1
|
Xie Z, Zhou J, Zhang X, Li Z. Clinical potential of microbiota in thyroid cancer therapy. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166971. [PMID: 38029942 DOI: 10.1016/j.bbadis.2023.166971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Thyroid cancer is one of the most common tumors of the endocrine system because of its rapid and steady increase in incidence and prevalence. In recent years, a growing number of studies have identified a key role for the gut, thyroid tissue and oral microbiota in the regulation of metabolism and the immune system. A growing body of evidence has conclusively demonstrated that the microbiota influences tumor formation, prevention, diagnosis, and treatment. We provide extensive information in which oral, gut, and thyroid microbiota have an effect on thyroid cancer development in this review. In addition, we thoroughly discuss the various microbiota species, their potential functions, and the underlying mechanisms for thyroid cancer. The microbiome offers a unique opportunity to improve the effectiveness of immunotherapy and radioiodine therapy thyroid cancer by maintaining the right type of microbiota, and holds great promise for improving clinical outcomes and quality of life for thyroid cancer patients.
Collapse
Affiliation(s)
- Zilan Xie
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Jiating Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China
| | - Xuan Zhang
- Department of General Surgery, The Second People's Hospital of Hunan, Furong Middle Road, Changsha 410078, PR China
| | - Zhi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410078, PR China; Institute of Clinical Pharmacology, Central South University; Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, PR China; Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha 410078, PR China; National Clinical Research Center for Geriatric Disorders, 87 Xiangya Road, Changsha 410008, Hunan, PR China.
| |
Collapse
|
2
|
Feng P, Xue X, Bukhari I, Qiu C, Li Y, Zheng P, Mi Y. Gut microbiota and its therapeutic implications in tumor microenvironment interactions. Front Microbiol 2024; 15:1287077. [PMID: 38322318 PMCID: PMC10844568 DOI: 10.3389/fmicb.2024.1287077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 01/08/2024] [Indexed: 02/08/2024] Open
Abstract
The development of cancer is not just the growth and proliferation of a single transformed cell, but its tumor microenvironment (TME) also coevolves with it, which is primarily involved in tumor initiation, development, metastasis, and therapeutic responses. Recent years, TME has been emerged as a potential target for cancer diagnosis and treatment. However, the clinical efficacy of treatments targeting the TME, especially its specific components, remains insufficient. In parallel, the gut microbiome is an essential TME component that is crucial in cancer immunotherapy. Thus, assessing and constructing frameworks between the gut microbiota and the TME can significantly enhance the exploration of effective treatment strategies for various tumors. In this review the role of the gut microbiota in human cancers, including its function and relationship with various tumors was summarized. In addition, the interaction between the gut microbiota and the TME as well as its potential applications in cancer therapeutics was described. Furthermore, it was summarized that fecal microbiota transplantation, dietary adjustments, and synthetic biology to introduce gut microbiota-based medical technologies for cancer treatment. This review provides a comprehensive summary for uncovering the mechanism underlying the effects of the gut microbiota on the TME and lays a foundation for the development of personalized medicine in further studies.
Collapse
Affiliation(s)
- Pengya Feng
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Children Rehabilitation Medicine, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xia Xue
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ihtisham Bukhari
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Chunjing Qiu
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yingying Li
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Pengyuan Zheng
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yang Mi
- Key Laboratory of Helicobacter Pylori, Microbiota and Gastrointestinal Cancer of Henan Province, Marshall Medical Research Center, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Gastroenterology, Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
3
|
Xie H, Qin Z, Ling Z, Ge X, Zhang H, Guo S, Liu L, Zheng K, Jiang H, Xu R. Oral pathogen aggravates atherosclerosis by inducing smooth muscle cell apoptosis and repressing macrophage efferocytosis. Int J Oral Sci 2023; 15:26. [PMID: 37380627 DOI: 10.1038/s41368-023-00232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 05/30/2023] [Accepted: 06/05/2023] [Indexed: 06/30/2023] Open
Abstract
Periodontitis imparting the increased risk of atherosclerotic cardiovascular diseases is partially due to the immune subversion of the oral pathogen, particularly the Porphyromonas gingivalis (P. gingivalis), by inducing apoptosis. However, it remains obscure whether accumulated apoptotic cells in P. gingivalis-accelerated plaque formation are associated with impaired macrophage clearance. Here, we show that smooth muscle cells (SMCs) have a greater susceptibility to P. gingivalis-induced apoptosis than endothelial cells through TLR2 pathway activation. Meanwhile, large amounts of miR-143/145 in P.gingivalis-infected SMCs are extracellularly released and captured by macrophages. Then, these miR-143/145 are translocated into the nucleus to promote Siglec-G transcription, which represses macrophage efferocytosis. By constructing three genetic mouse models, we further confirm the in vivo roles of TLR2 and miR-143/145 in P. gingivalis-accelerated atherosclerosis. Therapeutically, we develop P.gingivalis-pretreated macrophage membranes to coat metronidazole and anti-Siglec-G antibodies for treating atherosclerosis and periodontitis simultaneously. Our findings extend the knowledge of the mechanism and therapeutic strategy in oral pathogen-associated systemic diseases.
Collapse
Affiliation(s)
- Hanyu Xie
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyue Qin
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Periodontology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ziji Ling
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Xiao Ge
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hang Zhang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Shuyu Guo
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Laikui Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Kai Zheng
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China
| | - Hongbing Jiang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| | - Rongyao Xu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China.
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China.
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
4
|
McIlwraith EK, Belsham DD. Palmitate alters miR-2137 and miR-503-5p to induce orexigenic Npy in hypothalamic neuronal cell models: Rescue by oleate and docosahexaenoic acid. J Neuroendocrinol 2023; 35:e13271. [PMID: 37208960 DOI: 10.1111/jne.13271] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/21/2023]
Abstract
MicroRNAs (miRNAs) are short noncoding RNA implicated in the pathogenesis of obesity. One cause of obesity is excess exposure to the saturated fatty acid palmitate that can alter miRNA levels in the periphery. Palmitate also promotes obesity by acting on the hypothalamus, the central coordinator of energy homeostasis, to dysregulate hypothalamic feeding neuropeptides and induce ER stress and inflammatory signaling. We hypothesized that palmitate would alter hypothalamic miRNAs that control genes involved in energy homeostasis thereby contributing to the obesity-promoting effects of palmitate. We found that palmitate upregulated 20 miRNAs and downregulated six miRNAs in the orexigenic NPY/AgRP-expressing mHypoE-46 cell line. We focused on delineating the roles of miR-2137 and miR-503-5p, as they were strongly up- and downregulated by palmitate, respectively. Overexpression of miR-2137 increased Npy mRNA levels and downregulated Esr1 levels, while increasing C/ebpβ and Atf3 mRNA. Inhibiting miR-2137 had the opposite effect, except on Npy, which was unchanged. The most downregulated miRNA by palmitate, miR-503-5p, negatively regulated Npy mRNA levels. Exposure to the unsaturated fatty acids oleate or docosahexaenoic acid completely or partially blocked the effects of palmitate on miR-2137 and miR-503-5p as well as Npy, Agrp, Esr1, C/ebpβ and Atf3. MicroRNAs may therefore contribute to palmitate actions in dysregulating NPY/AgRP neurons. Effectively combating the deleterious effects of palmitate is crucial to help prevent or reduce the impact of obesity.
Collapse
Affiliation(s)
- Emma K McIlwraith
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Denise D Belsham
- Department of Physiology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
- Departments of Medicine and Obstetrics and Gynecology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Antonakos N, Gilbert C, Théroude C, Schrijver IT, Roger T. Modes of action and diagnostic value of miRNAs in sepsis. Front Immunol 2022; 13:951798. [PMID: 35990654 PMCID: PMC9389448 DOI: 10.3389/fimmu.2022.951798] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/08/2022] [Indexed: 11/13/2022] Open
Abstract
Sepsis is a clinical syndrome defined as a dysregulated host response to infection resulting in life-threatening organ dysfunction. Sepsis is a major public health concern associated with one in five deaths worldwide. Sepsis is characterized by unbalanced inflammation and profound and sustained immunosuppression, increasing patient susceptibility to secondary infections and mortality. microRNAs (miRNAs) play a central role in the control of many biological processes, and deregulation of their expression has been linked to the development of oncological, cardiovascular, neurodegenerative and metabolic diseases. In this review, we discuss the role of miRNAs in sepsis pathophysiology. Overall, miRNAs are seen as promising biomarkers, and it has been proposed to develop miRNA-based therapies for sepsis. Yet, the picture is not so straightforward because of the versatile and dynamic features of miRNAs. Clearly, more research is needed to clarify the expression and role of miRNAs in sepsis, and to promote the use of miRNAs for sepsis management.
