1
|
Gutzmann DJ, Toomey BM, Atkin AL, Nickerson KW. The role of serum albumin in Candida albicans filamentation, germ tube formation, and farnesol sequestration. Appl Environ Microbiol 2024; 90:e0162624. [PMID: 39526801 DOI: 10.1128/aem.01626-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 10/19/2024] [Indexed: 11/16/2024] Open
Abstract
Candida albicans is an opportunistic pathogen and colonizer of the human gut and mucosal membranes. C. albicans exhibits morphological plasticity, which is crucial for its fitness within the host and virulence. Morphogenesis in C. albicans is regulated, in part, by its production of farnesol, an autoregulatory molecule that inhibits filamentation. Morphogenesis is also regulated in response to external cues, such as serum, which stimulates hyphal formation by C. albicans. The precise mechanism by which serum stimulates hyphal formation is unknown. The most abundant serum protein is albumin. The binding affinity of albumin for nonpolar, fatty-acid-like molecules suggests that it may interact directly with exogenous farnesol and influence morphogenesis through sequestration of free farnesol. To test this hypothesis, we assessed whether albumin and albumin devoid of fatty acids (i) stimulated farnesol secretion and (ii) influenced the farnesol threshold required to inhibit filamentation. We found that albumin promoted farnesol secretion and filamentation, and the extent of its ability to do so was based on the presence or absence of bound fatty acids. We hypothesize that albumin not bound to fatty acids has the capacity to bind to farnesol and sequester it from C. albicans, encouraging filamentation.IMPORTANCEFor at least 50 years, researchers have wondered about the mechanisms by which serum stimulates germ tube formation (GTF) and hyphal growth in C. albicans. Here, we tested a model (Nickerson et al., Microbiol Mol Biol Rev 88:e00081-22, 2024, https://doi.org/10.1128/mmbr.00081-22) that serum promotes GTF and farnesol synthesis in part by extracting internal farnesol (Fi) from the cells toward the excess binding capacity of the albumins. The data presented here suggests that albumin not bound by fatty acids sequesters free farnesol thereby modulating filamentation and farnesol secretion by altering the equilibrium of internal vs external farnesol. We expect that the influence of secreted farnesol on cell morphology will differ during pathogenesis depending on location within the body, but sequestration of farnesol in the blood could mediate immune cell recruitment and promote hyphal formation.
Collapse
Affiliation(s)
- Daniel J Gutzmann
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Brigid M Toomey
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Audrey L Atkin
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Kenneth W Nickerson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
2
|
Batliner M, Schumacher F, Wigger D, Vivas W, Prell A, Fohmann I, Köhler T, Schempp R, Riedel A, Vaeth M, Fekete A, Kleuser B, Kurzai O, Nieuwenhuizen NE. The Candida albicans quorum-sensing molecule farnesol alters sphingolipid metabolism in human monocyte-derived dendritic cells. mBio 2024; 15:e0073224. [PMID: 38953353 PMCID: PMC11323541 DOI: 10.1128/mbio.00732-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/09/2024] [Indexed: 07/04/2024] Open
Abstract
Candida albicans, an opportunistic fungal pathogen, produces the quorum-sensing molecule farnesol, which we have shown alters the transcriptional response and phenotype of human monocyte-derived dendritic cells (DCs), including their cytokine secretion and ability to prime T cells. This is partially dependent on the nuclear receptor peroxisome proliferator-activated receptor gamma (PPAR-γ), which has numerous ligands, including the sphingolipid metabolite sphingosine 1-phosphate. Sphingolipids are a vital component of membranes that affect membrane protein arrangement and phagocytosis of C. albicans by DCs. Thus, we quantified sphingolipid metabolites in monocytes differentiating into DCs by High-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). Farnesol increased the activity of serine palmitoyltransferase, leading to increased levels of 3-keto-dihydrosphingosine, dihydrosphingosine, and dihydrosphingosine 1-phosphate and inhibited dihydroceramide desaturase by inducing oxidative stress, leading to increased levels of dihydroceramide and dihydrosphingomyelin species and reduced ceramide levels. Accumulation of dihydroceramides can inhibit mitochondrial function; accordingly, farnesol reduced mitochondrial respiration. Dihydroceramide desaturase inhibition increases lipid droplet formation, which we observed in farnesol-treated cells, coupled with an increase in intracellular triacylglycerol species. Furthermore, inhibition of dihydroceramide desaturase with either farnesol or specific inhibitors impaired the ability of DCs to prime interferon-γ-producing T cells. The effect of farnesol on sphingolipid metabolism, triacylglycerol synthesis, and mitochondrial respiration was not dependent on PPAR-γ. In summary, our data reveal novel effects of farnesol on sphingolipid metabolism, neutral lipid synthesis, and mitochondrial function in DCs that affect their instruction of T cell cytokine secretion, indicating that C. albicans can manipulate host cell metabolism via farnesol secretion.IMPORTANCECandida albicans is a common commensal yeast, but it is also an opportunistic pathogen which is one of the leading causes of potentially lethal hospital-acquired infections. There is growing evidence that its overgrowth in the gut can influence diseases as diverse as alcohol-associated liver disease and COVID-19. Previously, we found that its quorum-sensing molecule, farnesol, alters the phenotype of dendritic cells differentiating from monocytes, impairing their ability to drive protective T cell responses. Here, we demonstrate that farnesol alters the metabolism of sphingolipids, important structural components of the membrane that also act as signaling molecules. In monocytes differentiating to dendritic cells, farnesol inhibited dihydroceramide desaturase, resulting in the accumulation of dihydroceramides and a reduction in ceramide levels. Farnesol impaired mitochondrial respiration, known to occur with an accumulation of dihydroceramides, and induced the accumulation of triacylglycerol and oil bodies. Inhibition of dihydroceramide desaturase resulted in the impaired ability of DCs to induce interferon-γ production by T cells. Thus, farnesol production by C. albicans could manipulate the function of dendritic cells by altering the sphingolipidome.
Collapse
Affiliation(s)
- Maria Batliner
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | | | - Dominik Wigger
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Vivas
- Institute for Infectious Diseases and Infection Control, Jena University Hospital–Friedrich Schiller University, Jena, Germany
- Associated Research Group Translational Infection Medicine, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute (HKI), Jena, Germany
- Department of Anesthesiology and Intensive Care Medicine, Jena University Hospital–Friedrich Schiller University, Jena, Germany
| | - Agata Prell
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Ingo Fohmann
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Tobias Köhler
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Rebekka Schempp
- Institute for Virology and Immunobiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Angela Riedel
- Mildred Scheel Early Career Center (MSNZ), University Hospital of Würzburg, Würzburg, Germany
| | - Martin Vaeth
- Max Planck Research Group, Würzburg Institute of Systems Immunology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| | - Agnes Fekete
- Pharmaceutical Biology, Julius-von-Sachs-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Burkhard Kleuser
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Oliver Kurzai
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
- Research Group Fungal Septomics, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
- National Reference Center for Invasive Fungal Infections, Leibniz Institute for Natural Product Research and Infection Biology–Hans Knoell Institute, Jena, Germany
| | - Natalie E. Nieuwenhuizen
- Institute for Hygiene and Microbiology, Julius-Maximilians University of Würzburg, Würzburg, Germany
| |
Collapse
|
3
|
Nickerson KW, Gutzmann DJ, Boone CHT, Pathirana RU, Atkin AL. Physiological adventures in Candida albicans: farnesol and ubiquinones. Microbiol Mol Biol Rev 2024; 88:e0008122. [PMID: 38436263 PMCID: PMC10966945 DOI: 10.1128/mmbr.00081-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024] Open
Abstract
SUMMARYFarnesol was first identified as a quorum-sensing molecule, which blocked the yeast to hyphal transition in Candida albicans, 22 years ago. However, its interactions with Candida biology are surprisingly complex. Exogenous (secreted or supplied) farnesol can also act as a virulence factor during pathogenesis and as a fungicidal agent triggering apoptosis in other competing fungi. Farnesol synthesis is turned off both during anaerobic growth and in opaque cells. Distinctly different cellular responses are observed as exogenous farnesol levels are increased from 0.1 to 100 µM. Reported changes include altered morphology, stress response, pathogenicity, antibiotic sensitivity/resistance, and even cell lysis. Throughout, there has been a dearth of mechanisms associated with these observations, in part due to the absence of accurate measurement of intracellular farnesol levels (Fi). This obstacle has recently been overcome, and the above phenomena can now be viewed in terms of changing Fi levels and the percentage of farnesol secreted. Critically, two aspects of isoprenoid metabolism present in higher organisms are absent in C. albicans and likely in other yeasts. These are pathways for farnesol salvage (converting farnesol to farnesyl pyrophosphate) and farnesylcysteine cleavage, a necessary step in the turnover of farnesylated proteins. Together, these developments suggest a unifying model, whereby high, threshold levels of Fi regulate which target proteins are farnesylated or the extent to which they are farnesylated. Thus, we suggest that the diversity of cellular responses to farnesol reflects the diversity of the proteins that are or are not farnesylated.
Collapse
Affiliation(s)
| | - Daniel J. Gutzmann
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Cory H. T. Boone
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| | - Ruvini U. Pathirana
- Department of Biology and Chemistry, Texas A&M International University, Laredo, Texas, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska, Lincoln, Nebraska, USA
| |
Collapse
|
4
|
Hargarten JC, Vaughan MJ, Lampe AT, Jones RM, Ssebambulidde K, Nickerson KW, Williamson PR, Atkin AL, Brown DM. Farnesol remodels the peritoneal cavity immune environment influencing Candida albicans pathogenesis during intra-abdominal infection. Infect Immun 2023; 91:e0038423. [PMID: 37975682 PMCID: PMC10715096 DOI: 10.1128/iai.00384-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023] Open
Abstract
Candida albicans is a lifelong member of the mycobiome causing mucosal candidiasis and life-threatening, systemic, and intra-abdominal disease in immunocompromised and transplant patients. Despite the clinical importance of intra-abdominal candidiasis with mortality rates between 40% and 70%, the contribution of fungal virulence factors and host immune responses to disease has not been extensively studied. Secretion of the quorum-sensing molecule, farnesol, acts as a virulence factor for C. albicans during systemic infection, while inducing local, protective innate immune responses in oral models of infection. Previously, we reported that farnesol recruits macrophages to the peritoneal cavity in mice, suggesting a role for farnesol in innate immune responses. Here, we expand on our initial findings, showing that farnesol profoundly alters the peritoneal cavity microenvironment promoting innate inflammation. Intra-peritoneal injection of farnesol stimulates rapid local death of resident peritoneal cells followed by recruitment of neutrophils and inflammatory macrophages into the peritoneal cavity and peritoneal mesothelium associated with an early increase in chemokines followed by proinflammatory cytokines. These rapid inflammatory responses to farnesol significantly increase morbidity and mortality of mice with intra-abdominal candidiasis associated with increased formation of peritoneal adhesions, despite similar rates of fungal clearance from the peritoneal cavity and retro-peritoneal organs. C. albicans ddp3Δ/ddp3Δ knockout and reconstituted strains recapitulate these findings. This indicates that farnesol may be detrimental to the host during intra-abdominal infections. Importantly, our results highlight a need to understand how C. albicans virulence factors modulate the host immune response within the peritoneum, an exceedingly common site of Candida infection.
