1
|
Willett JLE, Dunny GM. Insights into ecology, pathogenesis, and biofilm formation of Enterococcus faecalis from functional genomics. Microbiol Mol Biol Rev 2024:e0008123. [PMID: 39714182 DOI: 10.1128/mmbr.00081-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
SUMMARYEnterococcus faecalis is a significant resident of the gastrointestinal tract of most animals, including humans. Although generally non-pathogenic in healthy hosts, this microbe is adept at the exploitation of compromises in host immune functions, resulting in life-threatening opportunistic infections whose treatments are complicated by a high degree of intrinsic and acquired resistance to antimicrobial chemotherapy. Historically, progress in enterococcal research was limited by a lack of experimental models that replicate natural infection pathways and the relevance of in vitro studies to the natural biology of the organism. In this review, we summarize the history of enterococcal research during the 20th and early 21st centuries and describe more recent genetic and genomic tools and screens developed to address challenges in the field. We also describe how the results of recent studies reveal the importance of previously uncharacterized enterococcal genes, and we provide examples of interesting determinants that have emerged as important contributors to enterococcal biology. These factors may also serve as targets for future vaccines and chemotherapeutic agents to combat life-threatening hospital infections.
Collapse
Affiliation(s)
- Julia L E Willett
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Gary M Dunny
- Department of Microbiology & Immunology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| |
Collapse
|
2
|
Madani WAM, Ramos Y, Cubillos-Ruiz JR, Morales DK. Enterococcal-host interactions in the gastrointestinal tract and beyond. FEMS MICROBES 2024; 5:xtae027. [PMID: 39391373 PMCID: PMC11466040 DOI: 10.1093/femsmc/xtae027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/05/2024] [Accepted: 09/06/2024] [Indexed: 10/12/2024] Open
Abstract
The gastrointestinal tract (GIT) is typically considered the natural niche of enterococci. However, these bacteria also inhabit extraintestinal tissues, where they can disrupt organ physiology and cause life-threatening infections. Here, we discuss how enterococci, primarily Enterococcus faecalis, interact with the intestine and other host anatomical locations such as the oral cavity, heart, liver, kidney, and vaginal tract. The metabolic flexibility of these bacteria allows them to quickly adapt to new environments, promoting their persistence in diverse tissues. In transitioning from commensals to pathogens, enterococci must overcome harsh conditions such as nutrient competition, exposure to antimicrobials, and immune pressure. Therefore, enterococci have evolved multiple mechanisms to adhere, colonize, persist, and endure these challenges in the host. This review provides a comprehensive overview of how enterococci interact with diverse host cells and tissues across multiple organ systems, highlighting the key molecular pathways that mediate enterococcal adaptation, persistence, and pathogenic behavior.
Collapse
Affiliation(s)
- Wiam Abdalla Mo Madani
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
| | - Yusibeska Ramos
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| | - Juan R Cubillos-Ruiz
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, NY 10065, United States
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, NY 10065, United States
| | - Diana K Morales
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, NY 10065, United States
| |
Collapse
|
3
|
Colomer-Winter C, Yong AMH, Chong KKL, Veleba M, Choo PY, Gao IH, Matysik A, Ho FK, Chen SL, Kline KA. The HtrA chaperone monitors sortase-assembled pilus biogenesis in Enterococcus faecalis. PLoS Genet 2024; 20:e1011071. [PMID: 39102428 PMCID: PMC11326707 DOI: 10.1371/journal.pgen.1011071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 08/15/2024] [Accepted: 07/09/2024] [Indexed: 08/07/2024] Open
Abstract
Sortase-assembled pili contribute to virulence in many Gram-positive bacteria. In Enterococcus faecalis, the endocarditis and biofilm-associated pilus (Ebp) is polymerized on the membrane by sortase C (SrtC) and attached to the cell wall by sortase A (SrtA). In the absence of SrtA, polymerized pili remain anchored to the membrane (i.e. off-pathway). Here we show that the high temperature requirement A (HtrA) bifunctional chaperone/protease of E. faecalis is a quality control system that clears aberrant off-pathway pili from the cell membrane. In the absence of HtrA and SrtA, accumulation of membrane-bound pili leads to cell envelope stress and partially induces the regulon of the ceftriaxone resistance-associated CroRS two-component system, which in turn causes hyper-piliation and cell morphology alterations. Inactivation of croR in the OG1RF ΔsrtAΔhtrA background partially restores the observed defects of the ΔsrtAΔhtrA strain, supporting a role for CroRS in the response to membrane perturbations. Moreover, absence of SrtA and HtrA decreases basal resistance of E. faecalis against cephalosporins and daptomycin. The link between HtrA, pilus biogenesis and the CroRS two-component system provides new insights into the E. faecalis response to endogenous membrane perturbations.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