Collapse
Affiliation(s)
| | | | | | | | - Thierry Roger
- Infectious Diseases Service, Department of Medicine, Lausanne University Hospital and University of Lausanne, Epalinges, Switzerland
| |
Collapse
|
6
|
Batool F, Gegout PY, Stutz C, White B, Kolodziej A, Benkirane-Jessel N, Petit C, Huck O. Lenabasum Reduces Porphyromonas gingivalis-Driven Inflammation. Inflammation 2022; 45:1752-1764. [PMID: 35274214 DOI: 10.1007/s10753-022-01658-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/03/2022] [Accepted: 03/07/2022] [Indexed: 01/05/2023]
Abstract
The aim of this study was to evaluate the potential anti-inflammatory and anti-resorptive effects of lenabasum in the context of Porphyromonas gingivalis (Pg)-induced inflammation. Lenabasum or ajulemic acid (1',1'-dimethylheptyl-THC-11-oic-acid), a synthetic analog of THC-11-oic acid, has already demonstrated anti-inflammatory properties for the treatment of several inflammatory diseases. In vitro, the cytocompatibility of lenabasum was evaluated in human oral epithelial cells (EC), oral fibroblasts and osteoblasts by metabolic activity assay. The effect of lenabasum (5 µM) treatment of Pg-LPS- and P. gingivalis-infected EC on the pro- and anti-inflammatory markers was studied through RTqPCR. In vivo, lenabasum was injected subcutaneously in a P. gingivalis-induced calvarial abscess mouse model to assess its pro-healing effect. Concentrations of lenabasum up to 5 µM were cytocompatible in all cell types. Treatment of Pg-LPS and Pg-infected EC with lenabasum (5 µM; 6 h) reduced the gene expression of TNF-α, COX-2, NF-κB, and RANKL, whereas it increased the expression of IL-10 and resolvin E1 receptor respectively (p < 0.05). In vivo, the Pg-elicited inflammatory lesions' clinical size was significantly reduced by lenabasum injection (30 µM) vs untreated controls (45%) (p < 0.05). Histomorphometric analysis exhibited improved quantity and quality of bone (with reduced lacunae) and significantly reduced calvarial soft tissue inflammatory score in mice treated with lenabasum (p < 0.05). Tartrate-resistant acid phosphatase activity assay (TRAP) also demonstrated decreased osteoclastic activity in the treatment group compared to that in the controls. Lenabasum showed promising anti-inflammatory and pro-resolutive properties in the management of Pg-elicited inflammation, and thus, its potential as adjuvant periodontal treatment should be further investigated.
Collapse
Affiliation(s)
- Fareeha Batool
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France
| | - Céline Stutz
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | | | | | - Nadia Benkirane-Jessel
- UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France.,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France.,Pôle de Médecine Et Chirurgie Bucco-Dentaire, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France
| | - Olivier Huck
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France. .,UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France. .,Pôle de Médecine Et Chirurgie Bucco-Dentaire, Hôpitaux Universitaires de Strasbourg, 67000, Strasbourg, France.
| |
Collapse
|
7
|
Mulhall H, DiChiara JM, Huck O, Amar S. Pasteurized Akkermansia muciniphila reduces periodontal and systemic inflammation induced by Porphyromonas gingivalis in lean and obese mice. J Clin Periodontol 2022; 49:717-729. [PMID: 35415929 DOI: 10.1111/jcpe.13629] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 02/24/2022] [Accepted: 03/19/2022] [Indexed: 02/06/2023]
Abstract
AIM The aim of this study was to evaluate the effect of the administration of pasteurized Akkermansia muciniphila and Amuc_1100 on periodontal destruction in lean and obese mice and to determine the impact of the mode of administration. MATERIALS AND METHODS Porphyromonas gingivalis-associated experimental periodontitis was induced in lean and obese mice. After 3 weeks, live, pasteurized A. muciniphila or Amuc_1100 was administered by oral or gastric gavage for three additional weeks. Moreover, an evaluation of the interaction between A. muciniphila and P. gingivalis was performed by RNA-sequencing, and cytokines secretion was measured in exposed macrophages. RESULTS Oral administration of live, pasteurized A. muciniphila or Amuc_1100 significantly decreased P. gingivalis-induced periodontal destruction and inflammatory infiltrate in lean and obese mice and contributed to the reduction of the plasma level of TNF-α and to the increase of IL-10. The co-culture of A. muciniphila and P. gingivalis induced an increased expression of genes linked to the synthesis of monobactam-related antibiotics in A. muciniphila, while a decrease of the gingipains and type IX secretion system was observed in P. gingivalis. In P. gingivalis-infected macrophages, pasteurized A. muciniphila decreased TNF-α and increased IL-10 levels. CONCLUSIONS Pasteurized A. muciniphila can counteract P. gingivalis-associated periodontal destruction.
Collapse
Affiliation(s)
- Hannah Mulhall
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA
| | - Jeanne M DiChiara
- Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| | - Olivier Huck
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Salomon Amar
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, USA.,Department of Pharmacology, New York Medical College, Valhalla, New York, USA
| |
Collapse
|
8
|
Interaction of Gut Microbiota with Endocrine Homeostasis and Thyroid Cancer. Cancers (Basel) 2022; 14:cancers14112656. [PMID: 35681636 PMCID: PMC9179244 DOI: 10.3390/cancers14112656] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/22/2022] [Accepted: 05/24/2022] [Indexed: 01/27/2023] Open
Abstract
The gut microbiota plays a crucial role in healthy individuals as well as in patients with thyroid diseases, including thyroid cancer. Although the prognosis of differentiated thyroid cancer is predictable, that of some poorly differentiated, medullary, and anaplastic thyroid cancers remains unpromising. As the interaction between the gut microbiota and thyroid cancer has been gradually revealed in recent years, the thyroid gland, a crucial endocrine organ, is shown to have a complex connection with the body's metabolism and is involved in inflammation, autoimmunity, or cancer progression. Dysbiosis of the gut microbiota and its metabolites can influence changes in hormone levels and susceptibility to thyroid cancer through multiple pathways. In this review, we focus on the interactions of the gut microbiota with thyroid function diseases and thyroid cancer. In addition, we also discuss some potential new strategies for the prevention and treatment of thyroid disease and thyroid cancer. Our aim is to provide some possible clinical applications of gut microbiota markers for early diagnosis, treatment, and postoperative management of thyroid cancer. These findings were used to establish a better multi-disciplinary treatment and prevention management strategy and to individualize the treatment of patients in relation to their gut microbiota composition and pathological characteristics.
Collapse
|
9
|
Batool F, Petit C, Stutz C, Özçelik H, Gegout PY, Benkirane-Jessel N, Delpy E, Zal F, Leize-Zal E, Huck O. M101, a therapeutic oxygen carrier derived from Arenicola marina, decreased Porphyromonas gingivalis induced hypoxia and improved periodontal healing. J Periodontol 2022; 93:1712-1724. [PMID: 35536914 DOI: 10.1002/jper.22-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND P. gingivalis exacerbates tissue hypoxia and worsens periodontal inflammation. This study investigated the effect of a therapeutic oxygen carrier (M101), derived from Arenicola marina, on hypoxia and associated inflammation in the context of periodontitis. METHODS The effect of M101 on GLUT-1, GLUT-3, HIF-1α and MMP-9 expression, hypoxia and antioxidant status in oral epithelial cells (EC) exposed to CoCl2 (1000μM), P. gingivalis (MOI 100) and CoCl2 + P. gingivalis was evaluated through hypoxia detection fluorescence assay, antioxidant concentration colorimetric assay and RTqPCR. Evaluation of M101 on EC proliferation was evaluated in an in vitro wound assay. In experimental periodontitis, periodontal wound healing and osteoclastic activity were compared among natural wound healing, placebo and gels containing M101 (1 g/L and 2 g/L) groups through histomorphometry and TRAP assay respectively. The expression of HIF-1α, MMP-9 and NFκB in periodontal tissues was also evaluated through immunofluorescence studies. RESULTS M101 downregulated GLUT-1, GLUT-3, HIF-1α and MMP-9 levels in EC exposed to CoCl2 , P. gingivalis and CoCl2 + P. gingivalis (p < 0.05). Fluorescence and colorimetric analyses confirmed hypoxia reduction and antioxidant capacity improvement in such EC upon M101 treatment. Moreover, M101 improved significantly the in vitro wound closure. In vivo, the attachment level was significantly improved, and osteoclastic activity was reduced in mice treated with M101 gels compared to placebo and natural wound healing groups (p < 0.05). HIF-1α, MMP-9 and NFκB expression in periodontal tissues was reduced in M101 gels treated mice compared to the controls. CONCLUSION M101 showed promise in resolving hypoxia and associated inflammation mediated tissue degradation. Its potential in the clinical management of periodontitis must be further investigated. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Fareeha Batool
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Catherine Petit
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,University hospital, Strasbourg, France
| | - Céline Stutz
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Hayriye Özçelik
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | - Pierre-Yves Gegout
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France
| | | | | | | | - Olivier Huck
- University of Strasbourg, Dental Faculty, Strasbourg, France.,INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Strasbourg, France.,HEMARINA SA, Morlaix, France
| |
Collapse
|
10
|
Peeples ES, Sahar NE, Snyder W, Mirnics K. Temporal brain microRNA expression changes in a mouse model of neonatal hypoxic-ischemic injury. Pediatr Res 2022; 91:92-100. [PMID: 34465878 PMCID: PMC9620396 DOI: 10.1038/s41390-021-01701-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/10/2021] [Accepted: 08/04/2021] [Indexed: 01/31/2023]
Abstract
BACKGROUND Neonatal hypoxic-ischemic brain injury (HIBI) results in significant morbidity and mortality despite current standard therapies. MicroRNAs (miRNAs) are a promising therapeutic target; however, there is a paucity of data on endogenous miRNA expression of the brain after HIBI during the primary therapeutic window (6-72 h after injury). METHODS Postnatal day 9 mouse pups underwent unilateral carotid ligation+hypoxia (HIBI), sham surgery+hypoxia, or sham surgery+normoxia (controls). miRNA sequencing was performed on the ipsilateral brain of each of the three groups plus the contralateral HIBI brain at 24 and 72 h after injury. Findings were validated in eight key miRNAs by quantitative polymerase chain reaction. RESULTS Hypoxia resulted in significant differential expression of 38 miRNAs at both time points. Mir-2137, -335, -137, and -376c were significantly altered by neonatal HIBI at 24 and 72 h, with 3 of the 4 demonstrating multiphasic expression (different direction of differential expression at 24 versus 72 h). CONCLUSIONS Our global assessment of subacute changes in brain miRNA expression after hypoxia or HIBI will advance research into targeted miRNA-based interventions. It will be important to consider the multiphasic miRNA expression patterns after HIBI to identify optimal timing for individual interventions. IMPACT This study is the first to comprehensively define endogenous brain microRNA expression changes outside of the first hours after neonatal hypoxic-ischemic brain injury (HIBI). Mir-2137, -335, -137, and -376c were significantly altered by neonatal HIBI and therefore deserve further investigation as possible therapeutic targets. The expression profiles described will support the design of future studies attempting to develop miRNA-based interventions for infants with HIBI. At 24 h after injury, contralateral HIBI miRNA expression patterns were more similar to ipsilateral HIBI than to controls, suggesting that the contralateral brain is not an appropriate "internal control" for miRNA studies in this model.
