1
|
Winslow GM, Levack R. Know Your ABCs: Discovery, Differentiation, and Targeting of T-Bet+ B Cells. Immunol Rev 2025; 330:e13440. [PMID: 39844597 PMCID: PMC11754996 DOI: 10.1111/imr.13440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/22/2024] [Accepted: 01/01/2025] [Indexed: 01/24/2025]
Abstract
Since their first description in 2008, T-bet+ B cells have emerged as a clinically important B cell subset. Now commonly known as ABCs (Age-associated B Cells), they are uniquely characterized by their expression of the transcription factor T-bet. Indeed, this singular factor defines this B cell subset. This review will describe the discovery of T-bet+ B cells, their role in bacterial infection as T cell-independent (TI) plasmablasts, as well as long-term follicular helper T cell-dependent (TD) IgM+ and switched memory cells (i.e., T-bet+ ABCs), and later discoveries of their role(s) in diverse immunological responses. These studies highlight a critical, although limited, role of T-bet in IgG2a class switching, a function central to the cells' role in immunity and autoimmunity. Given their association with autoimmunity, pharmacological targeting is an attractive strategy for reducing or eliminating the B cells. T-bet+ ABCs express a number of characteristic cell surface markers, including CD11c, CD11b, CD73, and the adenosine 2a receptor (A2aR). Accordingly, A2aR agonist administration effectively targeted T-bet+ ABCs in vivo. Moreover, agonist treatment of lupus-prone mice reduced autoantibodies and disease symptoms. This latter work highlights the potential therapeutic use of adenosine agonists for treating autoimmune diseases involving T-bet+ ABCs.
Collapse
Affiliation(s)
- Gary M. Winslow
- Department of Microbiology and ImmunologyUpstate Medical UniversitySyracuseNew YorkUSA
| | - Russell Levack
- Department of ImmunologyUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
2
|
Bonin JL, Torres SR, Marcinkiewicz AL, Duhamel GE, Yang X, Pal U, DiSpirito JM, Nowak TA, Lin YP, MacNamara KC. Impact of E. muris infection on B. burgdorferi-induced joint pathology in mice. Front Immunol 2024; 15:1430419. [PMID: 39229265 PMCID: PMC11368855 DOI: 10.3389/fimmu.2024.1430419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/30/2024] [Indexed: 09/05/2024] Open
Abstract
Tick-borne infections are increasing in the United States and around the world. The most common tick-borne disease in the United States is Lyme disease caused by infection with the spirochete Borrelia burgdorferi (Bb), and pathogenesis varies from subclinical to severe. Bb infection is transmitted by Ixodes ticks, which can carry multiple other microbial pathogens, including Ehrlichia species. To address how the simultaneous inoculation of a distinct pathogen impacted the course of Bb-induced disease, we used C57BL/6 (B6) mice which are susceptible to Bb infection but develop only mild joint pathology. While infection of B6 mice with Bb alone resulted in minimal inflammatory responses, mice co-infected with both Bb and the obligate intracellular pathogen Ehrlichia muris (Em) displayed hematologic changes, inflammatory cytokine production, and emergency myelopoiesis similar to what was observed in mice infected only with Em. Moreover, infection of B6 mice with Bb alone resulted in no detectable joint inflammation, whereas mice co-infected with both Em and Bb exhibited significant inflammation of the ankle joint. Our findings support the concept that co-infection with Ehrlichia can exacerbate inflammation, resulting in more severe Bb-induced disease.
Collapse
Affiliation(s)
- Jesse L. Bonin
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Steven R. Torres
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Ashley L. Marcinkiewicz
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
| | - Gerald E. Duhamel
- New York State Animal Health Diagnostic Center and Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Xiuli Yang
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD, United States
| | - Julia M. DiSpirito
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| | - Tristan A. Nowak
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
| | - Yi-Pin Lin
- Division of Infectious Disease, Wadsworth Center, New York State Department of Health, Albany, NY, United States
- Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, United States
| | - Katherine C. MacNamara
- Department of Immunology and Microbial Disease, Albany Medical College, Albany, NY, United States
| |
Collapse
|
3
|
Boggiatto PM, Sterle H, Falkenberg S, Sarlo-Davila K, Putz EJ, Olsen SC. Characterization of the adaptive cellular and humoral immune responses to persistent colonization of Brucella abortus strain RB51 in a Jersey cow. Front Vet Sci 2024; 11:1367498. [PMID: 39132440 PMCID: PMC11312097 DOI: 10.3389/fvets.2024.1367498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 07/15/2024] [Indexed: 08/13/2024] Open
Abstract
Brucella abortus strain RB51 is the commercial cattle vaccine used in the United States (US) and many parts of the world against bovine brucellosis. RB51 was licensed for use in 1996, and it has been shown to be safe and efficacious in cattle, eliciting humoral and cellular responses in calves and adult animals. In 2017, an epidemiological trace-back investigation performed by the Centers for Disease Control and Prevention (CDC) identified human cases of brucellosis caused by infection with RB51. These infections resulted from the consumption of unpasteurized dairy products, which were traced back to otherwise healthy animals that were shedding RB51 in their milk. At the current time, six adult Jersey cows have been identified in the U.S. that are shedding RB51 in milk. One of the RB51 shedding cattle was obtained and housed at the National Animal Disease Center (NADC) for further study. Improved understanding of host cellular and humoral immune responses to RB51 in persistently colonized cattle may be achieved by the characterization of responses in shedding animals. We hypothesized, based on the lack of RB51 clearance, that the RB51 shedder animal has a diminished adaptive cellular immune response to RB51. Our data demonstrate that in the presence of persistent RB51 infection, there is a lack of peripheral anti-RB51 CD4+ T cell responses and a concurrently high anti-RB51 IgG humoral response. By understanding the mechanisms that result in RB51 persistence, the development of improved interventions or vaccinations for brucellosis may be facilitated, which would provide public health benefits, including reducing the risks associated with the consumption of non-pasteurized milk products.
Collapse
Affiliation(s)
- Paola M. Boggiatto
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Haley Sterle
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
- Immunobiology Interdepartmental Program, Iowa State University, Ames, IA, United States
| | - Shollie Falkenberg
- Auburn University College of Veterinary Medicine, Auburn, AL, United States
| | - Kaitlyn Sarlo-Davila
- Ruminant Diseases and Immunology Unit, National Animal Disease Center, Ames, IA, United States
| | - Ellie J. Putz
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| | - Steven C. Olsen
- Infectious Bacterial Diseases Research Unit, National Animal Disease Center, Ames, IA, United States
| |
Collapse
|
4
|
Newell KL, Cox J, Waickman AT, Wilmore JR, Winslow GM. T-bet + B cells Dominate the Peritoneal Cavity B Cell Response during Murine Intracellular Bacterial Infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:2749-2760. [PMID: 35867676 PMCID: PMC9309898 DOI: 10.4049/jimmunol.2101209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 04/16/2022] [Indexed: 06/15/2023]
Abstract
T-bet+ B cells have emerged as a major B cell subset associated with both protective immunity and immunopathogenesis. T-bet is a transcription factor associated with the type I adaptive immune response to intracellular pathogens, driving an effector program characterized by the production of IFN-γ. Murine infection with the intracellular bacterium, Ehrlichia muris, generates protective extrafollicular T cell-independent T-bet+ IgM-secreting plasmablasts, as well as T-bet+ IgM memory cells. Although T-bet is a signature transcription factor for this subset, it is dispensable for splenic CD11c+ memory B cell development, but not for class switching to IgG2c. In addition to the T-bet+ plasmablasts found in the spleen, we show that Ab-secreting cells can also be found within the mouse peritoneal cavity; these cells, as well as their CD138- counterparts, also expressed T-bet. A large fraction of the T-bet+ peritoneal B cells detected during early infection were highly proliferative and expressed CXCR3 and CD11b, but, unlike in the spleen, they did not express CD11c. T-bet+ CD11b+ memory B cells were the dominant B cell population in the peritoneal cavity at 30 d postinfection, and although they expressed high levels of T-bet, they did not require B cell-intrinsic T-bet expression for their generation. Our data uncover a niche for T-bet+ B cells within the peritoneal cavity during intracellular bacterial infection, and they identify this site as a reservoir for T-bet+ B cell memory.
Collapse
Affiliation(s)
- Krista L Newell
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Justin Cox
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Adam T Waickman
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Joel R Wilmore
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| | - Gary M Winslow
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY
| |
Collapse
|
5
|
Levack RC, Newell KL, Cabrera-Martinez B, Cox J, Perl A, Bastacky SI, Winslow GM. Adenosine receptor 2a agonists target mouse CD11c +T-bet + B cells in infection and autoimmunity. Nat Commun 2022; 13:452. [PMID: 35064115 PMCID: PMC8782827 DOI: 10.1038/s41467-022-28086-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 12/20/2021] [Indexed: 12/22/2022] Open
Abstract
CD11c+T-bet+ B cells are recognized as an important component of humoral immunity and autoimmunity. These cells can be distinguished from other B cells by their higher expression of the adenosine receptor 2a. Here we address whether A2A receptor activation can affect CD11c+T-bet+ B cells. We show that administration of the A2A receptor agonist CGS-21680 depletes established CD11c+T-bet+ B cells in ehrlichial-infected mice, in a B cell-intrinsic manner. Agonist treatment similarly depletes CD11c+T-bet+ B cells and CD138+ B cells and reduces anti-nuclear antibodies in lupus-prone mice. Agonist treatment is also associated with reduced kidney pathology and lymphadenopathy. Moreover, A2A receptor stimulation depletes pathogenic lymphocytes and ameliorates disease even after disease onset, highlighting the therapeutic potential of this treatment. This study suggests that targeting the adenosine signaling pathway may provide a method for the treatment of lupus and other autoimmune diseases mediated by T-bet+ B cells.
