1
|
Sluyter R, McEwan TBD, Sophocleous RA, Stokes L. Methods for studying P2X4 receptor ion channels in immune cells. J Immunol Methods 2024; 526:113626. [PMID: 38311008 DOI: 10.1016/j.jim.2024.113626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/28/2024] [Accepted: 02/01/2024] [Indexed: 02/06/2024]
Abstract
The P2X4 receptor is a trimeric ligand-gated ion channel activated by adenosine 5'-triphosphate (ATP). P2X4 is present in immune cells with emerging roles in inflammation and immunity, and related disorders. This review aims to provide an overview of the methods commonly used to study P2X4 in immune cells, focusing on those methods used to assess P2RX4 gene expression, the presence of the P2X4 protein, and P2X4 ion channel activity in these cells from humans, dogs, mice and rats. P2RX4 gene expression in immune cells is commonly assessed using semi-quantitative and quantitative reverse-transcriptase-PCR. The presence of P2X4 protein in immune cells is mainly assessed using anti-P2X4 polyclonal antibodies with immunoblotting or immunochemistry, but the use of these antibodies, as well as monoclonal antibodies and nanobodies to detect P2X4 with flow cytometry is increasing. Notably, use of an anti-P2X4 monoclonal antibody and flow cytometry has revealed that P2X4 is present on immune cells with a rank order of expression in eosinophils, then neutrophils and monocytes, then basophils and B cells, and finally T cells. P2X4 ion channel activity has been assessed mainly by Ca2+ flux assays using the cell permeable Ca2+-sensitive dyes Fura-2 and Fluo-4 with fluorescence microscopy, spectrophotometry, or flow cytometry. However, other methods including electrophysiology, and fluorescence assays measuring Na+ flux (using sodium green tetra-acetate) and dye uptake (using YO-PRO-12+) have been applied. Collectively, these methods have demonstrated the presence of functional P2X4 in monocytes and macrophages, microglia, eosinophils, mast cells and CD4+ T cells, with other evidence suggestive of functional P2X4 in dendritic cells, neutrophils, B cells and CD8+ T cells.
Collapse
Affiliation(s)
- Ronald Sluyter
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Tahnee B-D McEwan
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Reece A Sophocleous
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Leanne Stokes
- School of Pharmacy, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| |
Collapse
|
2
|
Therkildsen JR, Tingskov SJ, Jensen MS, Praetorius H, Nørregaard R. P2X 7 accelerate tissue fibrosis via metalloproteinase 8-dependent macrophage infiltration in a murine model of unilateral ureteral obstruction. Physiol Rep 2023; 11:e15878. [PMID: 37994252 PMCID: PMC10665779 DOI: 10.14814/phy2.15878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/19/2023] [Accepted: 11/09/2023] [Indexed: 11/24/2023] Open
Abstract
Renal fibrosis is tightly associated with chronic kidney disease, irrespective of the underlying pathogenesis. We previously demonstrated mild antifibrotic effects of targeting the P2X7 receptor in a pyelonephritis model. Reduced P2X7 R-activation elevated the neutrophil-to-macrophage ratio, resulting in less matrix accumulation without affecting the initial tissue healing. Here, we test if this P2X7 R-dependent modification of matrix accumulation also applies to a noninfectious fibrosis model of unilateral ureteral obstruction (7dUUO) and whether the response is gender-dependent. We found that P2X7 -/- mice show reduced fibrosis compared to wild type after 7dUUO: the effect was most pronounced in females, with a 55% decrease in collagen deposition after 7dUUO (p < 0.0068). P2X7 R deficiency did not affect early fibrosis markers (TGF-β, α-SMA) or the renal infiltration of neutrophils. However, a UUO-induced increase in macrophages was observed in wildtypes only (p < 0.001), leaving the P2X7 -/- mice with ≈50% fewer CD68+ cells in the renal cortex (p = 0.018). In males, 7dUUO triggered an increase in diffusely interstitial scattering of the profibrotic, macrophage-attracting metalloproteinase MMP8 and showed significantly lower MMP8 tissue expression in both male and female P2X7 -/- mice (p < 0.0008). Thus, the P2X7 R is advocated as a late-stage fibrosis moderator by reducing neutrophil-dependent interstitial MMP8 release, resulting in less macrophage infiltration and reduced matrix accumulation.
Collapse
Affiliation(s)
- Jacob Rudjord Therkildsen
- Department of BiomedicineAarhus UniversityAarhus CDenmark
- Department of Clinical BiochemistryAarhus University HospitalAarhus NDenmark
| | | | | | | | | |
Collapse
|
3
|
Tian X, Zheng J, Luo Y, Wei C, Ma J, Wang D, Li K. Identification of abnormally methylated differentially expressed genes in chronic periodontitis by integrated bioinformatics analysis. Technol Health Care 2022; 31:809-819. [PMID: 36617795 DOI: 10.3233/thc-220137] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND DNA methylation plays a vital role as an epigenetic change that contributes to chronic periodontitis. OBJECTIVE This study aimed to integrate two methylation datasets (GSE173081 and GSE59962) and two gene expression datasets (GSE10334 and GES16134) to identify abnormally methylated differentially expressed genes related to chronic periodontitis. METHODS Differentially methylated genes were obtained. Functional enrichment analysis of DMGs was performed. The protein-protein interaction (PPI) network was constructed using STRING and Cytoscape software. Finally, the hub genes were selected from the PPI network by using CytoHubba. RESULTS In total, 122 hypomethylated and highly expressed genes were enriched in the biological mechanisms that are involved in the differentiation of extracellular matrix organization, extracellular structure organization, and cell chemotaxis. The three selected hub genes of the PPI network were IL1B, KDR, and MMP9. A total of 122 hypermethylated and lowly expressed genes were identified, and biological processes, such as cornification, epidermis development, skin development, and keratinocyte differentiation were enriched. CDSN DSG1, and KRT2 were identified as the top 3 hub genes of the PPI network. CONCLUSION Based on the comprehensive bioinformatics analysis, six hub genes (IL1B, KDR, MMP9, CDSN DSG1, and KRT2) were associated with chronic periodontitis. Our findings provide novel insights into the mechanisms underlying epigenetic changes in chronic periodontitis.