Collapse
Affiliation(s)
- Eric S Peeples
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Namood-E Sahar
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - William Snyder
- Department of Pediatrics, University of Nebraska Medical Center, Omaha, NE, USA
| | - Karoly Mirnics
- Department of Biochemistry & Molecular Biology, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Pharmacology & Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, USA
- Munroe-Meyer Institute for Genetics and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
11
|
Smith GJ, Tovar A, Kanke M, Wang Y, Deshane JS, Sethupathy P, Kelada SNP. Ozone-induced changes in the murine lung extracellular vesicle small RNA landscape. Physiol Rep 2021; 9:e15054. [PMID: 34558223 PMCID: PMC8461034 DOI: 10.14814/phy2.15054] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/31/2021] [Accepted: 09/04/2021] [Indexed: 01/08/2023] Open
Abstract
Inhalation exposure to ozone (O3 ) causes adverse respiratory health effects that result from airway inflammation, a complex response mediated in part by changes to airway cellular transcriptional programs. These programs may be regulated by microRNAs transferred between cells (e.g., epithelial cells and macrophages) via extracellular vesicles (EV miRNA). To explore this, we exposed female C57BL/6J mice to filtered air (FA), 1, or 2 ppm O3 by inhalation and collected bronchoalveolar lavage fluid (BALF) 21 h later for markers of airway inflammation, EVs, and EV miRNA. Both concentrations of O3 significantly increased markers of inflammation (neutrophils), injury (total protein), and the number of EV-sized particles in the BALF. Imagestream analysis indicated a substantial portion of particles was positive for canonical EV markers (CD81, CD51), and Siglec-F, a marker of alveolar macrophages. Using high-throughput small RNA sequencing, we identified several differentially expressed (DE) BALF EV miRNAs after 1 ppm (16 DE miRNAs) and 2 ppm (99 DE miRNAs) O3 versus FA exposure. O3 concentration-response patterns in EV miRNA expression were apparent, particularly for miR-2137, miR-126-3p, and miR-351-5p. Integrative analysis of EV miRNA expression and airway cellular mRNA expression identified EV miR-22-3p as a candidate regulator of transcriptomic responses to O3 in airway macrophages. In contrast, we did not identify candidate miRNA regulators of mRNA expression data from conducting airways (predominantly composed of epithelial cells). In summary, our data show that O3 exposure alters EV release and EV miRNA expression, suggesting that further investigation of EVs may provide insight into their effects on airway macrophage function and other mechanisms of O3 -induced respiratory inflammation.
Collapse
Affiliation(s)
- Gregory J Smith
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Adelaide Tovar
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Yong Wang
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jessy S Deshane
- Division of Pulmonary, Allergy, and Critical Care, Department of Medicine, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| | - Samir N P Kelada
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, New York, USA
| |
Collapse
|
12
|
Shen W, Tang D, Deng Y, Li H, Wang T, Wan P, Liu R. Association of gut microbiomes with lung and esophageal cancer: a pilot study. World J Microbiol Biotechnol 2021; 37:128. [PMID: 34212246 DOI: 10.1007/s11274-021-03086-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 06/02/2021] [Indexed: 12/16/2022]
Abstract
Gut microbiota, especially human pathogens, has been shown to be involved in the occurrence and development of cancer. Esophageal squamous cell carcinoma and lung cancer are two malignant cancers, and their relationship with gut microbiota is still unclear. Virulence factor database (VFDB) is an integrated and comprehensive online resource for curating information about human pathogens. Here, based on VFDB database, we analyzed the differences of bacteria at genus level in the gut of patients with esophageal squamous cell carcinoma, lung cancer, and healthy controls. We proposed the possible cancer-associated bacteria in gut and put forward their possible effects. Apart from this, principal coordinate analysis (PCoA) and analysis of similarities (ANSOIM) suggested that some bacteria in the gut can be used as potential biomarkers to screen esophageal squamous cell carcinoma and lung cancer, and their effectiveness was preliminary verified. The relative abundance of Klebsiella and Streptococcus can be used to distinguish patients with esophageal squamous cell carcinoma and lung cancer from healthy controls. The absolute abundance of Klebsiella can further distinguish patients with esophageal squamous cell carcinoma from patients with lung cancer. In particular, the relative abundance of Fusobacterium can directly distinguish between patients with esophageal squamous cell carcinoma and healthy controls. Additionally, the absolute abundance of Haemophilus can distinguish lung cancer from healthy controls. Our study provided a new way based on VFDB database to explore the relationship between gut microbiota and cancer, and initially proposed a feasible cancer screening method.
Collapse
Affiliation(s)
- Weitao Shen
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Derong Tang
- Department of Thoracic Surgery, The Affiliated Huaian No.1 People's Hospital of Nanjing Medical University, Huaian, 223300, Jiangsu, China
| | - Yali Deng
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Huilin Li
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Tian Wang
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ping Wan
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Ran Liu
- Key Laboratory of Environment Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| |
Collapse
|
13
|
Rojas C, García MP, Polanco AF, González-Osuna L, Sierra-Cristancho A, Melgar-Rodríguez S, Cafferata EA, Vernal R. Humanized Mouse Models for the Study of Periodontitis: An Opportunity to Elucidate Unresolved Aspects of Its Immunopathogenesis and Analyze New Immunotherapeutic Strategies. Front Immunol 2021; 12:663328. [PMID: 34220811 PMCID: PMC8248545 DOI: 10.3389/fimmu.2021.663328] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/10/2021] [Indexed: 12/17/2022] Open
Abstract
Periodontitis is an oral inflammatory disease in which the polymicrobial synergy and dysbiosis of the subgingival microbiota trigger a deregulated host immune response, that leads to the breakdown of tooth-supporting tissues and finally tooth loss. Periodontitis is characterized by the increased pathogenic activity of T helper type 17 (Th17) lymphocytes and defective immunoregulation mediated by phenotypically unstable T regulatory (Treg), lymphocytes, incapable of resolving the bone-resorbing inflammatory milieu. In this context, the complexity of the immune response orchestrated against the microbial challenge during periodontitis has made the study of its pathogenesis and therapy difficult and limited. Indeed, the ethical limitations that accompany human studies can lead to an insufficient etiopathogenic understanding of the disease and consequently, biased treatment decision-making. Alternatively, animal models allow us to manage these difficulties and give us the opportunity to partially emulate the etiopathogenesis of periodontitis by inoculating periodontopathogenic bacteria or by placing bacteria-accumulating ligatures around the teeth; however, these models still have limited translational application in humans. Accordingly, humanized animal models are able to emulate human-like complex networks of immune responses by engrafting human cells or tissues into specific strains of immunodeficient mice. Their characteristics enable a viable time window for the study of the establishment of a specific human immune response pattern in an in vivo setting and could be exploited for a wider study of the etiopathogenesis and/or treatment of periodontitis. For instance, the antigen-specific response of human dendritic cells against the periodontopathogen Porphyromonas gingivalis favoring the Th17/Treg response has already been tested in humanized mice models. Hypothetically, the proper emulation of periodontal dysbiosis in a humanized animal could give insights into the subtle molecular characteristics of a human-like local and systemic immune response during periodontitis and support the design of novel immunotherapeutic strategies. Therefore, the aims of this review are: To elucidate how the microbiota-elicited immunopathogenesis of periodontitis can be potentially emulated in humanized mouse models, to highlight their advantages and limitations in comparison with the already available experimental periodontitis non-humanized animal models, and to discuss the potential translational application of using these models for periodontitis immunotherapeutics.
Collapse
Affiliation(s)
- Carolina Rojas
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Michelle P García
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alan F Polanco
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Luis González-Osuna
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Alfredo Sierra-Cristancho
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Faculty of Dentistry, Universidad Andres Bello, Santiago, Chile
| | - Samanta Melgar-Rodríguez
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Emilio A Cafferata
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú
| | - Rolando Vernal
- Periodontal Biology Laboratory, Faculty of Dentistry, Universidad de Chile, Santiago, Chile.,Department of Conservative Dentistry, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| |
Collapse
|
14
|
Bugueno IM, Benkirane-Jessel N, Huck O. Implication of Toll/IL-1 receptor domain containing adapters in Porphyromonas gingivalis-induced inflammation. Innate Immun 2021; 27:324-342. [PMID: 34018827 PMCID: PMC8186158 DOI: 10.1177/17534259211013087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Periodontitis is induced by periodontal dysbiosis characterized by the predominance of anaerobic species. TLRs constitute the classical pathway for cell activation by infection. Interestingly, the Toll/IL-1 receptor homology domain adapters initiate signaling events, leading to the activation of the expression of the genes involved in the host immune response. The aim of this study was to evaluate the effects of Porphyromonas gingivalis on the expression and protein-protein interactions among five TIR adapters (MAL, MyD88, TRIF, TRAM and SARM) in gingival epithelial cells and endothelial cells. It was observed that P. gingivalis is able to modulate the signaling cascades activated through its recognition by TLR4/2 in gingival epithelial cells and endothelial cells. Indeed, MAL-MyD88 protein-protein interactions associated with TLR4 was the main pathway activated by P. gingivalis infection. When transient siRNA inhibition was performed, cell viability, inflammation, and cell death induced by infection decreased and such deleterious effects were almost absent when MAL or TRAM were targeted. This study emphasizes the role of such TIR adapter proteins in P. gingivalis elicited inflammation and the precise evaluation of TIR adapter protein interactions may pave the way for future therapeutics in both periodontitis and systemic disease with a P. gingivalis involvement, such as atherothrombosis.
