1
|
Moodley D, Botes A. A carboxymethyl cellulase from the yeast Cryptococcus gattii WM276: Expression, purification and characterisation. Protein Expr Purif 2025; 225:106594. [PMID: 39197672 DOI: 10.1016/j.pep.2024.106594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/01/2024]
Abstract
Cryptococcus gattii and its medical implications have been extensively studied. There is, however, a significant knowledge gap regarding cryptococcal survival in its environmental niche, namely woody material, which is glaring given that infection is linked to environmental populations. A gene from C. gattii (WM276), the predominant global molecular type (VGI), has been sequenced and annotated as a putative cellulase. It is therefore, of both medical and industrial intertest to delineate the structure and function of this enzyme. A homology model of the enzyme was constructed as a fusion protein to a maltose binding protein (MBP). The CGB_E4160W gene was overexpressed as an MBP fusion enzyme in Escherichia coli T7 cells and purified to homogeneity using amylose affinity chromatography. The structural and functional character of the enzyme was investigated using fluorescence spectroscopy and enzyme activity assays, respectively. The optimal enzyme pH and temperature were found to be 6.0 and 50 °C, respectively, with an optimal salt concentration of 500 mM. Secondary structure analysis using Far-UV CD reveals that the MBP fusion protein is primarily α-helical with some β-sheets. Intrinsic tryptophan fluorescence illustrates that the MBP-cellulase undergoes a conformational change in the presence of its substrate, CMC-Na+. The thermotolerant and halotolerant nature of this particular cellulase, makes it useful for industrial applications, and adds to our understanding of the pathogen's environmental physiology.
Collapse
Affiliation(s)
- Dylan Moodley
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa
| | - Angela Botes
- School of Molecular and Cell Biology, University of the Witwatersrand, Johannesburg, South Africa.
| |
Collapse
|
2
|
Hansakon A, Khampoongern R, Schiller L, Jeerawattanawart S, Angkasekwinai P. Effect of intranasal administration of Granulocyte-Macrophage Colony-Stimulating Factor on pulmonary Cryptococcus gattii infection. Int Immunopharmacol 2024; 142:113259. [PMID: 39332096 DOI: 10.1016/j.intimp.2024.113259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 09/02/2024] [Accepted: 09/23/2024] [Indexed: 09/29/2024]
Abstract
Cryptococcosis, caused by infections with C. neoformans and C. gattii, presents a serious threat to global health and necessitates effective treatment strategies. Granulocyte-Macrophage Colony-Stimulating Factor, GM-CSF, is an immune-modulating cytokine that has been utilized clinically to improve host defense against infection; however, the impact of GM-CSF treatment in C. gattii infection has not been elucidated. Our current study aimed to investigate the effect of GM-CSF treatment on pulmonary immune response during C. gattii infection. In response to C. gattii infection, GM-CSF-expressing T helper cells and CD11b+ myeloid were enhanced in the lungs. The intranasal administration of GM-CSF during C. gattii infection significantly reduced pulmonary cryptococcal load, promoted an increase in pulmonary Th17 cells, as well as neutrophil infiltration in the lungs. Exposure of neutrophils to C. gattii in the presence of GM-CSF resulted in an increased neutrophil phagocytosis and fungal killing capacity, generation of reactive oxygen species (ROS), and upregulation of inflammatory cytokines and anti-microbial peptides. Although GM-CSF treatment in C. neoformans-infected mice had a comparable impact on the reduction of lung fungal burden, it resulted in the enhancement of Th1-type cytokine IFN-γ and the activation of M1 macrophages. Altogether, this study demonstrated that the intranasal delivery of GM-CSF has distinct effects on promoting the protection against C. gattii and C. neoformans by activating neutrophil/type-17 immune response and stimulating M1 macrophage/type-1 immunity, respectively.
