteria through direct interactions with LPS. The GBP1 microcapsule recruits caspase-4 to bacteria, a process deemed essential for caspase-4 activation. In contrast to GBP1, closely related paralog GBP2 is unable to bind bacteria on its own but requires GBP1 for direct bacterial binding. Unexpectedly, we find that GBP2 overexpression can restore gram-negative-induced pyroptosis in GBP1KO cells, without GBP2 binding to the bacterial surface. A mutant of GBP1 that lacks the triple arginine motif required for microcapsule formation also rescues pyroptosis in GBP1KO cells, showing that binding to bacteria is dispensable for GBPs to promote pyroptosis. Instead, we find that GBP2, like GBP1, directly binds and aggregates "free" LPS through protein polymerization. We demonstrate that supplementation of either recombinant polymerized GBP1 or GBP2 to an in vitro reaction is sufficient to enhance LPS-induced caspase-4 activation. This provides a revised mechanistic framework for noncanonical inflammasome activation where GBP1 or GBP2 assembles cytosol-contaminating LPS into a protein-LPS interface for caspase-4 activation as part of a coordinated host response to gram-negative bacterial infections.
Collapse
Affiliation(s)
- Mary S. Dickinson
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Miriam Kutsch
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Linda Sistemich
- Department of Physical Chemistry I, Ruhr-University Bochum, 44801Bochum, Germany
| | - Dulcemaria Hernandez
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - Anthony S. Piro
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
| | - David Needham
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC27708
| | - Cammie F. Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA02139
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Christian Herrmann
- Department of Physical Chemistry I, Ruhr-University Bochum, 44801Bochum, Germany
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27710
- Department of Immunology, Duke University Medical Center, Durham, NC27710
| |
Collapse
|
24
|
Goers L, Kim K, Stedman T, Canning P, Mou X, Ernst N, Coers J, Lesser C. Shigella IpaH9.8 limits GBP1-dependent LPS release from intracytosolic bacteria to suppress caspase-4 activation. Proc Natl Acad Sci U S A 2023; 120:e2218469120. [PMID: 37014865 PMCID: PMC10104580 DOI: 10.1073/pnas.2218469120] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/27/2023] [Indexed: 04/05/2023] Open
Abstract
Pyroptosis is an inflammatory form of cell death induced upon recognition of invading microbes. During an infection, pyroptosis is enhanced in interferon-gamma-exposed cells via the actions of members of the guanylate-binding protein (GBP) family. GBPs promote caspase-4 (CASP4) activation by enhancing its interactions with lipopolysaccharide (LPS), a component of the outer envelope of Gram-negative bacteria. Once activated, CASP4 promotes the formation of noncanonical inflammasomes, signaling platforms that mediate pyroptosis. To establish an infection, intracellular bacterial pathogens, like Shigella species, inhibit pyroptosis. The pathogenesis of Shigella is dependent on its type III secretion system, which injects ~30 effector proteins into host cells. Upon entry into host cells, Shigella are encapsulated by GBP1, followed by GBP2, GBP3, GBP4, and in some cases, CASP4. It has been proposed that the recruitment of CASP4 to bacteria leads to its activation. Here, we demonstrate that two Shigella effectors, OspC3 and IpaH9.8, cooperate to inhibit CASP4-mediated pyroptosis. We show that in the absence of OspC3, an inhibitor of CASP4, IpaH9.8 inhibits pyroptosis via its known degradation of GBPs. We find that, while some LPS is present within the host cell cytosol of epithelial cells infected with wild-type Shigella, in the absence of IpaH9.8, increased amounts are shed in a GBP1-dependent manner. Furthermore, we find that additional IpaH9.8 targets, likely GBPs, promote CASP4 activation, even in the absence of GBP1. These observations suggest that by boosting LPS release, GBP1 provides CASP4-enhanced access to cytosolic LPS, thus promoting host cell death via pyroptosis.
