1
|
Sourice M, Oriol C, Aubert C, Mandin P, Py B. Genetic dissection of the bacterial Fe-S protein biogenesis machineries. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119746. [PMID: 38719030 DOI: 10.1016/j.bbamcr.2024.119746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/12/2024] [Accepted: 05/03/2024] [Indexed: 05/13/2024]
Abstract
Iron‑sulfur (Fe-S) clusters are one of the most ancient and versatile inorganic cofactors present in the three domains of life. Fe-S clusters are essential cofactors for the activity of a large variety of metalloproteins that play crucial physiological roles. Fe-S protein biogenesis is a complex process that starts with the acquisition of the elements (iron and sulfur atoms) and their assembly into an Fe-S cluster that is subsequently inserted into the target proteins. The Fe-S protein biogenesis is ensured by multiproteic systems conserved across all domains of life. Here, we provide an overview on how bacterial genetics approaches have permitted to reveal and dissect the Fe-S protein biogenesis process in vivo.
Collapse
Affiliation(s)
- Mathieu Sourice
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Charlotte Oriol
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne (UMR7283), Institut de Microbiologie de la Méditerranée, Institut Microbiologie Bioénergies et Biotechnologie, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.
| |
Collapse
|
2
|
Amahisa M, Tsukagoshi M, Kadooka C, Masuo S, Takeshita N, Doi Y, Takagi H, Takaya N. The Metabolic Regulation of Amino Acid Synthesis Counteracts Reactive Nitrogen Stress via Aspergillus nidulans Cross-Pathway Control. J Fungi (Basel) 2024; 10:58. [PMID: 38248967 PMCID: PMC10817288 DOI: 10.3390/jof10010058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 01/23/2024] Open
Abstract
Nitric oxide (NO) is a natural reactive nitrogen species (RNS) that alters proteins, DNA, and lipids and damages biological activities. Although microorganisms respond to and detoxify NO, the regulation of the cellular metabolic mechanisms that cause cells to tolerate RNS toxicity is not completely understood. We found that the proline and arginine auxotrophic proA5 and argB2 mutants of the fungus Aspergillus nidulans require more arginine and proline for normal growth under RNS stress that starves cells by accumulating fewer amino acids. Fungal transcriptomes indicated that RNS stress upregulates the expression of the biosynthetic genes required for global amino acids, including proline and arginine. A mutant of the gene disruptant, cpcA, which encodes the transcriptional regulation of the cross-pathway control of general amino acid synthesis, did not induce these genes, and cells accumulated fewer amino acids under RNS stress. These results indicated a novel function of CpcA in the cellular response to RNS stress, which is mediated through amino acid starvation and induces the transcription of genes for general amino acid synthesis. Since CpcA also controls organic acid biosynthesis, impaired intermediates of such biosynthesis might starve cells of amino acids. These findings revealed the importance of the mechanism regulating amino acid homeostasis for fungal responses to and survival under RNS stress.
Collapse
Affiliation(s)
- Madoka Amahisa
- Microbiology Research Center for Sustainability, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan; (M.A.); (C.K.); (S.M.); (N.T.); (Y.D.)
| | - Madoka Tsukagoshi
- Microbiology Research Center for Sustainability, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan; (M.A.); (C.K.); (S.M.); (N.T.); (Y.D.)
| | - Chihiro Kadooka
- Microbiology Research Center for Sustainability, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan; (M.A.); (C.K.); (S.M.); (N.T.); (Y.D.)
| | - Shunsuke Masuo
- Microbiology Research Center for Sustainability, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan; (M.A.); (C.K.); (S.M.); (N.T.); (Y.D.)
| | - Norio Takeshita
- Microbiology Research Center for Sustainability, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan; (M.A.); (C.K.); (S.M.); (N.T.); (Y.D.)
| | - Yuki Doi
- Microbiology Research Center for Sustainability, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan; (M.A.); (C.K.); (S.M.); (N.T.); (Y.D.)
| | - Hiroshi Takagi
- Institute for Research Initiatives, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma 630-0192, Japan;
| | - Naoki Takaya
- Microbiology Research Center for Sustainability, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan; (M.A.); (C.K.); (S.M.); (N.T.); (Y.D.)
| |
Collapse
|
3
|
Ferrous Iron Uptake Is Required for Salmonella to Persist within Vacuoles of Host Cells. Infect Immun 2022; 90:e0014922. [PMID: 35536027 DOI: 10.1128/iai.00149-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Iron is an essential oligoelement that incorporates into proteins as a biocatalyst or electron carrier. The intracellular pathogen Salmonella enterica serovar Typhimurium (S. Typhimurium) takes iron as free reduced ferrous cation or as oxidized ferric cation complexed to siderophores or ferrichromes. Deficiencies in ferrous or ferric iron uptake attenuate S. Typhimurium virulence, but how the uptake systems are used in the intracellular environment remains poorly understood. Here, using S. Typhimurium mutants deficient in multiple iron uptake systems, we show that SitABCD and FeoABC, involved in ferrous iron uptake, are central for this pathogen to persist within vacuoles of fibroblasts. Assays at the protein level showed that components of these two uptake systems, SitD and FeoB, are produced at high levels by intravacuolar bacteria. Despite not being essential for viability inside the vacuole, intracellular bacteria also upregulate transporters involved in ferric iron uptake such as IroN, FepA, and CirA. In addition, an unprecedented cleavage at the N-terminal region of FepA was observed as a distinctive feature of nonproliferating intravacuolar bacteria. Collectively, our findings indicate that SitABCD and FeoABC contribute to S. Typhimurium virulence by promoting iron acquisition within the vacuolar compartment.
Collapse
|
4
|
Ali E, LaPointe G. Modulation of Virulence Gene Expression in Salmonella enterica subsp. enterica typhimurium by Synthetic Milk-Derived Peptides. Probiotics Antimicrob Proteins 2022; 14:690-698. [PMID: 35380388 DOI: 10.1007/s12602-022-09936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
The hydrolysis of milk proteins produces valuable bioactive peptides, some of which show antivirulence activity. In this study, five synthetic milk-derived peptides (β-LG f(9-18), β-CN f(5-15), β-CN f(17-27), β-CN f(94-106), and β-CN f(129-137)) were shown to decrease the expression of virulence genes in Salmonella enterica subsp. enterica typhimurium when tested at four concentrations (0.02, 0.05, 0.1, and 0.2 mg/ml). A mixture of these synthetic peptides at concentrations of 0.02 and 0.2 mg/ml each significantly downregulated the expression of both hilA and ssrB virulence genes in Salmonella typhimurium after a 3-h incubation. Individually, β-CN f(17-27) at 0.02 mg/ml caused a significant decrease in both hilA and ssrB gene expressions. These results suggest a synergistic interaction between bioactive peptides. Depending on dose and amino acid sequence, these five peptides were able to affect the expression of some virulence genes in Salmonella typhimurium.