Collapse
Affiliation(s)
- Isaac M Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France.,Faculté de Chirurgie Dentaire, Université de Strasbourg, France.,Pôle de Médecine et de Chirurgie Bucco-Dentaires, Hôpitaux Universitaires de Strasbourg, France
| |
Collapse
|
15
|
Riaz Rajoka MS, Mehwish HM, Xiong Y, Song X, Hussain N, Zhu Q, He Z. Gut microbiota targeted nanomedicine for cancer therapy: Challenges and future considerations. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2020.10.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Akkermansia muciniphila and Its Pili-Like Protein Amuc_1100 Modulate Macrophage Polarization in Experimental Periodontitis. Infect Immun 2020; 89:IAI.00500-20. [PMID: 33020212 DOI: 10.1128/iai.00500-20] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 09/24/2020] [Indexed: 02/07/2023] Open
Abstract
Periodontitis is a chronic inflammatory disease triggered by dysbiosis of the oral microbiome. Porphyromonas gingivalis is strongly implicated in periodontal inflammation, gingival tissue destruction, and alveolar bone loss through sustained exacerbation of the host response. Recently, the use of other bacterial species, such as Akkermansia muciniphila, has been suggested to counteract inflammation elicited by P. gingivalis In this study, the effects of A. muciniphila and its pili-like protein Amuc_1100 on macrophage polarization during P. gingivalis infection were evaluated in a murine model of experimental periodontitis. Mice were gavaged with P. gingivalis alone or in combination with A. muciniphila or Amuc_1100 for 6 weeks. Morphometric analysis demonstrated that the addition of A. muciniphila or Amuc_1100 significantly reduced P. gingivalis-induced alveolar bone loss. This decreased bone loss was associated with a proresolutive phenotype (M2) of macrophages isolated from submandibular lymph nodes as observed by flow cytometry. Furthermore, the expression of interleukin 10 (IL-10) at the RNA and protein levels was significantly increased in the gingival tissues of the mice and in macrophages exposed to A. muciniphila or Amuc_1100, confirming their anti-inflammatory properties. This study demonstrates the putative therapeutic interest of the administration of A. muciniphila or Amuc_1100 in the management of periodontitis through their anti-inflammatory properties.
Collapse
|
17
|
A therapeutic oxygen carrier isolated from Arenicola marina decreased P. gingivalis induced inflammation and tissue destruction. Sci Rep 2020; 10:14745. [PMID: 32901057 PMCID: PMC7479608 DOI: 10.1038/s41598-020-71593-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/17/2020] [Indexed: 12/17/2022] Open
Abstract
The control of inflammation and infection is crucial for periodontal wound healing and regeneration. M101, an oxygen carrier derived from Arenicola marina, was tested for its anti-inflammatory and anti-infectious potential based on its anti-oxidative and tissue oxygenation properties. In vitro, no cytotoxicity was observed in oral epithelial cells (EC) treated with M101. M101 (1 g/L) reduced significantly the gene expression of pro-inflammatory markers such as TNF-α, NF-κΒ and RANKL in P. gingivalis-LPS stimulated and P. gingivalis-infected EC. The proteome array revealed significant down-regulation of pro-inflammatory cytokines (IL-1β and IL-8) and chemokine ligands (RANTES and IP-10), and upregulation of pro-healing mediators (PDGF-BB, TGF-β1, IL-10, IL-2, IL-4, IL-11 and IL-15) and, extracellular and immune modulators (TIMP-2, M-CSF and ICAM-1). M101 significantly increased the gene expression of Resolvin-E1 receptor. Furthermore, M101 treatment reduced P. gingivalis biofilm growth over glass surface, observed with live/dead analysis and by decreased P. gingivalis 16 s rRNA expression (51.7%) (p < 0.05). In mice, M101 reduced the clinical abscess size (50.2%) in P. gingivalis-induced calvarial lesion concomitant with a decreased inflammatory score evaluated through histomorphometric analysis, thus, improving soft tissue and bone healing response. Therefore, M101 may be a novel therapeutic agent that could be beneficial in the management of P. gingivalis associated diseases.
Collapse
|
18
|
Titz B, Szostak J, Sewer A, Phillips B, Nury C, Schneider T, Dijon S, Lavrynenko O, Elamin A, Guedj E, Tsin Wong E, Lebrun S, Vuillaume G, Kondylis A, Gubian S, Cano S, Leroy P, Keppler B, Ivanov NV, Vanscheeuwijck P, Martin F, Peitsch MC, Hoeng J. Multi-omics systems toxicology study of mouse lung assessing the effects of aerosols from two heat-not-burn tobacco products and cigarette smoke. Comput Struct Biotechnol J 2020; 18:1056-1073. [PMID: 32419906 PMCID: PMC7218232 DOI: 10.1016/j.csbj.2020.04.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/19/2020] [Indexed: 12/15/2022] Open
Abstract
Multi-omics systems toxicology study, comprising five omics data modalities. Multi-Omics Factor Analysis and multi-modality functional network interpretation. Cigarettes smoke (CS) induced complex immunoregulatory interactions across molecular layers. Aerosols from two heat-not-burn tobacco products had less impact on lungs than CS.
Cigarette smoke (CS) causes adverse health effects and, for smoker who do not quit, modified risk tobacco products (MRTPs) can be an alternative to reduce the risk of developing smoking-related diseases. Standard toxicological endpoints can lack sensitivity, with systems toxicology approaches yielding broader insights into toxicological mechanisms. In a 6-month systems toxicology study on ApoE−/− mice, we conducted an integrative multi-omics analysis to assess the effects of aerosols from the Carbon Heated Tobacco Product (CHTP) 1.2 and Tobacco Heating System (THS) 2.2—a potential and a candidate MRTP based on the heat-not-burn (HnB) principle—compared with CS at matched nicotine concentrations. Molecular exposure effects in the lungs were measured by mRNA/microRNA transcriptomics, proteomics, metabolomics, and lipidomics. Integrative data analysis included Multi-Omics Factor Analysis and multi-modality functional network interpretation. Across all five data modalities, CS exposure was associated with an increased inflammatory and oxidative stress response, and lipid/surfactant alterations. Upon HnB aerosol exposure these effects were much more limited or absent, with reversal of CS-induced effects upon cessation and switching to CHTP 1.2. Functional network analysis revealed CS-induced complex immunoregulatory interactions across the investigated molecular layers (e.g., itaconate, quinolinate, and miR-146) and highlighted the engagement of the heme–Hmox–bilirubin oxidative stress axis by CS. This work exemplifies how multi-omics approaches can be leveraged within systems toxicology studies and the generated multi-omics data set can facilitate the development of analysis methods and can yield further insights into the effects of toxicological exposures on the lung of mice.
Collapse
Key Words
- CHTP, Carbon Heated Tobacco Product
- COPD, chronic obstructive pulmonary disease
- CS, cigarette smoke
- Cigarette smoking
- Inhalation toxicology
- LC, liquid chromatography
- MOFA, Multi-Omics Factor Analysis
- MS, mass spectrometry
- Modified risk tobacco product (MRTP)
- Multi-omics
- PCSF, prize-collecting Steiner forest
- ROS, reactive oxygen species
- Systems toxicology
- THS, Tobacco Heating System
- cMRTP, candidate modified risk tobacco product
- sGCCA, sparse generalized canonical correlation analysis
Collapse
Affiliation(s)
- Bjoern Titz
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Justyna Szostak
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Alain Sewer
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Blaine Phillips
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Catherine Nury
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Thomas Schneider
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sophie Dijon
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Oksana Lavrynenko
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ashraf Elamin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Emmanuel Guedj
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Ee Tsin Wong
- Philip Morris International Research Laboratories Pte. Ltd., Science Park II, Singapore
| | - Stefan Lebrun
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Grégory Vuillaume
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Athanasios Kondylis
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Sylvain Gubian
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Stephane Cano
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Patrice Leroy
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Nikolai V Ivanov
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | | | - Florian Martin
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Manuel C Peitsch
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| | - Julia Hoeng
- PMI R&D, Philip Morris Products S.A., Quai Jeanrenaud 5, CH-2000 Neuchâtel, Switzerland
| |
Collapse
|
19
|
Light exercise without lactate elevation induces ischemic tolerance through the modulation of microRNA in the gerbil hippocampus. Brain Res 2020; 1732:146710. [PMID: 32035888 DOI: 10.1016/j.brainres.2020.146710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 01/31/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022]
Abstract
Previously we studied the possible neuroprotective effects of ischemia-resistant exercise in a gerbil model of transient whole-brain ischemia and evaluated the histology, expression of specific proteins, and brain function under different conditions. The present study investigated the neuroprotective effects of light exercise, without lactate elevation, in a gerbil model of ischemia/reperfusion injury. Transient whole-brain ischemia was induced by occlusion of the bilateral common carotid arteries for 5 min. A group of animals was subjected to treadmill exercise before ischemia induction. Hippocampal neuronal damage and miRNA expression, as well as behavioral deficits and plasma lactate levels, were evaluated. Light exercise suppressed hippocampal neuron loss and preserved short-term memory. Moreover, 14 miRNAs (mmu-miR-211-3p, -327, -451b, -711, -3070-3p, -3070-2-3p, -3097-5p, -3620-5p, -6240, -6916-5p, -6944-5p, 7083-5p, -7085-5p, and -7674-5p) were upregulated and 6 miRNAs (mmu-miR-148b-3p, -152-3p, -181c-5p, -299b-5p, -455-3p, and -664-3p) were downregulated due to ischemia. However, the expression of these miRNAs remained unchanged when animals performed light exercise before the ischemic event. Differentially expressed miRNAs regulate multiple biological processes such as inflammation, metabolism, and cell death. These findings suggest that light exercise reduces neuronal death and behavioral deficits after transient ischemia by regulating hippocampal miRNAs.