Collapse
Affiliation(s)
- Xiufen Tian
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China.,Department of Orthopaedics, School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.,Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Juan Zheng
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, Shandong, China.,Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Yuanyuan Luo
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Chengshi Wei
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Jing Ma
- Department of Scientific Research, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Dawei Wang
- Department of Orthopaedics, Liaocheng People's Hospital, Liaocheng, Shandong, China
| | - Keyi Li
- Department of Stomatology, Liaocheng People's Hospital, Liaocheng, Shandong, China
| |
Collapse
|
4
|
Filipi K, Rahman WU, Osickova A, Osicka R. Kingella kingae RtxA Cytotoxin in the Context of Other RTX Toxins. Microorganisms 2022; 10:518. [PMID: 35336094 PMCID: PMC8953716 DOI: 10.3390/microorganisms10030518] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/04/2022] Open
Abstract
The Gram-negative bacterium Kingella kingae is part of the commensal oropharyngeal flora of young children. As detection methods have improved, K. kingae has been increasingly recognized as an emerging invasive pathogen that frequently causes skeletal system infections, bacteremia, and severe forms of infective endocarditis. K. kingae secretes an RtxA cytotoxin, which is involved in the development of clinical infection and belongs to an ever-growing family of cytolytic RTX (Repeats in ToXin) toxins secreted by Gram-negative pathogens. All RTX cytolysins share several characteristic structural features: (i) a hydrophobic pore-forming domain in the N-terminal part of the molecule; (ii) an acylated segment where the activation of the inactive protoxin to the toxin occurs by a co-expressed toxin-activating acyltransferase; (iii) a typical calcium-binding RTX domain in the C-terminal portion of the molecule with the characteristic glycine- and aspartate-rich nonapeptide repeats; and (iv) a C-proximal secretion signal recognized by the type I secretion system. RTX toxins, including RtxA from K. kingae, have been shown to act as highly efficient 'contact weapons' that penetrate and permeabilize host cell membranes and thus contribute to the pathogenesis of bacterial infections. RtxA was discovered relatively recently and the knowledge of its biological role remains limited. This review describes the structure and function of RtxA in the context of the most studied RTX toxins, the knowledge of which may contribute to a better understanding of the action of RtxA in the pathogenesis of K. kingae infections.
Collapse
Affiliation(s)
| | | | | | - Radim Osicka
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague, Czech Republic; (K.F.); (W.U.R.); (A.O.)
| |
Collapse
|
5
|
Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022; 18:93-113. [PMID: 34997903 PMCID: PMC8742569 DOI: 10.1007/s11302-021-09838-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 12/17/2021] [Indexed: 02/07/2023] Open
Abstract
Infectious diseases are caused by the invasion of pathogenic microorganisms such as fungi, bacteria, viruses, and parasites. After infection, disease progression relies on the complex interplay between the host immune response and the microorganism evasion strategies. The host's survival depends on its ability to mount an efficient protective anti-microbial response to accomplish pathogen clearance while simultaneously preventing tissue injury by keeping under control the excessive inflammatory process. The purinergic system has the dual function of regulating the immune response and triggering effector antimicrobial mechanisms. This review provides an overview of the current knowledge of the modulation of innate and adaptive immunity driven by the purinergic system during parasitic, bacterial and viral infections.