Collapse
Affiliation(s)
- Adithap Hansakon
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani 12120 Thailand; Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120 Thailand
| | - Rungwadee Khampoongern
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120 Thailand
| | - Lauritz Schiller
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120 Thailand; Carl Von Ossietzky University of Oldenburg, Faculty VI - Medicine and Health Sciences, Oldenburg, Germany
| | - Siranart Jeerawattanawart
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120 Thailand
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathum Thani 12120 Thailand; Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathum Thani 12120, Thailand.
| |
Collapse
|
3
|
Van Buren EW, Ponce IE, Beavers KM, Stokes A, Cornelio MN, Emery M, Mydlarz LD. Structural and Evolutionary Relationships of Melanin Cascade Proteins in Cnidarian Innate Immunity. Integr Comp Biol 2024; 64:1320-1337. [PMID: 39025801 PMCID: PMC11579526 DOI: 10.1093/icb/icae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024] Open
Abstract
Melanin is an essential product that plays an important role in innate immunity in a variety of organisms across the animal kingdom. Melanin synthesis is performed by many organisms using the tyrosine metabolism pathway, a general pathway that utilizes a type-three copper oxidase protein, called PO-candidates (phenoloxidase candidates). While melanin synthesis is well-characterized in organisms like arthropods and humans, it is not as well-understood in non-model organisms such as cnidarians. With the rising anthropomorphic climate change influence on marine ecosystems, cnidarians, specifically corals, are under an increased threat of bleaching and disease. Understanding innate immune pathways, such as melanin synthesis, is vital for gaining insights into how corals may be able to fight these threats. In this study, we use comparative bioinformatic approaches to provide a comprehensive analysis of genes involved in tyrosine-mediated melanin synthesis in cnidarians. Eighteen PO-candidates representing five phyla were studied to identify their evolutionary relationship. Cnidarian species were most similar to chordates due to domain presents in the amino acid sequences. From there, functionally conserved domains in coral proteins were identified in a coral disease dataset. Five stony corals exposed to stony coral tissue loss disease were leveraged to identify 18 putative tyrosine metabolism genes, genes with functionally conserved domains to their Homo sapiens counterpart. To put this pathway in the context of coral health, putative genes were correlated to melanin concentration from tissues of stony coral species in the disease exposure dataset. In this study, tyrosinase was identified in stony corals as correlated to melanin concentrations and likely plays a key role in immunity as a resistance trait. In addition, stony coral genes were assigned to all modules within the tyrosine metabolism pathway, indicating an evolutionary conservation of this pathway across phyla. Overall, this study provides a comprehensive analysis of the genes involved in tyrosine-mediated melanin synthesis in cnidarians.
Collapse
Affiliation(s)
- Emily W Van Buren
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Ivan E Ponce
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Kelsey M Beavers
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
- Texas Advanced Computing Center, University of Texas at Austin, Austin, TX 78758, USA
| | - Alexia Stokes
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Mariah N Cornelio
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Madison Emery
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| | - Laura D Mydlarz
- Department of Biology, University of Texas at Arlington, Arlington, TX 76019, USA
| |
Collapse
|
4
|
Dornelas JCM, Paixão VM, Carmo PHF, Costa MC, Gomes ECQ, de Resende-Stoianoff MA, Santos DA. Influence of the agrochemical benomyl on Cryptococcus gattii-plant interaction in vitro and in vivo. Braz J Microbiol 2024; 55:2463-2471. [PMID: 38963475 PMCID: PMC11405651 DOI: 10.1007/s42770-024-01440-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
Cryptococcus gattii, an environmental fungus, is one of the agents of cryptococcosis. The influence of agrochemicals on fungal resistance to antifungals is widely discussed. However, the effects of benomyl (BEN) on fungal interaction with different hosts is still to be understood. Here we studied the influence of adaptation to BEN in the interaction with a plant model, phagocytes and with Tenebrio molitor. First, the strain C. gattii L24/01 non-adapted (NA), adapted (A) to BEN, and adapted with further culture on drug-free media (10p) interact with Nicotiana benthamiana, with a peak in the yeast burden on the 7th day post-inoculation. C. gattii L24/01 A and 10p provided lower fungal burden, but these strains increased cell diameter and capsular thickness after the interaction, together with decreased fungal growth. The strains NA and A showed reduced ergosterol levels, while 10p exhibited increased activity of laccase and urease. L24/01 A recovered from N. benthamiana was less engulfed by murine macrophages, with lower production of reactive oxygen species. This phenotype was accompanied by increased ability of this strain to grow inside macrophages. Otherwise, L24/01 A showed reduced virulence in the T. molitor larvae model. Here, we demonstrate that the exposure to BEN, and interaction with plants interfere in the morphophysiology and virulence of the C. gattii.
