1
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Ten-Caten F, Joseph F Urban, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2 in mice. Sci Transl Med 2024; 16:eado1941. [PMID: 39167662 DOI: 10.1126/scitranslmed.ado1941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 07/25/2024] [Indexed: 08/23/2024]
Abstract
Although vaccines have reduced the burden of COVID-19, their efficacy in helminth infection-endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal roundworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in mice. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA-vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared with animals immunized without Hpb infection. Helminth-mediated suppression of spike protein-specific CD8+ T cell responses occurred independently of signal transducer and activator of transcription 6 (STAT6) signaling, whereas blockade of interleukin-10 (IL-10) rescued vaccine-induced CD8+ T cell responses. Together, these data show that, in mice, intestinal helminth infection impaired vaccine-induced T cell responses through an IL-10 pathway, which compromised protection against antigenically drifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Courtney E Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Tamara Garcia-Salum
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Ana Carolina Santana
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Felipe Ten-Caten
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Joseph F Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705, USA
| | | | | | - Susan P Ribeiro
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Larissa B Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| | - Rafick P Sekaly
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA 30317, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Michael S Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
2
|
Chop M, Ledo C, Nicolao MC, Loos J, Cumino A, Rodriguez Rodrigues C. Hydatid fluid from Echinococcus granulosus induces autophagy in dendritic cells and promotes polyfunctional T-cell responses. Front Cell Infect Microbiol 2024; 14:1334211. [PMID: 38817444 PMCID: PMC11137651 DOI: 10.3389/fcimb.2024.1334211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 03/22/2024] [Indexed: 06/01/2024] Open
Abstract
Parasites possess remarkable abilities to evade and manipulate the immune response of their hosts. Echinococcus granulosus is a parasitic tapeworm that causes cystic echinococcosis in animals and humans. The hydatid fluid released by the parasite is known to contain various immunomodulatory components that manipulate host´s defense mechanism. In this study, we focused on understanding the effect of hydatid fluid on dendritic cells and its impact on autophagy induction and subsequent T cell responses. Initially, we observed a marked downregulation of two C-type lectin receptors in the cell membrane, CLEC9A and CD205 and an increase in lysosomal activity, suggesting an active cellular response to hydatid fluid. Subsequently, we visualized ultrastructural changes in stimulated dendritic cells, revealing the presence of macroautophagy, characterized by the formation of autophagosomes, phagophores, and phagolysosomes in the cell cytoplasm. To further elucidate the underlying molecular mechanisms involved in hydatid fluid-induced autophagy, we analyzed the expression of autophagy-related genes in stimulated dendritic cells. Our results demonstrated a significant upregulation of beclin-1, atg16l1 and atg12, indicating the induction of autophagy machinery in response to hydatid fluid exposure. Additionally, using confocal microscopy, we observed an accumulation of LC3 in dendritic cell autophagosomes, confirming the activation of this catabolic pathway associated with antigen presentation. Finally, to evaluate the functional consequences of hydatid fluid-induced autophagy in DCs, we evaluated cytokine transcription in the splenocytes. Remarkably, a robust polyfunctional T cell response, with inhibition of Th2 profile, is characterized by an increase in the expression of il-6, il-10, il-12, tnf-α, ifn-γ and tgf-β genes. These findings suggest that hydatid fluid-induced autophagy in dendritic cells plays a crucial role in shaping the subsequent T cell responses, which is important for a better understanding of host-parasite interactions in cystic echinococcosis.
Collapse
Affiliation(s)
- Maia Chop
- Instituto IQUIBIM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Camila Ledo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - María Celeste Nicolao
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Julia Loos
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Andrea Cumino
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Instituto IPROSAM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
| | - Christian Rodriguez Rodrigues
- Instituto IQUIBIM, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| |
Collapse
|
3
|
Alghanmi M, Minshawi F, Altorki TA, Zawawi A, Alsaady I, Naser AY, Alwafi H, Alsulami SM, Azhari AA, Hashem AM, Alhabbab R. Helminth-derived proteins as immune system regulators: a systematic review of their promise in alleviating colitis. BMC Immunol 2024; 25:21. [PMID: 38637733 PMCID: PMC11025257 DOI: 10.1186/s12865-024-00614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/30/2024] [Indexed: 04/20/2024] Open
Abstract
Helminth-derived proteins have immunomodulatory properties, influencing the host's immune response as an adaptive strategy for helminth survival. Helminth-derived proteins modulate the immune response by inducing anti-inflammatory cytokines, promoting regulatory T-cell development, and ultimately favouring a Th2-biased immune response. This systematic review focused on helminth-derived proteins and explored their impact on reducing inflammatory responses in mouse models of colitis. A systematic search across Medline, EMBASE, Web of Science, and Cochrane Library identified fourteen relevant studies. These studies reported immunomodulatory changes, including increased production of anti-inflammatory cells and cytokines. In mouse models of colitis treated with on helminth-derived proteins, significant improvements in pathological parameters such as body weight, colon length, and microscopic inflammatory scores were observed compared to control groups. Moreover, helminth-derived proteins can enhance the function of Tregs and alleviate the severity of inflammatory conditions. The findings underscore the pivotal role of helminth-derived proteins in immunomodulation, specifically in the axis of cytokine secretion and immune cell polarization. The findings offer new opportunities for treating chronic inflammatory conditions such Crohn's disease.
Collapse
Grants
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
- IFPRC-408160-290-2020 the Ministry of Education and King Abdulaziz University, Jeddah, Saudi Arabia
Collapse
Affiliation(s)
- Maimonah Alghanmi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia.
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia.
| | - Faisal Minshawi
- Department of Laboratory Medicine, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Tarfa A Altorki
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ayat Zawawi
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Isra Alsaady
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Special Infectious Agent Unit, King Fahad Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Abdallah Y Naser
- Department of Applied Pharmaceutical Sciences and Clinical Pharmacy, Faculty of Pharmacy, Isra University, Amman, Jordan
| | - Hassan Alwafi
- Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Soa'ad M Alsulami
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Clinical and Molecular Microbiology Laboratories, King Abdulaziz University Hospital, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ala A Azhari
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Anwar M Hashem
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Rowa Alhabbab
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
- Vaccines and Immunotherapy Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Folle AM, Lagos Magallanes S, Fló M, Alvez-Rosado R, Carrión F, Vallejo C, Watson D, Julve J, González-Sapienza G, Pristch O, González-Techera A, Ferreira AM. Modulatory actions of Echinococcus granulosus antigen B on macrophage inflammatory activation. Front Cell Infect Microbiol 2024; 14:1362765. [PMID: 38562963 PMCID: PMC10982386 DOI: 10.3389/fcimb.2024.1362765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024] Open
Abstract
Cestodes use own lipid-binding proteins to capture and transport hydrophobic ligands, including lipids that they cannot synthesise as fatty acids and cholesterol. In E. granulosus s.l., one of these lipoproteins is antigen B (EgAgB), codified by a multigenic and polymorphic family that gives rise to five gene products (EgAgB8/1-5 subunits) assembled as a 230 kDa macromolecule. EgAgB has a diagnostic value for cystic echinococcosis, but its putative role in the immunobiology of this infection is still poorly understood. Accumulating research suggests that EgAgB has immunomodulatory properties, but previous studies employed denatured antigen preparations that might exert different effects than the native form, thereby limiting data interpretation. This work analysed the modulatory actions on macrophages of native EgAgB (nEgAgB) and the recombinant form of EgAg8/1, which is the most abundant subunit in the larva and was expressed in insect S2 cells (rEgAgB8/1). Both EgAgB preparations were purified to homogeneity by immunoaffinity chromatography using a novel nanobody anti-EgAgB8/1. nEgAgB and rEgAgB8/1 exhibited differences in size and lipid composition. The rEgAgB8/1 generates mildly larger lipoproteins with a less diverse lipid composition than nEgAgB. Assays using human and murine macrophages showed that both nEgAgB and rEgAgB8/1 interfered with in vitro LPS-driven macrophage activation, decreasing cytokine (IL-1β, IL-6, IL-12p40, IFN-β) secretion and ·NO generation. Furthermore, nEgAgB and rEgAgB8/1 modulated in vivo LPS-induced cytokine production (IL-6, IL-10) and activation of large (measured as MHC-II level) and small (measured as CD86 and CD40 levels) macrophages in the peritoneum, although rEgAgB8/1 effects were less robust. Overall, this work reinforced the notion that EgAgB is an immunomodulatory component of E. granulosus s.l. Although nEgAgB lipid's effects cannot be ruled out, our data suggest that the EgAgB8/1 subunit contributes to EgAgB´s ability to regulate the inflammatory activation of macrophages.
Collapse
Affiliation(s)
- Ana Maite Folle
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Sofía Lagos Magallanes
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Martín Fló
- Unidad de Biofísica de Proteínas, Institut Pasteur, Montevideo, Uruguay
| | - Romina Alvez-Rosado
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Federico Carrión
- Unidad de Biofísica de Proteínas, Institut Pasteur, Montevideo, Uruguay
| | - Cecilia Vallejo
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - David Watson
- Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Josep Julve
- Research group of Endocrinology, Diabetes and Nutrition, Institut de Recerca SANT PAU, Barcelona, Spain
- Centro de Investigación Biomédica en red de Diabetes y Enfermedades Metabólicas asociadas, Instituto de Salud Carlos III, Madrid, Spain
| | - Gualberto González-Sapienza
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Otto Pristch
- Unidad de Biofísica de Proteínas, Institut Pasteur, Montevideo, Uruguay
| | - Andrés González-Techera
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| | - Ana María Ferreira
- Unidad de Inmunología, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
- Área Inmunología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Montevideo, Uruguay
| |
Collapse
|
5
|
Desai P, Karl CE, Ying B, Liang CY, Garcia-Salum T, Santana AC, Caten FT, Urban JF, Elbashir SM, Edwards DK, Ribeiro SP, Thackray LB, Sekaly RP, Diamond MS. Intestinal helminth infection impairs vaccine-induced T cell responses and protection against SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575588. [PMID: 38293221 PMCID: PMC10827110 DOI: 10.1101/2024.01.14.575588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Although vaccines have reduced COVID-19 disease burden, their efficacy in helminth infection endemic areas is not well characterized. We evaluated the impact of infection by Heligmosomoides polygyrus bakeri (Hpb), a murine intestinal hookworm, on the efficacy of an mRNA vaccine targeting the Wuhan-1 spike protein of SARS-CoV-2. Although immunization generated similar B cell responses in Hpb-infected and uninfected mice, polyfunctional CD4+ and CD8+ T cell responses were markedly reduced in Hpb-infected mice. Hpb-infected and mRNA vaccinated mice were protected against the ancestral SARS-CoV-2 strain WA1/2020, but control of lung infection was diminished against an Omicron variant compared to animals immunized without Hpb infection. Helminth mediated suppression of spike-specific CD8+ T cell responses occurred independently of STAT6 signaling, whereas blockade of IL-10 rescued vaccine-induced CD8+ T cell responses. In mice, intestinal helminth infection impairs vaccine induced T cell responses via an IL-10 pathway and compromises protection against antigenically shifted SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Pritesh Desai
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Courtney E. Karl
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Baoling Ying
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Chieh-Yu Liang
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Tamara Garcia-Salum
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Ana Carolina Santana
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Felipe Ten Caten
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Joseph F. Urban
- US Department of Agriculture, Agricultural Research Services, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, and Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD 20705-2350, USA
| | | | | | - Susan P. Ribeiro
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Larissa B. Thackray
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| | - Rafick P. Sekaly
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Michael S. Diamond
- Department of Medicine, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
- The Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University in St. Louis, School of Medicine, St. Louis, MO, USA
| |
Collapse
|
6
|
He X, Shao G, Du X, Hua R, Song H, Chen Y, Zhu X, Yang G. Molecular characterization and functional implications on mouse peripheral blood mononuclear cells of annexin proteins from Echinococcus granulosus sensu lato. Parasit Vectors 2023; 16:350. [PMID: 37803469 PMCID: PMC10559496 DOI: 10.1186/s13071-023-05967-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/09/2023] [Indexed: 10/08/2023] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a life-threatening zoonotic disease caused by the larval stage of Echinococcus granulosus sensu lato, which employs various strategies to evade the host immune system for survival. Recent advances have revealed the role of annexins as excretory/secretory products, providing new insights into the immune regulation by these proteins in the pathogenesis of CE. METHODS Echinococcus granulosus annexin B proteins EgANXB2, EgANXB18, EgANXB20, and EgANXB23 were cloned, expressed, and analyzed using bioinformatic tools. Membrane binding analysis was used to assess their bioactivity, while their immunoreactivity and tissue distribution characteristics were determined experimentally using western blotting and immunofluorescence staining, respectively. Furthermore, quantitative real-time reverse transcription PCR (qRT-PCR) was used to analyze the mRNA expression profiles of EgANXBs in different developmental stages of E. granulosus. Finally, immunofluorescence staining, cell counting kit 8 assays, flow cytometry, transwell migration assays, and qRT-PCR were used to evaluate the functional effects of rEgANXB18 and rEgANXB20 on mouse peripheral blood mononuclear cells (PBMCs). RESULTS In this study, we identified four EgANXBs with conserved protein structures and calcium-dependent phospholipid binding activities. rEgANXBs were recognized by serum from sheep infected with E. granulosus and distributed in the germinal layer of fertile cysts. Interestingly, transcription levels of the four EgANXBs were significantly higher in protoscoleces than in 28-day strobilated worms. Moreover, we demonstrated that rEgANXB18 and rEgANXB20 were secretory proteins that could bind to PBMCs and regulate their function. Specifically, rEgANXB18 inhibited cell proliferation and migration while promoting cell apoptosis, NO production, and cytokine profile shifting. In contrast, rEgANXB20 showed limited effects on apoptosis but inhibited NO production. CONCLUSIONS Our findings suggested that among the four identified EgANXBs, EgANXB2 and EgANXB23 might play a pivotal role for the development of protoscoleces, while EgANXB18 and EgANXB20, as secretory proteins, appeared to participate in the host-parasite interaction by regulating the function of immune cells.