| | - Adeline M. H. Yong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Kelvin K. L. Chong
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Mark Veleba
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Pei Yi Choo
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Iris Hanxing Gao
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
| | - Swaine L. Chen
- Genome Institute of Singapore, Agency for Science, Technology, and Research, Genome #02–01, Singapore, Singapore
| | - Kimberly A. Kline
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
4
|
Șchiopu P, Toc DA, Colosi IA, Costache C, Ruospo G, Berar G, Gălbău ȘG, Ghilea AC, Botan A, Pană AG, Neculicioiu VS, Todea DA. An Overview of the Factors Involved in Biofilm Production by the Enterococcus Genus. Int J Mol Sci 2023; 24:11577. [PMID: 37511337 PMCID: PMC10380289 DOI: 10.3390/ijms241411577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/08/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Enterococcus species are known for their ability to form biofilms, which contributes to their survival in extreme environments and involvement in persistent bacterial infections, especially in the case of multi-drug-resistant strains. This review aims to provide a comprehensive understanding of the mechanisms underlying biofilm formation in clinically important species such as Enterococcus faecalis and the less studied but increasingly multi-drug-resistant Enterococcus faecium, and explores potential strategies for their eradication. Biofilm formation in Enterococcus involves a complex interplay of genes and virulence factors, including gelatinase, cytolysin, Secreted antigen A, pili, microbial surface components that recognize adhesive matrix molecules (MSCRAMMs), and DNA release. Quorum sensing, a process of intercellular communication, mediated by peptide pheromones such as Cob, Ccf, and Cpd, plays a crucial role in coordinating biofilm development by targeting gene expression and regulation. Additionally, the regulation of extracellular DNA (eDNA) release has emerged as a fundamental component in biofilm formation. In E. faecalis, the autolysin N-acetylglucosaminidase and proteases such as gelatinase and serin protease are key players in this process, influencing biofilm development and virulence. Targeting eDNA may offer a promising avenue for intervention in biofilm-producing E. faecalis infections. Overall, gaining insights into the intricate mechanisms of biofilm formation in Enterococcus may provide directions for anti-biofilm therapeutic research, with the purpose of reducing the burden of Enterococcus-associated infections.
Collapse
Affiliation(s)
- Pavel Șchiopu
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
- Department of Pneumology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania
| | - Dan Alexandru Toc
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ioana Alina Colosi
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Carmen Costache
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Giuseppe Ruospo
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - George Berar
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Ștefan-Gabriel Gălbău
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandra Cristina Ghilea
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandru Botan
- Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Adrian-Gabriel Pană
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Vlad Sever Neculicioiu
- Department of Microbiology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Doina Adina Todea
- Department of Pneumology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400332 Cluj-Napoca, Romania
| |
Collapse
|
5
|
Kristensen SS, Diep DB, Kjos M, Mathiesen G. The role of site-2-proteases in bacteria: a review on physiology, virulence, and therapeutic potential. MICROLIFE 2023; 4:uqad025. [PMID: 37223736 PMCID: PMC10202637 DOI: 10.1093/femsml/uqad025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/21/2023] [Accepted: 05/02/2023] [Indexed: 05/25/2023]
Abstract
Site-2-proteases are a class of intramembrane proteases involved in regulated intramembrane proteolysis. Regulated intramembrane proteolysis is a highly conserved signaling mechanism that commonly involves sequential digestion of an anti-sigma factor by a site-1- and site-2-protease in response to external stimuli, resulting in an adaptive transcriptional response. Variation of this signaling cascade continues to emerge as the role of site-2-proteases in bacteria continues to be explored. Site-2-proteases are highly conserved among bacteria and play a key role in multiple processes, including iron uptake, stress response, and pheromone production. Additionally, an increasing number of site-2-proteases have been found to play a pivotal role in the virulence properties of multiple human pathogens, such as alginate production in Pseudomonas aeruginosa, toxin production in Vibrio cholerae, resistance to lysozyme in enterococci and antimicrobials in several Bacillus spp, and cell-envelope lipid composition in Mycobacterium tuberculosis. The prominent role of site-2-proteases in bacterial pathogenicity highlights the potential of site-2-proteases as novel targets for therapeutic intervention. In this review, we summarize the role of site-2-proteases in bacterial physiology and virulence, as well as evaluate the therapeutic potential of site-2-proteases.