Collapse
Affiliation(s)
- João C M Dornelas
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Vivian M Paixão
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Paulo H F Carmo
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Marliete C Costa
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Eldon C Q Gomes
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Maria Aparecida de Resende-Stoianoff
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil
| | - Daniel A Santos
- Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Belo Horizonte, MG, CEP: 31270-901, Brazil.
| |
Collapse
|
5
|
Thiam F, Diop G, Coulonges C, Derbois C, Thiam A, Diouara AAM, Mbaye MN, Diop M, Nguer CM, Dieye Y, Mbengue B, Zagury JF, Deleuze JF, Dieye A. An elevated level of interleukin-17A in a Senegalese malaria cohort is associated with rs8193038 IL-17A genetic variant. BMC Infect Dis 2024; 24:275. [PMID: 38438955 PMCID: PMC10910704 DOI: 10.1186/s12879-024-09149-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 02/17/2024] [Indexed: 03/06/2024] Open
Abstract
Malaria infection is a multifactorial disease partly modulated by host immuno-genetic factors. Recent evidence has demonstrated the importance of Interleukin-17 family proinflammatory cytokines and their genetic variants in host immunity. However, limited knowledge exists about their role in parasitic infections such as malaria. We aimed to investigate IL-17A serum levels in patients with severe and uncomplicated malaria and gene polymorphism's influence on the IL-17A serum levels. In this research, 125 severe (SM) and uncomplicated (UM) malaria patients and 48 free malaria controls were enrolled. IL-17A serum levels were measured with ELISA. PCR and DNA sequencing were used to assess host genetic polymorphisms in IL-17A. We performed a multivariate regression to estimate the impact of human IL-17A variants on IL-17A serum levels and malaria outcomes. Elevated serum IL-17A levels accompanied by increased parasitemia were found in SM patients compared to UM and controls (P < 0.0001). Also, the IL-17A levels were lower in SM patients who were deceased than in those who survived. In addition, the minor allele frequencies (MAF) of two IL-17A polymorphisms (rs3819024 and rs3748067) were more prevalent in SM patients than UM patients, indicating an essential role in SM. Interestingly, the heterozygous rs8193038 AG genotype was significantly associated with higher levels of IL-17A than the homozygous wild type (AA). According to our results, it can be concluded that the IL-17A gene rs8193038 polymorphism significantly affects IL-17A gene expression. Our results fill a gap in the implication of IL-17A gene polymorphisms on the cytokine level in a malaria cohort. IL-17A gene polymorphisms also may influence cytokine production in response to Plasmodium infections and may contribute to the hyperinflammatory responses during severe malaria outcomes.
Collapse
Affiliation(s)
- Fatou Thiam
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal.