Collapse
Affiliation(s)
- Russell C Levack
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, 13210, USA
- University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Krista L Newell
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, 13210, USA
| | | | - Justin Cox
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Andras Perl
- Department of Medicine, Division of Rheumatology, Upstate Medical University, Syracuse, NY, 13210, USA
| | - Sheldon I Bastacky
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15213, USA
| | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY, 13210, USA.
| |
Collapse
|
6
|
Lin M, Xiong Q, Chung M, Daugherty SC, Nagaraj S, Sengamalay N, Ott S, Godinez A, Tallon LJ, Sadzewicz L, Fraser C, Dunning Hotopp JC, Rikihisa Y. Comparative Analysis of Genome of Ehrlichia sp. HF, a Model Bacterium to Study Fatal Human Ehrlichiosis. BMC Genomics 2021; 22:11. [PMID: 33407096 PMCID: PMC7789307 DOI: 10.1186/s12864-020-07309-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 12/07/2020] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The genus Ehrlichia consists of tick-borne obligatory intracellular bacteria that can cause deadly diseases of medical and agricultural importance. Ehrlichia sp. HF, isolated from Ixodes ovatus ticks in Japan [also referred to as I. ovatus Ehrlichia (IOE) agent], causes acute fatal infection in laboratory mice that resembles acute fatal human monocytic ehrlichiosis caused by Ehrlichia chaffeensis. As there is no small laboratory animal model to study fatal human ehrlichiosis, Ehrlichia sp. HF provides a needed disease model. However, the inability to culture Ehrlichia sp. HF and the lack of genomic information have been a barrier to advance this animal model. In addition, Ehrlichia sp. HF has several designations in the literature as it lacks a taxonomically recognized name. RESULTS We stably cultured Ehrlichia sp. HF in canine histiocytic leukemia DH82 cells from the HF strain-infected mice, and determined its complete genome sequence. Ehrlichia sp. HF has a single double-stranded circular chromosome of 1,148,904 bp, which encodes 866 proteins with a similar metabolic potential as E. chaffeensis. Ehrlichia sp. HF encodes homologs of all virulence factors identified in E. chaffeensis, including 23 paralogs of P28/OMP-1 family outer membrane proteins, type IV secretion system apparatus and effector proteins, two-component systems, ankyrin-repeat proteins, and tandem repeat proteins. Ehrlichia sp. HF is a novel species in the genus Ehrlichia, as demonstrated through whole genome comparisons with six representative Ehrlichia species, subspecies, and strains, using average nucleotide identity, digital DNA-DNA hybridization, and core genome alignment sequence identity. CONCLUSIONS The genome of Ehrlichia sp. HF encodes all known virulence factors found in E. chaffeensis, substantiating it as a model Ehrlichia species to study fatal human ehrlichiosis. Comparisons between Ehrlichia sp. HF and E. chaffeensis will enable identification of in vivo virulence factors that are related to host specificity, disease severity, and host inflammatory responses. We propose to name Ehrlichia sp. HF as Ehrlichia japonica sp. nov. (type strain HF), to denote the geographic region where this bacterium was initially isolated.
Collapse
Affiliation(s)
- Mingqun Lin
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| | - Qingming Xiong
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA
| | - Matthew Chung
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sean C Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sushma Nagaraj
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Naomi Sengamalay
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Sandra Ott
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Al Godinez
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Luke J Tallon
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Lisa Sadzewicz
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Claire Fraser
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Medicine, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Julie C Dunning Hotopp
- Institute for Genome Sciences, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
- Greenebaum Cancer Center, University of Maryland School of Medicine, 801 W. Baltimore St, Baltimore, MD, 21201, USA
| | - Yasuko Rikihisa
- Department of Veterinary Biosciences, The Ohio State University, 1925 Coffey Road, Columbus, OH, 43210, USA.
| |
Collapse
|
7
|
Levack RC, Newell KL, Popescu M, Cabrera-Martinez B, Winslow GM. CD11c + T-bet + B Cells Require IL-21 and IFN-γ from Type 1 T Follicular Helper Cells and Intrinsic Bcl-6 Expression but Develop Normally in the Absence of T-bet. THE JOURNAL OF IMMUNOLOGY 2020; 205:1050-1058. [PMID: 32680956 DOI: 10.4049/jimmunol.2000206] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022]
Abstract
CD11c+ T-bet+ B cells generated during ehrlichial infection require CD4+ T cell help and IL-21 signaling for their development, but the exact T cell subset required had not been known. In this study, we show in a mouse model of Ehrlichia muris that type 1 T follicular helper (TFH1) cells provide help to CD11c+ T-bet+ B cells via the dual secretion of IL-21 and IFN-γ in a CD40/CD40L-dependent manner. TFH1 cell help was delivered in two phases: IFN-γ signals were provided early in infection, whereas CD40/CD40L help was provided late in infection. In contrast to T-bet+ T cells, T-bet+ B cells did not develop in the absence of B cell-intrinsic Bcl-6 but were generated in the absence of T-bet. T-bet-deficient memory B cells were largely indistinguishable from their wild-type counterparts, although they no longer underwent switching to IgG2c. These data suggest that a primary function of T-bet in B cells during ehrlichial infection is to promote appropriate class switching, not lineage specification. Thus, CD11c+ memory B cells develop normally without T-bet but require Bcl-6 and specialized help from dual cytokine-producing TFH1 cells.
Collapse
Affiliation(s)
- Russell C Levack
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | - Krista L Newell
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | - Maria Popescu
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| | | | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210
| |
Collapse
|
8
|
Kenderes KJ, Levack RC, Papillion AM, Cabrera-Martinez B, Dishaw LM, Winslow GM. T-Bet + IgM Memory Cells Generate Multi-lineage Effector B Cells. Cell Rep 2020; 24:824-837.e3. [PMID: 30044980 PMCID: PMC6141031 DOI: 10.1016/j.celrep.2018.06.074] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 02/20/2018] [Accepted: 06/18/2018] [Indexed: 01/26/2023] Open
Abstract
Immunoglobulin M (IgM) memory cells undergo differentiation in germinal centers following antigen challenge, but the full effector cell potential of these cells is unknown. We monitored the differentiation of enhanced yellow fluorescent protein (eYFP)- labeled CD11c+ and CD11cneg T-bet+ IgM memory cells after their transfer into naive recipient mice. Following challenge infection, many memory cells differentiated into IgM-producing plasmablasts. Other donor B cells entered germinal centers, down- regulated CD11c, underwent class switch recombination, and became switched memory cells. Yet other donor cells were maintained as IgM memory cells, and these IgM memory cells retained their multi-lineage potential following serial transfer. These findings were corroborated at the molecular level using immune repertoire analyses. Thus, IgM memory cells can differentiate into all effector B cell lineages and undergo self-renewal, properties that are characteristic of stem cells. We propose that these memory cells exist to provide long-term multi-functional immunity and act primarily to maintain the production of protective antibodies. T-bet+ B cells have now been identified in a wide range of immunological contexts. Using a model bacterial infection, Kenderes et al. show that single T-bet+ IgM memory cells exhibit multi-lineage potential and can undergo self-renewal, both properties of stem cells.
Collapse
Affiliation(s)
- Kevin J Kenderes
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Russell C Levack
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Amber M Papillion
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | | | - Lisa M Dishaw
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, NY 13210, USA.
| |
Collapse
|
9
|
Ehrlichia chaffeensis Outer Membrane Protein 1-Specific Human Antibody-Mediated Immunity Is Defined by Intracellular TRIM21-Dependent Innate Immune Activation and Extracellular Neutralization. Infect Immun 2019; 87:IAI.00383-19. [PMID: 31548319 PMCID: PMC6867850 DOI: 10.1128/iai.00383-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Antibodies are essential for immunity against Ehrlichia chaffeensis, and protective mechanisms involve blocking of ehrlichial attachment or complement and Fcγ-receptor-dependent destruction. In this study, we determined that major outer membrane protein 1 (OMP-19) hypervariable region 1 (HVR1)-specific human monoclonal antibodies (huMAbs) are protective through conventional extracellular neutralization and, more significantly, through a novel intracellular TRIM21-mediated mechanism. Addition of OMP-1-specific huMAb EHRL-15 (IgG1) prevented infection by blocking attachment/entry, a mechanism previously reported; conversely, OMP-1-specific huMAb EHRL-4 (IgG3) engaged intracellular TRIM21 and initiated an immediate innate immune response and rapid intracellular degradation of ehrlichiae. EHRL-4-TRIM21-mediated inhibition was significantly impaired in TRIM21 knockout THP-1 cells. EHRL-4 interacted with cytosolic Fc receptor TRIM21, observed by confocal microscopy and confirmed by co-immunoprecipitation. E. chaffeensis-EHRL-4-TRIM21 complexes caused significant upregulation of proinflammatory cytokine/chemokine transcripts and resulted in rapid (<30 min) nuclear accumulation of NF-κB and TRIM21 and ehrlichial destruction. We investigated the role of TRIM21 in the autophagic clearance of ehrlichiae in the presence of EHRL-4. Colocalization between EHRL-4-opsonized ehrlichiae, polyubiquitinated TRIM21, autophagy regulators (ULK1 and beclin 1) and effectors (LC3 and p62), and lysosome-associated membrane protein 2 (LAMP2) was observed. Moreover, autophagic flux defined by conversion of LC3I to LC3II and accumulation and degradation of p62 was detected, and EHRL-4-mediated degradation of E. chaffeensis was abrogated by the autophagy inhibitor 3-methyladenine. Our results demonstrate that huMAbs are capable of inhibiting E. chaffeensis infection by distinct effector mechanisms: extracellularly by neutralization and intracellularly by engaging TRIM21, which mediates a rapid innate immune response that mobilizes the core autophagy components, triggering localized selective autophagic degradation of ehrlichiae.