Collapse
Affiliation(s)
- Jessica C. Hargarten
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Malcolm J. Vaughan
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Anna T. Lampe
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Riley M. Jones
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- College of Arts and Sciences, Doane University, Crete, Nebraska, USA
| | - Kenneth Ssebambulidde
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Peter R. Williamson
- Laboratory of Clinical Immunology and Microbiology (LCIM), Division of Intramural Research (DIR), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, Maryland, USA
| | - Audrey L. Atkin
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| | - Deborah M. Brown
- School of Biological Sciences, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
- Nebraska Center for Virology, University of Nebraska—Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
5
|
Boone CHT, Parker KA, Gutzmann DJ, Atkin AL, Nickerson KW. Farnesol as an antifungal agent: comparisons among MTLa and MTLα haploid and diploid Candida albicans and Saccharomyces cerevisiae. Front Physiol 2023; 14:1207567. [PMID: 38054042 PMCID: PMC10694251 DOI: 10.3389/fphys.2023.1207567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 11/09/2023] [Indexed: 12/07/2023] Open
Abstract
Aims: Farnesol was identified 20 years ago in a search for Candida albicans quorum sensing molecules (QSM), but there is still uncertainty regarding many aspects of its mode of action including whether it employs farnesol transport mechanisms other than diffusion. Based on the structural similarity between farnesol and the farnesylated portion of the MTL a pheromone, we explored the effects of ploidy and mating type locus (MTL) on the antifungal activity of exogenous farnesol. Methods and results: We approached this question by examining five MTL a and five MTLα haploid strains with regard to their farnesol sensitivity in comparison to six heterozygous MTL a/ α diploids. We examined the haploid and diploid strains for percent cell death after exposure of exponentially growing cells to 0-200 µM farnesol. The heterozygous (MTL a/α) diploids were tolerant of exogenous farnesol whereas the MTL a and MTLα haploids were on average 2- and 4-times more sensitive, respectively. In the critical range from 10-40 µM farnesol their cell death values were in the ratio of 1:2:4. Very similar results were obtained with two matched sets of MAT a, MATα, and MAT a/α Saccharomyces cerevisiae strains. Conclusion: We propose that the observed MTL dependence of farnesol is based on differentially regulated mechanisms of entry and efflux which determine the actual cellular concentration of farnesol. The mechanisms by which pathogens such as C. albicans tolerate the otherwise lethal effects of farnesol embrace a wide range of physiological functions, including MTL type, ubiquinone type (UQ6-UQ9), energy availability, and aerobic/anaerobic status.
Collapse
Affiliation(s)
| | | | | | | | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska, Lincoln, NE, United States
| |
Collapse
|
6
|
Yi J, Sun Y, Zeng C, Kostoulias X, Qu Y. The Role of Biofilms in Contact Lens Associated Fungal Keratitis. Antibiotics (Basel) 2023; 12:1533. [PMID: 37887234 PMCID: PMC10604847 DOI: 10.3390/antibiotics12101533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/04/2023] [Accepted: 10/10/2023] [Indexed: 10/28/2023] Open
Abstract
Biofilm formation is an important microbial strategy for fungal pathogens, such as Fusarium, Aspergillus, and Candida, to establish keratitis in patients wearing soft contact lenses. Despite the well-documented 2006 outbreak of Fusarium keratitis that eventually led to the withdrawal of the Bausch & Lomb multipurpose lens care solution ReNu with MoistureLoc ("MoistureLoc") from the global market, contact lens care systems and solutions currently available on the market do not specifically target fungal biofilms. This is partially due to the lack of recognition and understanding of important roles that fungal biofilms play in contact lens associated fungal keratitis (CLAFK). This review aims to reemphasize the link between fungal biofilms and CLAFK, and deepen our comprehension of its importance in pathogenesis and persistence of this medical device-related infection.
Collapse
Affiliation(s)
- Jipan Yi
- Department of Optometry, Zhejiang Industry & Trade Vocational College, Wenzhou 325000, China; (J.Y.); (C.Z.)
| | - Yao Sun
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (Y.S.); (X.K.)
| | - Chenghong Zeng
- Department of Optometry, Zhejiang Industry & Trade Vocational College, Wenzhou 325000, China; (J.Y.); (C.Z.)
| | - Xenia Kostoulias
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (Y.S.); (X.K.)
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Clayton, VIC 3000, Australia
| | - Yue Qu
- Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, VIC 3800, Australia; (Y.S.); (X.K.)
- Department of Infectious Diseases, The Alfred Hospital and Monash University, Clayton, VIC 3000, Australia
| |
Collapse
|
7
|
Li Y, Chen C, Cong L, Mao S, Shan M, Han Z, Mao J, Xie Z, Zhu Z. Inhibitory Effects of a Maleimide Compound on the Virulence Factors of Candida albicans. Virulence 2023:2230009. [PMID: 37367101 DOI: 10.1080/21505594.2023.2230009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 05/26/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023] Open
Abstract
Candidiasis caused by Candida albicans infection has long been a serious human health problem. The pathogenicity of C. albicans is mainly due to its virulence factors, which are the novel targets of antifungal drugs for low risk of resistance development. In this study, we identified a maleimide compound [1-(4-methoxyphenyl)-1hydro-pyrrole-2,5-dione, MPD] that exerts effective anti-virulence activity. It could inhibit the process of adhesion, filamentation, and biofilm formation in C. albicans. In addition, it exhibited low cytotoxicity, hemolytic activity and drug resistance development. Moreover, in Galleria mellonella-C. albicans (in vivo) infection model, the survival time of infected larvae was significantly prolonged under the treatment of MPD. Further, mechanism research revealed that MPD increased farnesol secretion by upregulating the expression of Dpp3. The increased farnesol inhibited the activity of Cdc35, which then decreased the intracellular cAMP content resulting in the inhibition of virulence factors via the Ras1-cAMP-Efg1 pathway. In all, this study evaluated the inhibitory effect of MPD on various virulence factors of C. albicans and identified the underlying mechanisms. This suggests a potential application of MPD to overcome fungal infections in clinic.
Collapse
Affiliation(s)
- Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Chaoqun Chen
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Liu Cong
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Shanshan Mao
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Mingzhu Shan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
- Clinical laboratory, The Central Hospital of Xuzhou City, Xuzhou, China
| | - Zibing Han
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Jiayi Mao
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Zhiyu Xie
- Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, College of Chemical and Materials Engineering, Xuchang University, Xuchang, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
8
|
Jin X, Hou X, Wang X, Zhang M, Chen J, Song M, Zhang J, Zheng H, Chang W, Lou H. Characterization of an allosteric inhibitor of fungal-specific C-24 sterol methyltransferase to treat Candida albicans infections. Cell Chem Biol 2023; 30:553-568.e7. [PMID: 37160123 DOI: 10.1016/j.chembiol.2023.04.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 03/02/2023] [Accepted: 04/17/2023] [Indexed: 05/11/2023]
Abstract
Filamentation is an important virulence factor of the pathogenic fungus Candida albicans. The abolition of Candida albicans hyphal formation by disrupting sterol synthesis is an important concept for the development of antifungal drugs with high safety. Here, we conduct a high-throughput screen using a C. albicans strain expressing green fluorescent protein-labeled Dpp3 to identify anti-hypha agents by interfering with ergosterol synthesis. The antipyrine derivative H55 is characterized to have minimal cytotoxicity and potent inhibition of C. albicans hyphal formation in multiple cultural conditions. H55 monotherapy exhibits therapeutic efficacy in mouse models of azole-resistant candidiasis. H55 treatment increases the accumulation of zymosterol, the substrate of C-24 sterol methyltransferase (Erg6). The results of enzyme assays, photoaffinity labeling, molecular simulation, mutagenesis, and cellular thermal shift assays support H55 as an allosteric inhibitor of Erg6. Collectively, H55, an inhibitor of the fungal-specific enzyme Erg6, holds potential to treat C. albicans infections.
Collapse
Affiliation(s)
- Xueyang Jin
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xuben Hou
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Xue Wang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Ming Zhang
- Institute of Medical Science, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinyao Chen
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Minghui Song
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Jiaozhen Zhang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Hongbo Zheng
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China
| | - Wenqiang Chang
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| | - Hongxiang Lou
- Department of Natural Product Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong Province, China.
| |
Collapse
|
9
|
Mediator Subunit Med15 Regulates Cell Morphology and Mating in Candida lusitaniae. J Fungi (Basel) 2023; 9:jof9030333. [PMID: 36983501 PMCID: PMC10053558 DOI: 10.3390/jof9030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Candida lusitaniae is an emerging opportunistic pathogenic yeast capable of shifting from yeast to pseudohyphae form, and it is one of the few Candida species with the ability to reproduce sexually. In this study, we showed that a dpp3Δ mutant, inactivated for a putative pyrophosphatase, is impaired in cell separation, pseudohyphal growth and mating. The defective phenotypes were not restored after the reconstruction of a wild-type DPP3 locus, reinforcing the hypothesis of the presence of an additional mutation that we suspected in our previous study. Genetic crosses and genome sequencing identified an additional mutation in MED15, encoding a subunit of the mediator complex that functions as a general transcriptional co-activator in Eukaryotes. We confirmed that inactivation of MED15 was responsible for the defective phenotypes by rescuing the dpp3Δ mutant with a wild-type copy of MED15 and constructing a med15Δ knockout mutant that mimics the phenotypes of dpp3Δ in vitro. Proteomic analyses revealed the biological processes under the control of Med15 and involved in hyphal growth, cell separation and mating. This is the first description of the functions of MED15 in the regulation of hyphal growth, cell separation and mating, and the pathways involved in C. lusitaniae.
Collapse
|
10
|
Boone CHT, Gutzmann DJ, Kramer JJ, Atkin AL, Nickerson KW. Quantitative assay for farnesol and the aromatic fusel alcohols from the fungus Candida albicans. Appl Microbiol Biotechnol 2022; 106:6759-6773. [PMID: 36107213 PMCID: PMC9529689 DOI: 10.1007/s00253-022-12165-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 11/02/2022]
Abstract
Abstract
The dimorphic fungus Candida albicans is a commensal and opportunistic fungal pathogen of humans. It secretes at least four small lipophilic molecules, farnesol and three aromatic fusel alcohols. Farnesol has been identified as both a quorum sensing molecule (QSM) and a virulence factor. Our gas chromatography (GC)-based assay for these molecules exhibits high throughput, prevention of analyte loss by avoiding filtration and rotary evaporation, simultaneous cell lysis and analyte extraction by ethyl acetate, and the ability to compare whole cultures with their cell pellets and supernatants. Farnesol synthesis and secretion were separable phenomena and pellet:supernatant ratios for farnesol were high, up to 12:1. The assay was validated in terms of precision, specificity, ruggedness, accuracy, solution stability, detection limits (DL), quantitation limits (QL), and dynamic range. The DL for farnesol was 0.02 ng/µl (0.09 µM). Measurement quality was assessed by the relative error of the whole culture versus the sum of pellet and supernatant fractions (WPS). C. albicans strain SC5314 grown at 30 °C in complex and defined media (YPD and mRPMI) was assayed in biological triplicate 17 times over 3 days. Farnesol and the three aromatic fusel alcohols can be measured in the same assay. The levels of all four are greatly altered by the growth medium chosen. Significantly, the three fusel alcohols are synthesized during stationary phase, not during growth. They are secreted quickly without being retained in the cell pellet and may accumulate up to mM concentrations.