Collapse
Affiliation(s)
- Lisa Goers
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Kyungsub Kim
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Teagan C. Stedman
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
| | - Patrick J. Canning
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
| | - Xiangyu Mou
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Nadja Heinz Ernst
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
| | - Jörn Coers
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, NC27110
- Department of Immunology, Duke University Medical Center, Durham, NC27110
| | - Cammie F. Lesser
- Center for Bacterial Pathogenesis, Division of Infectious Diseases, Department of Medicine, Massachusetts General Hospital, Boston, MA02115
- Department of Microbiology, Blavatnik Institute, Harvard Medical School, Boston, MA02115
- Broad Institute of Massachusetts General Hospital and Harvard, Cambridge, MA02142
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology and Harvard University, Cambridge, MA02139
| |
Collapse
|
25
|
Chu K, Zhang Z, Chu Y, Xu Y, Yang W, Guo L. Ginsenoside Rg1 alleviates lipopolysaccharide-induced pyroptosis in human periodontal ligament cells via inhibiting Drp1-mediated mitochondrial fission. Arch Oral Biol 2023; 147:105632. [PMID: 36736069 DOI: 10.1016/j.archoralbio.2023.105632] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/29/2022] [Accepted: 01/25/2023] [Indexed: 01/29/2023]
Abstract
OBJECTIVE The present study aimed to investigate whether Ginsenoside Rg1 alleviated lipopolysaccharide (LPS) - induced pyroptosis of human periodontal ligament cells (HPDLCs) and further explore the underlying mechanism. DESIGN Cell viability was detected using the CCK-8 assay. Proinflammatory cytokine secretion and lactate dehydrogenase release were examined by ELISA. Flow cytometry analysis was conducted to determine the pyroptosis ratio, and ATP production was estimated using the ATP assay kit. Fluorescence staining was utilized to visualize mitochondrial morphology and analyze mitochondrial reactive oxygen species (mtROS), and the mitochondrial membrane potential level. Western blot and qRT-PCR were used to determine the expression of signaling pathway-related proteins and mRNA, respectively. RESULTS The results discovered that Ginsenoside Rg1 treatment enhanced cell viability in comparison to LPS stimulation, attenuated pyroptosis in HPDLCs, and reduced the release of lactate dehydrogenase, IL-1β, and IL-18 significantly. Additionally, we found that Ginsenoside Rg1 upregulated ATP content and mitochondrial membrane potential level while reducing aberrant mitochondrial fission and mtROS production. Mechanistically, we found that Ginsenoside Rg1 upregulated dynamin-related protein 1 (Drp1) phosphorylation at Ser 637 in an AMP-activated protein kinase (AMPK)-dependent manner, and reduced pyroptosis-related proteins expression, including NLRP3, ASC, Caspase-1, and GSDMD-NT. CONCLUSIONS These findings demonstrate that Ginsenoside Rg1 treatment attenuates LPS-induced pyroptosis and inflammation damage in HPDLCs, which may connect to the activation of the AMPK/Drp1/NLRP3 signaling pathway. Moreover, the results offer a potential theoretical foundation for applying Ginsenoside Rg1 in inflammatory diseases such as periodontitis.
Collapse
Affiliation(s)
- Kefei Chu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Zhenghao Zhang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yi Chu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Yao Xu
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Wanrong Yang
- Luzhou Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China; Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China
| | - Ling Guo
- Department of Oral prosthodontics, The Affiliated Stomatological Hospital of Southwest Medical University, Luzhou 646000, Sichuan, PR China.
| |
Collapse
|
26
|
Exconde PM, Hernandez-Chavez C, Bray MB, Lopez JL, Srivastava T, Egan MS, Zhang J, Shin S, Discher BM, Taabazuing CY. The tetrapeptide sequence of IL-1β regulates its recruitment and activation by inflammatory caspases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528859. [PMID: 36824844 PMCID: PMC9949112 DOI: 10.1101/2023.02.16.528859] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The mammalian innate immune system uses germline-encoded cytosolic pattern-recognition receptors (PRRs) to detect intracellular danger signals. At least six of these PRRs are known to form multiprotein complexes called inflammasomes which activate cysteine proteases known as caspases. Canonical inflammasomes recruit and activate caspase-1 (CASP1), which in turn cleaves and activates inflammatory cytokines such as IL-1β and IL-18, as well as the pore forming protein, gasdermin D (GSDMD), to induce pyroptotic cell death. In contrast, non-canonical inflammasomes, caspases-4/-5 (CASP4/5) in humans and caspase-11 (CASP11) in mice, are activated by intracellular LPS to cleave GSDMD, but their role in direct processing of inflammatory cytokines has not been established. Here we show that active CASP4/5 directly cleave IL-18 to generate the active species. Surprisingly, we also discovered that CASP4/5/11 cleave IL-1β at D27 to generate a 27 kDa fragment that is predicted to be inactive and cannot signal to the IL-1 receptor. Mechanistically, we discovered that the sequence identity of the P4-P1 tetrapeptide sequence adjacent to the caspase cleavage site (D116) regulates the recruitment and processing of IL-1β by inflammatory caspases to generate the bioactive species. Thus, we have identified new substrates of the non-canonical inflammasomes and reveal key mechanistic details regulating inflammation.