Collapse
|
10
|
Popescu M, Cabrera-Martinez B, Winslow GM. TNF-α Contributes to Lymphoid Tissue Disorganization and Germinal Center B Cell Suppression during Intracellular Bacterial Infection. THE JOURNAL OF IMMUNOLOGY 2019; 203:2415-2424. [PMID: 31570507 DOI: 10.4049/jimmunol.1900484] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/03/2019] [Indexed: 12/11/2022]
Abstract
Bacterial, parasitic, and viral infections are well-known causes of lymphoid tissue disorganization, although the factors, both host and/or pathogen derived, that mediate these changes are largely unknown. Ehrlichia muris infection in mice causes a loss of germinal center (GC) B cells that is accompanied by the generation of extrafollicular T-bet+ CD11c+ plasmablasts and IgM memory B cells. We addressed a possible role for TNF-α in this process because this cytokine has been shown to regulate GC development. Ablation of TNF-α during infection resulted in an 8-fold expansion of GL7+ CD38lo CD95+ GC B cells, and a 2.5- and 5-fold expansion of CD138+ plasmablasts and T-bet+ memory cells, respectively. These changes were accompanied by a reduction in splenomegaly, more organized T and B cell zones, and an improved response to Ag challenge. CXCL13, the ligand for CXCR5, was detected at 6-fold higher levels following infection but was much reduced following TNF-α ablation, suggesting that CXCL13 dysregulation also contributes to loss of lymphoid tissue organization. T follicular helper cells, which also underwent expansion in infected TNF-α--deficient mice, may also have contributed to the expansion of T-bet+ B cells, as the latter are known to require T cell help. Our findings contrast with previously described roles for TNF-α in GCs and reveal how host-pathogen interactions can induce profound changes in cytokine and chemokine production that can alter lymphoid tissue organization, GC B cell development, and extrafollicular T-bet+ B cell generation.
Collapse
Affiliation(s)
- Maria Popescu
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| | - Berenice Cabrera-Martinez
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| | - Gary M Winslow
- Department of Microbiology and Immunology, Upstate Medical University, State University of New York, Syracuse, NY 13210
| |
Collapse
|
11
|
Intracellular Pathogens: Host Immunity and Microbial Persistence Strategies. J Immunol Res 2019; 2019:1356540. [PMID: 31111075 PMCID: PMC6487120 DOI: 10.1155/2019/1356540] [Citation(s) in RCA: 198] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 03/15/2019] [Accepted: 04/02/2019] [Indexed: 01/18/2023] Open
Abstract
Infectious diseases caused by pathogens including viruses, bacteria, fungi, and parasites are ranked as the second leading cause of death worldwide by the World Health Organization. Despite tremendous improvements in global public health since 1950, a number of challenges remain to either prevent or eradicate infectious diseases. Many pathogens can cause acute infections that are effectively cleared by the host immunity, but a subcategory of these pathogens called "intracellular pathogens" can establish persistent and sometimes lifelong infections. Several of these intracellular pathogens manage to evade the host immune monitoring and cause disease by replicating inside the host cells. These pathogens have evolved diverse immune escape strategies and overcome immune responses by residing and multiplying inside host immune cells, primarily macrophages. While these intracellular pathogens that cause persistent infections are phylogenetically diverse and engage in diverse immune evasion and persistence strategies, they share common pathogen type-specific mechanisms during host-pathogen interaction inside host cells. Likewise, the host immune system is also equipped with a diverse range of effector functions to fight against the establishment of pathogen persistence and subsequent host damage. This article provides an overview of the immune effector functions used by the host to counter pathogens and various persistence strategies used by intracellular pathogens to counter host immunity, which enables their extended period of colonization in the host. The improved understanding of persistent intracellular pathogen-derived infections will contribute to develop improved disease diagnostics, therapeutics, and prophylactics.
Collapse
|
12
|
McGill JL, Wang Y, Ganta CK, Boorgula GDY, Ganta RR. Antigen-Specific CD4 +CD8 + Double-Positive T Cells Are Increased in the Blood and Spleen During Ehrlichia chaffeensis Infection in the Canine Host. Front Immunol 2018; 9:1585. [PMID: 30050533 PMCID: PMC6050357 DOI: 10.3389/fimmu.2018.01585] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 06/26/2018] [Indexed: 12/11/2022] Open
Abstract
Ehrlichia chaffeensis is an obligate intracellular bacterium belonging to the order, Rickettsiales and is a frequent cause of severe and fatal tick-borne infection in people in North America. The reservoir host for E. chaffeensis is the white-tailed deer, while humans and dogs are regarded as common incidental hosts. In dogs, we and others have shown that E. chaffeensis establishes a chronic infection that persists for several weeks to months, while promoting the development of Th1 and Th17 cellular responses and pathogen-specific humoral immunity. We demonstrate here that vaccination with a live, attenuated clone of E. chaffeensis bearing a targeted mutation in the Ech_0230 gene neither promotes the development of long-lived cellular or humoral immunity, nor confers protection against secondary wild-type E. chaffeensis challenge. In dogs, a population of mature CD4+CD8+ double-positive (DP) T cells exists in the periphery that shares similarities with the DP T cell populations that have been described in humans and swine. Little is known about the function of these cells, particularly in the context of infectious diseases. Here, we demonstrate that canine DP T cells expand significantly in response to E. chaffeensis infection. Using in vitro antigen recall assays, we further demonstrate that canine DP T cells undergo clonal expansion, produce IFNγ and IL-17, and upregulate expression of granzyme B and granulysin. Together, our results demonstrate that DP T cells accumulate in the host during E. chaffeensis infection, and suggest that alternative lymphocyte populations may participate in the immune response to tick-borne infections in the incidental host.
Collapse
Affiliation(s)
- Jodi L. McGill
- Department of Veterinary Microbiology and Preventative Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, United States
| | - Ying Wang
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Chanran K. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Gunavanthi D. Y. Boorgula
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
13
|
Poston TB, O'Connell CM, Girardi J, Sullivan JE, Nagarajan UM, Marinov A, Scurlock AM, Darville T. T Cell-Independent Gamma Interferon and B Cells Cooperate To Prevent Mortality Associated with Disseminated Chlamydia muridarum Genital Tract Infection. Infect Immun 2018; 86:e00143-18. [PMID: 29661927 PMCID: PMC6013674 DOI: 10.1128/iai.00143-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 04/04/2018] [Indexed: 12/18/2022] Open
Abstract
CD4 T cells and antibody are required for optimal acquired immunity to Chlamydia muridarum genital tract infection, and T cell-mediated gamma interferon (IFN-γ) production is necessary to clear infection in the absence of humoral immunity. However, the role of T cell-independent immune responses during primary infection remains unclear. We investigated this question by inoculating wild-type and immune-deficient mice with C. muridarum CM001, a clonal isolate capable of enhanced extragenital replication. Genital inoculation of wild-type mice resulted in transient dissemination to the lungs and spleen that then was rapidly cleared from these organs. However, CM001 genital infection proved lethal for STAT1-/- and IFNG-/- mice, in which IFN-γ signaling was absent, and for Rag1-/- mice, which lacked T and B cells and in which innate IFN-γ signaling was retained. In contrast, B cell-deficient muMT mice, which can generate a Th1 response, and T cell-deficient mice with intact B cell and innate IFN-γ signaling survived. These data collectively indicate that IFN-γ prevents lethal CM001 dissemination in the absence of T cells and suggests a B cell corequirement. Adoptive transfer of convalescent-phase immune serum but not naive IgM to Rag1-/- mice infected with CM001 significantly increased the survival time, while transfer of naive B cells completely rescued Rag1-/- mice from CM001 lethality. Protection was associated with a significant reduction in the lung chlamydial burden of genitally infected mice. These data reveal an important cooperation between T cell-independent B cell responses and innate IFN-γ in chlamydial host defense and suggest that interactions between T cell-independent antibody and IFN-γ are essential for limiting extragenital dissemination.
Collapse
Affiliation(s)
- Taylor B Poston
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Catherine M O'Connell
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jenna Girardi
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Jeanne E Sullivan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Uma M Nagarajan
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| | - Anthony Marinov
- Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Amy M Scurlock
- Department of Pediatrics, Arkansas Children's Hospital, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Toni Darville
- Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina, USA
| |
Collapse
|
14
|
Abstract
The two ligands B cell-activating factor of the tumor necrosis factor family (BAFF) and a proliferation-inducing ligand (APRIL) and the three receptors BAFF receptor (BAFF-R), transmembrane activator and calcium-modulating cyclophilin ligand interactor (TACI), and B cell maturation antigen (BCMA) are members of the "BAFF system molecules." BAFF system molecules are primarily involved in B cell homeostasis. The relevance of BAFF system molecules in host responses to microbial assaults has been investigated in clinical studies and in mice deficient for each of these molecules. Many microbial products modulate the expression of these molecules. Data from clinical studies suggest a correlation between increased expression levels of BAFF system molecules and elevated B cell responses. Depending on the pathogen, heightened B cell responses may strengthen the host response or promote susceptibility. Whereas pathogen-mediated increases in the expression levels of the ligands and/or the receptors appear to promote microbial clearance, certain pathogens have evolved to ablate B cell responses by suppressing the expression of TACI and/or BAFF-R on B cells. Other than its well-established role in B cell responses, the TACI-mediated activation of macrophages is also implicated in resistance to intracellular pathogens. An improved understanding of the role that BAFF system molecules play in infection may assist in devising novel strategies for vaccine development.
Collapse
Affiliation(s)
- Jiro Sakai
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mustafa Akkoyunlu
- Laboratory of Bacterial Polysaccharides, Division of Bacterial Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
15
|
CD11c+ T-bet+ memory B cells: Immune maintenance during chronic infection and inflammation? Cell Immunol 2017; 321:8-17. [PMID: 28838763 DOI: 10.1016/j.cellimm.2017.07.006] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 07/18/2017] [Indexed: 01/30/2023]
Abstract
CD11c+ T-bet+ B cells have now been detected and characterized in different experimental and clinical settings, in both mice and humans. Whether such cells are monolithic, or define subsets of B cells with different functions is not yet known. Our studies have identified CD11c+ IgM+ CD19hi splenic IgM memory B cells that appear at approximately three weeks post-ehrlichial infection, and persist indefinitely, during low-level chronic infection. Although the CD11c+ T-bet+ B cells we have described are distinct, they appear to share many features with similar cells detected under diverse conditions, including viral infections, aging, and autoimmunity. We propose that CD11c+ T-bet+ B cells as a group share characteristics of memory B cells that are maintained under conditions of inflammation and/or low-level chronic antigen stimulation. In some cases, these cells may be advantageous, by providing immunity to re-infection, but in others may be deleterious, by contributing to aged-associated autoimmune responses.