Collapse
Affiliation(s)
- Eman Ali
- Food Hygiene Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour El-Beheira, 22511, Egypt
| | - Gisèle LaPointe
- Department of Food Science, Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
5
|
Liu X, Shi B, Suo R, Xiong S, Wang X, Liang X, Li X, Li G. Itaconate regulates macrophage function through stressful iron-sulfur cluster disrupting and iron metabolism rebalancing. FASEB J 2021; 35:e21936. [PMID: 34547129 DOI: 10.1096/fj.202100726rr] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 11/11/2022]
Abstract
Lipopolysaccharide (LPS)-stimulated macrophages express an aconitate decarboxylase (IRG1, also called ACOD1), leading to accumulation of the endogenous metabolite itaconate. However, the precise mechanisms by which elevated itaconate levels alter macrophage function are not clear. Our hypothesis is itaconate affects macrophage function through some uncertain mechanism. Based on this, we established a transcriptional and proteomic signature of macrophages stimulated by itaconate and identified the pathways of IL-1β secretion and altered iron metabolism. Consistently, the effect of IRG1 deficiency on IL-1β secretion and iron metabolism was confirmed in IRG1 knockout THP-1 cell lines. Several common inhibitors and other compounds were used to examine the molecular mechanisms involved. Only cysteine and antioxidants (catechin hydrate) could inhibit caspase-1 activation and IL-1β secretion in itaconate-stimulated macrophages. We further found that aconitase activity was decreased by itaconate stimulation. Our results demonstrate the counteracting effects of overexpression of mitochondrial aconitase (ACO2, a tricarboxylic acid cycle enzyme) or cytosolic aconitase (ACO1, an iron regulatory protein) on IL-1β secretion and altered iron metabolism. Both enzyme activities were inhibited by itaconate because of iron-sulfur (Fe-S) cluster destruction. Our findings indicate that the immunoregulatory functions of IRG1 and itaconate in macrophages are stressful Fe-S cluster of aconitases disrupting and iron metabolism rebalancing.
Collapse
Affiliation(s)
- Xing Liu
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Bingshuo Shi
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Rong Suo
- Department of Cardiology, Tianjin Hospital, Tianjin, China
| | - Shenglin Xiong
- Department of Cardiology, You Country People's Hospital, Zhuzhou, China
| | - Xuewen Wang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xue Liang
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Xinjian Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Guangping Li
- Tianjin Key Laboratory of Ionic-Molecular Function of Cardiovascular Disease, Department of Cardiology, Tianjin Institute of Cardiology, The Second Hospital of Tianjin Medical University, Tianjin, China
| |
Collapse
|
6
|
Cappable-Seq Reveals Specific Patterns of Metabolism and Virulence for Salmonella Typhimurium Intracellular Survival within Acanthamoeba castellanii. Int J Mol Sci 2021; 22:ijms22169077. [PMID: 34445780 PMCID: PMC8396566 DOI: 10.3390/ijms22169077] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 08/16/2021] [Accepted: 08/19/2021] [Indexed: 01/21/2023] Open
Abstract
The bacterial pathogen Salmonella enterica, which causes enteritis, has a broad host range and extensive environmental longevity. In water and soil, Salmonella interacts with protozoa and multiplies inside their phagosomes. Although this relationship resembles that between Salmonella and mammalian phagocytes, the interaction mechanisms and bacterial genes involved are unclear. Here, we characterized global gene expression patterns of S. enterica serovar Typhimurium within Acanthamoeba castellanii at the early stage of infection by Cappable-Seq. Gene expression features of S. Typhimurium within A. castellanii were presented with downregulation of glycolysis-related, and upregulation of glyoxylate cycle-related genes. Expression of Salmonella Pathogenicity Island-1 (SPI-1), chemotaxis system, and flagellar apparatus genes was upregulated. Furthermore, expression of genes mediating oxidative stress response and iron uptake was upregulated within A. castellanii as well as within mammalian phagocytes. Hence, global S. Typhimurium gene expression patterns within A. castellanii help better understand the molecular mechanisms of Salmonella adaptation to an amoeba cell and intracellular persistence in protozoa inhabiting water and soil ecosystems.
Collapse
|
7
|
Das M, Dewan A, Shee S, Singh A. The Multifaceted Bacterial Cysteine Desulfurases: From Metabolism to Pathogenesis. Antioxidants (Basel) 2021; 10:997. [PMID: 34201508 PMCID: PMC8300815 DOI: 10.3390/antiox10070997] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 05/01/2021] [Accepted: 05/06/2021] [Indexed: 12/02/2022] Open
Abstract
Living cells have developed a relay system to efficiently transfer sulfur (S) from cysteine to various thio-cofactors (iron-sulfur (Fe-S) clusters, thiamine, molybdopterin, lipoic acid, and biotin) and thiolated tRNA. The presence of such a transit route involves multiple protein components that allow the flux of S to be precisely regulated as a function of environmental cues to avoid the unnecessary accumulation of toxic concentrations of soluble sulfide (S2-). The first enzyme in this relay system is cysteine desulfurase (CSD). CSD catalyzes the release of sulfane S from L-cysteine by converting it to L-alanine by forming an enzyme-linked persulfide intermediate on its conserved cysteine residue. The persulfide S is then transferred to diverse acceptor proteins for its incorporation into the thio-cofactors. The thio-cofactor binding-proteins participate in essential and diverse cellular processes, including DNA repair, respiration, intermediary metabolism, gene regulation, and redox sensing. Additionally, CSD modulates pathogenesis, antibiotic susceptibility, metabolism, and survival of several pathogenic microbes within their hosts. In this review, we aim to comprehensively illustrate the impact of CSD on bacterial core metabolic processes and its requirement to combat redox stresses and antibiotics. Targeting CSD in human pathogens can be a potential therapy for better treatment outcomes.
Collapse
Affiliation(s)
| | | | | | - Amit Singh
- Centre for Infectious Disease Research, Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India; (M.D.); (A.D.); (S.S.)
| |
Collapse
|
8
|
Cunrath O, Palmer JD. An overview of Salmonella enterica metal homeostasis pathways during infection. ACTA ACUST UNITED AC 2021; 2:uqab001. [PMID: 34250489 PMCID: PMC8264917 DOI: 10.1093/femsml/uqab001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/19/2021] [Indexed: 12/14/2022]
Abstract
Nutritional immunity is a powerful strategy at the core of the battlefield between host survival and pathogen proliferation. A host can prevent pathogens from accessing biological metals such as Mg, Fe, Zn, Mn, Cu, Co or Ni, or actively intoxicate them with metal overload. While the importance of metal homeostasis for the enteric pathogen Salmonella enterica Typhimurium was demonstrated many decades ago, inconsistent results across various mouse models, diverse Salmonella genotypes, and differing infection routes challenge aspects of our understanding of this phenomenon. With expanding access to CRISPR-Cas9 for host genome manipulation, it is now pertinent to re-visit past results in the context of specific mouse models, identify gaps and incongruities in current knowledge landscape of Salmonella homeostasis, and recommend a straight path forward towards a more universal understanding of this historic host-microbe relationship.