Collapse
Affiliation(s)
- Natalia Eberhardt
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Present Address: Department of Medicine, Leon H. Charney Division of Cardiology, New York University School of Medicine, New York, USA
| | - Gastón Bergero
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Yanina L. Mazzocco Mariotta
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M. Pilar Aoki
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI), Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET) - Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina
- Haya de La Torre and Medina Allende, Ciudad Universitaria, CP 5000 Córdoba, Argentina
| |
Collapse
|
6
|
Prince DJ, Patel D, Kachlany SC. Leukotoxin (LtxA/Leukothera) induces ATP expulsion via pannexin-1 channels and subsequent cell death in malignant lymphocytes. Sci Rep 2021; 11:18086. [PMID: 34508147 PMCID: PMC8433231 DOI: 10.1038/s41598-021-97545-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/26/2021] [Indexed: 11/09/2022] Open
Abstract
Leukotoxin (LtxA) (Trade name, Leukothera) is a protein that is secreted from the oral bacterium Aggregatibacter actinomycetemcomitans, which targets and kills activated white blood cells (WBCs) by binding to lymphocyte function associated antigen-1 (LFA-1). Interaction between LtxA and Jurkat T-cells results in cell death and is characterized by increased intracellular Ca2+, activation of caspases, clustering of LtxA and LFA-1 within lipid rafts, and involvement of the Fas death receptor. Here, we show that LtxA can kill malignant lymphocytes via apoptotic and necrotic forms of cell death. We show that LtxA causes activation of caspases and PARP, cleavage of pannexin-1 (Panx1) channels, and expulsion of ATP, ultimately leading to cell death via apoptosis and necrosis. CRISPR-Cas9 mediated knockout (K/O) of Panx1 in Jurkat cells prevented ATP expulsion and resulted in resistance to LtxA for both apoptotic and necrotic forms of death. Resistance to necrosis could only be overcome when supplementing LtxA with endogenous ATP (bzATP). The combination of LtxA and bzATP promoted only necrosis, as no Panx1 K/O cells stained positive for phosphatidylserine (PS) exposure following the combined treatment. Inhibition of LtxA/bzATP-induced necrosis was possible when pretreating Jurkat cells with oATP, a P2X7R antagonist. Similarly, blockage of P2X7Rs with oATP prevented the intracellular mobilization of Ca2+, an important early step in LtxA induced cell death. We show that LtxA is able to kill malignant lymphocytes through an apoptotic death pathway which is potentially linked to a Panx1/P2X7R mediated necrotic form of death. Thus, inhibition of ATP release appears to significantly delay the onset of LtxA induced apoptosis while completely disabling the necrotic death pathway in T-lymphocytes, demonstrating the crucial role of ATP release in LtxA-mediated cell death.
Collapse
Affiliation(s)
- Derek J Prince
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA
| | | | - Scott C Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ, 07103, USA.
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW RTX toxin action often defines the outcome of bacterial infections. Here, we discuss the progress in understanding the impacts of RTX toxin activities on host immunity. RECENT FINDINGS Bordetella pertussis CyaA activity paralyzes sentinel phagocytic cells by elevating cellular cAMP levels and blocks differentiation of infiltrating monocytes into bactericidal macrophages, promoting also de-differentiation of resident alveolar macrophages into monocyte-like cells. Vibrio cholerae multifunctional autoprocessing repeats-in-toxins (MARTX), through Rho inactivating and α/β-hydrolase (ABH) domain action blocks mitogen-activated protein kinase signaling in epithelial cells and dampens the inflammatory responses of intestinal epithelia by blocking immune cell recruitment. The action of actin crosslinking effector domain and Ras/Rap1-specific endopeptidase (RRSP) domains of MARTX compromises the phagocytic ability of macrophages. Aggregatibacter actinomycetemcomitans LtxA action triggers neutrophil elastase release into periodontal tissue, compromising the epithelial barrier and promoting bacterial spreads into deeper tissue. SUMMARY Action of RTX toxins enables bacterial pathogens to cope with the fierce host immune defenses. RTX toxins often block phagocytosis and bactericidal reactive oxygen species and NO production. Some RTX toxins can reprogram the macrophages to less bactericidal cell types. Autophagy is hijacked for example by the activity of the V. cholerae ABH effector domain of the MARTX protein. Subversion of immune functions by RTX toxins thus promotes bacterial survival and proliferation in the host.
Collapse
|
8
|
Praetorius H. The bacteria and the host: a story of purinergic signaling in urinary tract infections. Am J Physiol Cell Physiol 2021; 321:C134-C146. [PMID: 33979212 DOI: 10.1152/ajpcell.00054.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The local environment forces a selection of bacteria that might invade the urinary tract, allowing only the most virulent to access the kidney. Quite similar to the diet in setting the stage for the gut microbiome, renal function determines the conditions for bacteria-host interaction in the urinary tract. In the kidney, the term local environment or microenvironment is completely justified because the environment literally changes within a few micrometers. The precise composition of the urine is a function of the epithelium lining the microdomain, and the microenvironment in the kidney shows more variation in the content of nutrients, ion composition, osmolality, and pH than any other site of bacteria-host interaction. This review will cover some of the aspects of bacterial-host interaction in this unique setting and how uropathogenic bacteria can alter the condition for bacteria-host interaction. There will be a particular focus on the recent findings regarding how bacteria specifically trigger host paracrine signaling, via release of extracellular ATP and activation of P2 purinergic receptors. These finding will be discussed from the perspective of severe urinary tract infections, including pyelonephritis and urosepsis.
Collapse
|
9
|
Soare AY, Freeman TL, Min AK, Malik HS, Osota EO, Swartz TH. P2RX7 at the Host-Pathogen Interface of Infectious Diseases. Microbiol Mol Biol Rev 2021; 85:e00055-20. [PMID: 33441488 PMCID: PMC7849353 DOI: 10.1128/mmbr.00055-20] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The P2X7 receptor (P2RX7) is an important molecule that functions as a danger sensor, detecting extracellular nucleotides from injured cells and thus signaling an inflammatory program to nearby cells. It is expressed in immune cells and plays important roles in pathogen surveillance and cell-mediated responses to infectious organisms. There is an abundance of literature on the role of P2RX7 in inflammatory diseases and the role of these receptors in host-pathogen interactions. Here, we describe the current knowledge of the role of P2RX7 in the host response to a variety of pathogens, including viruses, bacteria, fungi, protozoa, and helminths. We describe in vitro and in vivo evidence for the critical role these receptors play in mediating and modulating immune responses. Our observations indicate a role for P2X7 signaling in sensing damage-associated molecular patterns released by nearby infected cells to facilitate immunopathology or protection. In this review, we describe how P2RX7 signaling can play critical roles in numerous cells types in response to a diverse array of pathogens in mediating pathogenesis and immunity to infectious agents.