Collapse
|
16
|
Sweet RA, Nickerson KM, Cullen JL, Wang Y, Shlomchik MJ. B Cell-Extrinsic Myd88 and Fcer1g Negatively Regulate Autoreactive and Normal B Cell Immune Responses. THE JOURNAL OF IMMUNOLOGY 2017; 199:885-893. [PMID: 28659358 DOI: 10.4049/jimmunol.1600861] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 05/30/2017] [Indexed: 01/01/2023]
Abstract
MyD88 and FcR common γ-chain (Fcer1g, FcRγ) elicit proinflammatory responses to exogenous Ags. Deletion of these receptors in autoimmune models has generally led to reduced overall disease. In B cells, Myd88 is required for anti-DNA and anti-RNA autoantibody responses, whereas Fcer1g is not expressed in these cells. The roles of these receptors in myeloid cells during B cell autoimmune activation remain less clear. To investigate the roles of Myd88 and Fcer1g in non-B cells, we transferred anti-self-IgG (rheumatoid factor) B cells and their physiologic target Ag, anti-chromatin Ab, into mice lacking Fcer1g, Myd88, or both and studied the extrafollicular plasmablast response. Surprisingly, we found a markedly higher and more prolonged response in the absence of either molecule; this effect was accentuated in doubly deficient recipients, with a 40-fold increase compared with wild-type recipients at day 10. This enhancement was dependent on CD40L, indicating that Myd88 and FcRγ, presumably on myeloid APCs, were required to downregulate T cell help for the extrafollicular response. To extend the generality, we then investigated a classic T cell-dependent response to (4-hydroxy-3-nitrophenyl)acetyl conjugated to chicken γ globulin and found a similar effect. Thus, these results reveal novel regulatory roles in the B cell response for receptors that are typically proinflammatory.
Collapse
Affiliation(s)
- Rebecca A Sweet
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519.,Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519; and
| | - Kevin M Nickerson
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Jaime L Cullen
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519; and
| | - Yujuan Wang
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| | - Mark J Shlomchik
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519; .,Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT 06519; and.,Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261
| |
Collapse
|
17
|
Papillion AM, Kenderes KJ, Yates JL, Winslow GM. Early derivation of IgM memory cells and bone marrow plasmablasts. PLoS One 2017; 12:e0178853. [PMID: 28575114 PMCID: PMC5456393 DOI: 10.1371/journal.pone.0178853] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Accepted: 05/21/2017] [Indexed: 11/19/2022] Open
Abstract
IgM memory cells are recognized as an important component of B cell memory in mice and humans. Our studies of B cells elicited in response to ehrlichial infection identified a population of CD11c-positive IgM memory cells, and an IgM bone marrow antibody-secreting cell population. The origin of these cells was unknown, although an early T-independent spleen CD11c- and T-bet-positive IgM plasmablast population precedes both, suggesting a linear relationship. A majority of the IgM memory cells detected after day 30 post-infection, also T-bet-positive, had undergone somatic hypermutation, indicating they expressed activation-induced cytidine deaminase (AID). Therefore, to identify early AID-expressing precursor B cells, we infected an AID-regulated tamoxifen-inducible Cre-recombinase-EYFP reporter strain. Tamoxifen administration led to the labeling of both IgM memory cells and bone marrow ASCs on day 30 and later post-infection. High frequencies of labeled cells were identified on day 30 post-infection, following tamoxifen administration on day 10 post-infection, although IgM memory cells were marked when tamoxifen was administered as early as day 4 post-infection. Transcription of Aicda in the early plasmablasts was not detected in the absence of CD4 T cells, but occurred independently of TLR signaling. Unlike the IgM memory cells, the bone marrow IgM ASCs were elicited independent of T cell help. Moreover, Aicda was constitutively expressed in IgM memory cells, but not in bone marrow ASCs. These studies demonstrate that two distinct long-term IgM-positive B cell populations are generated early in response to infection, but are maintained via separate mechanisms.
Collapse
Affiliation(s)
- Amber M. Papillion
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
| | - Kevin J. Kenderes
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
| | - Jennifer L. Yates
- Wadsworth Center, and University at Albany, Albany, New York, United States of America
| | - Gary M. Winslow
- Department of Microbiology and Immunology, Upstate Medical University, Syracuse, New York, United States of America
- * E-mail:
| |
Collapse
|
18
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne infectious diseases caused by various members from the genera Ehrlichia and Anaplasma. Ehrlichia chaffeensis is the major etiologic agent of human monocytotropic ehrlichiosis (HME), while Anaplasma phagocytophilum is the major cause of human granulocytic anaplasmosis (HGA). The clinical manifestations of HME and HGA ranges from subclinical to potentially life-threatening diseases associated with multi-organ failure. Macrophages and neutrophils are the major target cells for Ehrlichia and Anaplasma, respectively. The threat to public health is increasing with newly emerging ehrlichial and anaplasma agents, yet vaccines for human ehrlichioses and anaplasmosis are not available, and therapeutic options are limited. This article reviews recent advances in the understanding of HME and HGA.
Collapse
|
19
|
Chou AY, Kennett NJ, Melillo AA, Elkins KL. Murine survival of infection with Francisella novicida and protection against secondary challenge is critically dependent on B lymphocytes. Microbes Infect 2016; 19:91-100. [PMID: 27965147 DOI: 10.1016/j.micinf.2016.12.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/13/2016] [Accepted: 12/05/2016] [Indexed: 12/18/2022]
Abstract
Respiratory infection of mice with Francisella novicida has recently been used as a model for the highly virulent human pathogen Francisella tularensis. Similar to F. tularensis, even small doses of F. novicida administered by respiratory routes are lethal for inbred laboratory mice. This feature obviously limits study of infection-induced immunity. Parenteral sublethal infections of mice with F. novicida are feasible, but the resulting immune responses are incompletely characterized. Here we use parenteral intradermal (i.d.) and intraperitoneal (i.p.) F. novicida infections of C57BL/6J mice to determine the role of B cells in controlling primary and secondary F. novicida infections. Despite developing comparable levels of F. novicida-primed T cells, B cell knockout mice were much more susceptible to both primary i.d. infection and secondary i.p. challenge than wild type (normal) C57BL/6J mice. Transfer of F. novicida-immune sera to either wild type C57BL/6J mice or to B cell knockout mice did not appreciably impact survival of subsequent lethal F. novicida challenge. However, F. novicida-immune mice that were depleted of T cells after priming but just before challenge survived and cleared secondary i.p. F. novicida challenge. Collectively these results indicate that B cells, if not serum antibodies, play a major role in controlling F. novicida infections in mice.
Collapse
Affiliation(s)
- Alicia Y Chou
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Nikki J Kennett
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Amanda A Melillo
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States
| | - Karen L Elkins
- Laboratory of Mucosal Pathogens and Cellular Immunology, Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Rockville, MD 20852, United States.
| |
Collapse
|
20
|
Ehrlichioses: An Important One Health Opportunity. Vet Sci 2016; 3:vetsci3030020. [PMID: 29056728 PMCID: PMC5606584 DOI: 10.3390/vetsci3030020] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 08/23/2016] [Accepted: 08/25/2016] [Indexed: 12/13/2022] Open
Abstract
Ehrlichioses are caused by obligately intracellular bacteria that are maintained subclinically in a persistently infected vertebrate host and a tick vector. The most severe life-threatening illnesses, such as human monocytotropic ehrlichiosis and heartwater, occur in incidental hosts. Ehrlichia have a developmental cycle involving an infectious, nonreplicating, dense core cell and a noninfectious, replicating reticulate cell. Ehrlichiae secrete proteins that bind to host cytoplasmic proteins and nuclear chromatin, manipulating the host cell environment to their advantage. Severe disease in immunocompetent hosts is mediated in large part by immunologic and inflammatory mechanisms, including overproduction of tumor necrosis factor α (TNF-α), which is produced by CD8 T lymphocytes, and interleukin-10 (IL-10). Immune components that contribute to control of ehrlichial infection include CD4 and CD8 T cells, natural killer (NK) cells, interferon-γ (IFN-γ), IL-12, and antibodies. Some immune components, such as TNF-α, perforin, and CD8 T cells, play both pathogenic and protective roles. In contrast with the immunocompetent host, which may die with few detectable organisms owing to the overly strong immune response, immunodeficient hosts die with overwhelming infection and large quantities of organisms in the tissues. Vaccine development is challenging because of antigenic diversity of E. ruminantium, the necessity of avoiding an immunopathologic response, and incomplete knowledge of the protective antigens.
Collapse
|
21
|
Abstract
Ehrlichia chaffeensis is an obligatory intracellular and cholesterol-dependent bacterium that has evolved special proteins and functions to proliferate inside leukocytes and cause disease. E. chaffeensis has a multigene family of major outer membrane proteins with porin activity and induces infectious entry using its entry-triggering protein to bind the human cell surface protein DNase X. During intracellular replication, three functional pairs of two-component systems are sequentially expressed to regulate metabolism, aggregation, and the development of stress-resistance traits for transmission. A type IV secretion effector of E. chaffeensis blocks mitochondrion-mediated host cell apoptosis. Several type I secretion proteins are secreted at the Ehrlichia-host interface. E. chaffeensis strains induce strikingly variable inflammation in mice. The central role of MyD88, but not Toll-like receptors, suggests that Ehrlichia species have unique inflammatory molecules. A recent report about transient targeted mutagenesis and random transposon mutagenesis suggests that stable targeted knockouts may become feasible in Ehrlichia.
Collapse
Affiliation(s)
- Yasuko Rikihisa
- Department of Veterinary Biosciences, College of Veterinary Medicine, The Ohio State University, Columbus, Ohio 43210;
| |
Collapse
|
22
|
Habib S, El Andaloussi A, Hisham A, Ismail N. NK Cell-Mediated Regulation of Protective Memory Responses against Intracellular Ehrlichial Pathogens. PLoS One 2016; 11:e0153223. [PMID: 27092553 PMCID: PMC4836677 DOI: 10.1371/journal.pone.0153223] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 03/25/2016] [Indexed: 11/18/2022] Open
Abstract
Ehrlichiae are gram-negative obligate intracellular bacteria that cause potentially fatal human monocytic ehrlichiosis. We previously showed that natural killer (NK) cells play a critical role in host defense against Ehrlichia during primary infection. However, the contribution of NK cells to the memory response against Ehrlichia remains elusive. Primary infection of C57BL/6 mice with Ehrlichia muris provides long-term protection against a second challenge with the highly virulent Ixodes ovatus Ehrlichia (IOE), which ordinarily causes fatal disease in naïve mice. Here, we show that the depletion of NK cells in E. muris-primed mice abrogates the protective memory response against IOE. Approximately, 80% of NK cell-depleted E. muris-primed mice succumbed to lethal IOE infection on days 8-10 after IOE infection, similar to naïve mice infected with the same dose of IOE. The lack of a recall response in NK cell-depleted mice correlated with an increased bacterial burden, extensive liver injury, decreased frequency of Ehrlichia-specific IFN-γ-producing memory CD4+ and CD8+ T-cells, and a low titer of Ehrlichia-specific antibodies. Intraperitoneal infection of mice with E. muris resulted in the production of IL-15, IL-12, and IFN-γ as well as an expansion of activated NKG2D+ NK cells. The adoptive transfer of purified E. muris-primed hepatic and splenic NK cells into Rag2-/-Il2rg-/- recipient mice provided protective immunity against challenge with E. muris. Together, these data suggest that E. muris-induced memory-like NK cells, which contribute to the protective, recall response against Ehrlichia.