Collapse
Affiliation(s)
- Olivier Cunrath
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, UK OX1 3SZ
| | - Jacob D Palmer
- Department of Zoology, University of Oxford, Zoology Research and Administration Building, 11a Mansfield Rd, Oxford, UK OX1 3SZ
| |
Collapse
|
9
|
Barbosa PDPM, Ruviaro AR, Martins IM, Macedo JA, LaPointe G, Macedo GA. Enzyme-assisted extraction of flavanones from citrus pomace: Obtention of natural compounds with anti-virulence and anti-adhesive effect against Salmonella enterica subsp. enterica serovar Typhimurium. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107525] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
10
|
Braymer JJ, Freibert SA, Rakwalska-Bange M, Lill R. Mechanistic concepts of iron-sulfur protein biogenesis in Biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1868:118863. [PMID: 33007329 DOI: 10.1016/j.bbamcr.2020.118863] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/14/2020] [Accepted: 09/17/2020] [Indexed: 02/08/2023]
Abstract
Iron-sulfur (Fe/S) proteins are present in virtually all living organisms and are involved in numerous cellular processes such as respiration, photosynthesis, metabolic reactions, nitrogen fixation, radical biochemistry, protein synthesis, antiviral defense, and genome maintenance. Their versatile functions may go back to the proposed role of their Fe/S cofactors in the origin of life as efficient catalysts and electron carriers. More than two decades ago, it was discovered that the in vivo synthesis of cellular Fe/S clusters and their integration into polypeptide chains requires assistance by complex proteinaceous machineries, despite the fact that Fe/S proteins can be assembled chemically in vitro. In prokaryotes, three Fe/S protein biogenesis systems are known; ISC, SUF, and the more specialized NIF. The former two systems have been transferred by endosymbiosis from bacteria to mitochondria and plastids, respectively, of eukaryotes. In their cytosol, eukaryotes use the CIA machinery for the biogenesis of cytosolic and nuclear Fe/S proteins. Despite the structural diversity of the protein constituents of these four machineries, general mechanistic concepts underlie the complex process of Fe/S protein biogenesis. This review provides a comprehensive and comparative overview of the various known biogenesis systems in Biology, and summarizes their common or diverging molecular mechanisms, thereby illustrating both the conservation and diverse adaptions of these four machineries during evolution and under different lifestyles. Knowledge of these fundamental biochemical pathways is not only of basic scientific interest, but is important for the understanding of human 'Fe/S diseases' and can be used in biotechnology.
Collapse
Affiliation(s)
- Joseph J Braymer
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | - Sven A Freibert
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany
| | | | - Roland Lill
- Institut für Zytobiologie, Philipps-Universität Marburg, Robert-Koch-Str. 6, 35032 Marburg, Germany; SYNMIKRO Center for Synthetic Microbiology, Philipps-Universität Marburg, Hans-Meerwein-Strasse, 35043 Marburg, Germany.
| |
Collapse
|
11
|
Baussier C, Fakroun S, Aubert C, Dubrac S, Mandin P, Py B, Barras F. Making iron-sulfur cluster: structure, regulation and evolution of the bacterial ISC system. Adv Microb Physiol 2020; 76:1-39. [PMID: 32408945 DOI: 10.1016/bs.ampbs.2020.01.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Iron sulfur (Fe-S) clusters rank among the most ancient and conserved prosthetic groups. Fe-S clusters containing proteins are present in most, if not all, organisms. Fe-S clusters containing proteins are involved in a wide range of cellular processes, from gene regulation to central metabolism, via gene expression, RNA modification or bioenergetics. Fe-S clusters are built by biogenesis machineries conserved throughout both prokaryotes and eukaryotes. We focus mostly on bacterial ISC machinery, but not exclusively, as we refer to eukaryotic ISC system when it brings significant complementary information. Besides covering the structural and regulatory aspects of Fe-S biogenesis, this review aims to highlight Fe-S biogenesis facets remaining matters of discussion, such as the role of frataxin, or the link between fatty acid metabolism and Fe-S homeostasis. Last, we discuss recent advances on strategies used by different species to make and use Fe-S clusters in changing redox environmental conditions.
Collapse
Affiliation(s)
- Corentin Baussier
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Soufyan Fakroun
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France; Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Corinne Aubert
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Sarah Dubrac
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| | - Pierre Mandin
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, CNRS-Aix Marseille Université, UMR 7283, Institut de Microbiologie de la Méditerranée, Institut de Microbiologie, Bioénergies et Biotechnologies, Marseille, France
| | - Frédéric Barras
- Stress Adaptation and Metabolism Unit, Department of Microbiology, Institut Pasteur, Paris, France; ERL CNRS 6002, CNRS, Paris, France
| |
Collapse
|
12
|
Ali E, Nielsen SD, Abd-El Aal S, El-Leboudy A, Saleh E, LaPointe G. Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Front Nutr 2019; 6:152. [PMID: 31681785 PMCID: PMC6803757 DOI: 10.3389/fnut.2019.00152] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 09/06/2019] [Indexed: 11/13/2022] Open
Abstract
Peptides in the 3-kDa ultrafiltrate of fermented whey protein isolate (WPI) medium could be responsible for the antivirulence activity of Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5 against Salmonella Typhimurium. Non-fermented and fermented media containing 5.6% WPI were fractionated at a 3 kDa cut-off and the filtrate was analyzed by mass spectrometry. The non-fermented WPI medium contained 109 milk derived peptides, which originated from β-casein (52), αs1-casein (22), αs2-casein (10), κ-casein (8), and β-lactoglobulin (17). Most of these peptides were not found in the fermented media, except for 14 peptides from β-casein and one peptide from αs2-casein. Database searches confirmed that 39 out of the 109 peptides had established physiological functions, including angiotensin-converting-enzyme (ACE) inhibitory, antioxidant, antimicrobial, or immunomodulating activity. A total of 75 peptides were found in the LH-2 cell free spent medium (CFSM): 54 from β-casein, 14 from k-casein, 4 from β-lactoglobulin and 3 from αs2-casein. From these peptides, 19 have previously been associated with several categories of bioactivity. For La-5 CFSM, a total of 15 peptides were sequenced: 8 from β-casein, 5 from αs1-casein, 2 from β-lactoglobulin. Only 5 of these have previously been reported as having bioactivity. Many of the peptides remaining in the fermented medium would contain low-affinity residues for oligopeptide binding proteins and higher resistance to peptidase hydrolysis. These properties of the sequenced peptides could explain their accumulation after fermentation despite the active proteolytic enzymes of LH-2 and La-5 strains. Down-regulated expression of hilA and ssrB genes in S. Typhimurium was observed in the presence of La-5 and LH-2 CFSM. Downregulation was not observed for the Salmonella oppA mutant strain exposed to the same CFSM used to treat the S. Typhimurium DT104 wild-type strain. This result suggests the importance of peptide transport by S. Typhimurium for down regulation of virulence genes in Salmonella.
Collapse
Affiliation(s)
- Eman Ali
- Food Hygiene Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada
| | - Søren D. Nielsen
- Department of Food Science, Faculty of Science and Technology, Aarhus University, Aarhus, Denmark
| | - Salah Abd-El Aal
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, Egypt
| | - Ahlam El-Leboudy
- Food Hygiene Department, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Ebeed Saleh
- Food Hygiene Department, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
13
|
Iron-Sulfur Cluster Repair Contributes to Yersinia pseudotuberculosis Survival within Deep Tissues. Infect Immun 2019; 87:IAI.00533-19. [PMID: 31331956 PMCID: PMC6759291 DOI: 10.1128/iai.00533-19] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 07/13/2019] [Indexed: 01/10/2023] Open
Abstract
To successfully colonize host tissues, bacteria must respond to and detoxify many different host-derived antimicrobial compounds, such as nitric oxide (NO). NO has direct antimicrobial activity through attack on iron-sulfur (Fe-S) cluster-containing proteins. NO detoxification plays an important role in promoting bacterial survival, but it remains unclear if repair of Fe-S clusters is also important for bacterial survival within host tissues. To successfully colonize host tissues, bacteria must respond to and detoxify many different host-derived antimicrobial compounds, such as nitric oxide (NO). NO has direct antimicrobial activity through attack on iron-sulfur (Fe-S) cluster-containing proteins. NO detoxification plays an important role in promoting bacterial survival, but it remains unclear if repair of Fe-S clusters is also important for bacterial survival within host tissues. Here we show that the Fe-S cluster repair protein YtfE contributes to the survival of Yersinia pseudotuberculosis within the spleen following nitrosative stress. Y. pseudotuberculosis forms clustered centers of replicating bacteria within deep tissues, where peripheral bacteria express the NO-detoxifying gene hmp. ytfE expression also occurred specifically within peripheral cells at the edges of microcolonies. In the absence of ytfE, the area of microcolonies was significantly smaller than that of the wild type (WT), consistent with ytfE contributing to the survival of peripheral cells. The loss of ytfE did not alter the ability of cells to detoxify NO, which occurred within peripheral cells in both WT and ΔytfE microcolonies. In the absence of NO-detoxifying activity by hmp, NO diffused across ΔytfE microcolonies, and there was a significant decrease in the area of microcolonies lacking ytfE, indicating that ytfE also contributes to bacterial survival in the absence of NO detoxification. These results indicate a role for Fe-S cluster repair in the survival of Y. pseudotuberculosis within the spleen and suggest that extracellular bacteria may rely on this pathway for survival within host tissues.