Collapse
Affiliation(s)
- Sofie S Kristensen
- Faculty of Chemistry, Biotechnology, and Food Science, Norwegian University of Life Sciences (NMBU), 1433 Ås, Norway
| | | | - Morten Kjos
- Corresponding author. NMBU, P.O. Box 5003, 1433 Ås, Norway. E-mail:
| | | |
Collapse
|
6
|
Schaffer SD, Hutchison CA, Rouchon CN, Mdluli NV, Weinstein AJ, McDaniel D, Frank KL. Diverse Enterococcus faecalis strains show heterogeneity in biofilm properties. Res Microbiol 2023; 174:103986. [PMID: 35995340 PMCID: PMC9825631 DOI: 10.1016/j.resmic.2022.103986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 01/11/2023]
Abstract
Biofilm formation is important for Enterococcus faecalis to cause healthcare-associated infections. It is unclear how E. faecalis biofilms vary in parameters such as development and composition. To test the hypothesis that differences in biofilms exist among E. faecalis strains, we evaluated in vitro biofilm formation and matrix characteristics of five genetically diverse E. faecalis lab-adapted strains and clinical isolates (OG1RF, V583, DS16, MMH594, and VA1128). Biofilm formation of all strains was repressed in TSB+10% FBS. However, DMEM+10% FBS enhanced biofilm formation of clinical isolate VA1128. Crystal violet staining and fluorescence microscopy of biofilms grown on Aclar membranes demonstrated differences between OG1RF and VA1128 in biofilm development over a 48-h time course. None of the biofilms were dispersed by single treatments of sodium (meta)periodate, DNase, or Proteinase K alone, but the biofilm biomass of both OG1RF and DS16 was partially removed by a sequential treatment of sodium (meta)periodate and DNase. Reversing the treatment order was not effective, suggesting that the extracellular DNA targeted by DNase was obscured by carbohydrates that are susceptible to sodium (meta)periodate degradation. Fluorescent staining of biofilm matrix components further demonstrated that more carbohydrates bound by wheat germ agglutinin comprise OG1RF biofilms compared to VA1128 biofilms. This study highlights the existence of heterogeneity in biofilm properties among diverse E. faecalis strains, which may have implications for the design of novel anti-biofilm treatment strategies.
Collapse
Affiliation(s)
- Scott D Schaffer
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Carissa A Hutchison
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Candace N Rouchon
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Nontokozo V Mdluli
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Arielle J Weinstein
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA; Henry M. Jackson Foundation for the Advancement of Military Medicine, Rockville, MD, USA
| | - Dennis McDaniel
- Biomedical Instrumentation Center, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kristi L Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
7
|
The extracellular domain of site-2-metalloprotease RseP is important for sensitivity to bacteriocin EntK1. J Biol Chem 2022; 298:102593. [PMID: 36244452 PMCID: PMC9672952 DOI: 10.1016/j.jbc.2022.102593] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/01/2022] [Accepted: 10/03/2022] [Indexed: 11/17/2022] Open
Abstract
Enterocin K1 (EntK1), a bacteriocin that is highly potent against vancomycin-resistant enterococci, depends on binding to an intramembrane protease of the site-2 protease family, RseP, for its antimicrobial activity. RseP is highly conserved in both EntK1-sensitive and EntK1-insensitive bacteria, and the molecular mechanisms underlying the interaction between RseP and EntK1 and bacteriocin sensitivity are unknown. Here, we describe a mutational study of RseP from EntK1-sensitive Enterococcus faecium to identify regions of RseP involved in bacteriocin binding and activity. Mutational effects were assessed by studying EntK1 sensitivity and binding with strains of naturally EntK1-insensitive Lactiplantibacillus plantarum–expressing various RseP variants. We determined that site-directed mutations in conserved sequence motifs related to catalysis and substrate binding, and even deletion of two such motifs known to be involved in substrate binding, did not abolish bacteriocin sensitivity, with one exception. A mutation of a highly conserved asparagine, Asn359, in the extended so-called LDG motif abolished both binding of and killing by EntK1. By constructing various hybrids of the RseP proteins from sensitive E. faecium and insensitive L. plantarum, we showed that the extracellular PDZ domain is the key determinant of EntK1 sensitivity. Taken together, these data may provide valuable insight for guided construction of novel bacteriocins and may contribute to establishing RseP as an antibacterial target.