Key points
• Quantitative analysis of both intra- and extracellular farnesol, and aromatic fusel oils.
• High throughput, whole culture assay with simultaneous lysis and extraction.
• Farnesol secretion and synthesis are distinct and separate events.
Collapse
|
11
|
Franco-Duarte R, Seabra CL, Rocha SM, Henriques M, Sampaio P, Teixeira JA, Botelho CM. Metabolic profile of Candida albicans and Candida parapsilosis interactions within dual-species biofilms. FEMS Microbiol Ecol 2022; 98:6550018. [PMID: 35298615 DOI: 10.1093/femsec/fiac031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 02/15/2022] [Accepted: 03/14/2022] [Indexed: 11/14/2022] Open
Abstract
Within the oral cavity, the ability of Candida species to adhere and form biofilms is well recognized, especially when C. albicans is considered. Lately, a knowledge gap has been identified regarding dual-species communication of Candida isolates, as a way to increase virulence, with evidences being collected to support the existence of interactions between C. albicans and C. parapsilosis. The present work evaluated the synergistic effect of the two Candida species, and explored chemical interactions between cells, evaluating secreted extracellular alcohols and their relation with yeasts´ growth and matrix composition. Four clinical strains of C. albicans and C. parapsilosis species, isolated from single infections of different patients or from co-infections of a same patient, were tested. It was found that dual-species biofilms negatively impacted the growth of C. parapsilosis and their biofilm matrix, in comparison with mono-species biofilms, and had minor effects on the biofilm biomass. Alcohol secretion revealed to be species- and strain-dependent. However, some dual-species cultures produced much higher amounts of some alcohols (E-nerolidol and E, E-Farnesol) than the respective single cultures, which proves the existence of a synergy between species. These results show evidence that interactions between Candida species affect the biofilm matrix, which is a key element of oral biofilms.
Collapse
Affiliation(s)
- Ricardo Franco-Duarte
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - Catarina L Seabra
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Silvia M Rocha
- Department of Chemistry & LAQV-REQUIMTE, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Mariana Henriques
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Paula Sampaio
- CBMA (Centre of Molecular and Environmental Biology), Department of Biology, University of Minho, Braga, Portugal
| | - José A Teixeira
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| | - Cláudia M Botelho
- Centre of Biological Engineering (CEB), Laboratório de Investigação em Biofilmes Rosário Oliveira, University of Minho, Braga, Portugal
| |
Collapse
|
12
|
Li C, Xu Z, Liu S, Huang R, Duan W, Wei X. In vivo antifungal activities of farnesol combined with antifungal drugs against murine oral mucosal candidiasis. BIOFOULING 2021; 37:818-829. [PMID: 34579611 DOI: 10.1080/08927014.2021.1967938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/09/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
The antifungal resistence of oral candidiasis is a serious clinical issue. The in vivo efficacy of farnesol combined with antifungals for oral candidiasis remains unknown. The possible therapeutic effects of a combination of farnesol and antifungal drugs and the regulation of inflammatory cytokines in murine oral candidiasis were investigated in this study. An experimental oral candidiasis model was constructed using ICR mice. Farnesol at 25 and 50 μM did not change IL-17, IFN-γ and TNF-α production during oral candidiasis compared with that of the control infected mice. The co-applications of farnesol (50 μM) and nystatin, farnesol (4 μM, 8 μM) and itraconazole, farnesol (25, 50 μM), and fluconazole enhanced the therapeutic activity of the antifungal agents alone against oral candidiasis. The effective combinations reduced the number of colony forming units (CFU) of Candida albicans isolated from the oral cavity and oral lesions on the tongue.
Collapse
Affiliation(s)
- Chengxi Li
- The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
| | - Zheng Xu
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Siqi Liu
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Rhyme Huang
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Wei Duan
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| | - Xin Wei
- Department of Operative Dentistry and Endodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, China
- Jiangsu Province key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, China
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, China
| |
Collapse
|
13
|
Abstract
Quorum sensing (QS) is one of the most studied cell-cell communication mechanisms in fungi. Research in the last 20 years has explored various fungal QS systems that are involved in a wide range of biological processes, especially eukaryote- or fungus-specific behaviors, mirroring the significant contribution of QS regulation to fungal biology and evolution. Based on recent progress, we summarize in this review fungal QS regulation, with an emphasis on its functional role in behaviors unique to fungi or eukaryotes. We suggest that using fungi as genetically amenable eukaryotic model systems to address why and how QS regulation is integrated into eukaryotic reproductive strategies and molecular or cellular processes could be an important direction for QS research. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Xiuyun Tian
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Hao Ding
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Weixin Ke
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| | - Linqi Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; .,University of Chinese Academy of Sciences, Beijing 100039, China
| |
Collapse
|
14
|
Barber CC, Zhang W. Small molecule natural products in human nasal/oral microbiota. J Ind Microbiol Biotechnol 2021; 48:6129854. [PMID: 33945611 PMCID: PMC8210680 DOI: 10.1093/jimb/kuab010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/26/2022]
Abstract
Small molecule natural products are a chemically diverse class of biomolecules that fulfill myriad biological functions, including autoregulation, communication with microbial neighbors and the host, interference competition, nutrient acquisition, and resistance to oxidative stress. Human commensal bacteria are increasingly recognized as a potential source of new natural products, which may provide insight into the molecular ecology of many different human body sites as well as novel scaffolds for therapeutic development. Here, we review the scientific literature on natural products derived from residents of the human nasal/oral cavity, discuss their discovery, biosynthesis, and ecological roles, and identify key questions in the study of these compounds.
Collapse
Affiliation(s)
- Colin Charles Barber
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley 94720, USA
| | - Wenjun Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley 94720, USA.,Chan-Zuckerberg Biohub, San Francisco 94158, USA
| |
Collapse
|
15
|
Costa AF, Silva LDC, Amaral AC. Farnesol: An approach on biofilms and nanotechnology. Med Mycol 2021; 59:958-969. [PMID: 33877362 DOI: 10.1093/mmy/myab020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 03/04/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Biofilms are important virulence factor in infections caused by microorganisms because of its complex structure, which provide resistance to conventional antimicrobials. Strategies involving the use of molecules capable of inhibiting their formation and also act synergistically with conventional drugs have been explored. Farnesol is a molecule present in essential oils and produced by Candida albicans as a quorum sensing component. This sesquiterpene presents inhibitory properties in the formation of microbial biofilms and synergism with antimicrobials used in clinical practice, and can be exploited even for eradication of biofilms formed by drug-resistant microorganisms. Despite this, farnesol has physical and chemical characteristics that can limit its use, such as high hydrophobicity and volatility. Therefore, nanotechnology may represent an option to improve the efficiency of this molecule in high complex environments such as biofilms. Nanostructured systems present important results in the improvement of treatment with different commercial drugs and molecules with therapeutic or preventive potential. The formation of nanoparticles offers advantages such as protection of the incorporated drugs against degradation, improved biodistribution and residence time in specific treatment sites. The combination of farnesol with nanotechnology may be promising for the development of more effective antibiofilm therapies, as it can improve its solubility, reduce volatility, and increase bioavailability. This review summarizes existing data about farnesol, its action on biofilms, and discusses its encapsulation in nanostructured systems. LAY SUMMARY Farnesol is a natural compound that inhibits the formation of biofilms from different microbial species. The encapsulation of this molecule in nanoparticles is a promising alternative for the development of more effective therapies against biofilms.
Collapse
Affiliation(s)
- Adelaide Fernandes Costa
- Biological Science Institute, Universidade Federal de Goiás, Goiânia, 74690-900, Brazil.,Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| | - Lívia do Carmo Silva
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| | - Andre Correa Amaral
- Biotechnology, Institute of Tropical Pathology and Public Health, Universidade Federal de Goiás, Goiânia, 74605-050, Brazil
| |
Collapse
|
16
|
Bezerra CF, de Alencar Júnior JG, de Lima Honorato R, dos Santos ATL, Pereira da Silva JC, Gusmão da Silva T, Leal ALAB, Rocha JE, de Freitas TS, Tavares Vieira TA, Bezerra MCF, Sales DL, Kerntopf MR, de Araujo Delmondes G, Filho JMB, Peixoto LR, Pinheiro AP, Ribeiro-Filho J, Coutinho HDM, Morais-Braga MFB, Gonçalves da Silva T. Antifungal activity of farnesol incorporated in liposomes and associated with fluconazole. Chem Phys Lipids 2020; 233:104987. [DOI: 10.1016/j.chemphyslip.2020.104987] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/19/2020] [Accepted: 10/02/2020] [Indexed: 12/16/2022]
|
17
|
Longer Ubiquinone Side Chains Contribute to Enhanced Farnesol Resistance in Yeasts. Microorganisms 2020; 8:microorganisms8111641. [PMID: 33114039 PMCID: PMC7690737 DOI: 10.3390/microorganisms8111641] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Ubiquinones (UQ) are intrinsic lipid components of many membranes. Besides their role in electron-transfer reactions there is evidence for them acting as free radical scavengers, yet their other roles in biological systems have received little study. The dimorphic fungal pathogen Candida albicans secretes farnesol as both a virulence factor and a quorum-sensing molecule. Thus, we were intrigued by the presence of UQ9 isoprenologue in farnesol-producing Candida species while other members of this genera harbor UQ7 as their major electron carrier. We examined the effect of UQ side chain length in Saccharomyces cerevisiae and C. albicans with a view towards identifying the mechanisms by which C. albicans protects itself from the high levels of farnesol it secretes, levels that are toxic to many other fungi including S. cerevisiae. In this study, we identify UQ9 as the major UQ isoprenoid in C. albicans, regardless of growth conditions or cell morphology. A S. cerevisiae model yeast engineered to make UQ9 instead of UQ6 was 4-5 times more resistant to exogenous farnesol than the parent yeast and this resistance was accompanied by greatly reduced reactive oxygen species (ROS) production. The resistance provided by UQ9 is specific for farnesol in that it does not increase resistance to high salt (1M NaCl) or other oxidants (5 mM H2O2 or 1 mM menadione). Additionally, the protection provided by UQ9 appears to be structural rather than transcriptional; UQ9 does not alter key transcriptional responses to farnesol stress. Here, we propose a model in which the longer UQ side chains are more firmly embedded in the mitochondrial membrane making them harder to pry out, so that in the presence of farnesol they remain functional without producing excess ROS. C. albicans and Candida dubliniensis evolved to use UQ9 rather than UQ7 as in other Candida species or UQ6 as in S. cerevisiae. This adaptive mechanism highlights the significance of UQ side chains in farnesol production and resistance quite apart from being an electron carrier in the respiratory chain.