| | - Gora Diop
- Departement de Biologie Animale, Faculte Des Sciences Et Techniques, Unite Postulante de Biologie GenetiqueGenomique Et Bio-Informatique (G2B), Universite Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
- Pole d'Immunophysiopathologie & Maladies Infectieuses (IMI), Institut Pasteur de Dakar, 36, Avenue Pasteur, Dakar, BP: 220, Senegal
| | - Cedric Coulonges
- Equipe GBA «GenomiqueBioinformatique & Applications», Conservatoire National Des Arts Et Metiers, 292, Rue Saint Martin, Paris Cedex 03, Paris, 75141, France
| | - Celine Derbois
- Centre National de Recherche en Génétique Humaine (CNRGH), Institut de Biologie François Jacob, 2 Rue Gaston Crémieux, CP 5721, Evry Cedex, 91057, France
| | - Alassane Thiam
- Pole d'Immunophysiopathologie & Maladies Infectieuses (IMI), Institut Pasteur de Dakar, 36, Avenue Pasteur, Dakar, BP: 220, Senegal
| | - Abou Abdallah Malick Diouara
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Mame Ndew Mbaye
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Mamadou Diop
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Cheikh Momar Nguer
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
| | - Yakhya Dieye
- Groupe de Recherche Biotechnologies Appliquees & Bioprocedes Environnementaux, Ecole Superieure Polytechnique, Universite Cheikh Anta Diop de Dakar, Corniche Ouest, Dakar-Fann, BP: 5085, Senegal
- Pôle de Microbiologie, Institut Pasteur de Dakar, 36 Avenue Pasteur, Dakar, BP 220, Senegal
| | - Babacar Mbengue
- Service d'Immunologie, Faculté de Médecine, de Pharmacie Et d'Odontostomatologie, Université Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
| | - Jean-Francois Zagury
- Equipe GBA «GenomiqueBioinformatique & Applications», Conservatoire National Des Arts Et Metiers, 292, Rue Saint Martin, Paris Cedex 03, Paris, 75141, France
| | - Jean-Francois Deleuze
- Centre National de Recherche en Génétique Humaine (CNRGH), Institut de Biologie François Jacob, 2 Rue Gaston Crémieux, CP 5721, Evry Cedex, 91057, France
| | - Alioune Dieye
- Service d'Immunologie, Faculté de Médecine, de Pharmacie Et d'Odontostomatologie, Université Cheikh Anta DIOP, Avenue Cheikh Anta DIOP, Dakar, BP: 5005, Senegal
| |
Collapse
|
6
|
Chen J, Shao J, Dai M, Fang W, Yang YL. Adaptive immunology of Cryptococcus neoformans infections-an update. Front Immunol 2023; 14:1174967. [PMID: 37251371 PMCID: PMC10213923 DOI: 10.3389/fimmu.2023.1174967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/18/2023] [Indexed: 05/31/2023] Open
Abstract
The fungal genus Cryptococcus comprises a group of pathogens with considerable phenotypic and genotypic diversity that can lead to cryptococcosis in both healthy and immunocompromised individuals. With the emergence of the HIV pandemic, cryptococcosis, mainly meningoencephalitis, afflicts HIV-infected patients with severe dysfunction of T cells. It has also been reported in recipients of solid organ transplantation and in patients with autoimmune diseases who take immunosuppressive agents long-term, as well as in those with unidentified immunodeficiency. The clinical outcome of the disease is primarily determined by the immune response resulting from the interplay between the host immune system and the pathogen. Most human infections are caused by Cryptococcus neoformans, and nearly all immunological studies have focused on C. neoformans. This review provides an updated understanding of the role of adaptive immunity during infection with C. neoformans in human and animal models over the past half-decade.
Collapse
Affiliation(s)
- Junsong Chen
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jiasheng Shao
- Department of Immunology and Rheumatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Science, Shanghai, China
- Tulane National Primate Research Center, Tulane University School of Medicine, Covington, LA, United States
| | - Min Dai
- Department of Immunology and Rheumatology, Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Science, Shanghai, China
| | - Wei Fang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Ya-li Yang
- Department of Laser and Aesthetic Medicine, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Dermatology, Shanghai Ninth People’s Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| |
Collapse
|
7
|
Cryptococcus neoformans Infection in the Central Nervous System: The Battle between Host and Pathogen. J Fungi (Basel) 2022; 8:jof8101069. [PMID: 36294634 PMCID: PMC9605252 DOI: 10.3390/jof8101069] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/28/2022] [Accepted: 10/07/2022] [Indexed: 11/17/2022] Open
Abstract
Cryptococcus neoformans (C. neoformans) is a pathogenic fungus with a global distribution. Humans become infected by inhaling the fungus from the environment, and the fungus initially colonizes the lungs. If the immune system fails to contain C. neoformans in the lungs, the fungus can disseminate to the blood and invade the central nervous system, resulting in fatal meningoencephalitis particularly in immunocompromised individuals including HIV/AIDS patients. Following brain invasion, C. neoformans will encounter host defenses involving resident as well as recruited immune cells in the brain. To overcome host defenses, C. neoformans possesses multiple virulence factors capable of modulating immune responses. The outcome of the interactions between the host and C. neoformans will determine the disease progression. In this review, we describe the current understanding of how C. neoformans migrates to the brain across the blood–brain barrier, and how the host immune system responds to the invading organism in the brain. We will also discuss the virulence factors that C. neoformans uses to modulate host immune responses.