Collapse
Affiliation(s)
- Xue He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Guoqing Shao
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaodi Du
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Ruiqi Hua
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Hongyu Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Yanxin Chen
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Xiaowei Zhu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, 611130, Sichuan Province, People's Republic of China.
| |
Collapse
|
7
|
Nicolao MC, Rodrigues CR, Coccimiglio MB, Ledo C, Docena GH, Cumino AC. Characterization of protein cargo of Echinococcus granulosus extracellular vesicles in drug response and its influence on immune response. Parasit Vectors 2023; 16:255. [PMID: 37516852 PMCID: PMC10387209 DOI: 10.1186/s13071-023-05854-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023] Open
Abstract
BACKGROUND The Echinococcus granulosus sensu lato species complex causes cystic echinococcosis, a zoonotic disease of medical importance. Parasite-derived small extracellular vesicles (sEVs) are involved in the interaction with hosts intervening in signal transduction related to parasite proliferation and disease pathogenesis. Although the characteristics of sEVs from E. granulosus protoscoleces and their interaction with host dendritic cells (DCs) have been described, the effect of sEVs recovered during parasite pharmacological treatment on the immune response remains unexplored. METHODS Here, we isolated and characterized sEVs from control and drug-treated protoscoleces by ultracentrifugation, transmission electron microscopy, dynamic light scattering, and proteomic analysis. In addition, we evaluated the cytokine response profile induced in murine bone marrow-derived dendritic cells (BMDCs) by qPCR. RESULTS The isolated sEVs, with conventional size between 50 and 200 nm, regardless of drug treatment, showed more than 500 cargo proteins and, importantly, 20 known antigens and 70 potential antigenic proteins, and several integral-transmembrane and soluble proteins mainly associated with signal transduction, immunomodulation, scaffolding factors, extracellular matrix-anchoring, and lipid transport. The identity and abundance of proteins in the sEV-cargo from metformin- and albendazole sulfoxide (ABZSO)-treated parasites were determined by proteomic analysis, detecting 107 and eight exclusive proteins, respectively, which include proteins related to the mechanisms of drug action. We also determined that the interaction of murine BMDCs with sEVs derived from control parasites and those treated with ABZSO and metformin increased the expression of pro-inflammatory cytokines such as IL-12 compared to control cells. Additionally, protoscolex-derived vesicles from metformin treatments induced the production of IL-6, TNF-α, and IL-10. However, the expression of IL-23 and TGF-β was downregulated. CONCLUSIONS We demonstrated that sEV-cargo derived from drug-treated E. granulosus protoscoleces have immunomodulatory functions, as they enhance DC activation towards a type 1 pro-inflammatory profile against the parasite, and therefore support the proposal of a new approach for the prevention and treatment of secondary echinococcosis.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina
| | - Magalí B Coccimiglio
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Camila Ledo
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina
| | - Guillermo H Docena
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Estudios Inmunológicos y Fisiopatológicos (IIFP), La Plata, Argentina
| | - Andrea C Cumino
- Laboratorio de Zoonosis Parasitarias, IIPROSAM, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel Cero, 7600, Mar del Plata, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes 3350, Nivel 2, 7600, Mar del Plata, Argentina.
| |
Collapse
|
8
|
Wang M, Shang Z, Qiao F, Hei J, Ma X, Wang Y. Notch signaling pathway involved in Echinococcus granulosus infection regulates dendritic cell development and differentiation. Front Cell Infect Microbiol 2023; 13:1147025. [PMID: 37274316 PMCID: PMC10235693 DOI: 10.3389/fcimb.2023.1147025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/27/2023] [Indexed: 06/06/2023] Open
Abstract
Introduction The Notch signaling pathway is involved in the development of many diseases; it regulates the development of dendritic cells (DCs), and affects the immune response of DC-mediated T cells. We previously found that ferritin and malate dehydrogenase (mMDH) in Echinococcus granulosus (E.granulosus) induced different immune responses through sensitized DCs. Therefore, in the study we explored whether the Notch signaling pathway affects the development and differentiation of DCs, causing changes in the immune response of DCs sensitized with E. granulosus antigens, and clarified whether it is involved in E.granulosus infection. Methods We used the Notch signaling pathway inhibitor [N-[3,5-difluorophenace-tyl] -L-alanyl]-S-phenylglycinet-butyl ester (DAPT) or activator Jagged1 to construct in vitro cell models with blocked or activated Notch signaling respectively. We analyzed the effect of Notch signaling on the development and differentiation of DCs by detecting their morphology, migration function, capacity to promote T cell proliferation, and cytokine secretion. We observed the changes in DC response to E. granulosus antigens and the mediated immune response. Results DAPT inhibited the development and maturation of DCs, which were in a non-responsive or incompetent state, reduced the sensitization of DCs to Eg.ferritin, weakened the migration ability of DCs, disrupted their ability to mediate T-cell proliferation, reduced DC expression of MHCII, CD80, CD60, and CD40 co-stimulatory molecules, prevented the secretion of cytokines and attenuated the expression of Notch1, Notch2, Notch3 receptors, Jagged1, Delta-like 4 (Delta4), and Hes1. Following Jagged1 addition, the function of DCs was restored to some extent, and the expression of Notch1, Delta4 and Hes1 was activated in response to the stimulation of Eg.ferritin. However, Eg.mMDH stimulated DCs to produce an immune response showing weak interference by DAPT and Jagged1. Discussion The study suggests that the Notc h signaling pathway is involved in the Eg.ferritin-sensitized DC-mediated immune response, which may become a new target for treating E.granulosus infection.
Collapse
Affiliation(s)
- Mingxia Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Zailing Shang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Fei Qiao
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Junhu Hei
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Xueling Ma
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
| | - Yana Wang
- Basic Medical Institute of Ningxia Medical University, Yinchuan, China
- Key Laboratory of Common Infectious Diseases of Ningxia Autonomous Region, Ningxia Medical University, Yinchuan, China
| |
Collapse
|
9
|
De Biase D, Prisco F, Pepe P, Bosco A, Piegari G, d'Aquino I, Russo V, Papparella S, Maurelli MP, Rinaldi L, Paciello O. Evaluation of the Local Immune Response to Hydatid Cysts in Sheep Liver. Vet Sci 2023; 10:vetsci10050315. [PMID: 37235398 DOI: 10.3390/vetsci10050315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/23/2023] [Accepted: 04/24/2023] [Indexed: 05/28/2023] Open
Abstract
In order to characterize the inflammatory phenotype of livers of sheep naturally infected by cystic echinococcosis, 100 sheep livers have been macroscopically assessed for the presence of hydatid cysts and sampled for histopathological and molecular analysis. According to gross and microscopic examination, livers were subsequently classified into three groups: normal liver (Group A), liver with the presence of fertile hydatid cysts (Group B), and liver with the presence of sterile hydatid cysts (Group C). Immunohistochemical analyses were accomplished using primary antibodies anti-Iba1, anti-CD3, anti-CD20, anti-TGF-β, and anti-MMP9. Finally, real-time PCR was performed in order to estimate the concentration levels of tumor necrosis factor-α (TNF-α), interferon-γ (INF-γ), interleukin (IL)-12, IL-10, and TGF-β. Immunohistochemical analysis showed a diffuse immunolabelling of mononuclear cells for Iba-1 and TGF-β and a higher amount of CD20+ B cells compared to CD3+ T cells in both Groups B and C. The expression levels of Th-1-like immune cytokines TNF-α, INF-γ, and IL-12 did not show significant statistical differences. However, we found a significant increase in expression levels of Th-2 immune cytokines TGF-β and IL-10 in Groups B and C compared to Group A. Taken together, our findings suggest that macrophages have a predominant role in the local immune response to cystic echinococcosis. Moreover, we can speculate that Th2 immunity may be dominant, corroborating the idea that B cells are decisively essential in the control of the immune response during parasitic infection and that the immunomodulatory role of IL-10 and TGF-β may ensure the persistence of the parasite within the host.
Collapse
Affiliation(s)
- Davide De Biase
- Department of Pharmacy, University of Salerno, 84084 Fisciano, Italy
| | - Francesco Prisco
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Paola Pepe
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Antonio Bosco
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Giuseppe Piegari
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Ilaria d'Aquino
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Valeria Russo
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Serenella Papparella
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Maria Paola Maurelli
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Laura Rinaldi
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| | - Orlando Paciello
- Department of Veterinary Medicine and Animal Production, University of Napoli "Federico II", CREMOPAR, Via Delpino, 1, 80137 Napoli, Italy
| |
Collapse
|
10
|
Echinococcus granulosus Protoscoleces-Derived Exosome-like Vesicles and Egr-miR-277a-3p Promote Dendritic Cell Maturation and Differentiation. Cells 2022; 11:cells11203220. [PMID: 36291088 PMCID: PMC9600664 DOI: 10.3390/cells11203220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/11/2022] [Indexed: 11/20/2022] Open
Abstract
Cystic echinococcosis, a major parasitic disease caused by Echinococcus granulosus, seriously threatens human health. The excretory–secretory (ES) products of E. granulosus can induce immune tolerance in dendritic cells (DCs) to downregulate the host’s immune response; however, the effect of exosomes in the ES products on the DCs has remained unclear. This study showed that E. granulosus protoscoleces-derived exosome-like vesicles (PSC-ELVs) could be internalized by bone marrow-derived dendritic cells (BMDCs), allowing for the delivery of the parasite microRNAs to the BMDCs. Moreover, PSC-ELVs induced BMDCs to produce the proinflammatory cytokinesinterleukin (IL)-6, IL-12, IL-β, tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ). PSC-ELVs also upregulated the BMDCs surface marker major histocompatibility complex class II (MHC II), as well as costimulatory molecules CD40, CD80, and CD86. PSC-ELV-derived egr-miR-277a-3p upregulated the IL-6, IL-12, and TNF-α mRNA levels in BMDCs. Moreover, egr-miR-277a-3p directly targeted Nfkb1 (encoding nuclear factor kappa B 1) to significantly suppress the mRNA and protein levels of NF-κB1 in BMDCs, while the expression of NF-κB p65 significantly increased, suggesting that egr-miR-277a-3p induces the production of proinflammatory cytokines by the modification of the NF-kB p65/p50 ratio in BMDCs. These results demonstrated that PSC-ELVs and egr-miR-277a-3p might enhance DCs maturation and differentiation in a cross-species manner, which in turn may modulate the host immune responses and offer a new approach to echinococcosis prevention and treatment.