Collapse
|
8
|
Alonso B, Pérez-Granda MJ, Latorre MC, Sánchez-Carrillo C, Bouza E, Muñoz P, Guembe M. Production of biofilm by Staphylococcus aureus: Association with infective endocarditis? ENFERMEDADES INFECCIOSAS Y MICROBIOLOGIA CLINICA (ENGLISH ED.) 2022; 40:418-422. [PMID: 36195405 DOI: 10.1016/j.eimce.2021.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/11/2021] [Indexed: 06/16/2023]
Abstract
OBJECTIVES Staphylococcus aureus is a well-known biofilm-producing pathogen that is capable of causing chronic infections owing to its ability to resist antibiotic treatment and obstruct the immune response. However, the possible association between high biofilm production and infective endocarditis (IE) has not been assessed. Our objective was to compare production of biofilm by S. aureus strains isolated from patients with bacteremia and IE, catheter-related bloodstream infection (C-RBSI), or non-device associated bacteremia. METHODS We isolated 260 S. aureus strains from the blood of patients with bacteremia who were diagnosed during hospital admission between 2012 and 2015. Patients were divided into 3 groups according to whether they had IE, C-RBSI, or non-device associated bacteremia. Biofilm production was measured in terms of biomass and metabolic activity using the crystal violet and XTT assays, respectively. High biomass and metabolic activity rates (based on tertile ranks classification) were compared between the 3 groups. RESULTS The high biomass and metabolic activity rates of each group were 41.9% and 37.2% for IE, 32.5% and 35.0%, for C-RBSI, and 29.0% and 33.3% for non-device associated bacteremia (p=0.325 and p=0.885, respectively). CONCLUSIONS High biomass and metabolic activity levels for S. aureus isolates from IE were similar to those of S. aureus isolates from C-RBSI or non-device associated bacteremia.
Collapse
Affiliation(s)
- Beatriz Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Jesús Pérez-Granda
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - María Consuelo Latorre
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Carlos Sánchez-Carrillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
9
|
Abstract
Streptococcus mutans is a primary cariogenic pathogen in humans. Arginine metabolism is required for bacterial growth. In S. mutans, however, the involvement of transcription factors in regulating arginine metabolism is unclear. The purpose of this study was to investigate the function and mechanism of ArgR family transcription factors in S. mutans. Here, we identified an ArgR (arginine repressor) family transcription factor named AhrC, which negatively regulates arginine biosynthesis and biofilm formation in S. mutans. The ahrC in-frame deletion strain exhibited slow growth and significantly increased intracellular arginine content. The strain overexpressing ahrC showed reduced intracellular arginine content, decreased biofilm biomass, reduced production of water-insoluble exopolysaccharides (EPS), and different biofilm structures. Furthermore, global gene expression profiles revealed differential expression levels of 233 genes in the ahrC-deficient strain, among which genes related to arginine biosynthesis (argJ, argB, argC, argD, argF, argG, argH) were significantly upregulated. In the ahrC overexpression strain, there are 89 differentially expressed genes, mostly related to arginine biosynthesis. The conserved DNA patterns bound by AhrC were identified by electrophoretic mobility shift assay (EMSA) and DNase I footprinting. In addition, the analysis of β-galactosidase activity showed that AhrC acted as a negative regulator. Taken together, our findings suggest that AhrC is an important transcription factor that regulates arginine biosynthesis gene expression and biofilm formation in S. mutans. These findings add new aspects to the complexity of regulating the expression of genes involved in arginine biosynthesis and biofilm formation in S. mutans. IMPORTANCE Arginine metabolism is essential for bacterial growth. The regulation of intracellular arginine metabolism in Streptococcus mutans, one of the major pathogens of dental caries, is unclear. In this study, we found that the transcription factor AhrC can directly and negatively regulate the expression of N-acetyl-gamma-glutamyl-phosphate reductase (argC), thus regulating arginine biosynthesis in S. mutans. In addition, the ahrC overexpression strain exhibited a significant decrease in biofilm and water-insoluble extracellular polysaccharides (EPS). This study adds new support to our understanding of the regulation of intracellular arginine metabolism in S. mutans.