Collapse
|
8
|
Cryptococcus spp. and Cryptococcosis: focusing on the infection in Brazil. Braz J Microbiol 2022; 53:1321-1337. [PMID: 35486354 PMCID: PMC9433474 DOI: 10.1007/s42770-022-00744-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 03/25/2022] [Indexed: 11/02/2022] Open
Abstract
Cryptococcosis is a global fungal infection caused by the Cryptococcus neoformans/Cryptococcus gattii yeast complex. This infection is acquired by inhalation of propagules such as basidiospores or dry yeast, initially causing lung infections with the possibility of progressing to the meninges. This infection mainly affects immunocompromised HIV and transplant patients; however, immunocompetent patients can also be affected. This review proposes to evaluate cryptococcosis focusing on studies of this mycosis in Brazilian territory; moreover, recent advances in the understanding of its virulence mechanism, animal models in research are also assessed. For this, literature review as realized in PubMed, Scielo, and Brazilian legislation. In Brazil, cryptococcosis has been identified as one of the most lethal fungal infections among HIV patients and C. neoformans VNI and C. gattii VGII are the most prevalent genotypes. Moreover, different clinical settings published in Brazil were described. As in other countries, cryptococcosis is difficult to treat due to a limited therapeutic arsenal, which is highly toxic and costly. The presence of a polysaccharide capsule, thermo-tolerance, production of melanin, biofilm formation, mechanisms for iron use, and morphological alterations is an important virulence mechanism of these yeasts. The introduction of cryptococcosis as a compulsory notification disease could improve data regarding incidence and help in the management of these infections.
Collapse
|
9
|
Zhang W, He D, Wei Y, Shang S, Li D, Wang L. Suppression of Aspergillus fumigatus Germination by Neutrophils Is Enhanced by Endothelial-Derived CSF3 Production. Front Microbiol 2022; 13:837776. [PMID: 35572651 PMCID: PMC9100814 DOI: 10.3389/fmicb.2022.837776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/25/2022] [Indexed: 11/13/2022] Open
Abstract
Infection with Aspergillus fumigatus can cause life-threatening diseases in immunocompromised patients with an unacceptable mortality rate. Angioinvasion is one of the features of severe invasive aspergillosis. Neutrophils are short-lived immune cells regulated by colony-stimulating factor 3 (CSF3) that play a key role in anti-fungal immune responses. To investigate the interactions between A. fumigatus and the host immune cells, such as neutrophils, we stimulated human umbilical vein endothelial cells (HUVECs) with the conidia of A. fumigatus, and co-cultured them with human neutrophils. Apoptosis and functions of neutrophils were analyzed. Our results showed that HUVECs upregulate the expression of CSF3, which could reduce the apoptosis of neutrophils while enhancing their functions. Lack of CSF3 was associated with enhanced apoptosis of neutrophils with impaired function. This work indicated that the CSF3 is required for neutrophil survival and function, at least in the early stages of A. fumigatus infection.
Collapse
Affiliation(s)
- Wenxin Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dan He
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Yunyun Wei
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Shumi Shang
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Dong Li
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
- *Correspondence: Dong Li,
| | - Li Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Department of Pathogenobiology, Jilin University Mycology Research Center, College of Basic Medical Sciences, Jilin University, Changchun, China
- Li Wang,
| |
Collapse
|
10
|
de Sousa HR, de Oliveira GP, Frazão SDO, Gorgonha KCDM, Rosa CP, Garcez EM, Lucas J, Correia AF, de Freitas WF, Borges HM, de Brito Alves LG, Paes HC, Trilles L, Lazera MDS, Teixeira MDM, Pinto VL, Felipe MSS, Casadevall A, Silva-Pereira I, Albuquerque P, Nicola AM. Faster Cryptococcus Melanization Increases Virulence in Experimental and Human Cryptococcosis. J Fungi (Basel) 2022; 8:393. [PMID: 35448624 PMCID: PMC9029458 DOI: 10.3390/jof8040393] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Cryptococcus spp. are human pathogens that cause 181,000 deaths per year. In this work, we systematically investigated the virulence attributes of Cryptococcus spp. clinical isolates and correlated them with patient data to better understand cryptococcosis. We collected 66 C. neoformans and 19 C. gattii clinical isolates and analyzed multiple virulence phenotypes and host-pathogen interaction outcomes. C. neoformans isolates tended to melanize faster and more intensely and produce thinner capsules in comparison with C. gattii. We also observed correlations that match previous studies, such as that between secreted laccase and disease outcome in patients. We measured Cryptococcus colony melanization kinetics, which followed a sigmoidal curve for most isolates, and showed that faster melanization correlated positively with LC3-associated phagocytosis evasion, virulence in Galleria mellonella and worse prognosis in humans. These results suggest that the speed of melanization, more than the total amount of melanin Cryptococcus spp. produces, is crucial for virulence.