Collapse
|
18
|
Kovács R, Majoros L. Fungal Quorum-Sensing Molecules: A Review of Their Antifungal Effect against Candida Biofilms. J Fungi (Basel) 2020; 6:jof6030099. [PMID: 32630687 PMCID: PMC7559060 DOI: 10.3390/jof6030099] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 01/05/2023] Open
Abstract
The number of effective therapeutic strategies against biofilms is limited; development of novel therapies is urgently needed to treat a variety of biofilm-associated infections. Quorum sensing is a special form of microbial cell-to-cell communication that is responsible for the release of numerous extracellular molecules, whose concentration is proportional with cell density. Candida-secreted quorum-sensing molecules (i.e., farnesol and tyrosol) have a pivotal role in morphogenesis, biofilm formation, and virulence. Farnesol can mediate the hyphae-to-yeast transition, while tyrosol has the opposite effect of inducing transition from the yeast to hyphal form. A number of questions regarding Candida quorum sensing remain to be addressed; nevertheless, the literature shows that farnesol and tyrosol possess remarkable antifungal and anti-biofilm effect at supraphysiological concentration. Furthermore, previous in vitro and in vivo data suggest that they may have a potent adjuvant effect in combination with certain traditional antifungal agents. This review discusses the most promising farnesol- and tyrosol-based in vitro and in vivo results, which may be a foundation for future development of novel therapeutic strategies to combat Candida biofilms.
Collapse
Affiliation(s)
- Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
- Faculty of Pharmacy, University of Debrecen, 4032 Debrecen, Hungary
- Correspondence: ; Tel.: +0036-52-255-425; Fax: +0036-52-255-424
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, 4032 Debrecen, Hungary;
| |
Collapse
|
19
|
Yashiroda Y, Yoshida M. Intraspecies cell-cell communication in yeast. FEMS Yeast Res 2020; 19:5613366. [PMID: 31688924 DOI: 10.1093/femsyr/foz071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 11/04/2019] [Indexed: 12/14/2022] Open
Abstract
Although yeasts are unicellular microorganisms that can live independently, they can also communicate with other cells, in order to adapt to the environment. Two yeast species, the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe, engage in various kinds of intraspecies cell-cell communication using peptides and chemical molecules that they produce, constituting a sort of 'language'. Cell-cell communication is a fundamental biological process, and its ultimate purpose is to promote survival by sexual reproduction and acquisition of nutrients from the environment. This review summarizes what is known about intraspecies cell-cell communication mediated by molecules including mating pheromones, volatile gases, aromatic alcohols and oxylipins in laboratory strains of S. cerevisiae and S. pombe.
Collapse
Affiliation(s)
- Yoko Yashiroda
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Molecular Ligand Target Research Team, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Minoru Yoshida
- Chemical Genomics Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.,Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan.,Collaborative Research Institute for Innovative Microbiology (CRIIM), The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
20
|
Nagy F, Vitális E, Jakab Á, Borman AM, Forgács L, Tóth Z, Majoros L, Kovács R. In vitro and in vivo Effect of Exogenous Farnesol Exposure Against Candida auris. Front Microbiol 2020; 11:957. [PMID: 32508780 PMCID: PMC7251031 DOI: 10.3389/fmicb.2020.00957] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
The spreading of multidrug-resistant Candida auris is considered as an emerging global health threat. The number of effective therapeutic regimens is strongly limited; therefore, development of novel strategies is needed. Farnesol is a quorum-sensing molecule with a potential antifungal and/or adjuvant effect; it may be a promising candidate in alternative treatment against Candida species including C. auris. To examine the effect of farnesol on C. auris, we performed experiments focusing on growth, biofilm production ability, production of enzymes related to oxidative stress, triazole susceptibility and virulence. Concentrations ranging from 100 to 300 μM farnesol caused a significant growth inhibition against C. auris planktonic cells for 24 h (p < 0.01-0.05). Farnesol treatment showed a concentration dependent inhibition in terms of biofilm forming ability of C. auris; however, it did not inhibit significantly the biofilm development at 24 h. Nevertheless, the metabolic activity of adhered farnesol pre-exposed cells (75 μM) was significantly diminished at 24 h depending on farnesol treatment during biofilm formation (p < 0.001-0.05). Moreover, 300 μM farnesol exerted a marked decrease in metabolic activity against one-day-old biofilms between 2 and 24 h (p < 0.001). Farnesol increased the production of reactive species remarkably, as revealed by 2',7'-dichlorofluorescein (DCF) assay {3.96 ± 0.89 [nmol DCF (OD640)-1] and 23.54 ± 4.51 [nmol DCF (OD640)-1] for untreated cells and farnesol exposed cells, respectively; p < 0.001}. This was in line with increased superoxide dismutase level {85.69 ± 5.42 [munit (mg protein)-1] and 170.11 ± 17.37 [munit (mg protein)-1] for untreated cells and farnesol exposed cells, respectively; p < 0.001}, but the catalase level remained statistically comparable between treated and untreated cells (p > 0.05). Concerning virulence-related enzymes, exposure to 75 μM farnesol did not influence phospholipase or aspartic proteinase activity (p > 0.05). The interaction between fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole and farnesol showed clear synergism (FICI ranges from 0.038 to 0.375) against one-day-old biofilms. Regarding in vivo experiments, daily 75 μM farnesol treatment decreased the fungal burden in an immunocompromised murine model of disseminated candidiasis, especially in case of inocula pre-exposed to farnesol (p < 0.01). In summary, farnesol shows a promising therapeutic or adjuvant potential in traditional or alternative therapies such as catheter lock therapy.
Collapse
Affiliation(s)
- Fruzsina Nagy
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Eszter Vitális
- Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary.,Hospital Hygiene Ward, Clinical Centre, University of Debrecen, Debrecen, Hungary
| | - Ágnes Jakab
- Department of Molecular Biotechnology and Microbiology, Faculty of Science and Technology, Institute of Biotechnology, University of Debrecen, Debrecen, Hungary
| | - Andrew M Borman
- UK National Mycology Reference Laboratory, Public Health England, Bristol, United Kingdom
| | - Lajos Forgács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - Zoltán Tóth
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Doctoral School of Pharmaceutical Sciences, University of Debrecen, Debrecen, Hungary
| | - László Majoros
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Renátó Kovács
- Department of Medical Microbiology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
21
|
Farnesol contributes to intestinal epithelial barrier function by enhancing tight junctions via the JAK/STAT3 signaling pathway in differentiated Caco-2 cells. J Bioenerg Biomembr 2019; 51:403-412. [PMID: 31845097 DOI: 10.1007/s10863-019-09817-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/26/2019] [Indexed: 12/15/2022]
Abstract
Candida albicans causes mucosal diseases and secretes farnesol, a quorum-sensing molecule, which plays a vital role in suppressing the yeast-to-mycelia switch. Farnesol can also regulate immune cell function. However, how farnesol interacts with the intestinal epithelium remains unknown. Herein, we identified that farnesol promotes intestinal barrier function, by promoting transepithelial electrical resistance, reducing paracellular flux, inducing the Zonula Occludens-1 Protein (ZO-1) and occludin expression. Moreover, the JAK/STAT3 signaling pathway was activated after farnesol treatment, and inhibition of STAT3 phosphorylation by stattic remarkably suppressed the expression level of ZO-1. Additionally, chromatin immunoprecipitation assay (Chip) revealed that farnesol facilitated the transcriptional activation of STAT3 to significantly enhance the expression of ZO-1. Taken together, our findings demonstrated that farnesol facilitated intestinal epithelial barrier transcriptional regulation via activating JAK/STAT3 signaling. The involved molecules may be potentially targeted for treatment of Candida albicans invasion.
Collapse
|
22
|
Li Y, Shan M, Yan M, Yao H, Wang Y, Gu B, Zhu Z, Li H. Anticandidal Activity of Kalopanaxsaponin A: Effect on Proliferation, Cell Morphology, and Key Virulence Attributes of Candida albicans. Front Microbiol 2019; 10:2844. [PMID: 31849923 PMCID: PMC6902085 DOI: 10.3389/fmicb.2019.02844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 11/22/2019] [Indexed: 01/15/2023] Open
Abstract
Background The pathogenicity of Candida albicans is attributed to various virulence factors including adhesion to the surface of epithelial cells or mucosa, germ tube formation, hyphal morphogenesis, development of drug resistant biofilms, and so on. The objective of this study was to investigate the effects of Kalopanaxsaponin A (KPA) on the virulence of C. albicans. Methods The effect of KPA on the virulence of C. albicans was characterized by an XTT reduction assay and fluorescent microscopic observation. The action mechanism was further explored using GC/MS system and BioTek Synergy2 spectrofluorophotometry. The cytotoxicity and therapeutic effect of KPA were evaluated by the Caenorhabditis elegans-C. albicans infection model in vivo. Results The minimum inhibitory concentration (MIC) of KPA was 8∼16 μg/mL for various genotypes of C. albicans. The compound was identified as having remarkable effect on the adhesion, morphological transition and biofilm formation of C. albicans. The results of fluorescent microscopy and GC/MS system suggested that KPA could promote the secretion of farnesol by regulating the expression of Dpp3 and decrease the intracellular cAMP level, which together inhibited morphological transition and biofilm formation. Notably, KPA showed low toxicity in vivo and a low possibility of developing resistance. Conclusion Our results demonstrated that KPA had remarkable efficacy against C. albicans pathogenicity, suggesting that it could be a potential option for the clinical treatment of candidiasis.
Collapse
Affiliation(s)
- Ying Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Mingzhu Shan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Mingju Yan
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China
| | - Huankai Yao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Yuechen Wang
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Bing Gu
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zuobin Zhu
- Department of Genetics, Xuzhou Medical University, Xuzhou, China
| | - Hongchun Li
- School of Medical Technology, Xuzhou Medical University, Xuzhou, China.,Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
23
|
de Araújo Delmondes G, Bezerra DS, de Queiroz Dias D, de Souza Borges A, Araújo IM, Lins da Cunha G, Bandeira PFR, Barbosa R, Melo Coutinho HD, Felipe CFB, Barbosa-Filho JM, Alencar de Menezes IR, Kerntopf MR. Toxicological and pharmacologic effects of farnesol (C15H26O): A descriptive systematic review. Food Chem Toxicol 2019; 129:169-200. [DOI: 10.1016/j.fct.2019.04.037] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/02/2019] [Accepted: 04/22/2019] [Indexed: 12/22/2022]
|
24
|
Ying L, Mingzhu S, Mingju Y, Ye X, Yuechen W, Ying C, Bing G, Hongchun L, Zuobin Z. The inhibition of trans-cinnamaldehyde on the virulence of Candida albicans via enhancing farnesol secretion with low potential for the development of resistance. Biochem Biophys Res Commun 2019; 515:544-550. [PMID: 31176484 DOI: 10.1016/j.bbrc.2019.05.165] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 05/27/2019] [Indexed: 12/11/2022]
Abstract
The emergence of drug resistance and limitation of antifungal agents complicate the management of fungal infection. Candida albicans, as the most common fungal infection pathogen, causes candidiasis via developing its virulence factors. In this study, we found trans-cinnamaldehyde (TC), known as a "Generally Regarded As Safe" (GRAS) molecule, had moderate antifungal activities against various Candida species and could retard the virulence of C. albicans in a dose-dependent manner by inhibiting the adhesion, morphological transition and biofilms formation. The mechanisms investigation revealed that the inhibition of hyphae and biofilms development was caused by the increasing farnesol secretion induced by Dpp3 expression. Since drug resistance restricted the treatment of clinical fungal infection, we explored the capacity of TC to develop drug-resistance under a long time TC treatment. Results showed that TC had little chance to form resistance by a serial passage experiment. Our work illustrates the underlying mechanism of TC inhibition of morphological transition and provides a optional application in treating the relevant fungal infections by targeting fungal virulence factors.