Collapse
|
11
|
Samia HR, aicha D, Meriem M, Rabah Y, Imene S, Bousaad H, Chafia T, Ahsene B, Jean G, Saâdia M. Treatment of protoscoleces with gamma radiation: potential immunoprotective effect against experimental murine echinococcosis. Parasite Immunol 2022; 44:e12944. [DOI: 10.1111/pim.12944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/29/2022] [Accepted: 08/03/2022] [Indexed: 12/01/2022]
Affiliation(s)
- Hadj Rabia Samia
- Department of Nuclear Applications Nuclear Research Center, B.P.43 Sebala‐Draria Algeria
- Laboratory of Biology and Animal Physiology, ENS Kouba Algiers Algeria
| | - Debib aicha
- Laboratory of Management and Valorization of Agricultural and Aquatic Ecosystems (LMVAAE) Morsli Abdallah Tipaza University Center Algeria
| | - Mezaguer Meriem
- Department of ionizing radiation dosimetry Nuclear Research Center, 2bd Frantz Fanon Algiers Algeria
| | - Yefsah Rabah
- Department of Irradiation Technology Nuclear Research Center, 2bd Frantz Fanon Algiers Algeria
| | - Soufli Imene
- Laboratory of Cellular and Molecular Biology Faculty of Biological Science University of Sciences and technology Houari Boumediene, USTHB, PB 32 El‐Alia Algiers Algeria
| | - Hamrioui Bousaad
- Laboratory of Parasitology, Mustapha Bacha Hospital Algiers Algeria
| | - Touil‐Boukoffa Chafia
- Laboratory of Cellular and Molecular Biology Faculty of Biological Science University of Sciences and technology Houari Boumediene, USTHB, PB 32 El‐Alia Algiers Algeria
| | - Baz Ahsene
- Laboratory of Biology and Animal Physiology, ENS Kouba Algiers Algeria
| | - Giaimis Jean
- UMR Qualisud‐Faculty of Pharmacy University of Montpellier I Montpellier France
| | - Mameri Saâdia
- Laboratory of Anatomopathology Mustapha Bacha Hospital Algiers Algeria
| |
Collapse
|
12
|
Zakeri A, Everts B, Williams AR, Nejsum P. Antigens from the parasitic nematode Trichuris suis induce metabolic reprogramming and trained immunity to constrain inflammatory responses in macrophages. Cytokine 2022; 156:155919. [DOI: 10.1016/j.cyto.2022.155919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/13/2022] [Accepted: 05/17/2022] [Indexed: 11/27/2022]
|
13
|
Yildiz K, Sursal Simsek N, Gurcan IS. Determination of extracellular traps structures from sheep polymorphonuclear leukocytes to Echinococcus granulosus protoscoleces. Exp Parasitol 2022; 239:108283. [DOI: 10.1016/j.exppara.2022.108283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/28/2022] [Accepted: 05/18/2022] [Indexed: 11/29/2022]
|
14
|
Shi W, Xu N, Wang X, Vallée I, Liu M, Liu X. Helminth Therapy for Immune-Mediated Inflammatory Diseases: Current and Future Perspectives. J Inflamm Res 2022; 15:475-491. [PMID: 35087284 PMCID: PMC8789313 DOI: 10.2147/jir.s348079] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Accepted: 01/11/2022] [Indexed: 12/17/2022] Open
Affiliation(s)
- Wenjie Shi
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Ning Xu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xuelin Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Isabelle Vallée
- UMR BIPAR, Anses, INRAE, Ecole Nationale Vétérinaire d’Alfort, Laboratoire de Santé Animale, Maisons-Alfort, France
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, People’s Republic of China
- Correspondence: Xiaolei Liu; Mingyuan Liu, Tel +86-15943092280; +86-13019125996, Email ;
| |
Collapse
|
15
|
Single-Cell RNA Sequencing Reveals the Heterogeneity of Infiltrating Immune Cell Profiles in the Hepatic Cystic Echinococcosis Microenvironment. Infect Immun 2021; 89:e0029721. [PMID: 34491790 DOI: 10.1128/iai.00297-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Human cystic echinococcosis, caused by the larval stage of Echinococcus granulosus sensu lato, has been reported a near-cosmopolitan zoonotic disease. Various infiltrating immune cells gather around the lesion and produce a lesion microenvironment; however, cellular composition and heterogeneity in hepatic cystic echinococcosis lesion microenvironments are incompletely understood. Here, 81,865 immune cells isolated from peripheral blood, perilesion liver tissue, and adjacent normal liver tissue from four cystic echinococcosis patients were profiled using single-cell RNA sequencing. We identified 23 discrete cell populations and found distinct differences in infiltrating immune cells between tissue environments. Despite the significant similarity between perilesion and adjacent normal liver tissue-resident immune cells, the cellular proportions of type 2 innate lymphoid cells (ILC2s) and plasmacytoid dendritic cells (pDCs) were higher in perilesion liver tissue. Interestingly, the immunosuppressive gene NFKBIA was upregulated in these cells. Seven subsets of CD4+ T cell populations were found, and there were more regulatory-CD4+ T cells (Treg-CD4+) and Th2-CD4+ T cells in perilesion tissue than in adjacent normal tissue. There was close contact between CD4+ T cells and ILC2s and pDCs, which caused upregulation of genes related to positive immune activity in adjacent normal liver tissue. However, expression of genes related to immunosuppression, especially the immune inhibitory checkpoint gene NKG2A/HLA-E, was obviously higher in perilesion tissue, suggesting that cellular interaction resulted in an inhibitory microenvironment in the cystic echinococcosis (CE) lesion. This work offers new insights into the transcriptional heterogeneity of infiltrating immune cells in hepatic cystic echinococcosis lesion microenvironments at a single-cell level and provides potential target signatures for diagnosis and immunotherapies.
Collapse
|
16
|
Ademe M, Girma F. The Influence of Helminth Immune Regulation on COVID-19 Clinical Outcomes: Is it Beneficial or Detrimental? Infect Drug Resist 2021; 14:4421-4426. [PMID: 34737582 PMCID: PMC8558425 DOI: 10.2147/idr.s335447] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/19/2021] [Indexed: 12/28/2022] Open
Abstract
Immunologically, chronic worm infections prevent themselves from strong immune responses by skewing the host response towards a T helper 2 (Th2) type. The regulatory response initiated by helminth infections is supposed to temper responses to non-helminth antigens including viral infections which will, in turn, alter the clinical outcomes of infections. In view of this, recent reports highlighted the possible negative associations of severe COVID-19 and helminth co-infections in helminth-endemic regions. As the pathology of COVID-19 is primarily mediated by an excessive immune response and subsequent cytokine storm, which contributes to the poor prognosis of COVID-19, helminth-driven immune modulation will hypothetically contribute to the less severe outcomes of COVID-19. Nevertheless, emerging reports also stated that COVID-19 and helminth co-infections may have more hidden outcomes than predictable ones. Herein, the current knowledge on the interaction of COVID-19 and helminth co-infections will be discussed.
Collapse
Affiliation(s)
- Muluneh Ademe
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Friehiwot Girma
- Department of Pediatrics and Child Health Nursing, School of Health Sciences, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| |
Collapse
|
17
|
Soleymani N, Taran F, Nazemshirazi M, Naghibi A, Torabi M, Borji H, Haghparast A. Dysregulation of Ovine Toll-Like Receptors 2 and 4 Expression by Hydatid Cyst-Derived Antigens. IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:219-228. [PMID: 34557236 PMCID: PMC8418664 DOI: 10.18502/ijpa.v16i2.6271] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/12/2020] [Indexed: 11/24/2022]
Abstract
Background Cystic echinococcosis (CE) is a zoonotic disease caused by infection with Echinococcus granulosus. Toll-like receptors (TLRs) as the first line of defense against various parasites play a critical role in sensing and triggering anti-parasite responses. Methods The study was conducted at the Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Iran in 2019. Ovine peripheral blood mononuclear cells (PBMCs) were stimulated with hydatid cyst-derived antigens including hydatid cyst fluid (HCF), germinal layer antigens (GL), somatic and excretory/secretory (ES) products of protoscoleces (PSC). To investigate whether the expression of TLR2 and TLR4 was altered during exposure to these antigens, PBMCs were stimulated with two different concentrations at different time points. Results After exposure of PBMCs to ES and somatic antigens of protoscoleces (PSC) the expression of TLR2 and TLR4 was down-regulated in comparison with control group. Similarly, HCF markedly down-regulated TLR2 and TLR4 transcripts independent of dose and time. GL antigens significantly down-regulated TLR2, while TLR4 expression was up-regulated as compared with control group. Conclusion Hydatid cyst-derived antigens could dysregulate the expression of TLR2 and TLR4 in ovine PBMCs, suggesting a possible mechanism to suppress host immunity to establish chronic infection.
Collapse
Affiliation(s)
- Nooshinmehr Soleymani
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fateme Taran
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | | | - Abolghasem Naghibi
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Maryam Torabi
- Central Laboratories of Khorasan Razavi Veterinary Organization, Mashhad, Iran
| | - Hassan Borji
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Alireza Haghparast
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
18
|
Chulanetra M, Chaicumpa W. Revisiting the Mechanisms of Immune Evasion Employed by Human Parasites. Front Cell Infect Microbiol 2021; 11:702125. [PMID: 34395313 PMCID: PMC8358743 DOI: 10.3389/fcimb.2021.702125] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 06/25/2021] [Indexed: 12/14/2022] Open
Abstract
For the establishment of a successful infection, i.e., long-term parasitism and a complete life cycle, parasites use various diverse mechanisms and factors, which they may be inherently bestowed with, or may acquire from the natural vector biting the host at the infection prelude, or may take over from the infecting host, to outmaneuver, evade, overcome, and/or suppress the host immunity, both innately and adaptively. This narrative review summarizes the up-to-date strategies exploited by a number of representative human parasites (protozoa and helminths) to counteract the target host immune defense. The revisited information should be useful for designing diagnostics and therapeutics as well as vaccines against the respective parasitic infections.