Collapse
|
20
|
Porphyromonas gingivalis triggers the shedding of inflammatory endothelial microvesicles that act as autocrine effectors of endothelial dysfunction. Sci Rep 2020; 10:1778. [PMID: 32019950 PMCID: PMC7000667 DOI: 10.1038/s41598-020-58374-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
A link between periodontitis and atherothrombosis has been highlighted. The aim of this study was to determine the influence of Porphyromonas gingivalis on endothelial microvesicles (EMVPg) shedding and their contribution to endothelial inflammation. Endothelial cells (EC) were infected with P. gingivalis (MOI = 100) for 24 h. EMVPg were isolated and their concentration was evaluated by prothrombinase assay. EMVPg were significantly increased in comparison with EMVCtrl shedded by unstimulated cells. While EMVCtrl from untreated EC had no effect, whereas, the proportion of apoptotic EC was increased by 30 nM EMVPg and viability was decreased down to 25%, a value elicited by P. gingivalis alone. Moreover, high concentration of EMVPg (30 nM) induced a pro-inflammatory and pro-oxidative cell response including up-regulation of TNF-α, IL-6 and IL-8 as well as an altered expression of iNOS and eNOS at both mRNA and protein level. An increase of VCAM-1 and ICAM-1 mRNA expression (4.5 folds and 3 folds respectively (p < 0.05 vs untreated) was also observed after EMVPg (30 nM) stimulation whereas P. gingivalis infection was less effective, suggesting a specific triggering by EMVPg. Kinasome analysis demonstrated the specific effect induced by EMVPg on main pro-inflammatory pathways including JNK/AKT and STAT. EMVPg are effective pro-inflammatory effectors that may have detrimental effect on vascular homeostasis and should be considered as potential autocrine and paracrine effectors involved in the link between periodontitis and atherothrombosis.
Collapse
|
21
|
Huck O, Mulhall H, Rubin G, Kizelnik Z, Iyer R, Perpich JD, Haque N, Cani PD, de Vos WM, Amar S. Akkermansia muciniphila reduces Porphyromonas gingivalis-induced inflammation and periodontal bone destruction. J Clin Periodontol 2020; 47:202-212. [PMID: 31674689 DOI: 10.1111/jcpe.13214] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 10/17/2019] [Accepted: 10/20/2019] [Indexed: 12/11/2022]
Abstract
AIM Akkermansia muciniphila is a beneficial gut commensal, whose anti-inflammatory properties have recently been demonstrated. This study aimed to evaluate the effect of A. muciniphila on Porphyromonas gingivalis elicited inflammation. MATERIAL AND METHODS In lean and obese mice, A. muciniphila was administered in P. gingivalis-induced calvarial abscess and in experimental periodontitis model (EIP). Bone destruction and inflammation were evaluated by histomorphometric analysis. In vitro, A. muciniphila was co-cultured with P. gingivalis, growth and virulence factor expression was evaluated. Bone marrow macrophages (BMMϕ) and gingival epithelial cells (TIGK) were exposed to both bacterial strains, and the expression of inflammatory mediators, as well as tight junction markers, was analysed. RESULTS In a model of calvarial infection, A. muciniphila decreased inflammatory cell infiltration and bone destruction. In EIP, treatment with A. muciniphila resulted in a decreased alveolar bone loss. In vitro, the addition of A. muciniphila to P. gingivalis-infected BMMϕ increased anti-inflammatory IL-10 and decreased IL-12. Additionally, A. muciniphila exposure increases the expression of junctional integrity markers such as integrin-β1, E-cadherin and ZO-1 in TIGK cells. A. muciniphila co-culture with P. gingivalis reduced gingipains mRNA expression. DISCUSSION This study demonstrated the protective effects of A. muciniphila administration and may open consideration to its use as an adjunctive therapeutic agent to periodontal treatment.
Collapse
Affiliation(s)
- Olivier Huck
- UMR 1260, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM (French National Institute of Health and Medical Research), Regenerative Nanomedicine, Strasbourg, France
- Faculté de Chirurgie-Dentaire, Université de Strasbourg, Strasbourg, France
| | - Hannah Mulhall
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - George Rubin
- Touro College of Dental Medicine, Valhalla, NY, USA
| | - Zev Kizelnik
- Touro College of Dental Medicine, Valhalla, NY, USA
| | - Radha Iyer
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
| | - John D Perpich
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, USA
| | - Nasreen Haque
- Department of Pathology, New York Medical College, Valhalla, NY, USA
| | - Patrice D Cani
- WELBIO (Walloon Excellence in Life sciences and BIOtechnology), Metabolism and Nutrition research group, UCLouvain, Université Catholique de Louvain, Louvain Drug Research Institute, Brussels, Belgium
| | - Willem M de Vos
- Department of Bacteriology and Immunology, RPU Human Microbiome, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Salomon Amar
- Department of Pharmacology, New York Medical College, Valhalla, NY, USA
- Department of Microbiology and Immunology, New York Medical College, Valhalla, NY, USA
- Touro College of Dental Medicine, Valhalla, NY, USA
| |
Collapse
|
22
|
Naqvi AR, Brambila MF, Martínez G, Chapa G, Nares S. Dysregulation of human miRNAs and increased prevalence of HHV miRNAs in obese periodontitis subjects. J Clin Periodontol 2019; 46:51-61. [PMID: 30499589 DOI: 10.1111/jcpe.13040] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 01/01/2023]
Abstract
AIM To evaluate human and herpesvirus-encoded microRNA (miRNA) expression in healthy and diseased gingiva of obese and non-obese subjects and compare the impact of localized and systemic inflammation on human miRNA profiles. MATERIAL AND METHODS Healthy and inflamed gingival biopsies were collected from obese and non-obese subjects. Human and herpesvirus miRNA expression was quantified using quantitative PCR. Predicted targets of dysregulated miRNAs were identified using bioinformatics analysis, validated by dual luciferase assays and their expression assessed in healthy and diseased tissues. RESULTS Our results show differential expression of miRNAs in both diseased groups compared to healthy counterparts. MMP-16 is identified as a novel target of miRNAs altered in disease. Expression analysis of genes predicted as target of differentially expressed miRNAs show significant changes in disease compared with healthy tissues. Finally, quantitation of four herpesvirus-derived viral miRNAs show that the expression and prevalence of herpesvirus miRNAs in diseased gingiva of obese subjects. CONCLUSION Our findings show that miRNA (both cellular and virus) expression is differentially responsive to local and systemic inflammation. Some of these miRNAs can modulate key cellular genes with direct consequences on inflammatory pathways suggesting their impact on oral tissue transcriptome and functions.
Collapse
Affiliation(s)
- Afsar R Naqvi
- Department of Periodontics, University of Illinois at Chicago, Chicago, Illinois
| | - Maria F Brambila
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Gloria Martínez
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Gabriela Chapa
- Posgrado de Periodoncia, Facultad de Odontologia, Universidad Autonoma de Nuevo León, Monterrey, Mexico
| | - Salvador Nares
- Department of Periodontics, University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
23
|
Huck O, Han X, Mulhall H, Gumenchuk I, Cai B, Panek J, Iyer R, Amar S. Identification of a Kavain Analog with Efficient Anti-inflammatory Effects. Sci Rep 2019; 9:12940. [PMID: 31506483 PMCID: PMC6737110 DOI: 10.1038/s41598-019-49383-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Kavain, a compound derived from Piper methysticum, has demonstrated anti-inflammatory properties. To optimize its drug properties, identification and development of new kavain-derived compounds was undertaken. A focused library of analogs was synthesized and their effects on Porphyromonas gingivalis (P. gingivalis) elicited inflammation were evaluated in vitro and in vivo. The library contained cyclohexenones (5,5-dimethyl substituted cyclohexenones) substituted with a benzoate derivative at the 3-position of the cyclohexanone. The most promising analog identifed was a methylated derivative of kavain, Kava-205Me (5,5-dimethyl-3-oxocyclohex-1-en-1-yl 4-methylbenzoate.) In an in vitro assay of anti-inflammatory effects, murine macrophages (BMM) and THP-1 cells were infected with P. gingivalis (MOI = 20:1) and a panel of cytokines were measured. Both cell types treated with Kava-205Me (10 to 200 μg/ml) showed significantly and dose-dependently reduced TNF-α secretion induced by P. gingivalis. In BMM, Kava-205Me also reduced secretion of other cytokines involved in the early phase of inflammation, including IL-12, eotaxin, RANTES, IL-10 and interferon-γ (p < 0.05). In vivo, in an acute model of P. gingivalis-induced calvarial destruction, administration of Kava-205Me significantly improved the rate of healing associated with reduced soft tissue inflammation and osteoclast activation. In an infective arthritis murine model induced by injection of collagen-antibody (ArthriomAb) + P. gingivalis, administration of Kava-205Me was able to reduce efficiently paw swelling and joint destruction. These results highlight the strong anti-inflammatory properties of Kava-205Me and strengthen the interest of testing such compounds in the management of P. gingivalis elicited inflammation, especially in the management of periodontitis.