Collapse
|
14
|
Zhang JS, Corredig M, Morales-Rayas R, Hassan A, Griffiths MW, LaPointe G. Downregulation of Salmonella Virulence Gene Expression During Invasion of Epithelial Cells Treated with Lactococcus lactis subsp. cremoris JFR1 Requires OppA. Probiotics Antimicrob Proteins 2019; 12:577-588. [PMID: 31377945 DOI: 10.1007/s12602-019-09574-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Invasion of Salmonella into host intestinal epithelial cells requires the expression of virulence genes. In this study, cell culture models of human intestinal cells (mucus-producing HT29-MTX cells, absorptive Caco-2 cells, and combined cocultures of the two) were used to determine the effects of Lactococcus lactis subsp. cremoris treatments (exopolysaccharide producing and nonproducing strains) on the virulence gene expression of Salmonella Typhimurium and its mutant lacking the oligopeptide permease subunit A (ΔoppA). During the course of epithelial cell (HT29-MTX, Caco-2, and combined) infection by Salmonella Typhimurium DT104, improved barrier function was reflected by increased transepithelial electrical resistance in cells treated with both strains of L. lactis subsp. cremoris. In addition, virulence gene expression was downregulated, accompanied with lower numbers of invasive bacteria into epithelial cells in the presence of L. lactis subsp. cremoris treatments. Similarly, virulence gene expression of Salmonella was also suppressed when coincubated with overnight cultures of both L. lactis subsp. cremoris strains in the absence of epithelial cells. However, in medium or in the presence of cell cultures, Salmonella lacking the OppA permease function remained virulent. HT29-MTX cells and combined cultures stimulated by Salmonella Typhimurium DT104 showed significantly lower secretion levels of pro-inflammatory cytokine IL-8 after treatment with L. lactis subsp. cremoris cell suspensions. Contrarily, these responses were not observed during infection with S. Typhimurium ΔoppA. Both the exopolysaccharide producing and nonproducing strains of L. lactis subsp. cremoris JFR1 exhibited an antivirulence effect against S. Typhimurium DT104 although no significant difference between the two strains was observed. Our results show that an intact peptide transporter is essential for the suppression of Salmonella virulence genes which leads to the protection of the barrier function in the cell culture models studied.
Collapse
Affiliation(s)
- J S Zhang
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - R Morales-Rayas
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - A Hassan
- Daisy Brand, Dallas, TX, 75251, USA
| | - M W Griffiths
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Gisèle LaPointe
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
15
|
Zhang JS, Corredig M, Morales-Rayas R, Hassan A, Griffiths MW, LaPointe G. Effect of fermented milk from Lactococcus lactis ssp. cremoris strain JFR1 on Salmonella invasion of intestinal epithelial cells. J Dairy Sci 2019; 102:6802-6819. [PMID: 31202650 DOI: 10.3168/jds.2018-15669] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 04/05/2019] [Indexed: 12/18/2022]
Abstract
The process of fermentation contributes to the organoleptic properties, preservation, and nutritional benefits of food. Fermented food may interfere with pathogen infections through a variety of mechanisms, including competitive exclusion or improving intestinal barrier integrity. In this study, the effect of milk fermented with Lactococcus lactis ssp. cremoris JFR1 on Salmonella invasion of intestinal epithelial cell cultures was investigated. Epithelial cells (HT29-MTX, Caco-2, and cocultures of the 2) were treated for 1 h with Lactococcus lactis ssp. cremoris JFR1 fermented milk before infection with Salmonella enterica ssp. enterica Typhimurium. Treatment with fermented milk resulted in increased transepithelial electrical resistance, which remained constant for the duration of infection (up to 3 h), illustrating a protective effect. After gentamicin treatment to remove adhered bacterial cells, enumeration revealed a reduction in numbers of intracellular Salmonella. Quantitative reverse-transcription PCR data indicated a downregulation of Salmonella virulence genes hilA, invA, and sopD after treatment with fermented milk. Fermented milk treatment of epithelial cells also exhibited an immunomodulatory effect reducing the production of proinflammatory IL-8. In contrast, chemically acidified milk (glucono delta-lactone) failed to show the same effect on monolayer integrity, Salmonella Typhimurium invasion, and gene expression as well as immune modulation. Furthermore, an oppA knockout mutant of Salmonella Typhimurium infecting treated epithelial cells did not show suppressed virulence gene expression. Collectively, these results suggest that milk fermented with Lactococcus lactis ssp. cremoris JFR1 is effective in vitro in the reduction of Salmonella invasion into intestinal epithelial cells. A functional OppA permease in Salmonella is required to obtain the antivirulence effect of fermented milk.
Collapse
Affiliation(s)
- J S Zhang
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - M Corredig
- Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - R Morales-Rayas
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | - M W Griffiths
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - G LaPointe
- Canadian Research Institute for Food Safety, Department of Food Science, University of Guelph, Guelph, ON, N1G 2W1, Canada.
| |
Collapse
|
16
|
Senior NJ, Sasidharan K, Saint RJ, Scott AE, Sarkar-Tyson M, Ireland PM, Bullifent HL, Rong Yang Z, Moore K, Oyston PCF, Atkins TP, Atkins HS, Soyer OS, Titball RW. An integrated computational-experimental approach reveals Yersinia pestis genes essential across a narrow or a broad range of environmental conditions. BMC Microbiol 2017; 17:163. [PMID: 28732479 PMCID: PMC5521123 DOI: 10.1186/s12866-017-1073-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/17/2017] [Indexed: 01/07/2023] Open
Abstract
Background The World Health Organization has categorized plague as a re-emerging disease and the potential for Yersinia pestis to also be used as a bioweapon makes the identification of new drug targets against this pathogen a priority. Environmental temperature is a key signal which regulates virulence of the bacterium. The bacterium normally grows outside the human host at 28 °C. Therefore, understanding the mechanisms that the bacterium used to adapt to a mammalian host at 37 °C is central to the development of vaccines or drugs for the prevention or treatment of human disease. Results Using a library of over 1 million Y. pestis CO92 random mutants and transposon-directed insertion site sequencing, we identified 530 essential genes when the bacteria were cultured at 28 °C. When the library of mutants was subsequently cultured at 37 °C we identified 19 genes that were essential at 37 °C but not at 28 °C, including genes which encode proteins that play a role in enabling functioning of the type III secretion and in DNA replication and maintenance. Using genome-scale metabolic network reconstruction we showed that growth conditions profoundly influence the physiology of the bacterium, and by combining computational and experimental approaches we were able to identify 54 genes that are essential under a broad range of conditions. Conclusions Using an integrated computational-experimental approach we identify genes which are required for growth at 37 °C and under a broad range of environments may be the best targets for the development of new interventions to prevent or treat plague in humans. Electronic supplementary material The online version of this article (doi:10.1186/s12866-017-1073-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicola J Senior
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Kalesh Sasidharan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard J Saint
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Andrew E Scott
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Mitali Sarkar-Tyson
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK.,Marshall Centre for Infectious Disease Research and Training, School of Pathology and Laboratory Medicine, University of Western Australia, Perth, WA, 6009, Australia
| | - Philip M Ireland
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Helen L Bullifent
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Z Rong Yang
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Karen Moore
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK
| | - Petra C F Oyston
- Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Timothy P Atkins
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.,Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Helen S Atkins
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.,Defence Science Technology Laboratory, Porton Down, Salisbury, SP4 OJQ, UK
| | - Orkun S Soyer
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - Richard W Titball
- College of Life and Environmental Sciences, University of Exeter, Exeter, EX4 4SB, UK.