Collapse
Affiliation(s)
- Li Ying
- Medical Technology College, Xuzhou Medical University, Xuzhou, 214200, China
| | - Shan Mingzhu
- Medical Technology College, Xuzhou Medical University, Xuzhou, 214200, China
| | - Yan Mingju
- Medical Technology College, Xuzhou Medical University, Xuzhou, 214200, China
| | - Xu Ye
- Medical Technology College, Xuzhou Medical University, Xuzhou, 214200, China
| | - Wang Yuechen
- Department of Genetics, Xuzhou Medical University, Xuzhou, 214200, China
| | - Chen Ying
- Medical Technology College, Xuzhou Medical University, Xuzhou, 214200, China
| | - Gu Bing
- Medical Technology College, Xuzhou Medical University, Xuzhou, 214200, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China
| | - Li Hongchun
- Medical Technology College, Xuzhou Medical University, Xuzhou, 214200, China; Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221002, China.
| | - Zhu Zuobin
- Department of Genetics, Xuzhou Medical University, Xuzhou, 214200, China.
| |
Collapse
|
25
|
Mehmood A, Liu G, Wang X, Meng G, Wang C, Liu Y. Fungal Quorum-Sensing Molecules and Inhibitors with Potential Antifungal Activity: A Review. Molecules 2019; 24:E1950. [PMID: 31117232 PMCID: PMC6571750 DOI: 10.3390/molecules24101950] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 12/16/2022] Open
Abstract
The theory of persisting independent and isolated regarding microorganisms is no longer accepted. To survive and reproduce they have developed several communication platforms within the cells which facilitates them to adapt the surrounding environmental changes. This cell-to-cell communication is termed as quorum sensing; it relies upon the cell density and can stimulate several traits of microbes including biofilm formation, competence, and virulence factors secretion. Initially, this sophisticated mode of communication was discovered in bacteria; later, it was also confirmed in eukaryotes (fungi). As a consequence, many quorum-sensing molecules and inhibitors have been identified and characterized in various fungal species. In this review article, we will primarily focus on fungal quorum-sensing molecules and the production of inhibitors from fungal species with potential applications for combating fungal infections.
Collapse
Affiliation(s)
- Arshad Mehmood
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guorong Liu
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Xin Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Guannan Meng
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Chengtao Wang
- Beijing Advance Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University (BTBU), Beijing 100048, China.
| | - Ya Liu
- R&D Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming 650202, China.
| |
Collapse
|
26
|
Yan Y, Tan F, Miao H, Wang H, Cao Y. Effect of Shikonin Against Candida albicans Biofilms. Front Microbiol 2019; 10:1085. [PMID: 31156594 PMCID: PMC6527961 DOI: 10.3389/fmicb.2019.01085] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Accepted: 04/30/2019] [Indexed: 11/13/2022] Open
Abstract
Candidiasis is often associated with the formation of biofilms. Candida albicans biofilms are inherently resistant to many clinical antifungal agents and have increasingly been found to be the sources of C. albicans infections. Novel antifungal agents against C. albicans biofilms are urgently needed. The aim of this study was to investigate the effect of shikonin (SK) against C. albicans biofilms and to clarify the underlying mechanisms. XTT reduction assay showed that SK could not only inhibit the formation of biofilms but also destroy the maintenance of mature biofilms. In a mouse vulvovaginal candidiasis (VVC) model, the fungal burden was remarkably reduced upon SK treatment. Further study showed that SK could inhibit hyphae formation and reduce cellular surface hydrophobicity (CSH). Real-time reverse transcription-PCR analysis revealed that several hypha- and adhesion-specific genes were differentially expressed in SK-treated biofilm, including the downregulation of ECE1, HWP1, EFG1, CPH1, RAS1, ALS1, ALS3, CSH1 and upregulation of TUP1, NRG1, BCR1. Moreover, SK induced the production of farnesol, a quorum sensing molecule, and exogenous addition of farnesol enhanced the antibiofilm activity of SK. Taken together, these results indicated that SK could be a favorable antifungal agent in the clinical management of C. albicans biofilms.
Collapse
Affiliation(s)
- Yu Yan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Fei Tan
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hao Miao
- Institute of Basic Medicine, Chengde Medical University, Chengde, China
| | - Hui Wang
- School of Pharmacy, Second Military Medical University, Shanghai, China
| | - YingYing Cao
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
27
|
Sharma J, Rosiana S, Razzaq I, Shapiro RS. Linking Cellular Morphogenesis with Antifungal Treatment and Susceptibility in Candida Pathogens. J Fungi (Basel) 2019; 5:E17. [PMID: 30795580 PMCID: PMC6463059 DOI: 10.3390/jof5010017] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Fungal infections are a growing public health concern, and an increasingly important cause of human mortality, with Candida species being amongst the most frequently encountered of these opportunistic fungal pathogens. Several Candida species are polymorphic, and able to transition between distinct morphological states, including yeast, hyphal, and pseudohyphal forms. While not all Candida pathogens are polymorphic, the ability to undergo morphogenesis is linked with the virulence of many of these pathogens. There are also many connections between Candida morphogenesis and antifungal drug treatment and susceptibility. Here, we review how Candida morphogenesis-a key virulence trait-is linked with antifungal drugs and antifungal drug resistance. We highlight how antifungal therapeutics are able to modulate morphogenesis in both sensitive and drug-resistant Candida strains, the shared signaling pathways that mediate both morphogenesis and the cellular response to antifungal drugs and drug resistance, and the connection between Candida morphology, drug resistance, and biofilm growth. We further review the development of anti-virulence drugs, and targeting Candida morphogenesis as a novel therapeutic strategy to target fungal pathogens. Together, this review highlights important connections between fungal morphogenesis, virulence, and susceptibility to antifungals.
Collapse
Affiliation(s)
- Jehoshua Sharma
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Sierra Rosiana
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Iqra Razzaq
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Rebecca S Shapiro
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
28
|
Cordeiro RDA, Pereira LMG, de Sousa JK, Serpa R, Andrade ARC, Portela FVM, Evangelista AJDJ, Sales JA, Aguiar ALR, Mendes PBL, Brilhante RSN, Sidrim JJDC, Castelo-Branco DDSCM, Rocha MFG. Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of Trichosporon asahii and Trichosporon inkin. Med Mycol 2019; 57:1038-1045. [DOI: 10.1093/mmy/myy160] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 12/21/2018] [Indexed: 12/30/2022] Open
Abstract
Abstract
Trichosporon species have been considered important agents of opportunistic systemic infections, mainly among immunocompromised patients. Infections by Trichosporon spp. are generally associated with biofilm formation in invasive medical devices. These communities are resistant to therapeutic antifungals, and therefore the search for anti-biofilm molecules is necessary. This study evaluated the inhibitory effect of farnesol against planktonic and sessile cells of clinical Trichosporon asahii (n = 3) andTrichosporon inkin (n = 7) strains. Biofilms were evaluated during adhesion, development stages and after maturation for metabolic activity, biomass and protease activity, as well as regarding morphology and ultrastructure by optical microscopy, confocal laser scanning microscopy, and scanning electron microscopy. Farnesol inhibited Trichosporon planktonic growth by 80% at concentrations ranging from 600 to 1200 μM for T. asahii and from 75 to 600 μM for T. inkin. Farnesol was able to reduce cell adhesion by 80% at 300 μM for T. asahii and T. inkin at 600 μM, while biofilm development of both species was inhibited by 80% at concentration of 150 μM, altering their structure. After biofilm maturation, farnesol decreased T. asahii biofilm formation by 50% at 600 μM concentration and T. inkin formation at 300 μM. Farnesol inhibited gradual filamentation in a concentration range between 600 and 1200 μM. Farnesol caused reduction of filament structures of Trichosporon spp. at every stage of biofilm development analyzed. These data show the potential of farnesol as an anti-biofilm molecule.
Collapse
Affiliation(s)
- Rossana de Aguiar Cordeiro
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | | | - José Kleybson de Sousa
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | - Rosana Serpa
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | | | | | | | - Jamille Alencar Sales
- Faculty of Veterinary Medicine, Post Graduate Program in Veterinary Science, State University of Ceará, Brazil
| | - Ana Luiza Ribeiro Aguiar
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
| | | | - Raimunda Sâmia Nogueira Brilhante
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | - José Júlio da Costa Sidrim
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Medicine, Post Graduate Program in Medical Sciences, Federal University of Ceará, Brazil
| | | | - Marcos Fabio Gadelha Rocha
- Faculty of Medicine, Post Graduate Program in Medical Microbiology, Federal University of Ceará, Brazil
- Faculty of Veterinary Medicine, Post Graduate Program in Veterinary Science, State University of Ceará, Brazil
| |
Collapse
|
29
|
Navarathna DH, Lionakis MS, Roberts DD. Endothelial nitric oxide synthase limits host immunity to control disseminated Candida albicans infections in mice. PLoS One 2019; 14:e0223919. [PMID: 31671151 PMCID: PMC6822743 DOI: 10.1371/journal.pone.0223919] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 10/01/2019] [Indexed: 12/29/2022] Open
Abstract
Three isoforms of nitric oxide synthase (NOS) occur in mammals. High levels of NO produced by NOS2/iNOS can protect against bacterial and parasitic infections, but the role of NOS in fungal innate immunity is less clear. Compared to wild type mice, Nos3-/- mice showed significantly higher survival of candidemia caused by Candida albicans SC5314. NOS3/eNOS is expressed by endothelial cells in the kidney, and colonization of this organ was decreased during the sub-acute stage of disseminated candidiasis. Nos3-/- mice more rapidly eliminated Candida from the renal cortex and exhibited more balanced local inflammatory reactions, with similar macrophage but less neutrophil infiltration than in infected wild type. Levels of the serum cytokines IL-9, IL-12, IL-17 and chemokines GM-CSF, MIP1α, and MIP1β were significantly elevated, and IL-15 was significantly lower in infected Nos3-/- mice. Spleens of infected Nos3-/- mice had significantly more Th2 and Th9 but not other CD4+ T cells compared with wild type. Inflammatory genes associated with leukocyte chemotaxis, IL-1 signaling, TLR signaling and Th1 and Th2 cell differentiation pathways were significantly overexpressed in infected Nos3-/- kidneys, with Nos2 being the most strongly induced. Conversely, the general NOS inhibitor NG-nitro-L-arginine methyl ester increased virulence in the mouse candidemia model, suggesting that iNOS contributes to the protective mechanism in infected Nos3-/- mice. By moderating neutrophil infiltration, the absence of eNOS may reduce the collateral damage to kidney cortex, and Th-9 CD4+ cells may enhance clearance of the infection. These data suggest that selective eNOS inhibition could mitigate candidemia by a combination of systemic and local responses that promote a more effective host immune response.
Collapse
Affiliation(s)
- Dhammika H. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (DDR); (DHN)
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail: (DDR); (DHN)
| |
Collapse
|
30
|
Polke M, Leonhardt I, Kurzai O, Jacobsen ID. Farnesol signalling in Candida albicans – more than just communication. Crit Rev Microbiol 2017; 44:230-243. [DOI: 10.1080/1040841x.2017.1337711] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ines Leonhardt
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Oliver Kurzai
- Septomics Research Center, Friedrich Schiller University and Leibniz Institute for Natural Product Research and Infection Biology – Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| | - Ilse D. Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
- Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
- Friedrich Schiller University, Jena, Germany
| |
Collapse
|
31
|
Riekhof WR, Nickerson KW. Quorum sensing in Candida albicans: farnesol versus farnesoic acid. FEBS Lett 2017; 591:1637-1640. [PMID: 28603849 DOI: 10.1002/1873-3468.12694] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Read the Original article at doi: 10.1002/1873-3468.12636.