Collapse
Affiliation(s)
- Alexandra Y Soare
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Tracey L Freeman
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alice K Min
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Hagerah S Malik
- University of Chicago Pritzker School of Medicine, Chicago, Illinois, USA
| | - Elizabeth O Osota
- University of California San Diego, Graduate School of Biomedical Sciences, San Diego, California, USA
| | - Talia H Swartz
- Division of Infectious Diseases, Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
10
|
Jing W, Lo Pilato J, Kay C, Man SM. Activation mechanisms of inflammasomes by bacterial toxins. Cell Microbiol 2021; 23:e13309. [PMID: 33426791 DOI: 10.1111/cmi.13309] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/16/2020] [Accepted: 12/12/2020] [Indexed: 12/13/2022]
Abstract
Inflammasomes are cytosolic innate immune complexes, which assemble in mammalian cells in response to microbial components and endogenous danger signals. A major family of inflammasome activators is bacterial toxins. Inflammasome sensor proteins, such as the nucleotide-binding oligomerisation domain-like receptor (NLR) family members NLRP1b and NLRP3, and the tripartite motif family member Pyrin+ efflux triggered by pore-forming toxins or by other toxin-induced homeostasis-altering events such as lysosomal rupture. Pyrin senses perturbation of host cell functions induced by certain enzymatic toxins resulting in impairment of RhoA GTPase activity. Assembly of the inflammasome complex activates the cysteine protease caspase-1, leading to the proteolytic cleavage of the proinflammatory cytokines IL-1β and IL-18, and the pore-forming protein gasdermin D causing pyroptosis. In this review, we discuss the latest progress in our understanding on the activation mechanisms of inflammasome complexes by bacterial toxins and effector proteins and explore avenues for future research into the relationships between inflammasomes and bacterial toxins.
Collapse
Affiliation(s)
- Weidong Jing
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Jordan Lo Pilato
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Callum Kay
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Department of Immunology and Infectious Disease, The John Curtin School of Medical Research, The Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
11
|
Prevention of P2 Receptor-Dependent Thrombocyte Activation by Pore-Forming Bacterial Toxins Improves Outcome in A Murine Model of Urosepsis. Int J Mol Sci 2020; 21:ijms21165652. [PMID: 32781764 PMCID: PMC7460651 DOI: 10.3390/ijms21165652] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 08/03/2020] [Accepted: 08/04/2020] [Indexed: 12/31/2022] Open
Abstract
Urosepsis is a potentially life-threatening, systemic reaction to uropathogenic bacteria entering the bloodstream of the host. One of the hallmarks of sepsis is early thrombocyte activation with a following fall in circulating thrombocytes as a result of intravascular aggregation and sequestering of thrombocytes in the major organs. Development of a thrombocytopenic state is associated with a poorer outcome of sepsis. Uropathogenic Escherichia coli frequently produce the pore-forming, virulence factor α-haemolysin (HlyA), of which the biological effects are mediated by ATP release and subsequent activation of P2 receptors. Thus, we speculated that inhibition of thrombocyte P2Y1 and P2Y12 receptors might ameliorate the septic response to HlyA-producing E. coli. The study combined in vitro measurements of toxin-induced thrombocyte activation assessed as increased membrane abundance of P-selectin, fibronectin and CD63 and data from in vivo murine model of sepsis-induced by HlyA-producing E. coli under infusion of P2Y1 and P2Y12 antagonists. Our data show that the P2Y1 receptor antagonist almost abolishes thrombocyte activation by pore-forming bacterial toxins. Inhibition of P2Y1, by constant infusion of MRS2500, markedly increased the survival in mice with induced sepsis. Moreover, MRS2500 partially prevented the sepsis-induced depletion of circulating thrombocytes and dampened the sepsis-associated increase in proinflammatory cytokines. In contrast, P2Y12 receptor inhibition had only a marginal effect in vivo and in vitro. Taken together, inhibition of the P2Y1 receptor gives a subtle dampening of the thrombocyte activation and the cytokine response to bacteraemia, which may explain the improved survival observed by P2Y1 receptor antagonists.