Collapse
Affiliation(s)
- Patrick M. Exconde
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Claudia Hernandez-Chavez
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Mark B. Bray
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jan L. Lopez
- Present address: Department of Biology, Boston University, Boston, Massachusetts, USA
| | - Tamanna Srivastava
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Marisa S. Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Jenna Zhang
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Bohdana M. Discher
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Cornelius Y. Taabazuing
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
27
|
Wang X, Guo Z, Wang Z, Liao H, Wang Z, Chen F, Wang Z. Diagnostic and predictive values of pyroptosis-related genes in sepsis. Front Immunol 2023; 14:1105399. [PMID: 36817458 PMCID: PMC9932037 DOI: 10.3389/fimmu.2023.1105399] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/17/2023] [Indexed: 02/04/2023] Open
Abstract
Background Sepsis is an organ dysfunction syndrome caused by the body's dysregulated response to infection. Yet, due to the heterogeneity of this disease process, the diagnosis and definition of sepsis is a critical issue in clinical work. Existing methods for early diagnosis of sepsis have low specificity. Aims This study evaluated the diagnostic and predictive values of pyroptosis-related genes in normal and sepsis patients and their role in the immune microenvironment using multiple bioinformatics analyses and machine-learning methods. Methods Pediatric sepsis microarray datasets were screened from the GEO database and the differentially expressed genes (DEGs) associated with pyroptosis were analyzed. DEGs were then subjected to multiple bioinformatics analyses. The differential immune landscape between sepsis and healthy controls was explored by screening diagnostic genes using various machine-learning models. Also, the diagnostic value of these diagnosis-related genes in sepsis (miRNAs that have regulatory relationships with genes and related drugs that have regulatory relationships) were analyzed in the internal test set and external test. Results Eight genes (CLEC5A, MALT1, NAIP, NLRC4, SERPINB1, SIRT1, STAT3, and TLR2) related to sepsis diagnosis were screened by multiple machine learning algorithms. The CIBERSORT algorithm confirmed that these genes were significantly correlated with the infiltration abundance of some immune cells and immune checkpoint sites (all P<0.05). SIRT1, STAT3, and TLR2 were identified by the DGIdb database as potentially regulated by multiple drugs. Finally, 7 genes were verified to have significantly different expressions between the sepsis group and the control group (P<0.05). Conclusion The pyroptosis-related genes identified and verified in this study may provide a useful reference for the prediction and assessment of sepsis.
Collapse
Affiliation(s)
- Xuesong Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhe Guo
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ziyi Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Haiyan Liao
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ziwen Wang
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Feng Chen
- School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Zhong Wang
- Department of General Medicine, Beijing Tsinghua Changgung Hospital affiliated to Tsinghua University, Beijing, China,*Correspondence: Zhong Wang,
| |
Collapse
|
28
|
Yuan H, Zhou L, Chen Y, You J, Hu H, Li Y, Huang R, Wu S. Salmonella effector SopF regulates PANoptosis of intestinal epithelial cells to aggravate systemic infection. Gut Microbes 2023; 15:2180315. [PMID: 36803521 PMCID: PMC9980482 DOI: 10.1080/19490976.2023.2180315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/23/2023] Open
Abstract
SopF, a newly discovered effector secreted by Salmonella pathogenicity island-1 type III secretion system (T3SS1), was reported to target phosphoinositide on host cell membrane and aggravate systemic infection, while its functional relevance and underlying mechanisms have yet to be elucidated. PANoptosis (pyroptosis, apoptosis, and necroptosis) of intestinal epithelial cells (IECs) has been characterized as a pivotal host defense to limit the dissemination of foodborne pathogens, whereas the effect of SopF on IECs PANoptosis induced by Salmonella is rather limited. Here, we show that SopF can attenuate intestinal inflammation and suppress IECs expulsion to promote bacterial dissemination in mice infected with Salmonella enterica serovar Typhimurium (S. Typhimurium). We revealed that SopF could activate phosphoinositide-dependent protein kinase-1 (PDK1) to phosphorylate p90 ribosomal S6 kinase (RSK) which down-regulated Caspase-8 activation. Caspase-8 inactivated by SopF resulted in inhibition of pyroptosis and apoptosis, but promotion of necroptosis. The administration of both AR-12 (PDK1 inhibitor) and BI-D1870 (RSK inhibitor) potentially overcame Caspase-8 blockade and subverted PANoptosis challenged by SopF. Collectively, these findings demonstrate that this virulence strategy elicited by SopF aggregates systemic infection via modulating IEC PANoptosis through PDK1-RSK signaling, which throws light on novel functions of bacterial effectors, as well as a mechanism employed by pathogens to counteract host immune defense.