Collapse
Affiliation(s)
- Monrat Chulanetra
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Wanpen Chaicumpa
- Center of Research Excellence on Therapeutic Proteins and Antibody Engineering, Department of Parasitology, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| |
Collapse
|
19
|
Miles S, Magnone J, García-Luna J, Ancarola ME, Cucher M, Dematteis S, Frischknecht F, Cyrklaff M, Mourglia-Ettlin G. Ultrastructural characterization of the tegument in protoscoleces of Echinococcus ortleppi. Int J Parasitol 2021; 51:989-997. [PMID: 34216624 DOI: 10.1016/j.ijpara.2021.05.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 05/13/2021] [Accepted: 05/17/2021] [Indexed: 12/27/2022]
Abstract
Cystic echinococcosis is a globally distributed zoonosis caused by cestodes of the Echinococcus granulosus sensu lato (s.l.) complex, with Echinococcus ortleppi mainly involved in cattle infection. Protoscoleces show high developmental plasticity, being able to differentiate into either adult worms or metacestodes within definitive or intermediate hosts, respectively. Their outermost cellular layer is called the tegument, which is important in determining the infection outcome through its immunomodulating activities. Herein, we report an in-depth characterization of the tegument of E. ortleppi protoscoleces performed through a combination of scanning and transmission electron microscopy techniques. Using electron tomography, a three-dimensional reconstruction of the tegumental cellular territories was obtained, revealing a novel structure termed the 'tegumental vesicular body' (TVB). Vesicle-like structures, possibly involved in endocytic/exocytic routes, were found within the TVB as well as in the parasite glycocalyx, distal cytoplasm and close inner structures. Furthermore, parasite antigens (GST-1 and AgB) were unevenly localised within tegumental structures, with both being detected in vesicles found within the TBV. Finally, the presence of host (bovine) IgG was also assessed, suggesting a possible endocytic route in protoscoleces. Our data forms the basis for a better understanding of E. ortleppi and E. granulosus s.l. structural biology.
Collapse
Affiliation(s)
- Sebastián Miles
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay; Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany
| | - Javier Magnone
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Joaquín García-Luna
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - María Eugenia Ancarola
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Marcela Cucher
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM, UBA-CONICET), Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina; Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Sylvia Dematteis
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Friedrich Frischknecht
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany; German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Marek Cyrklaff
- Integrative Parasitology, Center for Infectious Diseases, Heidelberg University, Heidelberg, Germany.
| | - Gustavo Mourglia-Ettlin
- Área Inmunología, DEPBIO/IQB, Facultad de Química/Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay.
| |
Collapse
|
20
|
Collado-Aliaga J, Romero-Alegría Á, Alonso-Sardón M, López-Bernus A, Galindo-Pérez I, Muro A, Velasco-Tirado V, Muñoz Bellido JL, Belhassen-García M, Pardo-Lledias J. Eosinophilia and cystic echinococcosis: what is the relationship? Trans R Soc Trop Med Hyg 2021; 114:16-22. [PMID: 31728535 DOI: 10.1093/trstmh/trz105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/27/2019] [Accepted: 09/05/2019] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Cystic echinococcosis (CE) is a chronic, complex and neglected zoonotic disease caused by Echinococcus granulosus. Eosinophilia in CE is a classic analytic alteration, although its presentation and importance is very variable and not well established. METHODS We performed a retrospective observational study of inpatients diagnosed with CE and eosinophilia from January 1998 to December 2017 in the Complejo Asistencial Universitario de Salamanca in western Spain. RESULTS During the study period, 475 patients with a CE diagnosis underwent a haemogram and 118 (24.8%) patients had eosinophilia. Eighty-two (69.5%) were male and the mean age was 52.1±20.8 y, which was younger in the group with eosinophilia (p<0.001). The patients with eosinophilia had less comorbidity (33.1% vs 52.9%; p<0.001) and they were diagnosed with more complications (60.2% vs 39.8% asymptomatic; p<0.001). Clinical manifestations appeared in 71 cases (60.2%). The eosinophilia was related to the presence of pre-surgical fistulas (p=0.005). We observed significant differences when considering whether eosinophilia is a marker of the type of treatment (p<0.001). CONCLUSIONS Eosinophilia can be an indicator for an active search in CE because as much as 40% of cases are asymptomatic at diagnosis. In patients with eosinophilia, management is usually more aggressive and is usually a combined treatment. Our work shows the importance of eosinophilia in our patients with CE and raises unresolved questions.
Collapse
Affiliation(s)
- Javier Collado-Aliaga
- Servicio de Medicina Interna, Complejo Asistencial Universitario de Salamanca, Salamanca, Spain
| | - Ángela Romero-Alegría
- Servicio de Medicina Interna, Complejo Asistencial Universitario de Salamanca, Instituto de investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Montserrat Alonso-Sardón
- Área de Medicina Preventiva y Salud Pública, Instituto de investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Amparo López-Bernus
- Servicio de Medicina Interna, Sección de Enfermedades Infecciosas, Complejo Asistencial Universitario de Salamanca, Instituto de investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | | | - Antonio Muro
- Laboratorio de Inmunología Parasitaria y Molecular, Instituto de investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca, Facultad de Farmacia, Universidad de Salamanca, Salamanca, Spain
| | - Virginia Velasco-Tirado
- Servicio de Dermatología, Complejo Asistencial Universitario de Salamanca, Instituto de investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Juan Luis Muñoz Bellido
- Servicio de Microbiologia, Complejo Asistencial Universitario de Salamanca, Instituto de investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca, Universidad de Salamanca, Salamanca, Spain
| | - Moncef Belhassen-García
- Servicio de Medicina Interna, Sección de Enfermedades Infecciosas, Complejo Asistencial Universitario de Salamanca, Instituto de investigación Biomédica de Salamanca, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca, Universidad de Salamanca, Paseo San Vicente 58-182, 37007, Salamanca, Spain
| | - Javier Pardo-Lledias
- Servicio de Medicina Interna, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca, IDIVAL, Instituto de Investigación Marqués de Valdecilla, Hospital Marques de Valdecilla, Avenida Valdecilla S/N, Santander, Spain
| |
Collapse
|
21
|
Vanhamme L, Souopgui J, Ghogomu S, Ngale Njume F. The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products. Pathogens 2020; 9:pathogens9110975. [PMID: 33238479 PMCID: PMC7709020 DOI: 10.3390/pathogens9110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). We will mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). We first present Onchocerca volvulus, mainly focusing on the aspects of this organism that seem relevant when it comes to ESPs: life cycle, manifestations of the sickness, immunosuppression, diagnosis and treatment. We then elaborate on the function and use of ESPs in these aspects.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Correspondence:
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
| | - Stephen Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| |
Collapse
|
22
|
Corrêa F, Hidalgo C, Stoore C, Jiménez M, Hernández M, Paredes R. Cattle co-infection of Echinococcus granulosus and Fasciola hepatica results in a different systemic cytokine profile than single parasite infection. PLoS One 2020; 15:e0238909. [PMID: 32915902 PMCID: PMC7485845 DOI: 10.1371/journal.pone.0238909] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/26/2020] [Indexed: 12/11/2022] Open
Abstract
E. granulosus is a cestode that causes Cystic Echinococcosis (CE), a zoonotic disease with worldwide presence. The immune response generated by the host against the metacestode induces a permissive Th2 response, as opposed to pro-inflammatory Th1 response. In this view, mixed Th2 and regulatory responses allow parasite survival. Overall, larval Echinococcus infections induce strong regulatory responses. Fasciola hepatica, another common helminth parasite, represents a major infection in cattle. Co-infection with different parasite species in the same host, polyparasitism, is a common occurrence involving E. granulosus and F. hepatica in cattle. ‘While it is known that infection with F. hepatica also triggers a polarized Th2/Treg immune response, little is reported regarding effects on the systemic immune response of this example of polyparasitism. F. hepatica also triggers immune responses polarized to the Th2/ Treg spectrum. Serum samples from 107 animals were analyzed, and were divided according to their infection status and Echinococcal cysts fertility. Cytokines were measured utilizing a Milliplex Magnetic Bead Panel to detect IFN-γ, IL-1, IL-2, IL-4, IL-6, IL-10, IL-12 and IL-18. Cattle infected only with F. hepatica had the highest concentration of every cytokine analyzed, with both 4.24 and 3.34-fold increases in IL-10 and IL-4, respectively, compared to control animals, followed by E. granulosus and F. hepatica co-infected animals with two-fold increase in IL-10 and IL-4, compared to control animals, suggesting that E. granulosus co-infection dampens the cattle Th2/Treg immune response against F. hepatica. When considering Echinococcal cyst fertility and systemic cytokine concentrations, fertile cysts had higher IFN-γ, IL-6 and IL-18 concentrations, while infertile cysts had higher IL-10 concentrations. These results show that E. granulosus co-infection lowers Th1 and Th2 cytokine serological concentration when compared to F. hepatica infection alone. E. granulosus infections show no difference in IFN-γ, IL-1, IL-2, IL-6 and IL-18 levels compared with control animals, highlighting the immune evasion mechanisms of this cestode.
Collapse
Affiliation(s)
- Felipe Corrêa
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Christian Hidalgo
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O’Higgins, San Fernando, Chile
| | - Caroll Stoore
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Mauricio Jiménez
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcela Hernández
- Laboratorio de Biología Periodontal y Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
- * E-mail:
| |
Collapse
|
23
|
Outcomes of Radiotherapy for Osseous Echinococcosis of Meriones meridianus. BIOMED RESEARCH INTERNATIONAL 2020; 2020:6457419. [PMID: 32879885 PMCID: PMC7448241 DOI: 10.1155/2020/6457419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/25/2020] [Accepted: 06/26/2020] [Indexed: 12/28/2022]
Abstract
Background Osseous cyst echinococcosis (CE) is an infectious disease that causes disability and deformity in patients, yet there is still no satisfactory treatment. Focusing on the feasibility and prognosis of radiotherapy as an adjuvant or palliative treatment for osseous CE, this study investigated the outcome of Meriones meridianus with osseous CE after radiotherapy. Methods The study utilized a comparison control group design with three groups of gerbils, and 240 osseous CE gerbils were randomly divided into control, 40Gy/5times, and 50Gy/5times groups. Different doses of radiotherapy were given to the gerbils, and then, the effects of radiotherapy on gerbils and lesions were observed at 3 and 6 months after radiotherapy. Statistical analysis was done using χ2 test, unpaired t-test, and one-way ANOVA. Results Significant changes (P < 0.05) were achieved between the three groups in terms of seven parameters at 3 and 6 months, including the number of dead gerbils and lesion sites with ulceration and infection, number of dead scolices, protein content, Ca2+ concentration, the maximum diameter of lesion site, and wet weight of cysts. Except for the number of dead gerbils and lesion sites with ulceration and infection, all other parameters were observed a big difference between 3 months and 6 months in the 50Gy/5times group. Conclusion Radiotherapy at a dose of 50 Gy has inhibitory and therapeutic effects on osseous CE in gerbils, and radiotherapy could probably be a treatment option for persistent or recurrent osseous CE.
Collapse
|
24
|
Hidalgo C, Stoore C, Hernández M, Paredes R. Fasciola hepatica coinfection modifies the morphological and immunological features of Echinococcus granulosus cysts in cattle. Vet Res 2020; 51:76. [PMID: 32503674 PMCID: PMC7275569 DOI: 10.1186/s13567-020-00799-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/11/2020] [Indexed: 12/17/2022] Open
Abstract
Polyparasitism occurs when animals harbour multiple parasites concomitantly. It is a common occurrence but is generally understudied in wild and domestic animals. Fasciola hepatica and Echinococcus granulosus, which are helminths of ungulates, frequently coinfect cattle. The effects of this particular type of polyparasitism are not well documented. The metacestode of Echinococcus granulosus is surrounded by the adventitial layer, which constitutes the host immune response to the parasite. This layer in cattle is produced by a granulomatous reaction and is involved in echinococcal cyst (EC) fertility. Due to the systemic immune-modulating abilities of Fasciola hepatica, coinfection possibly generates a favourable environment for EC growth. A total of 203 Echinococcus granulosus sensu stricto cysts were found in 82 cattle, of which 42 ECs were found in 31 animals coinfected with Fasciola hepatica. The overall infection intensity was 3 cysts per animal. Coinfection with Fasciola hepatica decreased the mean infection intensity to 1.4 cysts per animal. Regarding EC size, coinfection resulted in smaller ECs (15.91 vs 22.09 mm), especially for infertile lung cysts. The adventitial layer of ECs in coinfected animals lacked lymphoid follicles and palisading macrophages, which are generally hallmarks of the granulomatous immune response. The ECs in coinfected animals had organized laminated layers, whereas those in animals without coinfection did not. Although coinfection was not statistically associated with EC fertility, we did not find fertile cysts in the livers of coinfected animals. We concluded that coinfection with Fasciola hepatica and Echinococcus granulosus has a detrimental effect on ECs, particularly infertile cysts.