Collapse
|
12
|
Verma V, Kumar P, Gupta S, Yadav S, Dhanda RS, Thorlacius H, Yadav M. α-Hemolysin of uropathogenic E. coli regulates NLRP3 inflammasome activation and mitochondrial dysfunction in THP-1 macrophages. Sci Rep 2020; 10:12653. [PMID: 32724079 PMCID: PMC7387347 DOI: 10.1038/s41598-020-69501-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 07/07/2020] [Indexed: 12/16/2022] Open
Abstract
Hemolysin expressing UPEC strains have been associated with severe advanced kidney pathologies, such as cystitis and pyelonephritis, which are associated with an inflammatory response. Macrophages play an important role in regulating an inflammatory response during a urinary tract infection. We have studied the role of purified recombinant α-hemolysin in inducing inflammatory responses and cell death in macrophages. Acylation at lysine residues through HlyC is known to activate proHlyA into a fully functional pore-forming toxin, HlyA. It was observed that active α-hemolysin (HlyA) induced cleavage of caspase-1 leading to the maturation of IL-1β, while inactive α-hemolysin (proHlyA) failed to do so in THP-1 derived macrophages. HlyA also promotes deubiquitination, oligomerization, and activation of the NLRP3 inflammasome, which was found to be dependent on potassium efflux. We have also observed the co-localization of NLRP3 within mitochondria during HlyA stimulations. Moreover, blocking of potassium efflux improved the mitochondrial health in addition to a decreased inflammatory response. Our study demonstrates that HlyA stimulation caused perturbance in potassium homeostasis, which led to the mitochondrial dysfunction followed by an acute inflammatory response, resulting in cell death. However, the repletion of intracellular potassium stores could avoid HlyA induced macrophage cell death. The findings of this study will help to understand the mechanism of α-hemolysin induced inflammatory response and cell death.
Collapse
Affiliation(s)
- Vivek Verma
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Parveen Kumar
- Department of Urology, University of Alabama At Birmingham, Hugh Kaul Genetics Building, Birmingham, AL, USA
| | - Surbhi Gupta
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Sonal Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India
| | - Rakesh Singh Dhanda
- Stem Cell Laboratory, Longboat Explorers AB, SMiLE Incubator, Scheelevägen 2, Lund, Sweden
| | - Henrik Thorlacius
- Department of Clinical Sciences, Section of Surgery, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden
| | - Manisha Yadav
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi (North Campus), Delhi, 110007, India.
- Department of Clinical Sciences, Section of Surgery, Malmö, Skåne University Hospital, Lund University, Malmö, Sweden.
| |
Collapse
|
13
|
Krueger E, Brown AC. Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol 2020; 35:85-105. [PMID: 32061022 PMCID: PMC7359886 DOI: 10.1111/omi.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with localized aggressive periodontitis, as well as other systemic diseases. This organism produces a number of virulence factors, all of which provide some advantage to the bacterium. Several studies have demonstrated that clinical isolates from diseased patients, particularly those of African descent, frequently belong to specific clones of A. actinomycetemcomitans that produce significantly higher amounts of a protein exotoxin belonging to the repeats-in-toxin (RTX) family, leukotoxin (LtxA), whereas isolates from healthy patients harbor minimally leukotoxic strains. This finding suggests that LtxA might play a key role in A. actinomycetemcomitans pathogenicity. Because of this correlation, much work over the past 30 years has been focused on understanding the mechanisms by which LtxA interacts with and kills host cells. In this article, we review those findings, highlight the remaining open questions, and demonstrate how knowledge of these mechanisms, particularly the toxin's interactions with lymphocyte function-associated antigen-1 (LFA-1) and cholesterol, enables the design of targeted anti-LtxA strategies to prevent/treat disease.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
14
|
Wang C, Li Q, Lv J, Sun X, Cao Y, Yu K, Miao C, Zhang ZS, Yao Z, Wang Q. Alpha-hemolysin of uropathogenic Escherichia coli induces GM-CSF-mediated acute kidney injury. Mucosal Immunol 2020; 13:22-33. [PMID: 31719643 PMCID: PMC6914670 DOI: 10.1038/s41385-019-0225-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 10/14/2019] [Accepted: 10/21/2019] [Indexed: 02/04/2023]
Abstract
Uropathogenic Escherichia coli (UPEC) is the leading cause of urinary tract infections (UTIs), inducing acute pyelonephritis and may result in permanent renal scarring and failure. Alpha-hemolysin (HlyA), a key UPEC toxin, causes serious tissue damage; however, the mechanism through which HlyA induces kidney injury remains unclear. In the present study, granulocyte-macrophage colony-stimulating factor (GM-CSF) secreted by renal epithelial cells was upregulated by HlyA in vitro and in vivo, which induced M1 macrophage accumulation in kidney, and ADAM10 was found involved in HlyA-induced GM-CSF. Macrophage elimination or GM-CSF neutralization protected against acute kidney injury in mice, and increased GM-CSF was detected in urine of patients infected by hlyA-positive UPEC. In addition, HlyA was found to promote UPEC invasion into renal epithelial cells by interacting with Nectin-2 in vitro. However, HlyA did not affect bacterial titers during acute kidney infections, and HlyA-induced invasion did not contribute to GM-CSF upregulation in vitro, which indicate that HlyA-induced GM-CSF is independent of bacteria invasion. The role of GM-CSF in HlyA-mediated kidney injury may lead to novel strategies to treat acute pyelonephritis.