Collapse
Affiliation(s)
- Wayne R Riekhof
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| | - Kenneth W Nickerson
- School of Biological Sciences, University of Nebraska - Lincoln, Lincoln, NE, USA
| |
Collapse
|
32
|
Quorum sensing by farnesol revisited. Curr Genet 2017; 63:791-797. [DOI: 10.1007/s00294-017-0683-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 02/01/2017] [Accepted: 02/07/2017] [Indexed: 12/18/2022]
|
33
|
Nickerson KW, Atkin AL. Deciphering fungal dimorphism: Farnesol's unanswered questions. Mol Microbiol 2017; 103:567-575. [DOI: 10.1111/mmi.13601] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 12/30/2022]
Affiliation(s)
- Kenneth W. Nickerson
- School of Biological Sciences; University of Nebraska; Lincoln NE 68588 0666 USA
| | - Audrey L. Atkin
- School of Biological Sciences; University of Nebraska; Lincoln NE 68588 0666 USA
| |
Collapse
|
34
|
The in vitro and in vivo efficacy of fluconazole in combination with farnesol against Candida albicans isolates using a murine vulvovaginitis model. J Microbiol 2016; 54:753-760. [PMID: 27796932 DOI: 10.1007/s12275-016-6298-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/14/2022]
Abstract
Farnesol is a quorum-sensing molecule that inhibits biofilm formation in Candida albicans. Previous in vitro data suggest that, in combination with certain antifungals, farnesol may have an adjuvant anti-biofilm agent. However, the in vivo efficacy of farnesol is very questionable. Therefore, the in vitro and in vivo activity of fluconazole combined with farnesol was evaluated against C. albicans biofilms using fractional inhibitory concentration index (FICI) determination, time-kill experiments and a murine vulvovaginitis model. The median biofilm MICs of fluconazole-sensitive C. albicans isolates ranged between 4 -> 512 mg/L and 150-300 μM for fluconazole and farnesol, respectively. These values were 512 -> 512 mg/L and > 300 μM for fluconazole-resistant clinical isolates. Farnesol decreased the median MICs of fluconazole by 2-64-fold for biofilms. Based on FICI, synergistic interaction was observed only in the case of the sessile SC5314 reference strain (FICIs: 0.16-0.27). In time-kill studies, only the 512 mg/L fluconazole and 512 mg/L fluconazole + 75 μM farnesol reduced biofilm mass significantly at each time point in the case of all isolates. The combination reduced the metabolic activity of biofilms for all isolates in a concentration- and time-dependent manner. Our findings revealed that farnesol alone was not protective in a murine vulvovaginitis model. Farnesol was not beneficial in combination with fluconazole for fluconazole-susceptible isolates, but partially increased fluconazole activity against one fluconazole-resistant isolate, but not the other one.
Collapse
|
35
|
Polke M, Sprenger M, Scherlach K, Albán-Proaño MC, Martin R, Hertweck C, Hube B, Jacobsen ID. A functional link between hyphal maintenance and quorum sensing in Candida albicans. Mol Microbiol 2016; 103:595-617. [PMID: 27623739 DOI: 10.1111/mmi.13526] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2016] [Indexed: 01/04/2023]
Abstract
Morphogenesis in Candida albicans requires hyphal initiation and maintenance, and both processes are regulated by the fungal quorum sensing molecule (QSM) farnesol. We show that deletion of C. albicans EED1, which is crucial for hyphal extension and maintenance, led to a dramatically increased sensitivity to farnesol, and thus identified the first mutant hypersensitive to farnesol. Furthermore, farnesol decreased the transient filamentation of an eed1Δ strain without inducing cell death, indicating that two separate mechanisms mediate quorum sensing and cell lysis by farnesol. To analyze the cause of farnesol hypersensitivity we constructed either hyperactive or deletion mutants of factors involved in farnesol signaling, by introducing the hyperactive RAS1G13V or pADH1-CYR1CAT allele, or deleting CZF1 or NRG1 respectively. Neither of the constructs nor the exogenous addition of dB-cAMP was able to rescue the farnesol hypersensitivity, highlighting that farnesol mediates its effects not only via the cAMP pathway. Interestingly, the eed1Δ strain also displayed increased farnesol production. When eed1Δ was grown under continuous medium flow conditions, to remove accumulating QSMs from the supernatant, maintenance of eed1Δ filamentation, although not restored, was significantly prolonged, indicating a link between farnesol sensitivity, production, and the hyphal maintenance-defect in the eed1Δ mutant strain.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Marcel Sprenger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Kirstin Scherlach
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - María Cristina Albán-Proaño
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Ronny Martin
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany
| | - Christian Hertweck
- Department of Biomolecular Chemistry, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany.,Friedrich Schiller University, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology, Hans Knoell Institute (HKI), Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Integrated Research and Treatment Center, Center for Sepsis Control and Care (CSCC), University Hospital, Jena, Germany
| |
Collapse
|
36
|
Navarathna DHMLP, Pathirana RU, Lionakis MS, Nickerson KW, Roberts DD. Candida albicans ISW2 Regulates Chlamydospore Suspensor Cell Formation and Virulence In Vivo in a Mouse Model of Disseminated Candidiasis. PLoS One 2016; 11:e0164449. [PMID: 27727302 PMCID: PMC5058487 DOI: 10.1371/journal.pone.0164449] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/26/2016] [Indexed: 01/05/2023] Open
Abstract
Formation of chlamydospores by Candida albicans was an established medical diagnostic test to confirm candidiasis before the molecular era. However, the functional role and pathological relevance of this in vitro morphological transition to pathogenesis in vivo remain unclear. We compared the physical properties of in vitro-induced chlamydospores with those of large C. albicans cells purified by density gradient centrifugation from Candida-infected mouse kidneys. The morphological and physical properties of these cells in kidneys of mice infected intravenously with wild type C. albicans confirmed that chlamydospores can form in infected kidneys. A previously reported chlamydospore-null Δisw2/Δisw2 mutant was used to investigate its role in virulence and chlamydospore induction. Virulence of the Δisw2/Δisw2 mutant strain was reduced 3.4-fold compared to wild type C. albicans or the ISW2 reconstituted strain. Altered host inflammatory reactions to the null mutant further indicate that ISW2 is a virulence factor in C. albicans. ISW2 deletion abolished chlamydospore formation within infected mouse kidneys, whereas the reconstituted strain restored chlamydospore formation in kidneys. Under chlamydospore inducing conditions in vitro, deletion of ISW2 significantly delayed chlamydospore formation, and those late induced chlamydospores lacked associated suspensor cells while attaching laterally to hyphae via novel spore-hypha septa. Our findings establish the induction of chlamydospores by C. albicans during mouse kidney colonization. Our results indicate that ISW2 is not strictly required for chlamydospores formation but is necessary for suspensor cell formation. The importance of ISW2 in chlamydospore morphogenesis and virulence may lead to additional insights into morphological differentiation and pathogenesis of C. albicans in the host microenvironment.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Ruvini U. Pathirana
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - Michail S. Lionakis
- Fungal Pathogenesis Unit, Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Kenneth W. Nickerson
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, United States of America
| |
Collapse
|
37
|
Bandara HMHN, Herpin MJ, Kolacny D, Harb A, Romanovicz D, Smyth HDC. Incorporation of Farnesol Significantly Increases the Efficacy of Liposomal Ciprofloxacin against Pseudomonas aeruginosa Biofilms in Vitro. Mol Pharm 2016; 13:2760-70. [PMID: 27383205 DOI: 10.1021/acs.molpharmaceut.6b00360] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The challenge of eliminating Pseudomonas aeruginosa infections, such as in cystic fibrosis lungs, remains unchanged due to the rapid development of antibiotic resistance. Poor drug penetration into dense P. aeruginosa biofilms plays a vital role in ineffective clearance of the infection. Thus, the current antibiotic therapy against P. aeruginosa biofilms need to be revisited and alternative antibiofilm strategies need to be invented. Fungal quorum sensing molecule (QSM), farnesol, appears to have detrimental effects on P. aeruginosa. Thus, this study aimed to codeliver naturally occurring QSM farnesol, with the antibiotic ciprofloxacin as a liposomal formulation to eradicate P. aeruginosa biofilms. Four different liposomes (with ciprofloxacin and farnesol, Lcip+far; with ciprofloxacin, Lcip; with farnesol, Lfar; control, Lcon) were prepared using dehydration-rehydration method and characterized. Drug entrapment and release were evaluated by spectrometry and high performance liquid chromatography (HPLC). The efficacy of liposomes was assessed using standard biofilm assay. Liposome-treated 24 h P. aeruginosa biofilms were quantitatively assessed by XTT reduction assay and crystal violet assay, and qualitatively by confocal laser scanning microscopy (CLSM) and transmission electron microscopy (TEM). Ciprofloxacin release from liposomes was higher when encapsulated with farnesol (Lcip+far) compared to Lcip (3.06% vs 1.48%), whereas farnesol release was lower when encapsulated with ciprofloxacin (Lcip+far) compared to Lfar (1.81% vs 4.75%). The biofilm metabolism was significantly lower when treated with Lcip+far or Lcip compared to free ciprofloxacin (XTT, P < 0.05). When administered as Lcip+far, the ciprofloxacin concentration required to achieve similar biofilm inhibition was 125-fold or 10-fold lower compared to free ciprofloxacin or Lcip, respectively (P < 0.05). CLSM and TEM confirmed predominant biofilm disruption, greater dead cell ratio, and increased depth of biofilm killing when treated with Lcip+far compared to other liposomal preparations. Thus, codelivery of farnesol and ciprofloxacin is likely to be a promising approach to battle antibiotic resistant P. aeruginosa biofilms by enhancing biofilm killing at significantly lower antibiotic doses.
Collapse
Affiliation(s)
- H M H N Bandara
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - M J Herpin
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - D Kolacny
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - A Harb
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| | - D Romanovicz
- Institute of Cellular and Molecular Biology, College of Natural Sciences, The University of Texas at Austin , Austin, Texas 78712, United States
| | - H D C Smyth
- Division of Pharmaceutics, College of Pharmacy, The University of Texas at Austin , Austin, Texas 78712, United States
| |
Collapse
|
38
|
Krom BP, Levy N, Meijler MM, Jabra-Rizk MA. Farnesol and Candida albicans: Quorum Sensing or Not Quorum Sensing? Isr J Chem 2016. [DOI: 10.1002/ijch.201500025] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
39
|
Abstract
Fungal biofilms have become an increasingly important clinical problem. The widespread use of antibiotics, frequent use of indwelling medical devices, and a trend toward increased patient immunosuppression have resulted in a creation of opportunity for clinically important yeasts and molds to form biofilms. This review will discuss the diversity and importance of fungal biofilms in the context of clinical medicine, provide novel insights into the clinical management of fungal biofilm infection, present evidence why these structures are recalcitrant to antifungal therapy, and discuss how our knowledge and understanding may lead to novel therapeutic intervention.