Collapse
Affiliation(s)
- Samar Habib
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Abdeljabar El Andaloussi
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States of America
| | - Ahmed Hisham
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Nahed Ismail
- Department of Pathology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
23
|
McGill JL, Nair ADS, Cheng C, Rusk RA, Jaworski DC, Ganta RR. Vaccination with an Attenuated Mutant of Ehrlichia chaffeensis Induces Pathogen-Specific CD4+ T Cell Immunity and Protection from Tick-Transmitted Wild-Type Challenge in the Canine Host. PLoS One 2016; 11:e0148229. [PMID: 26841025 PMCID: PMC4739596 DOI: 10.1371/journal.pone.0148229] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/14/2016] [Indexed: 01/02/2023] Open
Abstract
Ehrlichia chaffeensis is a tick-borne rickettsial pathogen and the causative agent of human monocytic ehrlichiosis. Transmitted by the Amblyomma americanum tick, E. chaffeensis also causes disease in several other vertebrate species including white-tailed deer and dogs. We have recently described the generation of an attenuated mutant strain of E. chaffeensis, with a mutation in the Ech_0660 gene, which is able to confer protection from secondary, intravenous-administered, wild-type E. chaffeensis infection in dogs. Here, we extend our previous results, demonstrating that vaccination with the Ech_0660 mutant protects dogs from physiologic, tick-transmitted, secondary challenge with wild-type E. chaffeensis; and describing, for the first time, the cellular and humoral immune responses induced by Ech_0660 mutant vaccination and wild-type E. chaffeensis infection in the canine host. Both vaccination and infection induced a rise in E. chaffeensis-specific antibody titers and a significant Th1 response in peripheral blood as measured by E. chaffeensis antigen-dependent CD4+ T cell proliferation and IFNγ production. Further, we describe for the first time significant IL-17 production by peripheral blood leukocytes from both Ech_0660 mutant vaccinated animals and control animals infected with wild-type E. chaffeensis, suggesting a previously unrecognized role for IL-17 and Th17 cells in the immune response to rickettsial pathogens. Our results are a critical first step towards defining the role of the immune system in vaccine-induced protection from E. chaffeensis infection in an incidental host; and confirm the potential of the attenuated mutant clone, Ech_0660, to be used as a vaccine candidate for protection against tick-transmitted E. chaffeensis infection.
Collapse
Affiliation(s)
- Jodi L. McGill
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
- * E-mail:
| | - Arathy D. S. Nair
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Chuanmin Cheng
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Rachel A. Rusk
- Pathobiology Graduate Program, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Deborah C. Jaworski
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| | - Roman R. Ganta
- Center of Excellence for Vector-Borne Diseases, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, Kansas, United States of America
| |
Collapse
|
24
|
Villaescusa A, García-Sancho M, Rodríguez-Franco F, Tesouro MÁ, Sainz Á. Effects of doxycycline on haematology, blood chemistry and peripheral blood lymphocyte subsets of healthy dogs and dogs naturally infected with Ehrlichia canis. Vet J 2015; 204:263-8. [PMID: 25957920 DOI: 10.1016/j.tvjl.2015.03.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/25/2015] [Accepted: 03/27/2015] [Indexed: 10/23/2022]
Abstract
Canine monocytic ehrlichiosis (CME), caused by Ehrlichia canis, is a vector-borne disease with a worldwide distribution. It has been proposed that the pathogenesis, clinical severity and outcome of disease caused by Ehrlichia spp. can be attributed to the immune response rather than to any direct rickettsial effect. Moreover, doxycycline, the antimicrobial of choice for the treatment of CME, has immunomodulatory and anti-inflammatory properties associated with blood leukocyte proliferation function, cytokine synthesis, and matrix metalloproteinase activity. In order to assess the potential effects of doxycycline, dependent and independent of its antimicrobial activity, the present study compared changes in haematology, blood chemistry and circulating lymphocyte subpopulations in 12 healthy dogs and 20 dogs with CME after doxycycline therapy. Some changes were recorded only in the CME affected dogs, probably due to the antimicrobial effect of doxycycline. However, increases in mean corpuscular haemoglobin, mean corpuscular haemoglobin concentration, platelet count and α2-globulins, and decreased plasma creatinine were observed in both healthy and CME affected dogs. The absolute count of B lymphocytes (CD21(+)) increased initially, but then decreased until the end of the study period in both groups. A potential effect of doxycycline unrelated to its antimicrobial activity against E. canis is suggested, taking into account the results observed both in healthy dogs and in dogs with CME.
Collapse
Affiliation(s)
- A Villaescusa
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain.
| | - M García-Sancho
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - F Rodríguez-Franco
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| | - M Á Tesouro
- Department of Veterinary Medicine, Surgery and Anatomy, College of Veterinary Medicine, University of León, Campus de Vegazana s/n, 24071, León, Spain
| | - Á Sainz
- Department of Animal Medicine and Surgery, College of Veterinary Medicine, Complutense University of Madrid, Avda. Puerta de Hierro s/n, 28040, Madrid, Spain
| |
Collapse
|
25
|
The omentum is a site of protective IgM production during intracellular bacterial infection. Infect Immun 2015; 83:2139-47. [PMID: 25776744 DOI: 10.1128/iai.00295-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 03/06/2015] [Indexed: 12/27/2022] Open
Abstract
Infection of mice with the bacterium Ehrlichia muris elicits a protective T cell-independent (TI) IgM response mediated primarily by a population of CD11c-expressing plasmablasts in the spleen. Although splenic marginal zone (MZ) B cells are considered to be important for TI responses to blood-borne pathogens, MZ B cells were not responsible for generating plasmablasts in response to Ehrlichia muris. Moreover, antigen-specific serum IgM was decreased only modestly in splenectomized mice and in mice that lacked spleen, lymph nodes, and Peyer's patches (SLP mice). Both splenectomized and SLP mice were protected against lethal ehrlichial challenge infection. Moreover, we found a high frequency of Ehrlichia-specific plasmablasts in the omentum of both conventional and SLP mice. Omental plasmablasts elicited during Ehrlichia infection lacked expression of CD138 but expressed CD11c in a manner similar to that of their splenic counterparts. Selective ablation of CD11c-expressing B cells nearly eliminated the omental Ehrlichia-specific plasmablasts and reduced antigen-specific serum IgM, identifying the omental B cells as a source of IgM production in the SLP mice. Generation of the omental plasmablasts was route dependent, as they were detected following peritoneal infection but not following intravenous infection. Our data identify the omentum as an important auxiliary site of IgM production during intracellular bacterial infection.
Collapse
|
26
|
Vitry MA, Hanot Mambres D, De Trez C, Akira S, Ryffel B, Letesson JJ, Muraille E. Humoral Immunity and CD4+Th1 Cells Are Both Necessary for a Fully Protective Immune Response upon Secondary Infection withBrucella melitensis. THE JOURNAL OF IMMUNOLOGY 2014; 192:3740-52. [DOI: 10.4049/jimmunol.1302561] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
B cell activating factor inhibition impairs bacterial immunity by reducing T cell-independent IgM secretion. Infect Immun 2013; 81:4490-7. [PMID: 24082070 DOI: 10.1128/iai.00998-13] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
B cell activating factor of the tumor necrosis factor family (BAFF) is an essential survival factor for B cells and has been shown to regulate T cell-independent (TI) IgM production. During Ehrlichia muris infection, TI IgM secretion in the spleen was BAFF dependent, and antibody-mediated BAFF neutralization led to an impairment of IgM-mediated host defense. The failure of TI plasmablasts to secrete IgM was not a consequence of alterations in their generation, survival, or early differentiation, since all occurred normally in infected mice following BAFF neutralization. Gene expression characteristic of plasma cell differentiation was also unaffected by BAFF neutralization in vivo, and except for CD138, plasmablast cell surface marker expression was unaffected. IgM was produced, since it was detected intracellularly, and impaired secretion was not due to a failure to express the IgM secretory exon. Addition of BAFF to plasmablasts in vitro rescued IgM secretion, suggesting that BAFF signaling can directly regulate secretory processes. Our findings indicate that BAFF signaling can modulate TI host defense by acting at a late stage in B cell differentiation, via its regulation of terminal plasmablast differentiation and/or IgM secretion.
Collapse
|
28
|
Yates JL, Racine R, McBride KM, Winslow GM. T cell-dependent IgM memory B cells generated during bacterial infection are required for IgG responses to antigen challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:1240-9. [PMID: 23804710 PMCID: PMC3720767 DOI: 10.4049/jimmunol.1300062] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Immunological memory has long considered to be harbored in B cells that express high-affinity class-switched IgG. IgM-positive memory B cells can also be generated following immunization, although their physiological role has been unclear. In this study, we show that bacterial infection elicited a relatively large population of IgM memory B cells that were uniquely identified by their surface expression of CD11c, CD73, and programmed death-ligand 2. The cells lacked expression of cell surface markers typically expressed by germinal center B cells, were CD138 negative, and did not secrete Ab ex vivo. The population was also largely quiescent and accumulated somatic mutations. The IgM memory B cells were located in the region of the splenic marginal zone and were not detected in blood or other secondary lymphoid organs. Generation of the memory cells was CD4 T cell dependent and required IL-21R signaling. In vivo depletion of the IgM memory B cells abrogated the IgG recall responses to specific Ag challenge, demonstrating that the cell population was required for humoral memory, and underwent class-switch recombination following Ag encounter. Our findings demonstrate that T cell-dependent IgM memory B cells can be elicited at high frequency and can play an important role in maintaining long-term immunity during bacterial infection.