| |
Collapse
|
17
|
Jaroschinsky M, Pinske C, Gary Sawers R. Differential effects of isc operon mutations on the biosynthesis and activity of key anaerobic metalloenzymes in Escherichia coli. MICROBIOLOGY-SGM 2017. [PMID: 28640740 DOI: 10.1099/mic.0.000481] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli has two machineries for the synthesis of FeS clusters, namely Isc (iron-sulfur cluster) and Suf (sulfur formation). The Isc machinery, encoded by the iscRSUA-hscBA-fdx-iscXoperon, plays a crucial role in the biogenesis of FeS clusters for the oxidoreductases of aerobic metabolism. Less is known, however, about the role of ISC in the maturation of key multi-subunit metalloenzymes of anaerobic metabolism. Here, we determined the contribution of each iscoperon gene product towards the functionality of the major anaerobic oxidoreductases in E. coli, including three [NiFe]-hydrogenases (Hyd), two respiratory formate dehydrogenases (FDH) and nitrate reductase (NAR). Mutants lacking the cysteine desulfurase, IscS, lacked activity of all six enzymes, as well as the activity of fumaratereductase, and this was due to deficiencies in enzyme biosynthesis, maturation or FeS cluster insertion into electron-transfer components. Notably, based on anaerobic growth characteristics and metabolite patterns, the activity of the radical-S-adenosylmethionine enzyme pyruvate formate-lyase activase was independent of IscS, suggesting that FeS biogenesis for this ancient enzyme has different requirements. Mutants lacking either the scaffold protein IscU, the ferredoxin Fdx or the chaperones HscA or HscB had similar enzyme phenotypes: five of the oxidoreductases were essentially inactive, with the exception being the Hyd-3 enzyme, which formed part of the H2-producing formate hydrogenlyase (FHL) complex. Neither the frataxin-homologue CyaY nor the IscX protein was essential for synthesis of the three Hyd enzymes. Thus, while IscS is essential for H2 production in E. coli, the other ISC components are non-essential.
Collapse
Affiliation(s)
- Monique Jaroschinsky
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany.,Present address: ICP Analytik GmbH & Co. KG, Brandenburger Platz 1, 24211 Preetz, Germany
| | - Constanze Pinske
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany
| | - R Gary Sawers
- Institute for Biology/Microbiology, Martin-Luther University Halle-Wittenberg, Kurt-Mothes-Str 3, 06120 Halle (Saale), Germany
| |
Collapse
|
18
|
Carreaux A, de Champs de Saint-Leger S, Kouidri Y, Golinelli-Cohen MP. Contrôle de la virulence de Salmonella entericapar la machinerie de biogenèse des centres Fe-S. Med Sci (Paris) 2017; 33:603-606. [DOI: 10.1051/medsci/20173306015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
19
|
Zozaya-Valdés E, Roth-Schulze AJ, Egan S, Thomas T. Microbial community function in the bleaching disease of the marine macroalgae Delisea pulchra. Environ Microbiol 2017; 19:3012-3024. [PMID: 28419766 DOI: 10.1111/1462-2920.13758] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 04/07/2017] [Indexed: 01/10/2023]
Abstract
Disease is increasingly viewed as a major factor impacting the health of both natural and cultured populations of marine organisms, including macroalgae. The red macroalga Delisea pulchra suffers from a bleaching disease resulting from host stress and infection by opportunistic bacterial pathogens. However, how pathogens cause the disease and how the entire macro algal-associated community is involved in the process is unclear. Here, we perform a metagenomic analysis of microbial communities associated with diseased and healthy D. pulchra across multiple bleaching events. Analysis of reconstructed 16S rRNA gene sequences showed that bacteria belonging to the families Rhodobacteraceae, Saprospiraceae and Flavobacteriaceae, including bacteria previously implicated in algal bleaching, to be enriched in diseased D. pulchra. Genes with predicted functions related to chemotaxis, motility, oxidative stress response, vitamin biosynthesis and nutrient acquisition were also prevalent in microbiomes of bleached algae, which may have a role in pathogenicity. Reconstruction of genomes that were abundant on bleached samples revealed that no single organism contains all bleaching-enriched functional genes. This observation indicates that potential virulence traits are distributed across multiple bacteria and that the disease in D. pulchra may result from a consortium of opportunistic pathogens, analogous to dysbiotic or polymicrobial diseases.
Collapse
Affiliation(s)
- Enrique Zozaya-Valdés
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Alexandra J Roth-Schulze
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Suhelen Egan
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Torsten Thomas
- Centre for Marine Bio-Innovation, School of Biological, Earth and Environmental Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
20
|
Boonma S, Romsang A, Duang-Nkern J, Atichartpongkul S, Trinachartvanit W, Vattanaviboon P, Mongkolsuk S. The FinR-regulated essential gene fprA, encoding ferredoxin NADP+ reductase: Roles in superoxide-mediated stress protection and virulence of Pseudomonas aeruginosa. PLoS One 2017; 12:e0172071. [PMID: 28187184 PMCID: PMC5302815 DOI: 10.1371/journal.pone.0172071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 01/30/2017] [Indexed: 11/23/2022] Open
Abstract
Pseudomonas aeruginosa has two genes encoding ferredoxin NADP(+) reductases, denoted fprA and fprB. We show here that P. aeruginosa fprA is an essential gene. However, the ΔfprA mutant could only be successfully constructed in PAO1 strains containing an extra copy of fprA on a mini-Tn7 vector integrated into the chromosome or carrying it on a temperature-sensitive plasmid. The strain containing an extra copy of the ferredoxin gene (fdx1) could suppress the essentiality of FprA. Other ferredoxin genes could not suppress the requirement for FprA, suggesting that Fdx1 mediates the essentiality of FprA. The expression of fprA was highly induced in response to treatments with a superoxide generator, paraquat, or sodium hypochlorite (NaOCl). The induction of fprA by these treatments depended on FinR, a LysR-family transcription regulator. In vivo and in vitro analysis suggested that oxidized FinR acted as a transcriptional activator of fprA expression by binding to its regulatory box, located 20 bases upstream of the fprA -35 promoter motif. This location of the FinR box also placed it between the -35 and -10 motifs of the finR promoter, where the reduced regulator functions as a repressor. Under uninduced conditions, binding of FinR repressed its own transcription but had no effect on fprA expression. Exposure to paraquat or NaOCl converted FinR to a transcriptional activator, leading to the expression of both fprA and finR. The ΔfinR mutant showed an increased paraquat sensitivity phenotype and attenuated virulence in the Drosophila melanogaster host model. These phenotypes could be complemented by high expression of fprA, indicating that the observed phenotypes of the ΔfinR mutant arose from the inability to up-regulate fprA expression. In addition, increased expression of fprB was unable to rescue essentiality of fprA or the superoxide-sensitive phenotype of the ΔfinR mutant, suggesting distinct mechanisms of the FprA and FprB enzymes.