Collapse
|
40
|
Abstract
Fungal infections constitute a major threat to an escalating number of critically ill patients. Fungi are eukaryotic organisms and, as such, there is a limited armamentarium of antifungal drugs, which leads to high mortality rates. Moreover, fungal infections are often associated with the formation of biofilms, which contribute to virulence and further complicate treatment due to the high level of antifungal drug resistance displayed by sessile cells within these microbial communities. Thus, the treatment of fungal infections associated with a biofilm etiology represents a formidable and unmet clinical challenge. The increasing importance and awareness of fungal biofilms is reflected by the fact that this is now an area of very active research. Studies in the last decade have provided important insights into fungal biofilm biology, physiology, and pathology, as well as into the molecular basis of biofilm resistance. Here we discuss how this accumulated knowledge may inform the development of new antibiofilm strategies and therapeutics that are urgently needed.
Collapse
|
41
|
Wongsuk T, Pumeesat P, Luplertlop N. Fungal quorum sensing molecules: Role in fungal morphogenesis and pathogenicity. J Basic Microbiol 2016; 56:440-7. [PMID: 26972663 DOI: 10.1002/jobm.201500759] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 02/19/2016] [Indexed: 01/19/2023]
Abstract
When microorganisms live together in high numbers, they need to communicate with each other. To achieve cell-cell communication, microorganisms secrete molecules called quorum-sensing molecules (QSMs) that control their biological activities and behaviors. Fungi secrete QSMs such as farnesol, tyrosol, phenylethanol, and tryptophol. The role of QSMs in fungi has been widely studied in both yeasts and filamentous fungi, for example in Candida albicans, C. dubliniensis, Aspergillus niger, A. nidulans, and Fusarium graminearum. QSMs impact fungal morphogenesis (yeast-to-hypha formation) and also play a role in the germination of macroconidia. QSMs cause fungal cells to initiate programmed cell death, or apoptosis, and play a role in fungal pathogenicity. Several types of QSMs are produced during stages of biofilm development to control cell population or morphology in biofilm communities. This review article emphasizes the role of fungal QSMs, especially in fungal morphogenesis, biofilm formation, and pathogenicity. Information about QSMs may lead to improved measures for controlling fungal infection.
Collapse
Affiliation(s)
- Thanwa Wongsuk
- Department of Clinical Pathology, Faculty of Medicine, Vajira Hospital, Navamindradhiraj University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Potjaman Pumeesat
- Department of Medical Technology, Faculty of Science and Technology, Bansomdejchaopraya Rajabhat University, Bangkok, Thailand.,Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Natthanej Luplertlop
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Center for Emerging and Neglected Infectious Diseases, Mahidol University, Salaya Campus, Nakorn Pathom, Thailand
| |
Collapse
|
42
|
Jung SI, Shin JH, Kim SH, Kim J, Kim JH, Choi MJ, Chung EK, Lee K, Koo SH, Chang HH, Bougnoux ME, d’Enfert C. Comparison of E,E-Farnesol Secretion and the Clinical Characteristics of Candida albicans Bloodstream Isolates from Different Multilocus Sequence Typing Clades. PLoS One 2016; 11:e0148400. [PMID: 26848577 PMCID: PMC4743943 DOI: 10.1371/journal.pone.0148400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2015] [Accepted: 01/18/2016] [Indexed: 11/18/2022] Open
Abstract
Using multilocus sequence typing (MLST), Candida albicans can be subdivided into 18 different clades. Farnesol, a quorum-sensing molecule secreted by C. albicans, is thought to play an important role in the development of C. albicans biofilms and is also a virulence factor. This study evaluated whether C. albicans bloodstream infection (BSI) strains belonging to different MLST clades secrete different levels of E,E-farnesol (FOH) and whether they have different clinical characteristics. In total, 149 C. albicans BSI isolates from ten Korean hospitals belonging to clades 18 (n = 28), 4 (n = 23), 1 (n = 22), 12 (n = 17), and other clades (n = 59) were assessed. For each isolate, the FOH level in 24-hour biofilms was determined in filtered (0.45 μm) culture supernatant using high-performance liquid chromatography. Marked differences in FOH secretion from biofilms (0.10–6.99 μM) were observed among the 149 BSI isolates. Clade 18 isolates secreted significantly more FOH than did non-clade 18 isolates (mean ± SEM; 2.66 ± 0.22 vs. 1.69 ± 0.10 μM; P < 0.001). Patients with isolates belonging to clade 18 had a lower mean severity of illness than other patients, as measured using the “acute physiology and chronic health evaluation” (APACHE) III score (14.4 ± 1.1 vs. 18.0 ± 0.7; P < 0.05). This study provides evidence that C. albicans BSI isolates belonging to the most prevalent MLST clade (clade 18) in Korea are characterized by increased levels of FOH secretion and less severe illness.
Collapse
Affiliation(s)
- Sook-In Jung
- Department of Internal Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jong Hee Shin
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
- * E-mail:
| | - Soo Hyun Kim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Jin Kim
- Biomedical Research Institute, Chonnam National University Hospital, Gwangju, Korea
| | - Joo Hee Kim
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Min Ji Choi
- Department of Laboratory Medicine, Chonnam National University Medical School, Gwangju, South Korea
| | - Eun-Kyung Chung
- Department of Medical Education, Chonnam National University Medical School, Gwangju, South Korea
| | - Kyungwon Lee
- Department of Laboratory Medicine and Research Institute of Bacterial Resistance, Yonsei University College of Medicine, Seoul, Korea
| | - Sun Hoe Koo
- Department of Laboratory Medicine, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Hyun Ha Chang
- Department of Internal Medicine, Kyungpook National University School of Medicine, Daegu, South Korea
| | - Marie-Elisabeth Bougnoux
- Institut Pasteur, Unité Biologie et Pathogenicité Fongiques, F-75015 Paris, France
- INRA, USC2019, F-75015 Paris, France
- Laboratoire de Parasitologie-Mycologie, Service de Microbiologie, Hôpital Necker-Enfants Malades, Université Paris Descartes, Faculté de Médicine, F-75015 Paris, France
| | - Christophe d’Enfert
- Institut Pasteur, Unité Biologie et Pathogenicité Fongiques, F-75015 Paris, France
- INRA, USC2019, F-75015 Paris, France
| |
Collapse
|
43
|
Ting M, Whitaker EJ, Albandar JM. Systematic review of the in vitro effects of statins on oral and perioral microorganisms. Eur J Oral Sci 2015; 124:4-10. [PMID: 26718458 DOI: 10.1111/eos.12239] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/14/2015] [Indexed: 01/07/2023]
Abstract
Statins are medications administered orally and are widely used for lowering the blood cholesterol level. The aim of this study was to investigate the effects of orally administered statins on microorganisms infecting oral and perioral tissues. We performed a systematic review of published studies of the in vitro antimicrobial effects of statins on bacteria, viruses, and fungi, and searched PubMed, Web of Science, Cochrane Central, and Google scholar. Studies show that most statins exhibit antimicrobial effects against various oral microorganisms. Simvastatin is most effective against the periodontal pathogens Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis, and against most dental plaque bacteria, including Streptococcus mutans. Statins also exhibit antiviral properties against human cytomegalovirus, hepatitis B virus, and hepatitis C virus, and have antifungal properties against Candida albicans, Aspergillus fumigatus, and Zygomycetes spp. There were notable differences in the minimum inhibitory concentrations (MICs) between different studies, which may be attributed to differences in study design. Further studies are warranted to ascertain if statins can be solubilized so that patients, who have been prescribed statins for cardiovascular diseases, can use the medication as a swish and swallow, giving patients the added benefit of the antimicrobial action topically in the mouth against infectious oral diseases.
Collapse
Affiliation(s)
- Miriam Ting
- Predoctoral Program, Temple University School of Dentistry, Philadelphia, PA, USA
| | - Eugene J Whitaker
- Department of Restorative Dentistry, Temple University School of Dentistry, Philadelphia, PA, USA
| | - Jasim M Albandar
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, PA, USA
| |
Collapse
|
44
|
Lopez-Medina E, Fan D, Coughlin LA, Ho EX, Lamont IL, Reimmann C, Hooper LV, Koh AY. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis. PLoS Pathog 2015; 11:e1005129. [PMID: 26313907 PMCID: PMC4552174 DOI: 10.1371/journal.ppat.1005129] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 08/04/2015] [Indexed: 01/09/2023] Open
Abstract
Bacterial-fungal interactions have important physiologic and medical ramifications, but the mechanisms of these interactions are poorly understood. The gut is host to trillions of microorganisms, and bacterial-fungal interactions are likely to be important. Using a neutropenic mouse model of microbial gastrointestinal colonization and dissemination, we show that the fungus Candida albicans inhibits the virulence of the bacterium Pseudomonas aeruginosa by inhibiting P. aeruginosa pyochelin and pyoverdine gene expression, which plays a critical role in iron acquisition and virulence. Accordingly, deletion of both P. aeruginosa pyochelin and pyoverdine genes attenuates P. aeruginosa virulence. Heat-killed C. albicans has no effect on P. aeruginosa, whereas C. albicans secreted proteins directly suppress P. aeruginosa pyoverdine and pyochelin expression and inhibit P. aeruginosa virulence in mice. Interestingly, suppression or deletion of pyochelin and pyoverdine genes has no effect on P. aeruginosa’s ability to colonize the GI tract but does decrease P. aeruginosa’s cytotoxic effect on cultured colonocytes. Finally, oral iron supplementation restores P. aeruginosa virulence in P. aeruginosa and C. albicans colonized mice. Together, our findings provide insight into how a bacterial-fungal interaction can modulate bacterial virulence in the intestine. Previously described bacterial-fungal antagonistic interactions have focused on growth inhibition or colonization inhibition/modulation, yet here we describe a novel observation of fungal-inhibition of bacterial effectors critical for virulence but not important for colonization. These findings validate the use of a mammalian model system to explore the complexities of polymicrobial, polykingdom infections in order to identify new therapeutic targets for preventing microbial disease. Pseudomonas aeruginosa and Candida albicans are two medically important human pathogens that often co-infect or co-colonize the same human niches, such as the gut. In a normal healthy host, P. aeruginosa and C. albicans can colonize the gut without any significant pathologic sequelae. But in immunocompromised hosts, both pathogens can escape the gut and cause life-threatening disseminated infections. Yet the mechanisms and pathogenic consequences of interactions between these two pathogens within a living mammalian host are not well understood. Here, we use a mouse model of P. aeruginosa and C. albicans gut co-infection to better understand the mechanisms by which C. albicans inhibits P. aeruginosa infection. C. albicans inhibits the expression of P. aeruginosa genes that are vital for iron acquisition. Accordingly, deleting these iron acquisition genes in P. aeruginosa prevents infection. Understanding how microbes interact and antagonize each other may help us identify new potential therapeutic targets for preventing or treating infections.