Collapse
Affiliation(s)
- Christian Hidalgo
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O'Higgins, San Fernando, Chile
| | - Caroll Stoore
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Marcela Hernández
- Laboratorio de Biología Periodontal y Departamento de Patología y Medicina Oral, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.
| |
Collapse
|
25
|
Bakhtiar NM, Spotin A, Mahami-Oskouei M, Ahmadpour E, Rostami A. Recent advances on innate immune pathways related to host-parasite cross-talk in cystic and alveolar echinococcosis. Parasit Vectors 2020; 13:232. [PMID: 32375891 PMCID: PMC7204293 DOI: 10.1186/s13071-020-04103-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 04/27/2020] [Indexed: 12/13/2022] Open
Abstract
Cystic echinococcosis (CE) and alveolar echinococcosis (AE) are life-threatening parasitic infections worldwide caused by Echinococcus granulosus (sensu lato) and E. multilocularis, respectively. Very little is known about the factors affecting innate susceptibility and resistance to infection with Echinococcus spp. Although benzimidazolic drugs against CE and AE have definitively improved the treatment of these cestodes; however, the lack of successful control campaigns, including the EG95 vaccine, at a continental level indicates the importance of generating novel therapies. This review represents an update on the latest developments in the regulatory functions of innate immune pathways such as apoptosis, toll-like receptors (TLRs), and inflammasomes against CE and AE. We suggest that apoptosis can reciprocally play a bi-functional role among the host-Echinococcus metabolite relationships in suppressive and survival mechanisms of CE. Based on the available information, further studies are needed to determine whether the orchestrated in silico strategy for designing inhibitors and interfering RNA against anti-apoptotic proteins and TLRs would be effective to improve new treatments as well as therapeutic vaccines against the E. granulosus and E. multilocularis.![]()
Collapse
Affiliation(s)
- Nayer Mehdizad Bakhtiar
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Adel Spotin
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. .,Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mahmoud Mahami-Oskouei
- Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsan Ahmadpour
- Infectious and Tropical Disease Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Rostami
- Infectious Diseases and Tropical Medicine Research Center, Health Research Institute, Babol University of Medical Sciences, Babol, Iran
| |
Collapse
|
26
|
Li Z, Zhang C, Li L, Bi X, Li L, Yang S, Zhang N, Wang H, Yang N, Abulizi A, Aini A, Lin R, Vuitton DA, Wen H. The local immune response during Echinococcus granulosus growth in a quantitative hepatic experimental model. Sci Rep 2019; 9:19612. [PMID: 31873157 PMCID: PMC6928226 DOI: 10.1038/s41598-019-56098-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/05/2019] [Indexed: 12/14/2022] Open
Abstract
The local immune mechanisms responsible for the establishment and development of Echinococcus granulosus sensu stricto infection in the liver, have been little explored. We developed a suitable experimental model that mimics naturally infected livers using portal injection of protoscoleces. Opposite to Echinococcus multilocularis infection which is dose-dependent, fully mature hydatid cysts can be established in the liver whatever the injection dose; although most of the infection sites were seen at the establishment phase as inflammatory granulomas associated with fibrosis, they never matured into cysts. At the establishment phase, a strong immune response was composed of T and B cells, with T1-type, T2-type cells and cytokines and IL-10-secreting CD8+ T cells in the liver. At the established phase, results suggested a local production of antibodies by B cells, and an involvement of NK and NKT cells. Infection outcome and local immune response in the liver, were different in the mouse models of Echinococcus granulosus sensu stricto and Echinococcus multilocularis respectively; however, only early specificities at the microenvironment level might explain the major differences found between the lesions induced by the two species. Our quantitative experimental model appears fully appropriate to further study this microenvironment and its relationship with each cestode species.
Collapse
Affiliation(s)
- Zhide Li
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Chuanshan Zhang
- Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Basic Medical College, Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Liang Li
- Chronic Disease Laboratory, Institutes for Life Sciences and School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiaojuan Bi
- Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Liang Li
- Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Shuting Yang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ning Zhang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Hui Wang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Ning Yang
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Abuduaini Abulizi
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Abudusalamu Aini
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.,Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Renyong Lin
- Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China
| | - Dominique A Vuitton
- French National Reference Center for Echinococcosis, Department of Parasitology, University Hospital, Besançon, France.,University Bourgogne Franche-Comté (EA 3181), Besançon, France
| | - Hao Wen
- State Key Laboratory of Pathogenesis, Prevention, Treatment of High Incidence Diseases in Central Asia, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China. .,Department of Hepatic Hydatid and Hepatobiliary Surgery, Digestive and Vascular Surgery Centre, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China. .,Xinjiang Key Laboratory of Echinococcosis, and WHO-Collaborating Center on Prevention and Care Management of Echinococcosis, Clinical Research Institute, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, Xinjiang, China.
| |
Collapse
|
27
|
Hou J, Li L, Dong D, Wang L, Wang X, Yang K, Xu X, Chen C, Wu X, Chen X. Glycomolecules in Echinococcus granulosus cyst fluid inhibit TLR4-mediated inflammatory responses via c-Raf. Cell Mol Immunol 2019; 17:423-425. [PMID: 31664222 DOI: 10.1038/s41423-019-0314-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023] Open
Affiliation(s)
- Jun Hou
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Linlin Li
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Dan Dong
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Lianghai Wang
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xian Wang
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Kun Yang
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiaodan Xu
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Congzhe Chen
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China
| | - Xiangwei Wu
- Department of General Surgery, the First Affiliated Hospital, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| | - Xueling Chen
- Department of Immunology, Shihezi University School of Medicine, Shihezi, Xinjiang, China.
| |
Collapse
|
28
|
Jiménez M, Stoore C, Hidalgo C, Corrêa F, Hernández M, Benavides J, Ferreras MC, Sáenz L, Paredes R. Lymphocyte Populations in the Adventitial Layer of Hydatid Cysts in Cattle: Relationship With Cyst Fertility Status and Fasciola Hepatica Co-Infection. Vet Pathol 2019; 57:108-114. [PMID: 31526120 DOI: 10.1177/0300985819875721] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Cystic echinococcosis is a worldwide zoonosis caused by the cestode Echinococcus granulosus. Two types of hydatid cysts occur in intermediate hosts: fertile cysts that generate protoscoleces from the germinal layer of the cyst, and infertile cysts that do not produce protoscoleces and are unable to continue the life cycle of the parasite. The adventitial layer, a host-derived fibrous capsule surrounding the hydatid cyst, is suggested to play an important role in local immune regulation during infection and in fertility of the cysts. Fasciola hepatica, another important parasite of cattle, induces a characteristic Th2-like immune response that could modulate the immune response against E. granulosus. Natural co-infection of both parasites is common in cattle, but no reports describe the local immune response against E. granulosus with F. hepatica infection in the same host. This study analyzed the number and distribution of T and B cells in the adventitial layer of liver and lung cysts and the relationship with cyst fertility and F. hepatica co-infection. T lymphocytes were the predominant cell type in the adventitial layer of infertile hydatid cysts and were more numerous in infertile hydatid cysts. B lymphocyte numbers were not associated with hydatid cyst fertility. Mast cells were infrequent in the adventitial layer. The number of T and B cells was not associated with F. hepatica co-infection. The present study contributes to the understanding of local immune responses in bovine cystic echinococcosis.
Collapse
Affiliation(s)
- Mauricio Jiménez
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Caroll Stoore
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| | - Christian Hidalgo
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Instituto de Ciencias Agronómicas y Veterinarias, Universidad de O'Higgins, Rancagua, Chile
| | - Felipe Corrêa
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile.,Department of Companion Animal Clinical Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Marcela Hernández
- Laboratorio de Biología Periodontal, Facultad de Odontología, Universidad de Chile
| | - J Benavides
- Dpto de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Facultad de Veterinaria, Campus de Vegazana s/n, León, Spain
| | - M C Ferreras
- Dpto de Sanidad Animal, Instituto de Ganadería de Montaña (CSIC-Universidad de León), Facultad de Veterinaria, Campus de Vegazana s/n, León, Spain
| | - Leonardo Sáenz
- Laboratory of Veterinary Vaccines, Department of Animal Biology, Faculty of Veterinary and Animal Science, Universidad de Chile, Santiago, Chile
| | - Rodolfo Paredes
- Laboratorio de Medicina Veterinaria, Escuela de Medicina Veterinaria, Facultad de Ciencias de la Vida, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
29
|
Abstract
The investigation of the glycan repertoire of several organisms has revealed a wide variation in terms of structures and abundance of glycan moieties. Among the parasites, it is possible to observe different sets of glycoconjugates across taxa and developmental stages within a species. The presence of distinct glycoconjugates throughout the life cycle of a parasite could relate to the ability of that organism to adapt and survive in different hosts and environments. Carbohydrates on the surface, and in excretory-secretory products of parasites, play essential roles in host-parasite interactions. Carbohydrate portions of complex molecules of parasites stimulate and modulate host immune responses, mainly through interactions with specific receptors on the surface of dendritic cells, leading to the generation of a pattern of response that may benefit parasite survival. Available data reviewed here also show the frequent aspect of parasite immunomodulation of mammalian responses through specific glycan interactions, which ultimately makes these molecules promising in the fields of diagnostics and vaccinology.
Collapse
|
30
|
Therapeutic effects of Echinococcus granulosus cystic fluid on allergic airway inflammation. Exp Parasitol 2019; 198:63-70. [DOI: 10.1016/j.exppara.2019.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/04/2019] [Accepted: 02/10/2019] [Indexed: 12/21/2022]
|
31
|
Lopes DM, Oliveira SC, Page B, Carvalho LP, Carvalho EM, Cardoso LS. Schistosoma mansoni rSm29 Antigen Induces a Regulatory Phenotype on Dendritic Cells and Lymphocytes From Patients With Cutaneous Leishmaniasis. Front Immunol 2019; 9:3122. [PMID: 30687325 PMCID: PMC6333737 DOI: 10.3389/fimmu.2018.03122] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/18/2018] [Indexed: 12/24/2022] Open
Abstract
The immune response induced by Schistosma mansoni antigens is able to prevent immune-mediated diseases. Conversely, the inflammatory response in cutaneous leishmaniasis (CL), although responsible for controlling the infection, is also associated with the pathogenesis of disease. The aim of this study was to evaluate the potential of the S. mansoni Sm29 antigen to change certain aspects of the profiles of monocyte derived dendritic cells (MoDCs) and lymphocytes from subjects with CL in vitro. Expression of surface molecules and intracellular cytokines in the MoDCs and lymphocytes as well as the proliferation of Leishmania braziliensis were evaluated by flow cytometry. Levels of cytokines were evaluated in culture supernatants by ELISA. It was observed that stimulation by rSm29 increased the frequency of expression of CD83, CD80, CD86, and IL-10R in MoDCs compared to non-stimulated cultures. Additionally rSm29 decreased the frequency CD4+ and CD8+ T cells expressing CD28 and increased the frequency of CD4+CD25hi and CD4+CTLA-4+ T lymphocytes. Addition of rSm29 to cultures increased IL-10 levels and decreased levels of IL-12p40 and IFN-γ, while not altering TNF levels compared to non-stimulated cultures. This study showed that rSm29 induced a regulatory profile in MoDCs and lymphocytes and thereby regulated the exaggerated inflammation observed in CL. Considering that there are few therapeutic options for leishmaniasis, the use of rSm29 may be an alternative to current treatment and may be an important strategy to reduce the healing time of lesions in patients with CL.