Collapse
Affiliation(s)
- Olivier Huck
- Université de Strasbourg, Faculté de Chirurgie-Dentaire, 8 rue Sainte-Elisabeth, 67000, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Xiaxian Han
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Hannah Mulhall
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Iryna Gumenchuk
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Bin Cai
- Department of Chemistry, Boston University, Boston, MA, USA
| | - James Panek
- Department of Chemistry, Boston University, Boston, MA, USA
| | - Radha Iyer
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA
| | - Salomon Amar
- Departments of Pharmacology, Microbiology and Immunology, New York Medical College, Valhalla, NY 10595, NY, USA.
| |
Collapse
|
24
|
Li Y, Su X, Zhang L, Liu Y, Shi M, Lv C, Gao Y, Xu D, Wang Z. Dysbiosis of the gut microbiome is associated with CKD5 and correlated with clinical indices of the disease: a case-controlled study. J Transl Med 2019; 17:228. [PMID: 31315634 PMCID: PMC6637476 DOI: 10.1186/s12967-019-1969-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/05/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Chronic kidney disease (CKD) is a universal chronic disease in China. The balance of the gut microbiome is highly crucial for a healthy human body, especially for the immune system. However, the relationship between the gut microbiome and CKD has not yet been clarified. METHODS A total of 122 patients were recruited for this study. Among them, 24 patients were diagnosed with CKD5 but did not receive hemodialysis therapy, 29 patients were diagnosed with CKD5 and received hemodialysis therapy and 69 were matched healthy controls. The gut microbiome composition was analyzed by a 16S rRNA (16S ribosomal RNA) gene-based sequencing protocol. High-performance liquid chromatography-electrospray ionization-tandem mass spectrometry (HPLC/ESI-MS/MS) technology was used to evaluate the levels of microbiome-related protein-binding uremic toxins level, indoxyl sulfate (IS) and p-cresyl sulfate (PCS), in the patients. RESULTS We compared the gut microbiome results of 122 subjects and established a correlation between the gut microbiome and IS and PCS levels. The results indicated that alpha and beta diversity were different in patients with CKD5 than in the healthy controls (p < 0.01). In comparison to healthy controls, CKD5 patients exhibited a significantly higher relative abundance of Neisseria (p < 0.001), Lachnoclostridium (p < 0.001) and Bifidobacterium (p < 0.001). Faecalibacterium (p < 0.001) displayed a notably lower relative abundance for CKD5 patients both with and without hemodialysis than for controls. It was also found that the concentrations of IS and PCS were correlated with the gut microbiome. CONCLUSIONS Our results indicate that CKD5 patients both with and without hemodialysis had dysbiosis of the gut microbiome and that this dysbiosis was associated with an accumulation of IS and PCS. These results may support further clinical diagnosis to a great extent and help in developing potential probiotics to facilitate the treatment of CKD5.
Collapse
Affiliation(s)
- Yang Li
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
| | - Xinhuan Su
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong University, Shandong Provincial Key Laboratory of Endocrinology and Lipid Metabolism, Institute of Endocrinology and Metabolism, Shandong Academy of Clinical Medicine, Jinan, Shandong, China
| | - Lei Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Chemistry and Environment, Beihang University, Beijing, 100191, China
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, China
| | - Yanwei Liu
- Department of Nephrology, Feicheng Mining Center Hospital, Feicheng High-Tech Development Zone, Taian, 271600, Shandong, China
| | - Min Shi
- Jinan Center for Food and Drug Control, Jinan, 250102, China
| | - Chenxiao Lv
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
- Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Ying Gao
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China
- Weifang Medical University, No. 7166 Baotong West Street, Weifang, 261053, Shandong, China
| | - Dongmei Xu
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| | - Zunsong Wang
- Department of Nephrology, Shandong Provincial Qianfoshan Hospital, The First Hospital Affiliated with Shandong First Medical University, No. 16766 Jingshi Road, Jinan, 250014, Shandong, China.
| |
Collapse
|
25
|
Zhang J, Zhang F, Zhao C, Xu Q, Liang C, Yang Y, Wang H, Shang Y, Wang Y, Mu X, Zhu D, Zhang C, Yang J, Yao M, Zhang L. Dysbiosis of the gut microbiome is associated with thyroid cancer and thyroid nodules and correlated with clinical index of thyroid function. Endocrine 2019; 64:564-574. [PMID: 30584647 DOI: 10.1007/s12020-018-1831-x] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 12/12/2018] [Indexed: 12/17/2022]
Abstract
PURPOSE Thyroid cancer and thyroid nodules are the most prevalent form of thyroid endocrine disorder. The balance of gut microbiome is highly crucial for a healthy human body, especially for the immune and endocrine system. However, the relationship between gut microbiome and the thyroid endocrine disorders such as thyroid cancer and thyroid nodules has not been reported yet. METHODS A cohort of 74 patients was recruited for this study. Among them, 20 patients had thyroid cancer, 18 patients had thyroid nodules, and 36 were matched healthy controls. Gut microbiome composition was analyzed by 16S rRNA (16S ribosomal RNA) gene-based sequencing protocol. RESULTS We compared the gut microbiome results of 74 subjects and established the correlation between gut microbiome and thyroid endocrine function for both thyroid cancer and thyroid nodules. The results inferred that alpha and beta diversity were different for patients with thyroid tumor than the healthy controls (p < 0.01). In comparison to healthy controls, the relative abundance of Neisseria (p < 0.001) and Streptococcus (p < 0.001) was significantly higher for thyroid cancer and thyroid nodules. Butyricimonas (p < 0.001) and Lactobacillus (p < 0.001) displayed notably lower relative abundance for thyroid cancer and thyroid nodules, respectively. It was also found that the clinical indexes were correlated with gut microbiome. CONCLUSION Our results indicate that both thyroid cancer and thyroid nodules are associated with the composition of gut microbiome. These results may support further clinical diagnosis to a great extent and help in developing potential probiotics to facilitate the treatment of thyroid cancer and thyroid nodules.
Collapse
Affiliation(s)
- Jiaming Zhang
- Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
- College of Life Science, Shandong Normal University, Shandong Province, Jinan, 250014, China
| | - Fanghua Zhang
- Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
- Department of Endocrinology, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
| | - Changying Zhao
- Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
- College of Life Science, Shandong Normal University, Shandong Province, Jinan, 250014, China
| | - Qian Xu
- Department of Endocrinology, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
| | - Cheng Liang
- School of Information Science and Engineering, Shandong Normal University, Shandong Province, Jinan, 250014, China
| | - Ying Yang
- Department of Endocrinology, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
| | - Huiling Wang
- Department of Endocrinology, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
| | - Yongfang Shang
- Department of Endocrinology, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
| | - Ye Wang
- Department of Endocrinology, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
- Clinical Laboratory and Core Research Laboratory, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao 266042, China
| | - Xiaofeng Mu
- Department of Endocrinology, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
- Clinical Laboratory and Core Research Laboratory, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao 266042, China
| | - Dequan Zhu
- Microbiological Laboratory, Lin Yi People's Hospital, Shandong Province, Linyi 276003, China
| | - Chunling Zhang
- Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China
| | - Junjie Yang
- Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China.
- College of Life Science, Qilu Normal University, Shandong Province, Jinan, 250200, China.
| | - Minxiu Yao
- Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China.
- Department of Endocrinology, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China.
| | - Lei Zhang
- Qingdao Human Microbiome Center, The Affiliated Central Hospital of Qingdao University, Shandong Province, Qingdao, 266042, China.
- Microbiological Laboratory, Lin Yi People's Hospital, Shandong Province, Linyi 276003, China.
- Shandong Children's Microbiome Center, Qilu Children's Hospital of Shandong University, Jinan, 250022, China.
- Shandong Institutes for Food and Drug Control, Xinluo Street 2749, Jinan, Shandong Province, 250101, China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Chemistry and Environment, Beihang University, Beijing, 100191, China.
| |
Collapse
|
26
|
Li Q, He X, Yu Q, Wu Y, Du M, Chen J, Peng F, Zhang W, Chen J, Wang Y, Chen H, Wang H, He D, Wang Q. RETRACTED ARTICLE: The Notch signal mediates macrophage polarization by regulating miR-125a/miR-99b expression. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:833-843. [PMID: 30862190 DOI: 10.1080/21691401.2019.1576711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Qian Li
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Xia He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Qiao Yu
- Department of General Surgery, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yuan Wu
- Department of Internal Medicine, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Mingyu Du
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jing Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Fanyu Peng
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Wenjun Zhang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Jie Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Yan Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hanbo Chen
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Hairong Wang
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Dan He
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, PR China
| | - Qiang Wang
- Department of Radiation Oncology, Xuzhou Cancer Hospital, Xuzhou, PR China
| |
Collapse
|
27
|
Bugueno IM, Batool F, Keller L, Kuchler-Bopp S, Benkirane-Jessel N, Huck O. Porphyromonas gingivalis bypasses epithelial barrier and modulates fibroblastic inflammatory response in an in vitro 3D spheroid model. Sci Rep 2018; 8:14914. [PMID: 30297793 PMCID: PMC6175856 DOI: 10.1038/s41598-018-33267-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 09/25/2018] [Indexed: 02/07/2023] Open
Abstract
Porphyromonas gingivalis-induced inflammatory effects are mostly investigated in monolayer cultured cells. The aim of this study was to develop a 3D spheroid model of gingiva to take into account epithelio-fibroblastic interactions. Human gingival epithelial cells (ECs) and human oral fibroblasts (FBs) were cultured by hanging drop method to generate 3D microtissue (MT) whose structure was analyzed on histological sections and the cell-to-cell interactions were observed by scanning and transmission electron microscopy (SEM and TEM). MTs were infected by P. gingivalis and the impact on cell death (Apaf-1, caspase-3), inflammatory markers (TNF-α, IL-6, IL-8) and extracellular matrix components (Col-IV, E-cadherin, integrin β1) was evaluated by immunohistochemistry and RT-qPCR. Results were compared to those observed in situ in experimental periodontitis and in human gingival biopsies. MTs exhibited a well-defined spatial organization where ECs were organized in an external cellular multilayer, while, FBs constituted the core. The infection of MT demonstrated the ability of P. gingivalis to bypass the epithelial barrier in order to reach the fibroblastic core and induce disorganization of the spheroid structure. An increased cell death was observed in fibroblastic core. The development of such 3D model may be useful to define the role of EC–FB interactions on periodontal host-immune response and to assess the efficacy of new therapeutics.