Collapse
Affiliation(s)
- Changying Wang
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Qianqian Li
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Junqiang Lv
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Xuan Sun
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Yang Cao
- 0000 0004 1798 6160grid.412648.dDepartment of Clinical Laboratory, The Second Hospital of Tianjin Medical University, 300211 Tianjin, China
| | - Kaiyuan Yu
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Chunhui Miao
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| | - Zhi-Song Zhang
- 0000 0000 9878 7032grid.216938.7State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Collaborative Innovation Center for Biotherapy, and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, 300350 Tianjin, China
| | - Zhi Yao
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China ,0000 0000 9792 1228grid.265021.22011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Medical University, 300070 Tianjin, China
| | - Quan Wang
- 0000 0000 9792 1228grid.265021.2Department of Immunology, Key Laboratory of Immune Microenvironment and Disease of the Educational Ministry of China, Tianjin Key Laboratory of Cellular and Molecular Immunology, School of Basic Medical Sciences, Tianjin Medical University, 300070 Tianjin, China
| |
Collapse
|
15
|
RTX Toxins Ambush Immunity's First Cellular Responders. Toxins (Basel) 2019; 11:toxins11120720. [PMID: 31835552 PMCID: PMC6950748 DOI: 10.3390/toxins11120720] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 12/05/2019] [Accepted: 12/07/2019] [Indexed: 01/17/2023] Open
Abstract
The repeats-in-toxin (RTX) family represents a unique class of bacterial exoproteins. The first family members described were toxins from Gram-negative bacterial pathogens; however, additional members included exoproteins with diverse functions. Our review focuses on well-characterized RTX family toxins from Aggregatibacteractinomycetemcomitans (LtxA), Mannheimiahaemolytica (LktA), Bordetella pertussis (CyaA), uropathogenic Escherichia coli (HlyA), and Actinobacillus pleuropneumoniae (ApxIIIA), as well as the studies that have honed in on a single host cell receptor for RTX toxin interactions, the β2 integrins. The β2 integrin family is composed of heterodimeric members with four unique alpha subunits and a single beta subunit. β2 integrins are only found on leukocytes, including neutrophils and monocytes, the first responders to inflammation following bacterial infection. The LtxA, LktA, HlyA, and ApxIIIA toxins target the shared beta subunit, thereby targeting all types of leukocytes. Specific β2 integrin family domains are required for the RTX toxin’s cytotoxic activity and are summarized here. Research examining the domains of the RTX toxins required for cytotoxic and hemolytic activity is also summarized. RTX toxins attack and kill phagocytic immune cells expressing a single integrin family, providing an obvious advantage to the pathogen. The critical question that remains, can the specificity of the RTX-β2 integrin interaction be therapeutically targeted?
Collapse
|
16
|
Johansson KE, Ståhl AL, Arvidsson I, Loos S, Tontanahal A, Rebetz J, Chromek M, Kristoffersson AC, Johannes L, Karpman D. Shiga toxin signals via ATP and its effect is blocked by purinergic receptor antagonism. Sci Rep 2019; 9:14362. [PMID: 31591425 PMCID: PMC6779916 DOI: 10.1038/s41598-019-50692-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 09/17/2019] [Indexed: 12/26/2022] Open
Abstract
Shiga toxin (Stx) is the main virulence factor of enterohemorrhagic Escherichia coli (EHEC), that cause gastrointestinal infection leading to hemolytic uremic syndrome. The aim of this study was to investigate if Stx signals via ATP and if blockade of purinergic receptors could be protective. Stx induced ATP release from HeLa cells and in a mouse model. Toxin induced rapid calcium influx into HeLa cells, as well as platelets, and a P2X1 receptor antagonist, NF449, abolished this effect. Likewise, the P2X antagonist suramin blocked calcium influx in Hela cells. NF449 did not affect toxin intracellular retrograde transport, however, cells pre-treated with NF449 exhibited significantly higher viability after exposure to Stx for 24 hours, compared to untreated cells. NF449 protected HeLa cells from protein synthesis inhibition and from Stx-induced apoptosis, assayed by caspase 3/7 activity. The latter effect was confirmed by P2X1 receptor silencing. Stx induced the release of toxin-positive HeLa cell- and platelet-derived microvesicles, detected by flow cytometry, an effect significantly reduced by NF449 or suramin. Suramin decreased microvesicle levels in mice injected with Stx or inoculated with Stx-producing EHEC. Taken together, we describe a novel mechanism of Stx-mediated cellular injury associated with ATP signaling and inhibited by P2X receptor blockade.
Collapse
Affiliation(s)
- Karl E Johansson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Anne-Lie Ståhl
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ida Arvidsson
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Sebastian Loos
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Ashmita Tontanahal
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Johan Rebetz
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Milan Chromek
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Ludger Johannes
- Institut Curie, U1143 INSERM, UMR3666 CNRS, Cellular and Chemical Biology unit, Paris, France
| | - Diana Karpman
- Department of Pediatrics, Clinical Sciences Lund, Lund University, Lund, Sweden.
| |
Collapse
|
17
|
Vega BA, Belinka BA, Kachlany SC. Aggregatibacter actinomycetemcomitans Leukotoxin (LtxA; Leukothera ®): Mechanisms of Action and Therapeutic Applications. Toxins (Basel) 2019; 11:toxins11090489. [PMID: 31454891 PMCID: PMC6784247 DOI: 10.3390/toxins11090489] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 12/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is an oral pathogen that produces the RTX toxin, leukotoxin (LtxA; Leukothera®). A. actinomycetemcomitans is strongly associated with the development of localized aggressive periodontitis. LtxA acts as a virulence factor for A. actinomycetemcomitans to subvert the host immune response by binding to the β2 integrin lymphocyte function-associated antigen-1 (LFA-1; CD11a/CD18) on white blood cells (WBCs), causing cell death. In this paper, we reviewed the state of knowledge on LtxA interaction with WBCs and the subsequent mechanisms of induced cell death. Finally, we touched on the potential therapeutic applications of LtxA (trade name Leukothera®) toxin therapy for the treatment of hematological malignancies and immune-mediated diseases.