Collapse
Affiliation(s)
- Diego Mota Lopes
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil
| | - Sérgio Costa Oliveira
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil.,Departamento de Bioquímica e Imunologia, Instituto de ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Brady Page
- Massachusetts General Hospital, Boston, MA, United States
| | - Lucas P Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Edgar M Carvalho
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil.,Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Luciana Santos Cardoso
- Serviço de Imunologia, Hospital Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (DT/CNPq), Brasilia, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, UFBA, Salvador, Brazil
| |
Collapse
|
32
|
Nicolao MC, Rodriguez Rodrigues C, Cumino AC. Extracellular vesicles from Echinococcus granulosus larval stage: Isolation, characterization and uptake by dendritic cells. PLoS Negl Trop Dis 2019; 13:e0007032. [PMID: 30615613 PMCID: PMC6344059 DOI: 10.1371/journal.pntd.0007032] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 01/23/2019] [Accepted: 11/28/2018] [Indexed: 12/20/2022] Open
Abstract
The secretion of extracellular vesicles (EVs) in helminth parasites is a constitutive mechanism that promotes survival by improving their colonization and adaptation in the host tissue. In the present study, we analyzed the production of EVs from supernatants of cultures of Echinococcus granulosus protoscoleces and metacestodes and their interaction with dendritic cells, which have the ability to efficiently uptake and process microbial antigens, activating T lymphocytes. To experimentally increase the release of EVs, we used loperamide, a calcium channel blocker that increases the cytosolic calcium level in protoscoleces and EV secretion. An exosome-like enriched EV fraction isolated from the parasite culture medium was characterized by dynamic light scattering, transmission electron microscopy, proteomic analysis and immunoblot. This allowed identifying many proteins including: small EV markers such as TSG101, SDCBP, ALIX, tetraspanins and 14-3-3 proteins; proteins involved in vesicle-related transport; orthologs of mammalian proteins involved in the immune response, such as basigin, Bp29 and maspardin; and parasite antigens such as antigen 5, P29 and endophilin-1, which are of special interest due to their role in the parasite-host relationship. Finally, studies on the EVs-host cell interaction demonstrated that E. granulosus exosome-like vesicles were internalized by murine dendritic cells, inducing their maturation with increase of CD86 and with a slight down-regulation in the expression of MHCII molecules. These data suggest that E. granulosus EVs could interfere with the antigen presentation pathway of murine dendritic cells inducing immunoregulation in the host. Further studies are needed to better understand the role of these vesicles in parasite survival and as diagnostic markers and new vaccines. Human cystic echinococcosis, caused by chronic infection with the larval stage of Echinococcus granulosus, affects over 1 million people worldwide. This helminth parasite secretes numerous excretory/secretory products that are in contact with host tissues where it establishes hydatid cysts. In this study, we comprehensively characterized extracellular vesicles (EVs) from E. granulosus protoscoleces and metacestodes, and demonstrated for the first time that the exosome-like vesicles from helminths can interact with host dendritic cells and carry several immunoregulatory proteins. This study provides valuable data on cestode-host immune communication. Nevertheless, further research on EVs is needed to fully understand their role in the parasite-host interface and obtain new data concerning their function as therapeutic markers and diagnostic tools.
Collapse
Affiliation(s)
- María Celeste Nicolao
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Christian Rodriguez Rodrigues
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel 2, Mar del Plata, Argentina
| | - Andrea C. Cumino
- Laboratorio de Zoonosis Parasitarias, Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel Cero, Mar del Plata, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata (UNMdP), Funes, Nivel 2, Mar del Plata, Argentina
- * E-mail:
| |
Collapse
|
33
|
Zakeri A, Hansen EP, Andersen SD, Williams AR, Nejsum P. Immunomodulation by Helminths: Intracellular Pathways and Extracellular Vesicles. Front Immunol 2018; 9:2349. [PMID: 30369927 PMCID: PMC6194161 DOI: 10.3389/fimmu.2018.02349] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 09/21/2018] [Indexed: 12/13/2022] Open
Abstract
Helminth parasites are masters at manipulating host immune responses, using an array of sophisticated mechanisms. One of the major mechanisms enabling helminths to establish chronic infections is the targeting of pattern recognition receptors (PRRs) including toll-like receptors, C-type lectin receptors, and the inflammasome. Given the critical role of these receptors and their intracellular pathways in regulating innate inflammatory responses, and also directing adaptive immunity toward Th1 and Th2 responses, recognition of the pathways triggered and/or modulated by helminths and their products will provide detailed insights about how helminths are able to establish an immunoregulatory environment. However, helminths also target PRRs-independent mechanisms (and most likely other yet unknown mechanisms and pathways) underpinning the battery of different molecules helminths produce. Herein, the current knowledge on intracellular pathways in antigen presenting cells activated by helminth-derived biomolecules is reviewed. Furthermore, we discuss the importance of helminth-derived vesicles as a less-appreciated components released during infection, their role in activating these host intracellular pathways, and their implication in the development of new therapeutic approaches for inflammatory diseases and the possibility of designing a new generation of vaccines.
Collapse
Affiliation(s)
- Amin Zakeri
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Eline P. Hansen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Sidsel D. Andersen
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| | - Andrew R. Williams
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | - Peter Nejsum
- Department of Clinical Medicine, Faculty of Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Mechanisms underlying immune tolerance caused by recombinant Echinococcus granulosus antigens Eg mMDH and Eg10 in dendritic cells. PLoS One 2018; 13:e0204868. [PMID: 30261049 PMCID: PMC6160197 DOI: 10.1371/journal.pone.0204868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 09/14/2018] [Indexed: 11/19/2022] Open
Abstract
Mice immunized with recombinant Echinococcus granulosus antigens Eg10 and Eg mMDH do not show elevated resistance to E. granulosus infection but show aggravated infection instead. To gain a deeper insight in the immune tolerance mechanisms in mice immunized with Eg10 and Eg mMDH, this study simulated the immune tolerance process in vitro by culturing bone marrow-derived dendritic cells (BMDCs) in the presence of Eg10 or Eg mMDH. Scanning electron microscopy revealed that Eg10- and Eg mMDH-treated DCs exhibited immature cell morphology, while addition of LPS to the cells induced changes in cell morphology and an increase in the number of cell-surface protrusions. This observation was consistent with the increased expression of the cell-surface molecules MHCII and CD80 in Eg10- and Eg mMDH-treated DCs pretreated with LPS. DCs exposed to the two antigens had a very weak ability to induce T-cell proliferation, but could promote the formation of Treg cells. Introduction of the indoleamine 2,3-dioxygenase (IDO) inhibitor, 1-methyl tryptopha (1-MT) enhanced the ability of the antigens to induce T cells and inhibited the induction of Treg cells. Eg mMDH-treated DCs showed a strong response to 1-MT: the DCs had high mRNA levels of IDO, IL-6, and IL-10, while 1-MT decreased the expression. In contrast, DCs treated with Eg10 did not show significant changes after 1-MT treatment. Eg mMDH inhibited DC maturation and promoted IDO expression, which, on the one hand, decreased the ability of DCs to induce T-cell proliferation, resulting in T-cell anergy, and on the other hand, induced the formation of Tregs, resulting in an immunosuppressive effect. In contrast, the escape mechanisms induced by Eg10 did not primarily depend on the IDO pathway and might involve other mechanisms that need to be further explored.
Collapse
|
35
|
Vatankhah A, Ghaffari SMR, Vatankhah RG, Piurkó V, Tímár J, Avan A, Jazayeri MH. Characterization of cellular and humoral immune responses to alkaline phosphatase from fertile hydatid cysts in the human peripheral blood. J Cell Physiol 2018; 234:2765-2777. [DOI: 10.1002/jcp.27092] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Accepted: 06/28/2018] [Indexed: 01/22/2023]
Affiliation(s)
- Ali Vatankhah
- Department of PathologySemmelweis UniversityBudapest Hungary
| | | | | | - Violetta Piurkó
- Department of PathologySemmelweis UniversityBudapest Hungary
| | - József Tímár
- Department of PathologySemmelweis UniversityBudapest Hungary
| | - Amir Avan
- Metabolic Syndrome Research CenterMashhad University of Medical SciencesMashhad Iran
| | - Mir H. Jazayeri
- Immunology Research CenterIran University of Medical SciencesTehran Iran
- Department of Immunology, School of MedicineIran University of Medical SciencesTehran Iran
| |
Collapse
|
36
|
Silva-Álvarez V, Ramos AL, Folle AM, Lagos S, Dee VM, Ferreira AM. Antigen B from Echinococcus granulosus is a novel ligand for C-reactive protein. Parasite Immunol 2018; 40:e12575. [PMID: 30030926 DOI: 10.1111/pim.12575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 06/25/2018] [Accepted: 07/18/2018] [Indexed: 11/30/2022]
Abstract
Antigen B (EgAgB) is a phosphatidylcholine (PC)-rich lipoprotein of Echinococcus granulosus s.l. larva, potentially capable of modulating the activation of various myeloid cells, including macrophages. As C-reactive protein (CRP) can act as an innate receptor with ability to bind the phosphocholine moiety of PC in lipoproteins, we investigated whether EgAgB and CRP could interact during cystic echinococcosis infection (CE), and how CRP binding could affect the modulation activities exerted by EgAgB on macrophages. To that end, we firstly investigated the occurrence of CRP induction during human CE. We found that 61% of CE patients, but none of healthy donors, exhibited serum CRP levels higher than 10 mg/mL, suggesting that CRP can be induced during the chronic phase of CE. Furthermore, human CRP was capable of binding specifically to EgAgB with high affinity (0.6 ± 0.1 nM); this binding was Ca2+ -dependent and involved the phosphocholine moiety of PC, but not EgAgB8/1, EgAgB8/2 or EgAgB8/3 apolipoproteins. Finally, CRP presence altered the modulation exerted by EgAgB on the cytokine response of LPS-activated macrophages. Overall, our results suggest that CRP presence during CE may contribute to a complex scenario of interactions between EgAgB and myeloid cells, influencing the cytokine response induced during macrophage activation.