Collapse
Affiliation(s)
- Haibo Yuan
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Department of Medical Technology, Suzhou Vocational Health College, Suzhou, China
| | - Liting Zhou
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Yilin Chen
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Jiayi You
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Hongye Hu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China
| | - Yuanyuan Li
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Rui Huang
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine
| | - Shuyan Wu
- Department of Medical Microbiology, School of Biology and Basic Medical Science, Suzhou Medical College of Soochow University, Suzhou, China,Suzhou Key Laboratory of Pathogen Bioscience and Anti-infective Medicine,CONTACT Shuyan Wu; Rui Huang ; Department of Medical Microbiology, School of Biology and Basic Medical Sciences, Suzhou Medical College of Soochow University, No. 199, Ren Ai Road, Suzhou, Jiangsu215123, PR China
| |
Collapse
|
29
|
Lawrence ALE, Berger RP, Hill DR, Huang S, Yadagiri VK, Bons B, Fields C, Sule GJ, Knight JS, Wobus CE, Spence JR, Young VB, O’Riordan MX, Abuaita BH. Human neutrophil IL1β directs intestinal epithelial cell extrusion during Salmonella infection. PLoS Pathog 2022; 18:e1010855. [PMID: 36191054 PMCID: PMC9578578 DOI: 10.1371/journal.ppat.1010855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/18/2022] [Accepted: 09/02/2022] [Indexed: 11/29/2022] Open
Abstract
Infection of the human gut by Salmonella enterica Typhimurium (STM) results in a localized inflammatory disease that is not mimicked in murine infections. To determine mechanisms by which neutrophils, as early responders to bacterial challenge, direct inflammatory programming of human intestinal epithelium, we established a multi-component human intestinal organoid (HIO) model of STM infection. HIOs were micro-injected with STM and seeded with primary human polymorphonuclear leukocytes (PMN-HIOs). PMNs did not significantly alter luminal colonization of Salmonella, but their presence reduced intraepithelial bacterial burden. Adding PMNs to infected HIOs resulted in substantial accumulation of shed TUNEL+ epithelial cells that was driven by PMN Caspase-1 activity. Inhibition of Caspases-1, -3 or -4 abrogated epithelial cell death and extrusion in the infected PMN-HIOs but only Caspase-1 inhibition significantly increased bacterial burden in the PMN-HIO epithelium. Thus, PMNs promote cell death in human intestinal epithelial cells through multiple caspases as a protective response to infection. IL-1β was necessary and sufficient to induce cell shedding in the infected HIOs. These data support a critical innate immune function for human neutrophils in amplifying cell death and extrusion of human epithelial cells from the Salmonella-infected intestinal monolayer. Neutrophils are early responders to Salmonella intestinal infection, but how they influence infection progression and outcome is unknown. Here we use a co-culture model of human intestinal organoids and human primary neutrophils to study the contribution of human neutrophils to Salmonella infection of the intestinal epithelium. We found that neutrophils markedly enhanced epithelial defenses, including enhancing cell extrusion to reduce intraepithelial burden of Salmonella and close association with the epithelium. These findings reveal an early role for neutrophils in the gut in shaping the gut environment to control epithelial infection.
Collapse
Affiliation(s)
- Anna-Lisa E. Lawrence
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Ryan P. Berger
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - David R. Hill
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Veda K. Yadagiri
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Brooke Bons
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Courtney Fields
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Gautam J. Sule
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jason S. Knight
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Christiane E. Wobus
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Jason R. Spence
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Vincent B. Young
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Mary X. O’Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (MXO); (BHA)
| | - Basel H. Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
- * E-mail: (MXO); (BHA)
| |
Collapse
|