Collapse
Affiliation(s)
- Siriwan Boonma
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Adisak Romsang
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand
| | - Jintana Duang-Nkern
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand
| | | | | | - Paiboon Vattanaviboon
- Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Program in Applied Biological Sciences: Environmental Health, Chulabhorn Graduate Institute, Bangkok, Thailand
| | - Skorn Mongkolsuk
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok, Thailand.,Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, Thailand.,Center of Excellence on Environmental Health and Toxicology, CHE, Ministry Of Education, Bangkok, Thailand.,Center for Emerging Bacterial Infections, Faculty of Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
21
|
Vergnes A, Viala JPM, Ouadah-Tsabet R, Pocachard B, Loiseau L, Méresse S, Barras F, Aussel L. The iron-sulfur cluster sensor IscR is a negative regulator of Spi1 type III secretion system in Salmonella enterica. Cell Microbiol 2016; 19. [PMID: 27704705 DOI: 10.1111/cmi.12680] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 09/30/2016] [Accepted: 09/30/2016] [Indexed: 11/28/2022]
Abstract
Iron-sulfur (Fe-S)-containing proteins contribute to various biological processes, including redox reactions or regulation of gene expression. Living organisms have evolved by developing distinct biosynthetic pathways to assemble these clusters, including iron sulfur cluster (ISC) and sulfur mobilization (SUF). Salmonella enterica serovar Typhimurium is an intracellular pathogen responsible for a wide range of infections, from gastroenteritis to severe systemic diseases. Salmonella possesses all known prokaryotic systems to assemble Fe-S clusters, including ISC and SUF. Because iron starvation and oxidative stress are detrimental for Fe-S enzyme biogenesis and because such environments are often met by Salmonella during its intracellular life, we investigated the role of the ISC and SUF machineries during the course of the infection. The iscU mutant, which is predicted to have no ISC system functioning, was found to be defective for epithelial cell invasion and for mice infection, whereas the sufBC mutant, which is predicted to have no SUF system functioning, did not present any defect. Moreover, the iscU mutant was highly impaired in the expression of Salmonella pathogenicity island 1 (Spi1) type III secretion system that is essential for the first stage of Salmonella infection. The Fe-S cluster sensor IscR, a transcriptional regulator matured by the ISC machinery, was shown to bind the promoter of hilD, which encodes the master regulator of Spi1. IscR was also demonstrated to repress hilD and subsequently Spi1 gene expression, consistent with the observation that an IscR mutant is hyper-invasive in epithelial cells. Collectively, our findings indicate that the ISC machinery plays a central role in Salmonella virulence through the ability of IscR to down-regulate Spi1 gene expression. At a broader level, this model illustrates an adaptive mechanism used by bacterial pathogens to modulate their infectivity according to iron and oxygen availability.
Collapse
Affiliation(s)
- Alexandra Vergnes
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | - Julie P M Viala
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | | | | | - Laurent Loiseau
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | | | - Frédéric Barras
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| | - Laurent Aussel
- Aix Marseille Université, CNRS, LCB UMR, 7283, IMM, Marseille, France
| |
Collapse
|
22
|
Mashruwala AA, Bhatt S, Poudel S, Boyd ES, Boyd JM. The DUF59 Containing Protein SufT Is Involved in the Maturation of Iron-Sulfur (FeS) Proteins during Conditions of High FeS Cofactor Demand in Staphylococcus aureus. PLoS Genet 2016; 12:e1006233. [PMID: 27517714 PMCID: PMC4982691 DOI: 10.1371/journal.pgen.1006233] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 07/10/2016] [Indexed: 01/01/2023] Open
Abstract
Proteins containing DUF59 domains have roles in iron-sulfur (FeS) cluster assembly and are widespread throughout Eukarya, Bacteria, and Archaea. However, the function(s) of this domain is unknown. Staphylococcus aureus SufT is composed solely of a DUF59 domain. We noted that sufT is often co-localized with sufBC, which encode for the Suf FeS cluster biosynthetic machinery. Phylogenetic analyses indicated that sufT was recruited to the suf operon, suggesting a role for SufT in FeS cluster assembly. A S. aureus ΔsufT mutant was defective in the assembly of FeS proteins. The DUF59 protein Rv1466 from Mycobacterium tuberculosis partially corrected the phenotypes of a ΔsufT mutant, consistent with a widespread role for DUF59 in FeS protein maturation. SufT was dispensable for FeS protein maturation during conditions that imposed a low cellular demand for FeS cluster assembly. In contrast, the role of SufT was maximal during conditions imposing a high demand for FeS cluster assembly. SufT was not involved in the repair of FeS clusters damaged by reactive oxygen species or in the physical protection of FeS clusters from oxidants. Nfu is a FeS cluster carrier and nfu displayed synergy with sufT. Furthermore, introduction of nfu upon a multicopy plasmid partially corrected the phenotypes of the ΔsufT mutant. Biofilm formation and exoprotein production are critical for S. aureus pathogenesis and vancomycin is a drug of last-resort to treat staphylococcal infections. Defective FeS protein maturation resulted in increased biofilm formation, decreased production of exoproteins, increased resistance to vancomycin, and the appearance of phenotypes consistent with vancomycin-intermediate resistant S. aureus. We propose that SufT, and by extension the DUF59 domain, is an accessory factor that functions in the maturation of FeS proteins. In S. aureus, the involvement of SufT is maximal during conditions of high demand for FeS proteins.
Collapse
Affiliation(s)
- Ameya A. Mashruwala
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Shiven Bhatt
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Saroj Poudel
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
| | - Eric S. Boyd
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana, United States of America
- NASA Astrobiology Institute, Mountain View, California, United States of America
| | - Jeffrey M. Boyd
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
23
|
Abstract
Iron-sulfur (Fe-S) clusters are fundamental to numerous biological processes in most organisms, but these protein cofactors can be prone to damage by various oxidants (e.g., O2, reactive oxygen species, and reactive nitrogen species) and toxic levels of certain metals (e.g., cobalt and copper). Furthermore, their synthesis can also be directly influenced by the level of available iron in the environment. Consequently, the cellular need for Fe-S cluster biogenesis varies with fluctuating growth conditions. To accommodate changes in Fe-S demand, microorganisms employ diverse regulatory strategies to tailor Fe-S cluster biogenesis according to their surroundings. Here, we review the mechanisms that regulate Fe-S cluster formation in bacteria, primarily focusing on control of the Isc and Suf Fe-S cluster biogenesis systems in the model bacterium Escherichia coli.