Collapse
Affiliation(s)
- Valeria Silva-Álvarez
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Ana Lía Ramos
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Ana Maite Folle
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Sofía Lagos
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Valerie M Dee
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Ana M Ferreira
- Cátedra de Inmunología, Facultad de Ciencias/Facultad de Química, Universidad de la República (UdelaR), Montevideo, Uruguay
| |
Collapse
|
37
|
Diagnostic Value of IL-4, IL-10 and IL-12 in Detection of Hepatic Hydatid Cyst Using Receiver Operating Characteristic Curve. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2018. [DOI: 10.22207/jpam.12.2.24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
38
|
da Silva ED, Cancela M, Monteiro KM, Ferreira HB, Zaha A. Antigen B from Echinococcus granulosus enters mammalian cells by endocytic pathways. PLoS Negl Trop Dis 2018; 12:e0006473. [PMID: 29727452 PMCID: PMC5955594 DOI: 10.1371/journal.pntd.0006473] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 05/16/2018] [Accepted: 04/23/2018] [Indexed: 01/18/2023] Open
Abstract
Background Cystic hydatid disease is a zoonosis caused by the larval stage (hydatid) of Echinococcus granulosus (Cestoda, Taeniidae). The hydatid develops in the viscera of intermediate host as a unilocular structure filled by the hydatid fluid, which contains parasitic excretory/secretory products. The lipoprotein Antigen B (AgB) is the major component of E. granulosus metacestode hydatid fluid. Functionally, AgB has been implicated in immunomodulation and lipid transport. However, the mechanisms underlying AgB functions are not completely known. Methodology/Principal findings In this study, we investigated AgB interactions with different mammalian cell types and the pathways involved in its internalization. AgB uptake was observed in four different cell lines, NIH-3T3, A549, J774 and RH. Inhibition of caveolae/raft-mediated endocytosis causes about 50 and 69% decrease in AgB internalization by RH and A549 cells, respectively. Interestingly, AgB colocalized with the raft endocytic marker, but also showed a partial colocalization with the clathrin endocytic marker. Finally, AgB colocalized with an endolysosomal tracker, providing evidence for a possible AgB destination after endocytosis. Conclusions/Significance The results indicate that caveolae/raft-mediated endocytosis is the main route to AgB internalization, and that a clathrin-mediated entry may also occur at a lower frequency. A possible fate for AgB after endocytosis seems to be the endolysosomal system. Cellular internalization and further access to subcellular compartments could be a requirement for AgB functions as a lipid carrier and/or immunomodulatory molecule, contributing to create a more permissive microenvironment to metacestode development and survival. Antigen B (AgB) is an oligomeric lipoprotein highly abundant in Echinococcus granulosus hydatid fluid. AgB has already been characterized as an immunomodulatory protein, capable of inducing a permissive immune response to parasite development. Also, an important role in lipid acquisition is attributed to AgB, because it has been found associated to different classes of host lipids. However, the mechanisms of interaction employed by AgB to perform its functions remain undetermined. In this study, we demonstrate that mammalian cells are able to internalize E. granulosus AgB in culture and found that specific mechanisms of endocytosis are involved. Our results extend the understanding of AgB biological role indicating cellular internalization as a mechanism of interaction, which in turn, may represent a target to intervention.
Collapse
Affiliation(s)
- Edileuza Danieli da Silva
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Martin Cancela
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Karina Mariante Monteiro
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Henrique Bunselmeyer Ferreira
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Genômica Estrutural e Funcional, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Arnaldo Zaha
- Programa de Pós-Graduação em Biologia Celular e Molecular, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Laboratório de Biologia Molecular de Cestódeos, Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- * E-mail:
| |
Collapse
|
39
|
Fatemi Esfedan A, Sarkari B, Mikaeili F. Genetic Variability of Antigen B8/1 among Echinococcus granulosus Isolates from Human, Cattle, and Sheep in Fars Province, Southern Iran. Rep Biochem Mol Biol 2018; 6:164-160. [PMID: 29765999 PMCID: PMC5941130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 08/03/2017] [Indexed: 06/08/2023]
Abstract
BACKGROUND Cystic echinococcosis (CE), known as hydatid cyst, is a zoonotic parasitic infection caused by the larval stage of Echinococcus granulosus (E. granulosus). Antigen B, the major component of hydatid cyst fluid, is encoded by members of a multigene family. The present study aimed to evaluate the genetic diversity of the gene encoding antigen B8/1 (EgAgB8/1) among the main intermediate hosts of E. granulosus. METHODS Twenty-eight hydatid cyst isolates (10 sheep, 9 human, and 9 cattle) were collected in Fars province, Iran. DNA was extracted from each cyst and PCR, followed by DNA sequencing was used to identify potential EgAgB8/1 sequence variation and polymorphism. A phylogenetic tree was constructed using MEGA 7.0 software and the maximum likelihood method. RESULTS Using EgAgB8/1 primers, an approximately 315 bp band was amplified from all the isolates. The PCR products were sequenced, and the sequences were deposited in GenBank (accession numbers, KY709266-KY709293). The polymorphism variation among the isolates was 0.0, while intra-species variation within the isolates and related sequences in GenBank was 0.5-1%. Analysis of the phylogenetic tree revealed that the isolates from humans, sheep, and cattle all cluster in one group and are homologous to the EgAgB8/1 M1 allele. CONCLUSION Findings of this study revealed close similarity between the EgAgB8/1 of human, sheep, and cattle E. granulosus isolates. However, differences were found between the EgAgB8/1 sequences in our study and those reported from other CE endemic areas. Whether such similarities and differences exist in other subunits AgB subunits require further study.
Collapse
Affiliation(s)
- Asieh Fatemi Esfedan
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Bahador Sarkari
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
- Basic Sciences in Infectious Diseases Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Fataneh Mikaeili
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
40
|
Increase of Vascular Endothelial Growth Factor and Decrease of MCP-1 and Some Updated Epidemiology Aspects of Cystic Echinococcosis Human Cases in Calabria Region. Mediators Inflamm 2018. [PMID: 29535593 PMCID: PMC5821955 DOI: 10.1155/2018/4283672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
We aim to investigate some of the pathogenetic mediators of the human echinococcosis and to obtain updated epidemiological findings on cases of echinococcosis in Calabria, Southern Italy. Echinococcosis diagnosis was based on imaging, serological investigations, and molecular assay. Indeed, real-time PCR indicated the presence of G2/G3 genotypes of Echinococcus granulosus complex. Regarding pathogenesis, a relevant novel tool of immune depression should be deemed the reduced level of serum MCP-1. Also, we found a previously unreported VEGF, possibly associated with neovascularization requested by the parasite cyst metabolism. Cytokine profiles suggest a bias of the immunity toward Th2 and Treg responses. Nitric oxide levels exhibited a significant decrease one week after therapy versus basal level measured before surgery and/or chemotherapy. An increase of serum total IgE class and IgG4 subclass was found in Echinococcus-positive patients versus controls. Our data demonstrated an endemic spreading, at least in the province of Catanzaro and neighboring Calabria territories, for such parasitosis with the novel issue of the number of female overcoming male cases. In conclusion, the novel findings of this study were the increased VEGF and the reduced serum MCP-1 in the studied cases, as well as the number of Echinococcus-infected females overcoming the infected males.
Collapse
|
41
|
Grubor NM, Jovanova-Nesic KD, Shoenfeld Y. Liver cystic echinococcosis and human host immune and autoimmune follow-up: A review. World J Hepatol 2017; 9:1176-1189. [PMID: 29109850 PMCID: PMC5666304 DOI: 10.4254/wjh.v9.i30.1176] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 08/28/2017] [Accepted: 09/14/2017] [Indexed: 02/06/2023] Open
Abstract
Cystic echinococcosis (CE) is an infectious disease caused by the larvae of parasite Echinococcus granulosus (E. granulosus). To successfully establish an infection, parasite release some substances and molecules that can modulate host immune functions, stimulating a strong anti-inflammatory reaction to carry favor to host and to reserve self-survival in the host. The literature was reviewed using MEDLINE, and an open access search for immunology of hydatidosis was performed. Accumulating data from animal experiments and human studies provided us with exciting insights into the mechanisms involved that affect all parts of immunity. In this review we used the existing scientific data and discuss how these findings assisted with a better understanding of the immunology of E. granulosus infection in man. The aim of this study is to point the several facts that challenge immune and autoimmune responses to protect E. granulosus from elimination and to minimize host severe pathology. Understanding the immune mechanisms of E. granulosus infection in an intermediate human host will provide, we believe, a more useful treatment with immunomodulating molecules and possibly better protection from parasitic infections. Besides that, the diagnosis of CE has improved due to the application of a new molecular tool for parasite identification by using of new recombinant antigens and immunogenic peptides. More studies for the better understanding of the mechanisms of parasite immune evasion is necessary. It will enable a novel approach in protection, detection and improving of the host inflammatory responses. In contrast, according to the "hygiene hypothesis", clinical applications that decrease the incidence of infection in developed countries and recently in developing countries are at the origin of the increasing incidence of both allergic and autoimmune diseases. Thus, an understanding of the immune mechanisms of E. granulosus infection is extremely important.
Collapse
Affiliation(s)
- Nikica M Grubor
- Department of Hepatobiliary and Pancreatic Surgery, First Surgical University Hospital, Clinical Center of Serbia, School of Medicine University of Belgrade, 11000 Belgrade, Serbia
| | - Katica D Jovanova-Nesic
- Immunology Research Center, Institute of Virology, Vaccine and Sera-Torlak, 11221 Belgrade, Serbia
- European Center for Peace and Development, University for Peace in the United Nation established in Belgrade, 11000 Belgrade, Serbia.
| | - Yehuda Shoenfeld
- Zabludowicz Center for Autoimmune Diseases, Sheba Medical Center, Tel Aviv University, 5265601 Tel-Hashomer, Tel Aviv, Israel
| |
Collapse
|
42
|
Ahn CS, Kim JG, Han X, Kang I, Kong Y. Comparison of Echinococcus multilocularis and Echinococcus granulosus hydatid fluid proteome provides molecular strategies for specialized host-parasite interactions. Oncotarget 2017; 8:97009-97024. [PMID: 29228589 PMCID: PMC5722541 DOI: 10.18632/oncotarget.20761] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 08/09/2017] [Indexed: 12/16/2022] Open
Abstract
Alveolar and cystic echinococcoses, caused by the metacestodes of Echinococcus multilocularis and E. granulosus, are prevalent in several regions and invoke deleterious zoonotic helminthiases. Hydatid fluid (HF), which contains proteinaceous and non-proteinaceous secretions of the parasite- and host-derived components, critically affects the host-parasite interplay and disease progression. We conducted HF proteome profiling of fully mature E. multilocularis vesicle (nine months postinfection) and E. granulosus cyst (stage 2). We identified 120 and 153 proteins, respectively, in each fluid. Fifty-six and 84 proteins represented distinct species; 44 and 66 were parasites, and 12 and 18 were host-derived proteins. The five major parasite protein populations, which included antigen B isoforms, metabolic enzymes, proteases and inhibitors, extracellular matrix molecules (ECMs), and developmental proteins, were abundantly distributed in both fluids and also exclusively in one sample or the other. Carbohydrate-metabolizing enzymes were enriched in E. granulosus HF. In the E. multilocularis HF, proteins that constitute ECMs, which might facilitate adhesion and cytogenesis, were highly expressed. Those molecules had physical and functional relationships along with their biochemical properties through protein-protein interaction networks. Twelve host-derived proteins were largely segregated to serum components. The major proteins commonly and uniquely detected in these HFs and their symbiotic interactome relationships might reflect their biological roles in similar but distinct modes of maturation, invasion, and the longevity of the parasites in the hosts.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Xiumin Han
- Qinghai Province Institute for Endemic Diseases Prevention and Control, Xining, China.,Clinical Research Institute for Hydatid Disease, Qinghai Provincial People's Hospital, Xining, China
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, Kyung Hee University School of Medicine, Seoul, Korea
| | - Yoon Kong
- Department of Molecular Parasitology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Suwon, Korea
| |
Collapse
|
43
|
Brehm K, Koziol U. Echinococcus-Host Interactions at Cellular and Molecular Levels. ADVANCES IN PARASITOLOGY 2017; 95:147-212. [PMID: 28131363 DOI: 10.1016/bs.apar.2016.09.001] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The potentially lethal zoonotic diseases alveolar and cystic echinococcosis are caused by the metacestode larval stages of the tapeworms Echinococcus multilocularis and Echinococcus granulosus, respectively. In both cases, metacestode growth and proliferation occurs within the inner organs of mammalian hosts, which is associated with complex molecular host-parasite interactions that regulate nutrient uptake by the parasite as well as metacestode persistence and development. Using in vitro cultivation systems for parasite larvae, and informed by recently released, comprehensive genome and transcriptome data for both parasites, these molecular host-parasite interactions have been subject to significant research during recent years. In this review, we discuss progress in this field, with emphasis on parasite development and proliferation. We review host-parasite interaction mechanisms that occur early during an infection, when the invading oncosphere stage undergoes a metamorphosis towards the metacestode, and outline the decisive role of parasite stem cells during this process. We also discuss special features of metacestode morphology, and how this parasite stage takes up nutrients from the host, utilizing newly evolved or expanded gene families. We comprehensively review mechanisms of host-parasite cross-communication via evolutionarily conserved signalling systems and how the parasite signalling systems might be exploited for the development of novel chemotherapeutics. Finally, we point to an urgent need for the development of functional genomic techniques in this parasite, which will be imperative for hypothesis-driven analyses into Echinococcus stem cell biology, developmental mechanisms and immunomodulatory activities, which are all highly relevant for the development of anti-infective measures.