Collapse
Affiliation(s)
- Eduardo Lopez-Medina
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Di Fan
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Laura A. Coughlin
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Evi X. Ho
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Iain L. Lamont
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Cornelia Reimmann
- Department of Fundamental Microbiology, University of Lausanne, Lausanne, Switzerland
| | - Lora V. Hooper
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- The Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Center for Genetics of Host Defense, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Andrew Y. Koh
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
- * E-mail:
| |
Collapse
|
45
|
Abstract
The polymorphic commensal fungus Candida albicans causes life-threatening disease via bloodstream and intra-abdominal infections in immunocompromised and transplant patients. Although host immune evasion is a common strategy used by successful human fungal pathogens, C. albicans provokes recognition by host immune cells less capable of destroying it. To accomplish this, C. albicans white cells secrete a low-molecular-weight chemoattractive stimulant(s) of macrophages, a phagocyte that they are able to survive within and eventually escape from. C. albicans opaque cells do not secrete this chemoattractive stimulant(s). We report here a physiological mechanism that contributes to the differences in the interaction of C. albicans white and opaque cells with macrophages. E,E-Farnesol, which is secreted by white cells only, is a potent stimulator of macrophage chemokinesis, whose activity is enhanced by yeast cell wall components and aromatic alcohols. E,E-farnesol results in up to an 8.5-fold increase in macrophage migration in vitro and promotes a 3-fold increase in the peritoneal infiltration of macrophages in vivo. Therefore, modulation of farnesol secretion to stimulate host immune recognition by macrophages may help explain why this commensal is such a successful pathogen.
Collapse
|
46
|
Effect of Trans, Trans-Farnesol on Pseudogymnoascus destructans and Several Closely Related Species. Mycopathologia 2015; 180:325-32. [PMID: 26162644 DOI: 10.1007/s11046-015-9921-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 06/30/2015] [Indexed: 12/20/2022]
Abstract
Bat white-nose syndrome, caused by the psychrophilic fungus Pseudogymnoascus destructans, has dramatically reduced the populations of many hibernating North American bat species. The search for effective biological control agents targeting P. destructans is of great importance. We report that the sesquiterpene trans, trans-farnesol, which is also a Candida albicans quorum sensing compound, prevented in vitro conidial germination for at least 14 days and inhibited growth of preexisting hyphae of five P. destructans isolates in filtered potato dextrose broth at 10 °C. Depending on the inoculation concentrations, both spore and hyphal inhibition occurred upon exposure to concentrations as low as 15-20 µM trans, trans-farnesol. In contrast, most North American Pseudogymnoascus isolates were more tolerant to the exposure of trans, trans-farnesol. Our results suggest that some Candida isolates may have the potential to inhibit the growth of P. destructans and that the sesquiterpene trans, trans-farnesol has the potential to be utilized as a biological control agent.
Collapse
|
47
|
Navarathna DHMLP, Stein EV, Lessey-Morillon EC, Nayak D, Martin-Manso G, Roberts DD. CD47 Promotes Protective Innate and Adaptive Immunity in a Mouse Model of Disseminated Candidiasis. PLoS One 2015; 10:e0128220. [PMID: 26010544 PMCID: PMC4444371 DOI: 10.1371/journal.pone.0128220] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 04/24/2015] [Indexed: 11/19/2022] Open
Abstract
CD47 is a widely expressed receptor that regulates immunity by engaging its counter-receptor SIRPα on phagocytes and its secreted ligand thrombospondin-1. Mice lacking CD47 can exhibit enhanced or impaired host responses to bacterial pathogens, but its role in fungal immunity has not been examined. cd47-/- mice on a C57BL/6 background showed significantly increased morbidity and mortality following Candida albicans infection when compared with wild-type mice. Despite normal fungal colonization at earlier times, cd47-/- mice at four days post-infection had increased colonization of brain and kidneys accompanied by stronger inflammatory reactions. Neutrophil and macrophage numbers were significantly elevated in kidneys and neutrophils in the brains of infected cd47-/- mice. However, no defect in phagocytic activity towards C. albicans was observed in cd47-/- bone-marrow-derived macrophages, and neutrophil and macrophage killing of C. albicans was not impaired. CD47-deficiency did not alter the early humoral immune response to C. albicans. Th1, Th2, and Th17 population of CD4+ T cells were expanded in the spleen, and gene expression profiles of spleen and kidney showed stronger pro-inflammatory signaling in infected cd47-/- mice. The chemoattractant chemokines MIP-2α and MIP-2β were highly expressed in infected spleens of cd47-/- mice. G-CSF, GM-CSF, and the inflammasome component NLRP3 were more highly expressed in infected cd47-/- kidneys than in infected wild-type controls. Circulating pro- (TNF-α, IL-6) and anti-inflammatory cytokines (IL-10) were significantly elevated, but IL-17 was decreased. These data indicate that CD47 plays protective roles against disseminated candidiasis and alters pro-inflammatory and immunosuppressive pathways known to regulate innate and T cell immunity.
Collapse
Affiliation(s)
- Dhammika H. M. L. P. Navarathna
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
| | - Erica V. Stein
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
- Microbiology and Immunology Program of the Institute for Biomedical Sciences, Departments of Microbiology, Immunology and Tropical Medicine, George Washington University, Washington, D.C. 20037, United States of America
| | - Elizabeth C. Lessey-Morillon
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
| | - Debasis Nayak
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, United States of America
| | - Gema Martin-Manso
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
| | - David D. Roberts
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, United States of America
- * E-mail:
| |
Collapse
|
48
|
The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. mBio 2015; 6:e00143. [PMID: 25784697 PMCID: PMC4453522 DOI: 10.1128/mbio.00143-15] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Farnesol, produced by the polymorphic fungus Candida albicans, is the first quorum-sensing molecule discovered in eukaryotes. Its main function is control of C. albicans filamentation, a process closely linked to pathogenesis. In this study, we analyzed the effects of farnesol on innate immune cells known to be important for fungal clearance and protective immunity. Farnesol enhanced the expression of activation markers on monocytes (CD86 and HLA-DR) and neutrophils (CD66b and CD11b) and promoted oxidative burst and the release of proinflammatory cytokines (tumor necrosis factor alpha [TNF-α] and macrophage inflammatory protein 1 alpha [MIP-1α]). However, this activation did not result in enhanced fungal uptake or killing. Furthermore, the differentiation of monocytes to immature dendritic cells (iDC) was significantly affected by farnesol. Several markers important for maturation and antigen presentation like CD1a, CD83, CD86, and CD80 were significantly reduced in the presence of farnesol. Furthermore, farnesol modulated migrational behavior and cytokine release and impaired the ability of DC to induce T cell proliferation. Of major importance was the absence of interleukin 12 (IL-12) induction in iDC generated in the presence of farnesol. Transcriptome analyses revealed a farnesol-induced shift in effector molecule expression and a down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor during monocytes to iDC differentiation. Taken together, our data unveil the ability of farnesol to act as a virulence factor of C. albicans by influencing innate immune cells to promote inflammation and mitigating the Th1 response, which is essential for fungal clearance. Farnesol is a quorum-sensing molecule which controls morphological plasticity of the pathogenic yeast Candida albicans. As such, it is a major mediator of intraspecies communication. Here, we investigated the impact of farnesol on human innate immune cells known to be important for fungal clearance and protective immunity. We show that farnesol is able to enhance inflammation by inducing activation of neutrophils and monocytes. At the same time, farnesol impairs differentiation of monocytes into immature dendritic cells (iDC) by modulating surface phenotype, cytokine release and migrational behavior. Consequently, iDC generated in the presence of farnesol are unable to induce proper T cell responses and fail to secrete Th1 promoting interleukin 12 (IL-12). As farnesol induced down-regulation of the granulocyte-macrophage colony-stimulating factor (GM-CSF) receptor, desensitization to GM-CSF could potentially explain transcriptional reprofiling of iDC effector molecules. Taken together, our data show that farnesol can also mediate Candida-host communication and is able to act as a virulence factor.
Collapse
|
49
|
Abstract
Only few Candida species, e.g., Candida albicans, Candida glabrata, Candida dubliniensis, and Candida parapsilosis, are successful colonizers of a human host. Under certain circumstances these species can cause infections ranging from superficial to life-threatening disseminated candidiasis. The success of C. albicans, the most prevalent and best studied Candida species, as both commensal and human pathogen depends on its genetic, biochemical, and morphological flexibility which facilitates adaptation to a wide range of host niches. In addition, formation of biofilms provides additional protection from adverse environmental conditions. Furthermore, in many host niches Candida cells coexist with members of the human microbiome. The resulting fungal-bacterial interactions have a major influence on the success of C. albicans as commensal and also influence disease development and outcome. In this chapter, we review the current knowledge of important survival strategies of Candida spp., focusing on fundamental fitness and virulence traits of C. albicans.
Collapse
Affiliation(s)
- Melanie Polke
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany
| | - Bernhard Hube
- Department Microbial Pathogenicity Mechanisms, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany; Center for Sepsis Control and Care, Jena University Hospital, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knoell-Institute, Jena, Germany; Friedrich-Schiller-University, Jena, Germany
| |
Collapse
|
50
|
Katragkou A, McCarthy M, Alexander EL, Antachopoulos C, Meletiadis J, Jabra-Rizk MA, Petraitis V, Roilides E, Walsh TJ. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. J Antimicrob Chemother 2014; 70:470-8. [PMID: 25288679 DOI: 10.1093/jac/dku374] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
OBJECTIVES Biofilm formation by Candida albicans poses an important therapeutic challenge in human diseases. Typically, conventional antifungal agents encounter difficulty in treating and fully eradicating biofilm-related infections. Novel therapeutic approaches are needed to treat recalcitrant Candida biofilms. Farnesol is a quorum-sensing molecule, which induces apoptosis, inhibits Ras protein pathways and profoundly affects the morphogenesis of C. albicans. We therefore investigated the interactions between farnesol and different classes of antifungal agents. METHODS The combined antifungal effects of triazoles (fluconazole), polyenes (amphotericin B) and echinocandins (micafungin) with farnesol against C. albicans biofilms were assessed in vitro. Antifungal activity was determined by the XTT metabolic assay and confocal microscopy. The nature and the intensity of the interactions were assessed using the Loewe additivity model [fractional inhibitory concentration (FIC) index] and the Bliss independence (BI) model. RESULTS Significant synergy was found between each of the three antifungal agents and farnesol, while antagonism was not observed for any of the combinations tested. The greatest synergistic effect was found with the farnesol/micafungin combination, for which the BI-based model showed the observed effects as being 39%-52% higher than expected if the drugs had been acting independently. The FIC indices ranged from 0.49 to 0.79, indicating synergism for farnesol/micafungin and farnesol/fluconazole and no interaction for farnesol/amphotericin B. Structural changes in the biofilm correlated well with the efficacies of these combinations. The maximum combined effect was dependent on the farnesol concentration for micafungin and amphotericin B. CONCLUSIONS Farnesol exerts a synergistic or additive interaction with micafungin, fluconazole and amphotericin B against C. albicans biofilms, thus warranting further in vivo study.
Collapse
Affiliation(s)
- Aspasia Katragkou
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Matthew McCarthy
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA
| | | | - Charalampos Antachopoulos
- Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Mary Ann Jabra-Rizk
- Department of Oncology and Diagnostic Sciences, University of Maryland, Baltimore, MD, USA Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Vidmantas Petraitis
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA
| | - Emmanuel Roilides
- Infectious Disease Unit, 3rd Department of Pediatrics, Faculty of Medicine, Aristotle University School of Health Sciences, Hippokration Hospital, Thessaloniki, Greece
| | - Thomas J Walsh
- Transplantation-Oncology Infectious Diseases Program, Division of Infectious Diseases, Weill Cornell Medical Center of Cornell University, New York, NY, USA Department of Pediatrics, Weill Cornell Medical College, New York, NY, USA Department of Microbiology and Immunology, Weill Cornell Medical College, New York, NY, USA
| |
Collapse
|