Collapse
Affiliation(s)
- Isaac Maximiliano Bugueno
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Fareeha Batool
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Laetitia Keller
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Sabine Kuchler-Bopp
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France
| | - Nadia Benkirane-Jessel
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France.,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France
| | - Olivier Huck
- INSERM (French National Institute of Health and Medical Research), UMR 1260, Regenerative Nanomedicine (RNM), Fédération de Médecine Translationnelle de Strasbourg (FMTS), 11 rue Humann, Strasbourg, 67000, France. .,Université de Strasbourg (UDS), Faculté de Chirurgie-dentaire, 8 rue Sainte-Elisabeth, Strasbourg, 67000, France. .,Hôpitaux Universitaires de Strasbourg (HUS), Department of Periodontology, 1 place de l'Hôpital, Strasbourg, 67000, France.
| |
Collapse
|
28
|
Hu RS, He JJ, Elsheikha HM, Zhang FK, Zou Y, Zhao GH, Cong W, Zhu XQ. Differential Brain MicroRNA Expression Profiles After Acute and Chronic Infection of Mice With Toxoplasma gondii Oocysts. Front Microbiol 2018; 9:2316. [PMID: 30333806 PMCID: PMC6176049 DOI: 10.3389/fmicb.2018.02316] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/11/2018] [Indexed: 12/16/2022] Open
Abstract
Brain microRNAs (miRNAs) change in abundance in response to Toxoplasma gondii infection. However, their precise role in the pathogenesis of cerebral infection with T. gondii oocyst remains unclear. We studied the abundance of miRNAs in the brain of mice on days 11 and 33 post-infection (dpi) in order to identify miRNA pattern specific to early (11 dpi) and late (33 dpi) T. gondii infection. Mice were challenged with T. gondii oocysts (Type II strain) and on 11 and 33 dpi, the expression of miRNAs in mouse brain was investigated using small RNA (sRNA) sequencing. miRNA expression was confirmed by quantitative reverse transcription polymerase chain reaction (qRT-PCR). Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed to identify the biological processes, molecular functions, and cellular components, as well as pathways involved in infection. More than 1,500 miRNAs (1,352 known and 150 novel miRNAs) were detected in the infected and control mice. The expression of miRNAs varied across time after infection; 3, 38, and 108 differentially expressed miRNAs (P < 0.05) were detected during acute infection, chronic infection and chronic vs. acute infection, respectively. GO analysis showed that chronically infected mice had more predicted targets of dysregulated miRNAs than acutely infected mice. KEGG analysis indicated that most predicted targets were involved in immune- or disease-related pathways. Our data indicate that T. gondii infection alters the abundance of miRNAs in mouse brain particularly at the chronic stage, probably to fine-tune conditions required for the establishment of a latent brain infection.
Collapse
Affiliation(s)
- Rui-Si Hu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Jun-Jun He
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, The University of Nottingham, Loughborough, United Kingdom
| | - Fu-Kai Zhang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Yang Zou
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guang-Hui Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, China
| | - Wei Cong
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,College of Marine Science, Shandong University at Weihai, Weihai, China
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
29
|
Reduction of Articular and Systemic Inflammation by Kava-241 in a Porphyromonas gingivalis-Induced Arthritis Murine Model. Infect Immun 2018; 86:IAI.00356-18. [PMID: 29914930 DOI: 10.1128/iai.00356-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/11/2018] [Indexed: 12/18/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory disease that has been linked to several risk factors, including periodontitis. Identification of new anti-inflammatory compounds to treat arthritis is needed. We had previously demonstrated the beneficial effect of Kava-241, a kavain-derived compound, in the management of Porphyromonas gingivalis-induced periodontitis. The present study evaluated systemic and articular effects of Kava-241 in an infective arthritis murine model triggered by P. gingivalis bacterial inoculation and primed with a collagen antibody cocktail (CIA) to induce joint inflammation and tissular destruction. Clinical inflammation score and radiological analyses of the paws were performed continuously, while histological assessment was obtained at sacrifice. Mice exposed to P. gingivalis and a CIA cocktail and treated concomitantly with Kava-241 exhibited a reduced clinical inflammatory score and a decreased number of inflammatory cells and osteoclasts within joint. Kava-241 treatment also decreased significantly tumor necrosis factor alpha (TNF-α) in serum from mice injected with a Toll-like receptor 2 or 4 (TLR-2/4) ligand, P. gingivalis-lipopolysaccharide (LPS). Finally, bone marrow-derived macrophages infected with P. gingivalis and exposed to Kava-241 displayed reduced TLR-2/4, reduced mitogen-activated protein kinase (MAPK)-related signal elements, and reduced LPS-induced TNF-α factor (LITAF), all explaining the observed reduction of TNF-α secretion. Taken together, these results emphasized the novel properties of Kava-241 in the management of inflammatory conditions, especially TNF-α-related diseases such as infective RA.
Collapse
|
30
|
Singh SP, Huck O, Abraham NG, Amar S. Kavain Reduces Porphyromonas gingivalis-Induced Adipocyte Inflammation: Role of PGC-1α Signaling. THE JOURNAL OF IMMUNOLOGY 2018; 201:1491-1499. [PMID: 30037847 DOI: 10.4049/jimmunol.1800321] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 06/28/2018] [Indexed: 12/11/2022]
Abstract
A link between obesity and periodontitis has been suggested because of compromised immune response and chronic inflammation in obese patients. In this study, we evaluated the anti-inflammatory properties of Kavain, an extract from Piper methysticum, on Porphyromonas gingivalis-induced inflammation in adipocytes with special focus on peroxisome proliferation-activated receptor γ coactivator α (PGC-1α) and related pathways. The 3T3-L1 mouse preadipocytes and primary adipocytes harvested from mouse adipose tissue were infected with P. gingivalis, and inflammation (TNF-α; adiponectin/adipokines), oxidative stress, and adipogenic marker (FAS, CEBPα, and PPAR-γ) expression were measured. Furthermore, effect of PGC-1α knockdown on Kavain action was evaluated. Results showed that P. gingivalis worsens adipocyte dysfunction through increase of TNF-α, IL-6, and iNOS and decrease of PGC-1α and adiponectin. Interestingly, although Kavain obliterated P. gingivalis-induced proinflammatory effects in wild-type cells, Kavain did not affect PGC-1α-deficient cells, strongly advocating for Kavain effects being mediated by PGC-1α. In vivo adipocytes challenged with i.p. injection of P. gingivalis alone or P. gingivalis and Kavain displayed the same phenotype as in vitro adipocytes. Altogether, our findings established anti-inflammatory and antioxidant effects of Kavain on adipocytes and emphasized protective action against P. gingivalis-induced adipogenesis. The use of compounds such as Kavain offer a portal to potential therapeutic approaches to counter chronic inflammation in obesity-related diseases.
Collapse
Affiliation(s)
- Shailendra P Singh
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Olivier Huck
- INSERM, UMR 1260, Regenerative Nanomedicine (Fédération de Médicine Translationalle de Strasbourg), 67000 Strasbourg, France; and.,Periodontology, Dental Faculty, University of Strasbourg, 67000 Strasbourg, France
| | - Nader G Abraham
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595
| | - Salomon Amar
- Department of Pharmacology, New York Medical College, Valhalla, NY 10595;
| |
Collapse
|
31
|
Molteni M, Bosi A, Rossetti C. The Effect of Cyanobacterial LPS Antagonist (CyP) on Cytokines and Micro-RNA Expression Induced by Porphyromonas gingivalis LPS. Toxins (Basel) 2018; 10:toxins10070290. [PMID: 30012943 PMCID: PMC6071223 DOI: 10.3390/toxins10070290] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/06/2018] [Accepted: 07/11/2018] [Indexed: 12/31/2022] Open
Abstract
Lipopolysaccharide (LPS) from Porphyromonas gingivalis (Pg-LPS) is a key bacterial structure involved in the maintenance of a chronic pro-inflammatory environment during periodontitis. Similar to other gram-negative LPS, Pg-LPS induces the release of pro-inflammatory cytokines through interaction with Toll-Like Receptor 4 (TLR4) and is able to stimulate negative TLR4 regulatory pathways, such as those involving microRNA (miRNA). In this work, we employed CyP, an LPS with TLR4-MD2 antagonist activity obtained from the cyanobacterium Oscillatoria planktothrix FP1, to study the effects on pro-inflammatory cytokine production and miRNA expression in human monocytic THP-1 cells stimulated with Pg-LPS or E. coli LPS (Ec-LPS). Results showed that CyP inhibited TNF-α, IL-1β and IL-8 expression more efficiently when co-incubated with Pg-LPS rather than with Ec-LPS. The inhibition of pro-inflammatory cytokine production was maintained even when CyP was added 2 h after LPS. The analysis of the effects of CyP on miRNA expression showed that, although being an antagonist, CyP did not inhibit miR-146a induced by Pg-LPS or Ec-LPS, whereas it significantly inhibited miR-155 only in the cultures stimulated with Ec-LPS. These results suggest that CyP may modulate the pro-inflammatory response induced by Pg-LPS, not only by blocking TLR4-MD2 complex, but also by preserving miR-146a expression.