Collapse
Affiliation(s)
- K Brehm
- University of Würzburg, Würzburg, Germany
| | - U Koziol
- University of Würzburg, Würzburg, Germany; Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
44
|
Ahn CS, Kim JG, Han X, Bae YA, Park WJ, Kang I, Wang H, Kong Y. Biochemical Characterization of Echinococcus multilocularis Antigen B3 Reveals Insight into Adaptation and Maintenance of Parasitic Homeostasis at the Host-Parasite Interface. J Proteome Res 2016; 16:806-823. [PMID: 27959569 DOI: 10.1021/acs.jproteome.6b00799] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alveolar echinococcosis (AE) caused by Echinococcus multilocularis metacestode is frequently associated with deleterious zoonotic helminthiasis. The growth patterns and morphological features of AE, such as invasion of the liver parenchyme and multiplication into multivesiculated masses, are similar to those of malignant tumors. AE has been increasingly detected in several regions of Europe, North America, Central Asia, and northwestern China. An isoform of E. multilocularis antigen B3 (EmAgB3) shows a specific immunoreactivity against patient sera of active-stage AE, suggesting that EmAgB3 might play important roles during adaptation of the parasite to hosts. However, expression patterns and biochemical properties of EmAgB3 remained elusive. The protein profile and nature of component proteins of E. multilocularis hydatid fluid (EmHF) have never been addressed. In this study, we conducted proteome analysis of EmHF of AE cysts harvested from immunocompetent mice. We observed the molecular and biochemical properties of EmAgB3, including differential transcription patterns of paralogous genes, macromolecular protein status by self-assembly, distinct oligomeric states according to individual anatomical compartments of the worm, and hydrophobic ligand-binding protein activity. We also demonstrated tissue expression patterns of EmAgB3 transcript and protein. EmAgB3 might participate in immune response and recruitment of essential host lipids at the host-parasite interface. Our results might contribute to an in depth understanding of the biophysical and biological features of EmAgB3, thus providing insights into the design of novel targets to control AE.
Collapse
Affiliation(s)
- Chun-Seob Ahn
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| | - Jeong-Geun Kim
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| | - Xiumin Han
- Qinghai Province Institute for Endemic Diseases Prevention and Control , Xining 811602, China
| | - Young-An Bae
- Department of Microbiology, Gachon University Graduate School of Medicine , Incheon 21936, Korea
| | - Woo-Jae Park
- Department of Biochemistry, Gachon University Graduate School of Medicine , Incheon 21936, Korea
| | - Insug Kang
- Department of Molecular Biology and Biochemistry, School of Medicine, Kyung Hee University , Seoul 02447, Korea
| | - Hu Wang
- Qinghai Province Institute for Endemic Diseases Prevention and Control , Xining 811602, China
| | - Yoon Kong
- Department of Molecular Parasitology, Sungkyunkwan University School of Medicine , Suwon 16419, Korea
| |
Collapse
|
45
|
Peón AN, Ledesma-Soto Y, Terrazas LI. Regulation of immunity by Taeniids: lessons from animal models and in vitro studies. Parasite Immunol 2016; 38:124-35. [PMID: 26457989 DOI: 10.1111/pim.12289] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 10/01/2015] [Indexed: 02/06/2023]
Abstract
Taeniidae is the largest family of the Cyclophyllidea order of parasites despite being composed of just two genera: Taenia spp and Echinococcus spp. These parasites are flatworms with a terrestrial life cycle, having an immature or larval stage called metacestode, which develops into the mature form within the intestine of the primary host after being consumed in raw or poorly cooked meat. Consumed eggs hatch into oncospheres, penetrate the intestinal walls and are transported via the bloodstream to later develop into metacestodes within the muscles and internal organs of secondary and sometimes primary hosts, thereby initiating the cycle again. Larval stages of both Taenia spp and Echinococcus spp are well known to produce tissue-dwelling, long-lasting infections; in this stage, these parasites can reach centimetres (macroparasites) and both genera may cause life-threatening diseases in humans. Establishing such long-term infections requires an exceptional ability to modulate host immunity for long periods of time. In this review, we analyse the immunoregulatory mechanisms induced by these tapeworms and their products, mainly discussing the importance of taeniid strategies to successfully colonize their hosts, such as antigen-presenting cell phenotype manipulation and the consequent induction of T-cell anergy, among others.
Collapse
Affiliation(s)
- A N Peón
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Y Ledesma-Soto
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - L I Terrazas
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| |
Collapse
|
46
|
Díaz A, Casaravilla C, Barrios AA, Ferreira AM. Parasite molecules and host responses in cystic echinococcosis. Parasite Immunol 2016; 38:193-205. [PMID: 26425838 DOI: 10.1111/pim.12282] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/22/2015] [Indexed: 01/03/2023]
Abstract
Cystic echinococcosis is the infection by the larvae of cestode parasites belonging to the Echinococcus granulosus sensu lato species complex. Local host responses are strikingly subdued in relation to the size and persistence of these larvae, which develop within mammalian organs as 'hydatid cysts' measuring up to tens of cm in diameter. In a context in which helminth-derived immune-suppressive, as well as Th2-inducing, molecules garner much interest, knowledge on the interactions between E. granulosus molecules and the immune system lags behind. Here, we discuss what is known and what are the open questions on E. granulosus molecules and structures interacting with the innate and adaptive immune systems, potentially or in demonstrated form. We attempt a global biological approach on molecules that have been given consideration primarily as protective (Eg95) or diagnostic antigens (antigen B, antigen 5). We integrate glycobiological information, which traverses the discussions on antigen 5, the mucin-based protective laminated layer and immunologically active preparations from protoscoleces. We also highlight some less well-known molecules that appear as promising candidates to possess immune-regulatory activities. Finally, we point out gaps in the molecular-level knowledge of this infectious agent that hinder our understanding of its immunology.
Collapse
Affiliation(s)
- A Díaz
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - C Casaravilla
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - A A Barrios
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| | - A M Ferreira
- Cátedra de Inmunología, Departamento de Biociencias (Facultad de Química) and Instituto de Química Biológica (Facultad de Ciencias), Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
47
|
Zhang Q, Ye JR, Ma HM, Wu JJ, Jiang T, Zheng H. Role of immune tolerance in BALB/c mice with anaphylactic shock after Echinococcus granulosus infection. Immunol Res 2016; 64:233-41. [PMID: 26603168 DOI: 10.1007/s12026-015-8741-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study tested the hypothesis that immune tolerance mediated by regulatory T (Treg) cells is protective against cystic echinococcosis (CE)-induced anaphylactic shock. BALB/c mice were inoculated with protoscoleces of Echinococcus granulosus. After 3 months, the presence of cysts in the peritoneal cavity was confirmed after which a subset of mice was sensitized using a cyst fluid suspension to induce anaphylactic shock. While IgE levels were significantly higher in both groups inoculated with E. granulosus as compared to the healthy control group (both P < 0.01), sensitized mice had higher IgE levels as compared with those with E. granulosus alone (P < 0.05). Mice inoculated with E. granulosus alone and sensitized mice both had significantly higher histamine levels as compared to the healthy controls. The proportion of CD4(+)CD25(+)Foxp3(+) Treg cells relative to CD4(+) cells was significantly higher in mice inoculated with E. granulosus alone (P < 0.0167); significantly higher interleukin-10 (IL-10) and tumor growth factor-β (TGF-β1) levels were also noted in this group (all P < 0.01). In contrast, IL-13 and IL-17A levels were significantly higher in the sensitized mice (both P < 0.05). Taken together, these data suggest that the biphasic changes in Treg cell and cytokine levels may be associated with anaphylactic shock induced by CE.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Anaesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Li yu Shan Street, Ürümqi, 830011, China
| | - Jian-Rong Ye
- Department of Anaesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Li yu Shan Street, Ürümqi, 830011, China
| | - Hai-Mei Ma
- Department of Anaesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Li yu Shan Street, Ürümqi, 830011, China
| | - Jian-Jiang Wu
- Department of Anaesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Li yu Shan Street, Ürümqi, 830011, China
| | - Tao Jiang
- Department of Anaesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Li yu Shan Street, Ürümqi, 830011, China
| | - Hong Zheng
- Department of Anaesthesiology, The First Affiliated Hospital of Xinjiang Medical University, No. 137, Li yu Shan Street, Ürümqi, 830011, China.
| |
Collapse
|
48
|
Abstract
Cystic and alveolar echinococcosis are severe chronic helminthic diseases caused by the cystic growth or the intrahepatic tumour-like growth of the metacestode of Echinococcus granulosus or Echinococcus multilocularis, respectively. Both parasites have evolved sophisticated strategies to escape host immune responses, mainly by manipulating and directing this immune response towards anergy and/or tolerance. Recent research studies have revealed a number of respective immunoregulatory mechanisms related to macrophages and dendritic cell as well as T cell activities (regulatory T cells, Tregs). A better understanding of this complex parasite-host relationship, and the elucidation of specific crucial events that lead to disease, represents targets towards the development of novel treatment strategies and options.
Collapse
|
49
|
Motran CC, Ambrosio LF, Volpini X, Celias DP, Cervi L. Dendritic cells and parasites: from recognition and activation to immune response instruction. Semin Immunopathol 2016; 39:199-213. [DOI: 10.1007/s00281-016-0588-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Accepted: 08/22/2016] [Indexed: 12/20/2022]
|
50
|
Méndez-Samperio P. Molecular events by which dendritic cells promote Th2 immune protection in helmith infection. Infect Dis (Lond) 2016; 48:715-20. [PMID: 27348757 DOI: 10.1080/23744235.2016.1194529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Helminth parasites are a major cause of global infectious diseases, affecting nearly one quarter of the world's population. The common feature of helminth infections is to skew the immune system towards a T-helper 2 (Th2) response that helps to control disease. Dendritic cells (DCs), which are professional antigen-presenting cells, play a critical role for Th2 skewing against helminth parasites. However, the molecular mechanisms by which helminth antigens activate DCs for Th2 polarization have not yet been clearly defined. This review provides a focused update on the major role of DCs for inducing and/or enhancing Th2 immune responses in helminthic infection and will discuss the main signalling-dependent and independent mechanisms by which helminth antigens activate DCs for Th2 skewing.
Collapse
Affiliation(s)
- Patricia Méndez-Samperio
- a Departamento de Inmunología, Escuela Nacional de Ciencias Biologicas, IPN , Prol. Carpio y Plan de Ayala , CDMéxico , México
| |
Collapse
|