Collapse
Affiliation(s)
- Herdson Renney de Sousa
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Getúlio Pereira de Oliveira
- Division of Allergy and Inflammation, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
| | - Stefânia de Oliveira Frazão
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
| | - Kaio César de Melo Gorgonha
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Camila Pereira Rosa
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Emãnuella Melgaço Garcez
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Joaquim Lucas
- Oswaldo Cruz Foundation (Fiocruz–Brasília), Brasília 70904-130, DF, Brazil; (J.L.J.); (V.L.P.J.)
| | | | - Waleriano Ferreira de Freitas
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Higor Matos Borges
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Lucas Gomes de Brito Alves
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Hugo Costa Paes
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Luciana Trilles
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz–Rio de Janeiro), Rio de Janeiro 21045-900, RJ, Brazil; (L.T.); (M.d.S.L.)
| | - Márcia dos Santos Lazera
- Mycology Laboratory, Evandro Chagas National Institute of Infectious Diseases, Oswaldo Cruz Foundation (Fiocruz–Rio de Janeiro), Rio de Janeiro 21045-900, RJ, Brazil; (L.T.); (M.d.S.L.)
| | - Marcus de Melo Teixeira
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
| | - Vitor Laerte Pinto
- Oswaldo Cruz Foundation (Fiocruz–Brasília), Brasília 70904-130, DF, Brazil; (J.L.J.); (V.L.P.J.)
| | - Maria Sueli Soares Felipe
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA;
| | - Ildinete Silva-Pereira
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
| | - Patrícia Albuquerque
- Laboratory of Molecular Biology of Pathogenic Fungi, Institute of Biological Sciences, University of Brasília, Brasília 70910-900, DF, Brazil; (S.d.O.F.); (I.S.-P.); (P.A.)
- Faculty of Ceilândia, University of Brasília, Brasília 72220-275, DF, Brazil
| | - André Moraes Nicola
- Faculty of Medicine, University of Brasília, Brasília 70910-900, DF, Brazil; (H.R.d.S.); (K.C.d.M.G.); (C.P.R.); (E.M.G.); (W.F.d.F.); (H.M.B.); (L.G.d.B.A.); (H.C.P.); (M.d.M.T.)
- Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasília, Brasília 70790-160, DF, Brazil;
| |
Collapse
|
11
|
In silico and in vitro studies on the inhibition of laccase activity by Ellagic acid: Implications in drug designing for the treatment of Cryptococcal infections. Int J Biol Macromol 2022; 209:642-654. [PMID: 35421416 DOI: 10.1016/j.ijbiomac.2022.04.060] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/30/2022] [Accepted: 04/08/2022] [Indexed: 01/14/2023]
Abstract
In recent years, the increased frequency of drug-resistant strains of Cryptococcus neoformans has depleted our antifungal armory. In the present study, we investigated the inhibitory potential of ellagic acid (EA) against C. neoformans laccase through in silico and in vitro studies. For the first time, a homology modelling was established to model laccase and modelled protein served as a receptor for docking EA. Thermodynamic stability of the docked complex was ascertained by molecular dynamics simulation (MD). The analysis of root mean square deviation and fluctuation of alpha carbons of protein justifies the stability of the bound EA in the binding pocket of laccase. Frontier molecular orbitals of the EA was studied by density functional theory-based optimization by using the Lee-Yang-Parr correlation functional (B3LYP) approach. Negative values of the highest occupied/unoccupied molecular orbitals (HOMO/LUMO) indicated that laccase with EA forms a stable complex. Interestingly, EA inhibited laccase activity both in vitro and in yeast cells of C. neoformans. Moreover, EA treatment remarkably inhibited the proliferation of C. neoformans inside macrophages. The findings of the present study unveil the molecular basis of the interactions of laccase with EA, which may prove to be beneficial for designing laccase inhibitors as potential anti-cryptococcal agents.