Collapse
Affiliation(s)
- Monica Molteni
- Laboratorio di Biologia Applicata, Dipartimento di Medicina e Chirurgia, Università degli Studi dell'Insubria, Via Dunant, 3-21100 Varese, Italy.
| | - Annalisa Bosi
- Laboratorio di Biologia Applicata, Dipartimento di Medicina e Chirurgia, Università degli Studi dell'Insubria, Via Dunant, 3-21100 Varese, Italy.
| | - Carlo Rossetti
- Laboratorio di Biologia Applicata, Dipartimento di Medicina e Chirurgia, Università degli Studi dell'Insubria, Via Dunant, 3-21100 Varese, Italy.
| |
Collapse
|
32
|
miRNAs reshape immunity and inflammatory responses in bacterial infection. Signal Transduct Target Ther 2018; 3:14. [PMID: 29844933 PMCID: PMC5968033 DOI: 10.1038/s41392-018-0006-9] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/20/2017] [Accepted: 12/10/2017] [Indexed: 12/15/2022] Open
Abstract
Pathogenic bacteria cause various infections worldwide, especially in immunocompromised and other susceptible individuals, and are also associated with high infant mortality rates in developing countries. MicroRNAs (miRNAs), small non-coding RNAs with evolutionarily conserved sequences, are expressed in various tissues and cells that play key part in various physiological and pathologic processes. Increasing evidence implies roles for miRNAs in bacterial infectious diseases by modulating inflammatory responses, cell penetration, tissue remodeling, and innate and adaptive immunity. This review highlights some recent intriguing findings, ranging from the correlation between aberrant expression of miRNAs with bacterial infection progression to their profound impact on host immune responses. Harnessing of dysregulated miRNAs in bacterial infection may be an approach to improving the diagnosis, prevention and therapy of infectious diseases. Changes in production of tiny cellular RNAs in response to bacterial infection could guide the development of better diagnostics and therapies. MicroRNAs regulate other genes by binding to messenger RNA strands and controlling their translation into proteins. Xikun Zhou, Min Wu and colleagues of the University of North Dakota have now reviewed current knowledge about how microRNA levels shift during infection with various bacterial pathogens. These microRNAs can modulate the immune response as well as pathways that influence metabolic activity and cell survival. Increasing studies have indicated that shifts in microRNA levels in response to different infections could provide a potential bacterial ‘fingerprint’ for achieving accurate diagnosis. With deeper insight into how different microRNAs influence infection, it might one day day become possible to target these molecules with ‘antisense’ or ‘agonist’ drugs that modulate their activity.
Collapse
|
33
|
Wong SH, Kwong TNY, Wu CY, Yu J. Clinical applications of gut microbiota in cancer biology. Semin Cancer Biol 2018; 55:28-36. [PMID: 29782923 DOI: 10.1016/j.semcancer.2018.05.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 04/23/2018] [Accepted: 05/14/2018] [Indexed: 12/17/2022]
Abstract
The involvement of microorganisms in cancer has been increasing recognized. Collectively, microorganisms have been estimated to account for ∼20% of all cancers worldwide. Recent advances in metagenomics and bioinformatics have provided new insights on the microbial ecology in different tumors, pinpointing the roles of microorganisms in cancer formation, development and response to treatments. Furthermore, studies have emphasized the importance of host-microbial and inter-microbial interactions in the cancer microbiota. These studies have not only revolutionized our understanding of cancer biology, but also opened up new opportunities for cancer prevention, diagnosis, prognostication and treatment. This review article aims to summarize the microbiota in various cancers and their treatments, and explore clinical applications for such relevance.
Collapse
Affiliation(s)
- Sunny H Wong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China
| | - Thomas N Y Kwong
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region
| | - Chun-Ying Wu
- Division of Translational Research, Department of Medical Research, Taipei Veterans General Hospital, Taipei, 11217, Taiwan; School of Medicine, National Yang-Ming University, Taipei, Taiwan; College of Public Health and Graduate Institute of Clinical Medicine, China Medical University, Taichung, Taiwan.
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong Special Administrative Region; CUHK Shenzhen Research Institute, Shenzhen, People's Republic of China.
| |
Collapse
|
34
|
Liu Y, Chen Z, Xu K, Wang Z, Wu C, Sun Z, Ji N, Huang M, Zhang M. Next generation sequencing for miRNA profile of spleen CD4 + T cells in the murine model of acute asthma. Epigenomics 2018; 10:1071-1083. [PMID: 29737865 DOI: 10.2217/epi-2018-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To explore the miRNAs profile of CD4+ T lymphocytes in asthma via next generation sequencing. METHODS In the murine model of acute asthma, spleen CD4+ T lymphocytes were sorted, in which small RNAs were extracted and sequenced. Novel miRNAs were measured with real time quantitative reverse transcription polymerase chain reaction (qRT-PCR). RESULTS A total of 127 miRNAs were found to exhibit at least twofold change. In the 262 predicted novel miRNAs, 14 novel miRNAs were measured in qRT-PCR in the sorted CD4+ T cells or in the differentiated Th1/Th2 cells and novel miR-11 (xxx-m0228-3p) was significantly decreased in the sorted CD4+ T cells from the murine model of asthma and in the Th2 cells. CONCLUSION Aberrant miRNAs profile in the CD4+ T lymphocytes from acute asthma was documented.
Collapse
Affiliation(s)
- Ye Liu
- Department of Geriatrics, Jiangsu Province Geriatric Hospital, Nanjing 210024, PR China
| | - Zhongqi Chen
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Kun Xu
- Department of Respiratory Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, Wuxi 214002, PR China
| | - Zhengxia Wang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Chaojie Wu
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Zhixiao Sun
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Ningfei Ji
- Department of Geriatrics, Jiangsu Province Geriatric Hospital, Nanjing 210024, PR China.,Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Mao Huang
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, PR China
| | - Mingshun Zhang
- Department of Immunology, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
35
|
Kwan STC, King JH, Grenier JK, Yan J, Jiang X, Roberson MS, Caudill MA. Maternal Choline Supplementation during Normal Murine Pregnancy Alters the Placental Epigenome: Results of an Exploratory Study. Nutrients 2018; 10:nu10040417. [PMID: 29597262 PMCID: PMC5946202 DOI: 10.3390/nu10040417] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/23/2018] [Accepted: 03/26/2018] [Indexed: 12/14/2022] Open
Abstract
The placental epigenome regulates processes that affect placental and fetal development, and could be mediating some of the reported effects of maternal choline supplementation (MCS) on placental vascular development and nutrient delivery. As an extension of work previously conducted in pregnant mice, the current study sought to explore the effects of MCS on various epigenetic markers in the placenta. RNA and DNA were extracted from placentas collected on embryonic day 15.5 from pregnant mice fed a 1X or 4X choline diet, and were subjected to genome-wide sequencing procedures or mass-spectrometry-based assays to examine placental imprinted gene expression, DNA methylation patterns, and microRNA (miRNA) abundance. MCS yielded a higher (fold change = 1.63-2.25) expression of four imprinted genes (Ampd3, Tfpi2, Gatm and Aqp1) in the female placentas and a lower (fold change = 0.46-0.62) expression of three imprinted genes (Dcn, Qpct and Tnfrsf23) in the male placentas (false discovery rate (FDR) ≤ 0.05 for both sexes). Methylation in the promoter regions of these genes and global placental DNA methylation were also affected (p ≤ 0.05). Additionally, a lower (fold change = 0.3; Punadjusted = 2.05 × 10-4; FDR = 0.13) abundance of miR-2137 and a higher (fold change = 1.25-3.92; p < 0.05) expression of its target genes were detected in the 4X choline placentas. These data demonstrate that the placental epigenome is responsive to maternal choline intake during murine pregnancy and likely mediates some of the previously described choline-induced effects on placental and fetal outcomes.
Collapse
Affiliation(s)
| | - Julia H King
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Jennifer K Grenier
- RNA Sequencing Core, Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Jian Yan
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| | - Xinyin Jiang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
- Department of Health and Nutrition Sciences, Brooklyn College, Brooklyn, NY 11210, USA.
| | - Mark S Roberson
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853, USA.
| | - Marie A Caudill
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
36
|
Alshammari A, Patel J, Al-Hashemi J, Cai B, Panek J, Huck O, Amar S. Kava-241 reduced periodontal destruction in a collagen antibody primed Porphyromonas gingivalis model of periodontitis. J Clin Periodontol 2017; 44:1123-1132. [PMID: 28746780 PMCID: PMC5650496 DOI: 10.1111/jcpe.12784] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2017] [Indexed: 12/20/2022]
Abstract
AIM The aim of this study was to evaluate the effect of Kava-241, an optimized Piper methysticum Kava compound, on periodontal destruction in a collagen antibody primed oral gavage model of periodontitis. METHODS Experimental periodontitis was induced by oral gavage of Porphyromonas gingivalis (P. gingivalis) + type II collagen antibody (AB) in mice during 15 days. Mice were treated with Kava-241 concomitantly or prior to P. gingivalis gavage and compared to untreated mice. Comprehensive histomorphometric analyses were performed. RESULTS Oral gavage with P. gingivalis induced mild epithelial down-growth and alveolar bone loss, while oral gavage with additional AB priming had greater tissular destruction in comparison with gavage alone (p < .05). Kava-241 treatment significantly (p < .05) reduced epithelial down-growth (72%) and alveolar bone loss (36%) in P. gingivalis+AB group. This Kava-241 effect was associated to a reduction in inflammatory cell counts within soft tissues and an increase in fibroblasts (p < .05). CONCLUSION Priming with type II collagen antibody with oral gavage is a fast and reproducible model of periodontal destruction adequate for the evaluation of novel therapeutics. The effect of Kava-241 shows promise in the prevention and treatment of inflammation and alveolar bone loss associated with periodontitis. Further experiments are required to determine molecular pathways targeted by this therapeutic agent.
Collapse
Affiliation(s)
| | - Jayesh Patel
- Boston University, Henry M.Goldman School of Dental Medicine, Boston, MA, USA
| | - Jacob Al-Hashemi
- Boston University, Henry M.Goldman School of Dental Medicine, Boston, MA, USA
| | - Bin Cai
- Boston University, Department of Chemistry, Boston MA USA
| | - James Panek
- Boston University, Department of Chemistry, Boston MA USA
| | - Olivier Huck
- Université de Strasbourg, Faculté de chirurgie-dentaire, Periodontology, Strasbourg, France
- INSERM (French National Institute of Health and Medical Research), “Osteoarticular and Dental Regenerative Nanomedicine” laboratory, UMR 1109, Strasbourg, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Strasbourg, France
| | - Salomon Amar
- New-York Medical College, Department of Pharmacology, New-York, NY, USA
| |
Collapse
|