Collapse
Affiliation(s)
- Erin L Mettert
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| | - Patricia J Kiley
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin-Madison, ,
| |
Collapse
|
24
|
Mitterstiller AM, Haschka D, Dichtl S, Nairz M, Demetz E, Talasz H, Soares MP, Einwallner E, Esterbauer H, Fang FC, Geley S, Weiss G. Heme oxygenase 1 controls early innate immune response of macrophages to Salmonella Typhimurium infection. Cell Microbiol 2016; 18:1374-89. [PMID: 26866925 DOI: 10.1111/cmi.12578] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 01/19/2016] [Accepted: 02/09/2016] [Indexed: 12/26/2022]
Abstract
Macrophages are central for the immune control of intracellular microbes. Heme oxygenase 1 (HO-1, hmox) is the first and rate limiting enzyme in the breakdown of heme originating from degraded senescent erythrocytes and heme-proteins, yielding equal amounts of iron, carbon monoxide and biliverdin. HO-1 is strongly up-regulated in macrophages in response to inflammatory signals, including bacterial endotoxin. In view of the essential role of iron for the growth and proliferation of intracellular bacteria along with known effects of the metal on innate immune function, we examined whether HO-1 plays a role in the control of infection with the intracellular bacterium Salmonella Typhimurium. We studied the course of infection in stably-transfected murine macrophages (RAW264.7) bearing a tetracycline-inducible plasmid producing hmox shRNA and in primary HO-1 knockout macrophages. While uptake of bacteria into macrophages was not affected, a significantly reduced survival of intracellular Salmonella was observed upon hmox knockdown or pharmacological hmox inhibition, which was independent of Nramp1 functionality. This could be traced to limitation of iron availability for intramacrophage bacteria along with enhanced stimulation of innate immune effector pathways, including the formation of reactive oxygen and nitrogen species and increased TNF-α expression. Mechanistically, these latter effects result from intracellular iron limitation with subsequent activation of NF-κB and further inos, tnfa and p47phox transcription along with reduced formation of the anti-inflammatory and radical scavenging molecules, CO and biliverdin as a consequence of HO-1 silencing. Taken together our data provide novel evidence that the infection-driven induction of HO-1 exerts detrimental effects in the early control of Salmonella infection, whereas hmox inhibition can favourably modulate anti-bacterial immune effector pathways of macrophages and promote bacterial elimination.
Collapse
Affiliation(s)
- Anna-Maria Mitterstiller
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - David Haschka
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Stefanie Dichtl
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Egon Demetz
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Heribert Talasz
- Division of Clinical Biochemistry, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | | | - Elisa Einwallner
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Harald Esterbauer
- Department of Laboratory Medicine, Medical University of Vienna, 1090, Vienna, Austria
| | - Ferric C Fang
- University of Washington School of Medicine, 1959 NE Pacific Street, Seattle, WA, 98195-7735, USA
| | - Stephan Geley
- Division of Molecular Pathophysiology, Medical University of Innsbruck, 6020, Innsbruck, Austria
| | - Guenter Weiss
- Department of Internal Medicine VI, Infectious Diseases, Immunology, Rheumatology, Pneumology, Medical University of Innsbruck, 6020, Innsbruck, Austria.
| |
Collapse
|
25
|
Friedrich T, Dekovic DK, Burschel S. Assembly of the Escherichia coli NADH:ubiquinone oxidoreductase (respiratory complex I). BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:214-23. [PMID: 26682761 DOI: 10.1016/j.bbabio.2015.12.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 12/03/2015] [Accepted: 12/07/2015] [Indexed: 12/13/2022]
Abstract
Energy-converting NADH:ubiquinone oxidoreductase, respiratory complex I, couples the electron transfer from NADH to ubiquinone with the translocation of four protons across the membrane. The Escherichia coli complex I is made up of 13 different subunits encoded by the so-called nuo-genes. The electron transfer is catalyzed by nine cofactors, a flavin mononucleotide and eight iron-sulfur (Fe/S)-clusters. The individual subunits and the cofactors have to be assembled together in a coordinated way to guarantee the biogenesis of the active holoenzyme. Only little is known about the assembly of the bacterial complex compared to the mitochondrial one. Due to the presence of so many Fe/S-clusters the assembly of complex I is intimately connected with the systems responsible for the biogenesis of these clusters. In addition, a few other proteins have been reported to be required for an effective assembly of the complex in other bacteria. The proposed role of known bacterial assembly factors is discussed and the information from other bacterial species is used in this review to draw an as complete as possible model of bacterial complex I assembly. In addition, the supramolecular organization of the complex in E. coli is briefly described. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof. Conrad Mullineaux.
Collapse
Affiliation(s)
- Thorsten Friedrich
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany.
| | - Doris Kreuzer Dekovic
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany; Spemann Graduate School of Biology and Medicine, Albertstr. 19A, 79104 Freiburg i. Br., Germany
| | - Sabrina Burschel
- Albert-Ludwigs-Universität Freiburg, Institut für Biochemie, 79104 Freiburg i. Br., Germany
| |
Collapse
|
26
|
Determining Roles of Accessory Genes in Denitrification by Mutant Fitness Analyses. Appl Environ Microbiol 2015; 82:51-61. [PMID: 26452555 DOI: 10.1128/aem.02602-15] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 10/07/2015] [Indexed: 01/06/2023] Open
Abstract
Enzymes of the denitrification pathway play an important role in the global nitrogen cycle, including release of nitrous oxide, an ozone-depleting greenhouse gas. In addition, nitric oxide reductase, maturation factors, and proteins associated with nitric oxide detoxification are used by pathogens to combat nitric oxide release by host immune systems. While the core reductases that catalyze the conversion of nitrate to dinitrogen are well understood at a mechanistic level, there are many peripheral proteins required for denitrification whose basic function is unclear. A bar-coded transposon DNA library from Pseudomonas stutzeri strain RCH2 was grown under denitrifying conditions, using nitrate or nitrite as an electron acceptor, and also under molybdenum limitation conditions, with nitrate as the electron acceptor. Analysis of sequencing results from these growths yielded gene fitness data for 3,307 of the 4,265 protein-encoding genes present in strain RCH2. The insights presented here contribute to our understanding of how peripheral proteins contribute to a fully functioning denitrification pathway. We propose a new low-affinity molybdate transporter, OatABC, and show that differential regulation is observed for two MoaA homologs involved in molybdenum cofactor biosynthesis. We also propose that NnrS may function as a membrane-bound NO sensor. The dominant HemN paralog involved in heme biosynthesis is identified, and a CheR homolog is proposed to function in nitrate chemotaxis. In addition, new insights are provided into nitrite reductase redundancy, nitric oxide reductase maturation, nitrous oxide reductase maturation, and regulation.
Collapse
|
27
|
Roche B, Agrebi R, Huguenot A, Ollagnier de Choudens S, Barras F, Py B. Turning Escherichia coli into a Frataxin-Dependent Organism. PLoS Genet 2015; 11:e1005134. [PMID: 25996492 PMCID: PMC4440780 DOI: 10.1371/journal.pgen.1005134] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/10/2015] [Indexed: 01/01/2023] Open
Abstract
Fe-S bound proteins are ubiquitous and contribute to most basic cellular processes. A defect in the ISC components catalyzing Fe-S cluster biogenesis leads to drastic phenotypes in both eukaryotes and prokaryotes. In this context, the Frataxin protein (FXN) stands out as an exception. In eukaryotes, a defect in FXN results in severe defects in Fe-S cluster biogenesis, and in humans, this is associated with Friedreich's ataxia, a neurodegenerative disease. In contrast, prokaryotes deficient in the FXN homolog CyaY are fully viable, despite the clear involvement of CyaY in ISC-catalyzed Fe-S cluster formation. The molecular basis of the differing importance in the contribution of FXN remains enigmatic. Here, we have demonstrated that a single mutation in the scaffold protein IscU rendered E. coli viability strictly dependent upon a functional CyaY. Remarkably, this mutation changed an Ile residue, conserved in prokaryotes at position 108, into a Met residue, conserved in eukaryotes. We found that in the double mutant IscUIM ΔcyaY, the ISC pathway was completely abolished, becoming equivalent to the ΔiscU deletion strain and recapitulating the drastic phenotype caused by FXN deletion in eukaryotes. Biochemical analyses of the "eukaryotic-like" IscUIM scaffold revealed that it exhibited a reduced capacity to form Fe-S clusters. Finally, bioinformatic studies of prokaryotic IscU proteins allowed us to trace back the source of FXN-dependency as it occurs in present-day eukaryotes. We propose an evolutionary scenario in which the current mitochondrial Isu proteins originated from the IscUIM version present in the ancestor of the Rickettsiae. Subsequent acquisition of SUF, the second Fe-S cluster biogenesis system, in bacteria, was accompanied by diminished contribution of CyaY in prokaryotic Fe-S cluster biogenesis, and increased tolerance to change in the amino acid present at the 108th position of the scaffold.