Collapse
Affiliation(s)
- Jennifer L. Yates
- Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201-2002
- Department of Biomedical Sciences, University at Albany, NY 12201
| | - Rachael Racine
- Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201-2002
- Department of Biomedical Sciences, University at Albany, NY 12201
| | - Kevin M. McBride
- Department of Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithfield, TX 78957
| | - Gary M. Winslow
- Wadsworth Center, New York State Department of Health, P.O. Box 22002, Albany, NY 12201-2002
- Department of Biomedical Sciences, University at Albany, NY 12201
| |
Collapse
|
29
|
Villaescusa A, Tesouro MA, García-Sancho M, Ayllón T, Rodríguez-Franco F, Sainz A. Evaluation of lymphocyte populations in dogs naturally infected by Ehrlichia canis with and without clinical signs. Ticks Tick Borne Dis 2012; 3:279-82. [DOI: 10.1016/j.ttbdis.2012.10.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Evaluation of peripheral blood lymphocyte subsets in family-owned dogs naturally infected by Ehrlichia canis. Comp Immunol Microbiol Infect Dis 2012; 35:391-6. [DOI: 10.1016/j.cimid.2012.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Revised: 03/05/2012] [Accepted: 03/16/2012] [Indexed: 11/22/2022]
|
31
|
Jones DD, DeIulio GA, Winslow GM. Antigen-driven induction of polyreactive IgM during intracellular bacterial infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:1440-7. [PMID: 22730531 DOI: 10.4049/jimmunol.1200878] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyreactivity is well known as a property of natural IgM produced by B-1 cells. We demonstrate that polyreactive IgM is also generated during infection of mice with Ehrlichia muris, a tick-borne intracellular bacterial pathogen. The polyreactive IgM bound self and foreign Ags, including single-stranded and double-stranded DNA, insulin, thyroglobulin, LPS, influenza virus, and Borrelia burgdorferi. Production of polyreactive IgM during infection was Ag driven, not due to polyclonal B cell activation, as the majority of polyreactive IgM recognized ehrlichial Ag(s), including an immunodominant outer membrane protein. Monoclonal polyreactive IgM derived from T cell-independent spleen plasmablasts, which was germline-encoded, also bound cytoplasmic and nuclear Ags in HEp-2 cells. Polyreactive IgM protected immunocompromised mice against lethal bacterial challenge infection. Serum from human ehrlichiosis patients also contained polyreactive and self-reactive IgM. We propose that polyreactivity increases IgM efficacy during infection but may also exacerbate or mollify the response to foreign and self Ags.
Collapse
Affiliation(s)
- Derek D Jones
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | | | | |
Collapse
|
32
|
Bortnick A, Chernova I, Quinn WJ, Mugnier M, Cancro MP, Allman D. Long-lived bone marrow plasma cells are induced early in response to T cell-independent or T cell-dependent antigens. THE JOURNAL OF IMMUNOLOGY 2012; 188:5389-96. [PMID: 22529295 DOI: 10.4049/jimmunol.1102808] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The signals required to generate long-lived plasma cells remain unresolved. One widely cited model posits that long-lived plasma cells derive from germinal centers (GCs) in response to T cell-dependent (TD) Ags. Thus, T cell-independent (TI) Ags, which fail to sustain GCs, are considered ineffective at generating long-lived plasma cells. However, we show that long-lived hapten-specific plasma cells are readily induced without formation of GCs. Long-lived plasma cells developed in T cell-deficient mice after a single immunization with haptenated LPS, a widely used TI Ag. Long-lived plasma cells also formed in response to TD Ag when the GC response was experimentally prevented. These observations establish that long-lived plasma cells are induced in both TI and TD responses, and can arise independently of B cell maturation in GCs.
Collapse
Affiliation(s)
- Alexandra Bortnick
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | | | |
Collapse
|
33
|
Thomas S, Thirumalapura NR, Crocquet-Valdes PA, Luxon BA, Walker DH. Structure-based vaccines provide protection in a mouse model of ehrlichiosis. PLoS One 2011; 6:e27981. [PMID: 22114733 PMCID: PMC3219711 DOI: 10.1371/journal.pone.0027981] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Recent advances in bioinformatics have made it possible to predict the B cell and T cell epitopes of antigenic proteins. This has led to design of peptide based vaccines that are more specific, safe, and easy to produce. The obligately intracellular gram negative bacteria Ehrlichia cause ehrlichioses in humans and animals. As yet there are no vaccines to protect against Ehrlichia infection. METHODOLOGY/PRINCIPAL FINDINGS We applied the principle of structural vaccinology to design peptides to the epitopes of Ehrlichia muris outer membrane P28-19 (OMP-1/P28) and Ehrlichia Heat shock protein 60 (Hsp60/GroEL) antigenic proteins. Both P28-19 and Ehrlichia Hsp60 peptides reacted with polyclonal antibodies against E. canis and E. chaffeensis and could be used as a diagnostic tool for ehrlichiosis. In addition, we demonstrated that mice vaccinated with Ehrlichia P28-19 and Hsp60 peptides and later challenged with E. muris were protected against the pathogen. CONCLUSIONS/SIGNIFICANCE Our results demonstrate the power of structural vaccines and could be a new strategy in the development of vaccines to provide protection against pathogenic microorganisms.
Collapse
Affiliation(s)
- Sunil Thomas
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Nagaraja R. Thirumalapura
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | - Bruce A. Luxon
- Institute of Human Infections and Immunity, Institute for Translational Science, Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - David H. Walker
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, United States of America
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
34
|
Immunization with Ehrlichia P28 outer membrane proteins confers protection in a mouse model of ehrlichiosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 18:2018-25. [PMID: 22030371 DOI: 10.1128/cvi.05292-11] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The obligately intracellular bacterium Ehrlichia chaffeensis that resides in mononuclear phagocytes is the etiologic agent of human monocytotropic ehrlichiosis (HME). HME is an emerging and often life-threatening, tick-transmitted infectious disease in the United States. Effective primary immune responses against Ehrlichia infection involve generation of Ehrlichia-specific gamma interferon (IFN-γ)-producing CD4(+) T cells and cytotoxic CD8(+) T cells, activation of macrophages by IFN-γ, and production of Ehrlichia-specific antibodies of the Th1 isotype. Currently, there are no vaccines available against HME. We evaluated the ability of 28-kDa outer membrane proteins (P28-OMP-1) of the closely related Ehrlichia muris to stimulate long-term protective memory T and B cell responses and confer protection in mice. The spleens of mice vaccinated with E. muris P28-9, P28-12, P28-19, or a mixture of these three P28 proteins (P28s) using a DNA prime-protein boost regimen and challenged with E. muris had significantly lower bacterial loads than the spleens of mock-vaccinated mice. Mice immunized with P28-9, P28-12, P28-19, or the mixture induced Ehrlichia-specific CD4(+) Th1 cells. Interestingly, mice immunized with P28-14, orthologs of which in E. chaffeensis and E. canis are primarily expressed in tick cells, failed to lower the ehrlichial burden in the spleen. Immunization with the recombinant P28-19 protein alone also significantly decreased the bacterial load in the spleen and liver compared to those of the controls. Our study reports, for the first time, the protective roles of the Ehrlichia P28-9 and P28-12 proteins in addition to confirming previous reports of the protective ability of P28-19. Partial protection induced by immunization with P28-9, P28-12, and P28-19 against Ehrlichia was associated with the generation of Ehrlichia-specific cell-mediated and humoral immune responses.
Collapse
|
35
|
McBride JW, Walker DH. Progress and obstacles in vaccine development for the ehrlichioses. Expert Rev Vaccines 2010; 9:1071-82. [PMID: 20822349 DOI: 10.1586/erv.10.93] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Ehrlichia are tick-borne obligately intracellular bacteria that cause significant diseases in veterinary natural hosts, including livestock and companion animals, and are now considered important zoonotic pathogens in humans. Vaccines are needed for these veterinary and zoonotic human pathogens, but many obstacles exist that have impeded their development. These obstacles include understanding genetic and antigenic variability, influence of the host on the pathogen phenotype and immunogenicity, identification of the ehrlichial antigens that stimulate protective immunity and those that elicit immunopathology, development of animal models that faithfully reflect the immune responses of the hosts and understanding molecular host-pathogen interactions involved in immune evasion or that may be blocked by the host immune response. We review the obstacles and progress in addressing barriers associated with vaccine development to protect livestock, companion animals and humans against these host defense-evasive and cell function-manipulative, vector-transmitted pathogens.
Collapse
Affiliation(s)
- Jere W McBride
- Department of Pathology, Center for Emerging Infectious Diseases and Biodefense, Sealy Center for Vaccine Development, and the Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555-0609, USA.
| | | |
Collapse
|
36
|
MacNamara KC, Oduro K, Martin O, Jones DD, McLaughlin M, Choi K, Borjesson DL, Winslow GM. Infection-induced myelopoiesis during intracellular bacterial infection is critically dependent upon IFN-γ signaling. THE JOURNAL OF IMMUNOLOGY 2010; 186:1032-43. [PMID: 21149601 DOI: 10.4049/jimmunol.1001893] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Although microbial infections can alter steady-state hematopoiesis, the mechanisms that drive such changes are not well understood. We addressed a role for IFN-γ signaling in infection-induced bone marrow suppression and anemia in a murine model of human monocytic ehrlichiosis, an emerging tick-borne disease. Within the bone marrow of Ehrlichia muris-infected C57BL/6 mice, we observed a reduction in myeloid progenitor cells, as defined both phenotypically and functionally. Infected mice exhibited a concomitant increase in developing myeloid cells within the bone marrow, an increase in the frequency of circulating monocytes, and an increase in splenic myeloid cells. The infection-induced changes in progenitor cell phenotype were critically dependent on IFN-γ, but not IFN-α, signaling. In mice deficient in the IFN-γ signaling pathway, we observed an increase in myeloid progenitor cells and CDllb(lo)Gr1(lo) promyelocytic cells within the bone marrow, as well as reduced frequencies of mature granulocytes and monocytes. Furthermore, E. muris-infected IFN-γR-deficient mice did not exhibit anemia or an increase in circulating monocytes, and they succumbed to infection. Gene transcription studies revealed that IFN-γR-deficient CDllb(lo)Gr1(lo) promyelocytes from E. muris-infected mice exhibited significantly reduced expression of irf-1 and irf-8, both key transcription factors that regulate the differentiation of granulocytes and monocytes. Finally, using mixed bone marrow chimeric mice, we show that IFN-γ-dependent infection-induced myelopoiesis occurs via the direct effect of the cytokine on developing myeloid cells. We propose that, in addition to its many other known roles, IFN-γ acts to control infection by directly promoting the differentiation of myeloid cells that contribute to host defense.