Collapse
Affiliation(s)
- Brian A Vega
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
- Actinobac Biomed, Inc., Princeton, NJ 08540, USA
| | | | - Scott C Kachlany
- Department of Oral Biology, Rutgers School of Dental Medicine, Newark, NJ 07103, USA.
- Actinobac Biomed, Inc., Princeton, NJ 08540, USA.
| |
Collapse
|
18
|
P2X 1 receptor blockers reduce the number of circulating thrombocytes and the overall survival of urosepsis with haemolysin-producing Escherichia coli. Purinergic Signal 2019; 15:265-276. [PMID: 31129780 DOI: 10.1007/s11302-019-09658-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 05/06/2019] [Indexed: 01/14/2023] Open
Abstract
Urosepsis is a severe condition often caused by Escherichia coli that spontaneously have ascended the urinary tract to the kidneys causing pyelonephritis and potentially bacteraemia. The number of sepsis cases has been steadily increasing over the last decades, and there are still no specific, molecular supportive therapies for sepsis to supplement antibiotic treatment. P2X1 receptors are expressed by a number of immune cells including thrombocytes, which presently have been established as an important player in the acute immune response to bacterial infections. P2X1 receptor-deficient mice have been shown to be relatively protected against urosepsis, with markedly reduced levels of circulating proinflammatory cytokines and intravascular coagulation. However, here we show that continuous intravenous infusion with P2X1 receptor antagonist markedly accelerates development of a septic response to induced bacteraemia with uropathogenic E. coli. Mice exposed to the P2X1 receptor antagonists die very early with haematuria, substantially elevated plasma levels of proinflammatory cytokines, massive intravascular coagulation and a concomitant reduction in circulating thrombocytes. Interestingly, infusion of P2X1 receptor antagonists causes a marked acute reduction in circulating thrombocytes and a higher number of bacteria in the blood. These data support the notion that the number of functional thrombocytes is important for the acute defence against bacteria in the circulation and that the P2X1 receptor potentially could be essential for this response.
Collapse
|
19
|
Therkildsen JR, Christensen MG, Tingskov SJ, Wehmöller J, Nørregaard R, Praetorius HA. Lack of P2X 7 Receptors Protects against Renal Fibrosis after Pyelonephritis with α-Hemolysin-Producing Escherichia coli. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1201-1211. [PMID: 30926332 DOI: 10.1016/j.ajpath.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 02/22/2019] [Accepted: 02/26/2019] [Indexed: 01/07/2023]
Abstract
Severe urinary tract infections are commonly caused by sub-strains of Escherichia coli secreting the pore-forming virulence factor α-hemolysin (HlyA). Repeated or severe cases of pyelonephritis can cause renal scarring that subsequently can lead to progressive failure. We have previously demonstrated that HlyA releases cellular ATP directly through its membrane pore and that acute HlyA-induced cell damage is completely prevented by blocking ATP signaling. Local ATP signaling and P2X7 receptor activation play a key role in the development of tissue fibrosis. This study investigated the effect of P2X7 receptors on infection-induced renal scarring in a murine model of pyelonephritis. Pyelonephritis was induced by injecting 100 million HlyA-producing, uropathogenic E. coli into the urinary bladder of BALB/cJ mice. A similar degree of pyelonephritis and mortality was confirmed at day 5 after infection in P2X7+/+ and P2X7-/- mice. Fibrosis was first observed 2 weeks after infection, and the data clearly demonstrated that P2X7-/- mice and mice exposed to the P2X7 antagonist, brillian blue G, show markedly less renal fibrosis 14 days after infection compared with controls (P < 0.001). Immunohistochemistry revealed comparable early neutrophil infiltration in the renal cortex from P2X7+/+ and P2X7-/- mice. Interestingly, lack of P2X7 receptors resulted in diminished macrophage infiltration and reduced neutrophil clearance in the cortex of P2X7-/- mice. Hence, this study suggests the P2X7 receptor to be an appealing antifibrotic target after renal infections.
Collapse
Affiliation(s)
| | | | - Stine J Tingskov
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Julia Wehmöller
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | | |
Collapse
|
20
|
Johnsen N, Hamilton ADM, Greve AS, Christensen MG, Therkildsen JR, Wehmöller J, Skals M, Praetorius HA. α-Haemolysin production, as a single factor, causes fulminant sepsis in a model of Escherichia coli-induced bacteraemia. Cell Microbiol 2019; 21:e13017. [PMID: 30761726 DOI: 10.1111/cmi.13017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/08/2019] [Accepted: 02/10/2019] [Indexed: 12/14/2022]
Abstract
α-Haemolysin (HlyA) from uropathogenic Escherichia coli has been demonstrated to be a significant virulence factor for ascending urinary tract infections. Once the E. coli reach the well-vascularised kidneys, there is a high risk of bacteraemia and a subsequent septic host response. Despite this, HlyA has the potential to accelerate the host response both directly and via its ability to facilitate adenosine triphosphate release from cells. It has not been settled whether HlyA aggravates bacteraemia into a septic state. To address this, we used an E. coli strain in a model of acute urosepsis that was either transfected with a plasmid containing the full HlyA operon or one with deletion in the HlyA gene. Here, we show that HlyA accelerates the host response to E. coli in the circulation. Mice exposed to HlyA-producing E. coli showed massively increased proinflammatory cytokines, a substantial fall in circulating thrombocytes, extensive haematuria, and intravascular haemolysis. This was not seen in mice exposed to either E. coli that do not secrete HlyA or vehicle controls. Consistent with the massive host response to the bacteria, the mice exposed to HlyA-producing E. coli died exceedingly early, whereas mice exposed to E. coli without HlyA production and vehicle controls survived the entire observation period. These data allow us to conclude that HlyA is a virulence factor that accelerates a state of bacteraemia into fulminant sepsis in a mouse model.