Collapse
Affiliation(s)
- Béatrice Roche
- Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Rym Agrebi
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Allison Huguenot
- Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | | | - Frédéric Barras
- Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| | - Béatrice Py
- Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, Marseille, France
| |
Collapse
|
28
|
Dandekar T, Fieselmann A, Fischer E, Popp J, Hensel M, Noster J. Salmonella-how a metabolic generalist adopts an intracellular lifestyle during infection. Front Cell Infect Microbiol 2015; 4:191. [PMID: 25688337 PMCID: PMC4310325 DOI: 10.3389/fcimb.2014.00191] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 12/21/2014] [Indexed: 12/12/2022] Open
Abstract
The human-pathogenic bacterium Salmonella enterica adjusts and adapts to different environments while attempting colonization. In the course of infection nutrient availabilities change drastically. New techniques, "-omics" data and subsequent integration by systems biology improve our understanding of these changes. We review changes in metabolism focusing on amino acid and carbohydrate metabolism. Furthermore, the adaptation process is associated with the activation of genes of the Salmonella pathogenicity islands (SPIs). Anti-infective strategies have to take these insights into account and include metabolic and other strategies. Salmonella infections will remain a challenge for infection biology.
Collapse
Affiliation(s)
- Thomas Dandekar
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Astrid Fieselmann
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Eva Fischer
- Department of Bioinformatics, Biocenter, University of Würzburg Würzburg, Germany
| | - Jasmin Popp
- Division of Microbiology, Biology/Chemistry, University of Osnabrück Osnabrück, Germany
| | - Michael Hensel
- Division of Microbiology, Biology/Chemistry, University of Osnabrück Osnabrück, Germany
| | - Janina Noster
- Division of Microbiology, Biology/Chemistry, University of Osnabrück Osnabrück, Germany
| |
Collapse
|
29
|
Roche B, Huguenot A, Barras F, Py B. The iron-binding CyaY and IscX proteins assist the ISC-catalyzed Fe-S biogenesis in Escherichia coli. Mol Microbiol 2015; 95:605-23. [PMID: 25430730 DOI: 10.1111/mmi.12888] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2014] [Indexed: 01/18/2023]
Abstract
In eukaryotes, frataxin deficiency (FXN) causes severe phenotypes including loss of iron-sulfur (Fe-S) cluster protein activity, accumulation of mitochondrial iron and leads to the neurodegenerative disease Friedreich's ataxia. In contrast, in prokaryotes, deficiency in the FXN homolog, CyaY, was reported not to cause any significant phenotype, questioning both its importance and its actual contribution to Fe-S cluster biogenesis. Because FXN is conserved between eukaryotes and prokaryotes, this surprising discrepancy prompted us to reinvestigate the role of CyaY in Escherichia coli. We report that CyaY (i) potentiates E. coli fitness, (ii) belongs to the ISC pathway catalyzing the maturation of Fe-S cluster-containing proteins and (iii) requires iron-rich conditions for its contribution to be significant. A genetic interaction was discovered between cyaY and iscX, the last gene of the isc operon. Deletion of both genes showed an additive effect on Fe-S cluster protein maturation, which led, among others, to increased resistance to aminoglycosides and increased sensitivity to lambda phage infection. Together, these in vivo results establish the importance of CyaY as a member of the ISC-mediated Fe-S cluster biogenesis pathway in E. coli, like it does in eukaryotes, and validate IscX as a new bona fide Fe-S cluster biogenesis factor.
Collapse
Affiliation(s)
- Béatrice Roche
- Laboratoire de Chimie Bactérienne, UMR 7283, Aix-Marseille Université-CNRS, Institut de Microbiologie de la Méditerranée, 31 Chemin Joseph Aiguier, 13009, Marseille, France
| | | | | | | |
Collapse
|
30
|
Blanc B, Gerez C, Ollagnier de Choudens S. Assembly of Fe/S proteins in bacterial systems: Biochemistry of the bacterial ISC system. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1436-47. [PMID: 25510311 DOI: 10.1016/j.bbamcr.2014.12.009] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/20/2014] [Accepted: 12/08/2014] [Indexed: 12/26/2022]
Abstract
Iron/sulfur clusters are key cofactors in proteins involved in a large number of conserved cellular processes, including gene expression, DNA replication and repair, ribosome biogenesis, tRNA modification, central metabolism and respiration. Fe/S proteins can perform a wide range of functions, from electron transfer to redox and non-redox catalysis. In all living organisms, Fe/S proteins are first synthesized in an apo-form. However, as the Fe/S prosthetic group is required for correct folding and/or protein stability, Fe/S clusters are inserted co-translationally or immediately after translation by specific assembly machineries. These systems have been extensively studied over the last decade, both in prokaryotes and eukaryotes. The present review covers the basic principles of the bacterial housekeeping Fe/S biogenesis ISC system, and related recent molecular advances. Some of the most exciting recent highlights relating to this system include structural and functional characterization of binary and ternary complexes involved in Fe/S cluster formation on the scaffold protein IscU. These advances enhance our understanding of the Fe/S cluster assembly mechanism by revealing essential interactions that could never be determined with isolated proteins and likely are closer to an in vivo situation. Much less is currently known about the molecular mechanism of the Fe/S transfer step, but a brief account of the protein-protein interactions involved is given. This article is part of a Special Issue entitled: Fe/S proteins: Analysis, structure, function, biogenesis and diseases.
Collapse
Affiliation(s)
- B Blanc
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France
| | - C Gerez
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France
| | - S Ollagnier de Choudens
- Université Grenoble Alpes, LCBM, 38054 Grenoble, France; CEA, DSV, iRTSV, LCBM, Biocatalyse, 38054 Grenoble, France; CNRS UMR5249, LCBM, 38054 Grenoble, France.
| |
Collapse
|
31
|
Frawley ER, Fang FC. The ins and outs of bacterial iron metabolism. Mol Microbiol 2014; 93:609-16. [PMID: 25040830 DOI: 10.1111/mmi.12709] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/03/2014] [Indexed: 02/07/2023]
Abstract
Iron is a critical nutrient for the growth and survival of most bacterial species. Accordingly, much attention has been paid to the mechanisms by which host organisms sequester iron from invading bacteria and how bacteria acquire iron from their environment. However, under oxidative stress conditions such as those encountered within phagocytic cells during the host immune response, iron is released from proteins and can act as a catalyst for Fenton chemistry to produce cytotoxic reactive oxygen species. The transitory efflux of free intracellular iron may be beneficial to bacteria under such conditions. The recent discovery of putative iron efflux transporters in Salmonella enterica serovar Typhimurium is discussed in the context of cellular iron homeostasis.
Collapse
Affiliation(s)
- Elaine R Frawley
- Department of Laboratory Medicine, University of Washington, Seattle, Washington, USA
| | | |
Collapse
|