Collapse
|
37
|
Racine R, McLaughlin M, Jones DD, Wittmer ST, MacNamara KC, Woodland DL, Winslow GM. IgM production by bone marrow plasmablasts contributes to long-term protection against intracellular bacterial infection. THE JOURNAL OF IMMUNOLOGY 2010; 186:1011-21. [PMID: 21148037 DOI: 10.4049/jimmunol.1002836] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
IgM responses are well known to occur early postinfection and tend to be short-lived, which has suggested that this Ig does not significantly contribute to long-term immunity. In this study, we demonstrate that chronic infection with the intracellular bacterium Ehrlichia muris elicits a protective, long-term IgM response. Moreover, we identified a population of CD138(high)IgM(high) B cells responsible for Ag-specific IgM production in the bone marrow. The IgM-secreting cells, which exhibited characteristics of both plasmablasts and plasma cells, contributed to protection against fatal ehrlichial challenge. Mice deficient in activation-induced cytidine deaminase, which produce only IgM, were protected against fatal ehrlichial challenge infection. The IgM-secreting cells that we have identified were maintained in the bone marrow in the absence of chronic infection, as antibiotic-treated mice remained protected against challenge infection. Our studies identify a cell population that is responsible for the IgM production in the bone marrow, and they highlight a novel role for IgM in the maintenance of long-term immunity during intracellular bacterial infection.
Collapse
Affiliation(s)
- Rachael Racine
- Department of Biomedical Sciences, University at Albany, State University of New York, Albany, NY 12201, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The existence of IgM has been known for more than a century, but its importance in immunity and autoimmunity continues to emerge. Studies of mice deficient in secreted IgM have provided unexpected insights into its role in several diverse processes, from B cell survival to atherosclerosis, as well as in autoimmunity and protection against infection. Among the various distinct properties that underlie the functions of IgM, two stand out: its polyreactivity and its ability to facilitate the removal of apoptotic cells. In addition, new B cell-targeted therapies for the treatment of autoimmunity have been shown to cause a reduction in serum IgM, potentially disrupting the functions of this immunoregulatory molecule and increasing susceptibility to infection.
Collapse
|
39
|
Anaplasma marginale infection with persistent high-load bacteremia induces a dysfunctional memory CD4+ T lymphocyte response but sustained high IgG titers. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2010; 17:1881-90. [PMID: 20943884 DOI: 10.1128/cvi.00257-10] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Control of blood-borne infections is dependent on antigen-specific effector and memory T cells and high-affinity IgG responses. In chronic infections characterized by a high antigen load, it has been shown that antigen-specific T and B cells are vulnerable to downregulation and apoptosis. Anaplasma marginale is a persistent infection of cattle characterized by acute and chronic high-load bacteremia. We previously showed that CD4(+) T cells primed by immunization with an A. marginale outer membrane protein were rapidly deleted following infection. Furthermore, peripheral blood T cell responses to bacteria were not observed after acute infection was controlled, suggesting dysfunctional T cell priming to other A. marginale antigens. The current study more closely investigated the kinetics of A. marginale-specific CD4(+) T cell responses primed during infection. Frequent sampling of peripheral blood and spleens revealed that antigen-specific CD4(+) T cell responses were first detected at 5 to 7 weeks, but the responses were sporadic and transient thereafter. A similar pattern was observed in animals sampled weekly for nearly 1 year. Paradoxically, by 2 weeks of infection, cattle had developed high titers of A. marginale-specific IgG, which remained high throughout persistent infection. This dysfunctional CD4(+) T cell response to infection is consistent with continual downregulation or deletion of newly primed effector T cells, similar to what was observed for immunization-induced T cells following A. marginale infection. The failure to establish a strong memory T cell response during A. marginale infection likely contributes to bacterial persistence.
Collapse
|
40
|
Abstract
Human ehrlichiosis and anaplasmosis are acute febrile tick-borne diseases caused by various members of the genera Ehrlichia and Anaplasma (Anaplasmataceae). Human monocytotropic ehrlichiosis has become one of the most prevalent life-threatening tick-borne disease in the United States. Ehrlichiosis and anaplasmosis are becoming more frequently diagnosed as the cause of human infections, as animal reservoirs and tick vectors have increased in number and humans have inhabited areas where reservoir and tick populations are high. Ehrlichia chaffeensis, the etiologic agent of human monocytotropic ehrlichiosis (HME), is an emerging zoonosis that causes clinical manifestations ranging from a mild febrile illness to a fulminant disease characterized by multiorgan system failure. Anaplasma phagocytophilum causes human granulocytotropic anaplasmosis (HGA), previously known as human granulocytotropic ehrlichiosis. This article reviews recent advances in the understanding of ehrlichial diseases related to microbiology, epidemiology, diagnosis, pathogenesis, immunity, and treatment of the 2 prevalent tick-borne diseases found in the United States, HME and HGA.
Collapse
|
41
|
Stevenson HL, Estes MD, Thirumalapura NR, Walker DH, Ismail N. Natural killer cells promote tissue injury and systemic inflammatory responses during fatal Ehrlichia-induced toxic shock-like syndrome. THE AMERICAN JOURNAL OF PATHOLOGY 2010; 177:766-76. [PMID: 20616341 DOI: 10.2353/ajpath.2010.091110] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human monocytotropic ehrlichiosis is caused by Ehrlichia chaffeensis, a Gram-negative bacterium lacking lipopolysaccharide. We have shown that fatal murine ehrlichiosis is associated with CD8(+)T cell-mediated tissue damage, tumor necrosis factor-alpha, and interleukin (IL)-10 overproduction, and CD4(+)Th1 hyporesponsiveness. In this study, we examined the relative contributions of natural killer (NK) and NKT cells in Ehrlichia-induced toxic shock. Lethal ehrlichial infection in wild-type mice induced a decline in NKT cell numbers, and late expansion and migration of activated NK cells to the liver, a main infection site that coincided with development of hepatic injury. The spatial and temporal changes in NK and NKT cells in lethally infected mice correlated with higher NK cell cytotoxic activity, higher expression of cytotoxic molecules such as granzyme B, higher production of interferon-gamma and tumor necrosis factor-alpha, increased hepatic infiltration with CD8alphaCD11c(+) dendritic cells and CD8(+)T cells, decreased splenic CD4(+)T cells, increased serum concentrations of IL-12p40, IL-18, RANTES, and monocyte chemotactic protein-1, and elevated production of IL-18 by liver mononuclear cells compared with nonlethally infected mice. Depletion of NK cells prevented development of severe liver injury, decreased serum levels of interferon-gamma, tumor necrosis factor-alpha, and IL-10, and enhanced bacterial elimination. These data indicate that NK cells promote immunopathology and defective anti-ehrlichial immunity, possibly via decreasing the protective immune response mediated by interferon-gamma producing CD4(+)Th1 and NKT cells.
Collapse
Affiliation(s)
- Heather L Stevenson
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | |
Collapse
|
42
|
Detection of "Candidatus Neoehrlichia mikurensis" in two patients with severe febrile illnesses: evidence for a European sequence variant. J Clin Microbiol 2010; 48:2630-5. [PMID: 20519481 DOI: 10.1128/jcm.00588-10] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Recently, a new genus of Anaplasmataceae termed "Candidatus Neoehrlichia" was discovered in ticks and rodents. Here, we report on two patients who suffered from febrile bacteremia due to "Candidatus Neoehrlichia mikurensis" associated with thrombotic or hemorrhagic events. 16S rRNA and groEL gene sequencing provided evidence of three groups of sequence variants.
Collapse
|
43
|
Pretorius A, Liebenberg J, Louw E, Collins N, Allsopp B. Studies of a polymorphic Ehrlichia ruminantium gene for use as a component of a recombinant vaccine against heartwater. Vaccine 2010; 28:3531-9. [DOI: 10.1016/j.vaccine.2010.03.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/09/2010] [Accepted: 03/09/2010] [Indexed: 11/24/2022]
|
44
|
Racine R, Jones DD, Chatterjee M, McLaughlin M, Macnamara KC, Winslow GM. Impaired germinal center responses and suppression of local IgG production during intracellular bacterial infection. THE JOURNAL OF IMMUNOLOGY 2010; 184:5085-93. [PMID: 20351185 DOI: 10.4049/jimmunol.0902710] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Germinal centers (GCs) are specialized microenvironments in secondary lymphoid organs that facilitate the development of high-affinity, isotype-switched Abs, and immunological memory; consequently, many infections require GC-derived IgG for pathogen clearance. Although Ehrlichia muris infection elicits a robust expansion of splenic, IgM-secreting plasmablasts, we detected only very low frequencies of isotype-switched IgG-secreting cells in mouse spleens, until at least 3 wk postinfection. Instead, Ag-specific IgG was produced in lymph nodes, where it required CD4 T cell help. Consistent with these findings, organized GCs and phenotypically defined splenic GC B cells were found in lymph nodes, but not spleens. Ehrlichial infection also inhibited spleen IgG responses against a coadministered T cell-dependent Ag, hapten 4-hydroxy-3-nitrophenyl acetyl (NP)-conjugated chicken gamma globulin in alum. NP-specific B cells failed to undergo expansion and differentiation into GC B cells in the spleen, Ab titers were reduced, and splenic IgG production was inhibited nearly 10-fold when the Ag was administered during infection. Our data provide a mechanism whereby an intracellular bacterial infection can compromise local immunity to coinfecting pathogens or antigenic challenge.