Collapse
Affiliation(s)
- Nanna Johnsen
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | | | | | | | | - Julia Wehmöller
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | - Marianne Skals
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark
| | | |
Collapse
|
21
|
Krueger E, Hayes S, Chang EH, Yutuc S, Brown AC. Receptor-Based Peptides for Inhibition of Leukotoxin Activity. ACS Infect Dis 2018; 4:1073-1081. [PMID: 29742342 DOI: 10.1021/acsinfecdis.7b00230] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans, commonly associated with localized aggressive periodontitis (LAP), secretes an RTX (repeats-in-toxin) protein leukotoxin (LtxA) that targets human white blood cells, an interaction that is driven by its recognition of the lymphocyte function-associated antigen-1 (LFA-1) integrin. In this study, we report on the inhibition of LtxA-LFA-1 binding as an antivirulence strategy to inhibit LtxA-mediated cytotoxicity. Specifically, we designed and synthesized peptides corresponding to the reported LtxA binding domain on LFA-1 and characterized their capability to inhibit LtxA binding to LFA-1 and subsequent cytotoxic activity in human immune cells. We found that several of these peptides, corresponding to sequential β-strands in the LtxA-binding domain of LFA-1, inhibit LtxA activity, demonstrating the effectiveness of this approach. Further investigations into the mechanism by which these peptides inhibit LtxA binding to LFA-1 reveal a correlation between toxin-peptide affinity and LtxA-mediated cytotoxicity, leading to a diminished association between LtxA and LFA-1 on the cell membrane. Our results demonstrate the possibility of using target-based peptides to inhibit LtxA activity, and we expect that a similar approach could be used to hinder the activity of other RTX toxins.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Shannon Hayes
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - En Hyung Chang
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Shailagne Yutuc
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Iacocca Hall, Room B323, 111 Research Drive, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
22
|
Greve AS, Skals M, Fagerberg SK, Tonnus W, Ellermann-Eriksen S, Evans RJ, Linkermann A, Praetorius HA. P2X 1, P2X 4, and P2X 7 Receptor Knock Out Mice Expose Differential Outcome of Sepsis Induced by α-Haemolysin Producing Escherichia coli. Front Cell Infect Microbiol 2017; 7:113. [PMID: 28428949 PMCID: PMC5382212 DOI: 10.3389/fcimb.2017.00113] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 03/21/2017] [Indexed: 11/13/2022] Open
Abstract
α-haemolysin (HlyA)-producing Escherichia coli commonly inflict severe urinary tract infections, including pyelonephritis, which comprises substantial risk for sepsis. In vitro, the cytolytic effect of HlyA is mainly mediated by ATP release through the HlyA pore and subsequent P2X1/P2X7 receptor activation. This amplification of the lytic process is not unique to HlyA but is observed by many other pore-forming proteins including complement-induced haemolysis. Since free hemoglobin in the blood is known to be associated with a worse outcome in sepsis one could speculate that inhibition of P2X receptors would ameliorate the course of sepsis. Surprisingly, this study demonstrates that [Formula: see text] and [Formula: see text] mice are exceedingly sensitive to sepsis with uropathogenic E. coli. These mice have markedly lower survival, higher cytokine levels and activated intravascular coagulation. Quite the reverse is seen in [Formula: see text] mice, which had markedly lower cytokine levels and less coagulation activation compared to controls after exposure to uropathogenic E. coli. The high cytokine levels in the [Formula: see text] mouse are unexpected, since P2X7 is implicated in caspase-1-dependent IL-1β production. Here, we demonstrate that IL-1β production during sepsis with uropathogenic E. coli is mediated by caspase-8, since caspase-8 and RIPK3 double knock out mice show substantially lower cytokine during sepsis and increased survival after injection of TNFα. These data support that P2X7 and P2X4 receptor activation has a protective effect during severe E. coli infection.
Collapse
Affiliation(s)
| | - Marianne Skals
- Department of Biomedicine, Aarhus UniversityAarhus, Denmark.,Department of Clinical Microbiology, Aarhus University HospitalAarhus, Denmark
| | | | - Wulf Tonnus
- Division of Nephrology, Medical Clinic III, University Hospital Carl Gustav Carus DresdenDresden, Germany
| | | | - Richard J Evans
- Department of Molecular and Cell Biology, University of LeicesterLeicester, UK
| | - Andreas Linkermann
- Division of Nephrology, Medical Clinic III, University Hospital Carl Gustav Carus DresdenDresden, Germany
| | | |
Collapse
|