Collapse
|
12
|
Gene, virulence and related regulatory mechanisms in Cryptococcus gattii. Acta Biochim Biophys Sin (Shanghai) 2022; 54:593-603. [PMID: 35593469 PMCID: PMC9828318 DOI: 10.3724/abbs.2022029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Cryptococcus gattii is a kind of basidiomycetous yeast, which grows in human and animal hosts. C. gattii has four distinct genomes, VGI/AFLP4, VGII/AFLP6, VGIII/AFLP5, and VGIV/AFLP7. The virulence of C. gattii is closely associated with genotype and related stress-signaling pathways, but the pathogenic mechanism of C. gattii has not been fully identified. With the development of genomics and transcriptomics, the relationship among genes, regulatory mechanisms, virulence, and treatment is gradually being recognized. In this review, to better understand how C. gattii causes disease and to characterize hypervirulent C. gattii strains, we summarize the current understanding of C. gattii genotypes, phenotypes, virulence, and the regulatory mechanisms.
Collapse
|
13
|
The Inflammasome NLRC4 Protects against Cryptococcus gattii by Inducing the Classic Caspase-1 to Activate the Pyroptosis Signal. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:7355485. [PMID: 35340249 PMCID: PMC8942663 DOI: 10.1155/2022/7355485] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/16/2022] [Indexed: 12/12/2022]
Abstract
Cryptococcus is one of the most pathogenic invasive fungi, and its interaction with the host's natural immunity, especially the role of the inflammasome family, has not been fully elucidated. As an important member of the inflammasome family, NOD-like receptor (NLR) family caspase recruitment domain (CARD) containing 4 (NLRC4) has been proven to protect lungs from damage from a variety of pathogens. In this study, we investigated the protective effect and mechanism of NLRC4 on cryptococcal pulmonary infection using NLRC4-/-mice in vivo and NLRC4-/-macrophages in vitro models stimulated by cryptococcal cells. We apply small animal fluorescence imaging to detect the fungal burden in the lungs and living body micro-CT scans of mice and in vitro tissue micro-CT scans to compare differences in infection foci nodules and histopathological lesions, and the activation of caspase-1 and downstream cytokines were detected by Western bolt and ELISA, etc. The results demonstrated that cryptococcal infection can activate the Nod-like receptors of caspase-1 activation and NLRC4 inflammasomes in macrophages and dendritic cells and affect downstream IL-1β and IL-18 release. After cryptococcal infection, the survival rate, lung fungal burden, and histopathological damage of NLRC4−/− mice were significantly impaired. NLRC4−/− macrophages showed a lower release of inflammatory factors, reactive oxygen species (ROS), and lactate dehydrogenase (LDH). Collectively, our results demonstrated that the activation of caspase-1 and downstream cytokines mediated by NLRC4 inflammasome in immune cells during Cryptococcus infection can enhance pyroptosis of macrophages, affect the phagocytic ability of macrophages, and inhibit the intracellular parasitism of cryptococcus, eventually reducing the burden of fungi.