Collapse
Affiliation(s)
- Rachael Racine
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201, USA
| | | | | | | | | | | |
Collapse
|
45
|
Pone EJ, Zan H, Zhang J, Al-Qahtani A, Xu Z, Casali P. Toll-like receptors and B-cell receptors synergize to induce immunoglobulin class-switch DNA recombination: relevance to microbial antibody responses. Crit Rev Immunol 2010; 30:1-29. [PMID: 20370617 PMCID: PMC3038989 DOI: 10.1615/critrevimmunol.v30.i1.10] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Differentiation of naïve B cells, including immunoglobulin class-switch DNA recombination, is critical for the immune response and depends on the extensive integration of signals from the B-cell receptor (BCR), tumor necrosis factor (TNF) family members, Toll-like receptors (TLRs), and cytokine receptors. TLRs and BCR synergize to induce class-switch DNA recombination in T cell-dependent and T cell-independent antibody responses to microbial pathogens. BCR triggering together with simultaneous endosomal TLR engagement leads to enhanced B-cell differentiation and antibody responses. Te requirement of both BCR and TLR engagement would ensure appropriate antigen-specific activation in an infection. Co-stimulation of TLRs and BCR likely plays a significant role in anti-microbial antibody responses to contain pathogen loads until the T cell-dependent antibody responses peak. Furthermore, the temporal sequence of different signals is also critical for optimal B cell responses, as exemplified by the activation of B cells by initial TLR engagement, leading to the up-regulation of co-stimulatory CD80 and MCH-II receptors, which result in more efficient interactions with T cells, thereby enhancing the germinal center reaction and antibody affinity maturation. Overall, BCR and TLR stimulation and the integration with signals from the pathogen or immune cells and their products determine the ensuing B-cell antibody response.
Collapse
Affiliation(s)
- Egest J. Pone
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Hong Zan
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Jinsong Zhang
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Ahmed Al-Qahtani
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Zhenming Xu
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| | - Paolo Casali
- Institute for Immunology, School of Medicine and School of Biological Sciences, University of California, Irvine, CA 92697-4120, USA
| |
Collapse
|
46
|
Persistent infection contributes to heterologous protective immunity against fatal ehrlichiosis. Infect Immun 2009; 77:5682-9. [PMID: 19805532 DOI: 10.1128/iai.00720-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human monocytotropic ehrlichiosis (HME), an emerging and often life-threatening tick-transmitted disease, is caused by the obligately intracellular bacterium Ehrlichia chaffeensis. HME is modeled in C57BL/6 mice using Ehrlichia muris, which causes persistent infection, and Ixodes ovatus Ehrlichia (IOE), which is either acutely lethal or sublethal depending on the dose and route of inoculation. A persistent primary E. muris infection, but not a sublethal IOE infection, protects mice against an ordinarily lethal secondary IOE challenge. In the present study, we determined the role of persistent infection in maintenance of protective memory immune responses. E. muris-infected mice were treated with doxycycline or left untreated and then challenged with an ordinarily lethal dose of IOE. Compared to E. muris-primed mice treated with doxycycline, untreated mice persistently infected with E. muris had significantly greater numbers of antigen-specific gamma interferon-producing splenic memory T cells, significant expansion of CD4(+) CD25(+) T regulatory cells, and production of transforming growth factor beta1 in the spleen. Importantly, E. muris-primed mice treated with doxycycline showed significantly greater susceptibility to challenge infection with IOE compared to untreated mice persistently infected with E. muris. The study indicated that persistent ehrlichial infection contributes to heterologous protection by stimulating the maintenance of memory T-cell responses.
Collapse
|
47
|
B cells are essential for moderating the inflammatory response and controlling bacterial multiplication in a mouse model of vaccination against Chlamydophila abortus infection. Infect Immun 2009; 77:4868-76. [PMID: 19703981 DOI: 10.1128/iai.00503-09] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The use of inactivated vaccines associated with suitable adjuvants has been demonstrated to confer a good level of protection against Chlamydophila abortus. However, the basis of the immune protective response induced by these vaccines has been poorly studied. B cells act as an immune regulatory population during primary infection by C. abortus. Thus, it was considered of interest to study the role of B cells in an infection after immunization with a killed vaccine. For this, C57BL/6 and B-cell-deficient mice were immunized with a killed vaccine against C. abortus using QS-21 as the adjuvant. After challenge, the course of infection was established by analysis of morbidity, C. abortus burden in the liver, and histopathological changes. The immune response induced was studied by real-time PCR techniques. Experiments involving transfer of immune serum from vaccinated or previously infected mice were also carried out. The lack of B cells reduced the protection conferred by the QS-21 adjuvant vaccine. Vaccinated B-cell-deficient mice showed a 1,000-fold-greater bacterial burden in the liver than their wild-type counterparts. Obvious differences existed in the liver, where a severe neutrophilic reaction and extended areas of necrosis were observed with vaccinated B-cell-deficient mice. An analysis of the immune response pointed to a significant increase in inflammatory cytokines and chemokines and the deficient production of transforming growth factor beta. The transfer of antibodies restored the level of protection. This study demonstrates that B cells play a crucial role in controlling C. abortus multiplication and prevent an exacerbated inflammatory response.
Collapse
|
48
|
Antigen display, T-cell activation, and immune evasion during acute and chronic ehrlichiosis. Infect Immun 2009; 77:4643-53. [PMID: 19635826 DOI: 10.1128/iai.01433-08] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
How spatial and temporal changes in major histocompatibility complex/peptide antigen presentation to CD4 T cells regulate CD4 T-cell responses during intracellular bacterial infections is relatively unexplored. We have shown that immunization with an ehrlichial outer membrane protein, OMP-19, protects mice against fatal ehrlichial challenge infection, and we identified a CD4 T-cell epitope (IA(b)/OMP-19(107-122)) that elicited CD4 T cells following either immunization or infection. Here, we have used an IA(b)/OMP-19(107-122)-specific T-cell line to monitor antigen display ex vivo during acute and chronic infection with Ehrlichia muris, a bacterium that establishes persistent infection in C57BL/6 mice. The display of IA(b)/OMP-19(107-122) by host antigen-presenting cells was detected by measuring intracellular gamma interferon (IFN-gamma) production by the T-cell line. After intravenous infection, antigen presentation was detected in the spleen, peritoneal exudate cells, and lymph nodes, although the kinetics of antigen display differed among the tissues. Antigen presentation and bacterial colonization were closely linked in each anatomical location, and there was a direct relationship between antigen display and CD4 T-cell effector function. Spleen and lymph node dendritic cells (DCs) were efficient presenters of IA(b)/OMP-19(107-122), demonstrating that DCs play an important role in ehrlichial infection and immunity. Chronic infection and antigen presentation occurred within the peritoneal cavity, even in the presence of highly activated CD4 T cells. These data indicated that the ehrlichiae maintain chronic infection not by inhibiting antigen presentation or T-cell activation but, in part, by avoiding signals mediated by activated T cells.
Collapse
|
49
|
Munderloh UG, Silverman DJ, MacNamara KC, Ahlstrand GG, Chatterjee M, Winslow GM. Ixodes ovatus Ehrlichia exhibits unique ultrastructural characteristics in mammalian endothelial and tick-derived cells. Ann N Y Acad Sci 2009; 1166:112-9. [PMID: 19538270 DOI: 10.1111/j.1749-6632.2009.04520.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Tick-borne pathogens in the genus Ehrlichia cause emerging zoonoses. Although laboratory mice are susceptible to Ehrlichia infections, many isolates do not cause clinical illness. In contrast, the Ixodes ovatus Ehrlichia-like agent (IOE) causes disease and immune responses in mice comparable to the human illness caused by Ehrlichia chaffeensis. No culture system had been developed for IOE, however, which limited studies of this pathogen. We reasoned that endothelial and tick cell lines could potentially serve as host cells, since the IOE is found in ticks and in endothelial cells in mice. Infected spleen cells from RAG-deficient mice were overlaid onto ISE6 and RF/6A cultures, and colonies typical of Ehrlichia were noted in RF/6A cells within 2 weeks. Infection of ISE6 cells was established after transfer of IOE from RF/6A cells. Electron microscopy revealed densely packed inclusions in infected RF/6A and ISE6 cells; these inclusions contained copious amounts of filamentous structures, apparently originating from Ehrlichial cells. In particular, within RF/6A cells the structures assumed an ordered morphology of finely combed hair. IOE from RF/6A cells, when inoculated into C57BL/6 and RAG-deficient mice, induced fatal disease. These data reveal unique structural features of IOE that may contribute to the pathogen's high virulence.
Collapse
Affiliation(s)
- Ulrike G Munderloh
- Department of Entomology, University of Minnesota, St. Paul, Minnesota 55108, USA
| | | | | | | | | | | |
Collapse
|
50
|
Racine R, Winslow GM. IgM in microbial infections: taken for granted? Immunol Lett 2009; 125:79-85. [PMID: 19539648 DOI: 10.1016/j.imlet.2009.06.003] [Citation(s) in RCA: 182] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Revised: 06/08/2009] [Accepted: 06/08/2009] [Indexed: 12/20/2022]
Abstract
Much has been learned about the structure, function, and production of IgM, since the antibody's initial characterization. It is widely accepted that IgM provides a first line of defense during microbial infections, prior to the generation of adaptive, high-affinity IgG responses that are important for long-lived immunity and immunological memory. Although IgM responses are commonly used as a measure of exposure to infectious diseases, it is perhaps surprising that the role of and requirement for IgM in many microbial infections has not been well explored in vivo. This is in part due to the lack of capabilities, until relatively recently, to evaluate the requirement for IgM in the absence of coincident IgG responses. Such evaluations are now possible, using gene-targeted mouse strains that produce only IgM, or isotype-switched IgG. A number of studies have revealed that IgM, produced either innately, or in response to antigen challenge, plays an important and perhaps under appreciated role in many microbial infections. Moreover, the characterization of the roles of various B cell subsets, in the production of IgM, and in host defense, has revealed important and divergent roles for B-1a and B-1b cells. This review will highlight studies in which IgM, in its own right, has been found to play an important role, not only in early immunity, but also in long-term protection, against a variety of microbial pathogens. Observations that long-lived IgM responses can be generated in vivo suggest that it may be feasible to target IgM production as part of vaccination strategies.
Collapse
Affiliation(s)
- Rachael Racine
- The Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, NY 12201-0509, United States
| | | |
Collapse
|