Collapse
|
14
|
Hansakon A, Png CW, Zhang Y, Angkasekwinai P. Macrophage-Derived Osteopontin Influences the Amplification of Cryptococcus neoformans-Promoting Type 2 Immune Response. THE JOURNAL OF IMMUNOLOGY 2021; 207:2107-2117. [PMID: 34526375 DOI: 10.4049/jimmunol.2100202] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/10/2021] [Indexed: 11/19/2022]
Abstract
A multifunctional glycoprotein, osteopontin (OPN), can modulate the function of macrophages, resulting in either protective or deleterious effects in various inflammatory diseases and infection in the lungs. Although macrophages play the critical roles in mediating host defenses against cryptococcosis or cryptococcal pathogenesis, the involvement of macrophage-derived OPN in pulmonary infection caused by fungus Cryptococcus has not been elucidated. Thus, our current study aimed to investigate the contribution of OPN to the regulation of host immune response and macrophage function using a mouse model of pulmonary cryptococcosis. We found that OPN was predominantly expressed in alveolar macrophages during C. neoformans infection. Systemic treatment of OPN during C. neoformans infection resulted in an enhanced pulmonary fungal load and an early onset of type 2 inflammation within the lung, as indicated by the increase of pulmonary eosinophil infiltration, type 2 cytokine production, and M2-associated gene expression. Moreover, CRISPR/Cas9-mediated OPN knockout murine macrophages had enhanced ability to clear the intracellular fungus and altered macrophage phenotype from pathogenic M2 to protective M1. Altogether, our data suggested that macrophage-derived OPN contributes to the elaboration of C. neoformans-induced type 2 immune responses and polarization of M2s that promote fungal survival and proliferation within macrophages.
Collapse
Affiliation(s)
- Adithap Hansakon
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand.,Graduate Program in Biomedical Science, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand
| | - Chin Wen Png
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore; and
| | - Yongliang Zhang
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, Singapore, Singapore.,Immunology Programme, Life Science Institute, National University of Singapore, Singapore, Singapore; and
| | - Pornpimon Angkasekwinai
- Department of Medical Technology, Faculty of Allied Health Sciences, Thammasat University, Pathumthani, Thailand; .,Research Unit in Molecular Pathogenesis and Immunology of Infectious Diseases, Thammasat University, Pathumthani, Thailand
| |
Collapse
|
15
|
Zamith-Miranda D, Peres da Silva R, Couvillion SP, Bredeweg EL, Burnet MC, Coelho C, Camacho E, Nimrichter L, Puccia R, Almeida IC, Casadevall A, Rodrigues ML, Alves LR, Nosanchuk JD, Nakayasu ES. Omics Approaches for Understanding Biogenesis, Composition and Functions of Fungal Extracellular Vesicles. Front Genet 2021; 12:648524. [PMID: 34012462 PMCID: PMC8126698 DOI: 10.3389/fgene.2021.648524] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by organisms from all kingdoms of life. The diverse biogenesis pathways of EVs result in a wide variety of physical properties and functions across different organisms. Fungal EVs were first described in 2007 and different omics approaches have been fundamental to understand their composition, biogenesis, and function. In this review, we discuss the role of omics in elucidating fungal EVs biology. Transcriptomics, proteomics, metabolomics, and lipidomics have each enabled the molecular characterization of fungal EVs, providing evidence that these structures serve a wide array of functions, ranging from key carriers of cell wall biosynthetic machinery to virulence factors. Omics in combination with genetic approaches have been instrumental in determining both biogenesis and cargo loading into EVs. We also discuss how omics technologies are being employed to elucidate the role of EVs in antifungal resistance, disease biomarkers, and their potential use as vaccines. Finally, we review recent advances in analytical technology and multi-omic integration tools, which will help to address key knowledge gaps in EVs biology and translate basic research information into urgently needed clinical applications such as diagnostics, and immuno- and chemotherapies to fungal infections.
Collapse
Affiliation(s)
- Daniel Zamith-Miranda
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | | | - Sneha P. Couvillion
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Erin L. Bredeweg
- Environmental and Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Meagan C. Burnet
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| | - Carolina Coelho
- MRC Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Emma Camacho
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Leonardo Nimrichter
- Laboratório de Glicobiologia de Eucariotos, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rosana Puccia
- Departamento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina-Universidade Federal de São Paulo, São Paulo, Brazil
| | - Igor C. Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Arturo Casadevall
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - Marcio L. Rodrigues
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lysangela R. Alves
- Laboratório de Regulação da Expressão Gênica, Instituto Carlos Chagas-FIOCRUZ PR, Curitiba, Brazil
| | - Joshua D. Nosanchuk
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, United States
- Division of Infectious Diseases, Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Ernesto S. Nakayasu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, United States
| |
Collapse
|