Collapse
|
10
|
The Cationic Antimicrobial Peptide Activity of Lysozyme Reduces Viable Enterococcus faecalis Cells in Biofilms. Antimicrob Agents Chemother 2022; 66:e0233921. [PMID: 35446133 DOI: 10.1128/aac.02339-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Enterococcus faecalis, a leading cause of health care-associated infections, forms biofilms and is resistant to many antimicrobial agents. Planktonic-phase E. faecalis is resistant to high concentrations of the enzyme lysozyme, which catalyzes the hydrolysis of N-acetylmuramic acid and N-acetylglucosamine linkages in peptidoglycan and is also a cationic antimicrobial peptide (CAMP). E. faecalis lysozyme resistance in planktonic cells is stimulated upon activation of the extracytoplasmic function sigma factor SigV via cleavage of the anti-sigma factor RsiV by the transmembrane protease Eep. Planktonically grown E. faecalis lacking eep is more sensitive than wild-type strains to growth inhibition by lysozyme. This study was initiated to determine whether E. faecalis OG1RFΔeep biofilms would be protected from lysozyme. Serendipitously, we discovered that exposure of both E. faecalis OG1RF and OG1RFΔeep biofilms to chicken egg white lysozyme resulted in decreases in biofilm cell viability of 3.7 and 3.8 log10 CFU/mL, respectively. Treatment of biofilms of both strains with recombinant purified human lysozyme was associated with reductions in cell viability of >99.9% for both strains. Lysozyme-treated OG1RF and OG1RFΔeep biofilms contained a higher percentage of dead cells by Live/Dead staining and were associated with more extracellular DNA. Heat-inactivated human lysozyme, which was devoid of muramidase activity, as well as the lysozyme-derived CAMP LP9 and the CAMP polymyxin B, decreased biofilm cell viability. These results are consistent with a model in which the CAMP activity, rather than the muramidase activity, of lysozyme causes lysis of E. faecalis biofilm cells despite them having an intact lysozyme resistance-inducing signaling pathway. Finally, lysozyme was also effective in reducing viable biofilm cells of several other E. faecalis strains, including the vancomycin-resistant strain V583 and multidrug-resistant strain MMH594. This study demonstrates the potential for lysozyme to be developed as a novel antibiofilm therapeutic.
Collapse
|
11
|
The de novo Purine Biosynthesis Pathway Is the Only Commonly Regulated Cellular Pathway during Biofilm Formation in TSB-Based Medium in Staphylococcus aureus and Enterococcus faecalis. Microbiol Spectr 2021; 9:e0080421. [PMID: 34935415 PMCID: PMC8693917 DOI: 10.1128/spectrum.00804-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial biofilms are involved in chronic infections and confer 10 to 1,000 times more resistance to antibiotics compared with planktonic growth, leading to complications and treatment failure. When transitioning from a planktonic lifestyle to biofilms, some Gram-positive bacteria are likely to modulate several cellular pathways, including central carbon metabolism, biosynthesis pathways, and production of secondary metabolites. These metabolic adaptations might play a crucial role in biofilm formation by Gram-positive pathogens such as Staphylococcus aureus and Enterococcus faecalis. Here, we performed a transcriptomic approach to identify cellular pathways that might be similarly regulated during biofilm formation in these bacteria. Different strains and biofilm-inducing media were used to identify a set of regulated genes that are common and independent of the environment or accessory genomes analyzed. Our approach highlighted that the de novo purine biosynthesis pathway was upregulated in biofilms of both species when using a tryptone soy broth-based medium but not so when a brain heart infusion-based medium was used. We did not identify other pathways commonly regulated between both pathogens. Gene deletions and usage of a drug targeting a key enzyme showed the importance of this pathway in biofilm formation of S. aureus. The importance of the de novo purine biosynthesis pathway might reflect an important need for purine during biofilm establishment, and thus could constitute a promising drug target. IMPORTANCE Biofilms are often involved in nosocomial infections and can cause serious chronic infections if not treated properly. Current anti-biofilm strategies rely on antibiotic usage, but they have a limited impact because of the biofilm intrinsic tolerance to drugs. Metabolism remodeling likely plays a central role during biofilm formation. Using comparative transcriptomics of different strains of Staphylococcus aureus and Enterococcus faecalis, we determined that almost all cellular adaptations are not shared between strains and species. Interestingly, we observed that the de novo purine biosynthesis pathway was upregulated during biofilm formation by both species in a specific medium. The requirement for purine could constitute an interesting new anti-biofilm target with a wide spectrum that could also prevent resistance evolution. These results are also relevant to a better understanding of the physiology of biofilm formation.
Collapse
|
12
|
Barnes AMT, Frank KL, Dale JL, Manias DA, Powers JL, Dunny GM. Enterococcus faecalis colonizes and forms persistent biofilm microcolonies on undamaged endothelial surfaces in a rabbit endovascular infection model. FEMS MICROBES 2021; 2:xtab014. [PMID: 34734186 PMCID: PMC8557322 DOI: 10.1093/femsmc/xtab014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 09/23/2021] [Indexed: 01/03/2023] Open
Abstract
Infectious endocarditis (IE) is an uncommon disease with significant morbidity and mortality. The pathogenesis of IE has historically been described as a cascade of host-specific events beginning with endothelial damage and thrombus formation and followed by bacterial colonization of the nascent thrombus. Enterococcus faecalis is a Gram-positive commensal bacterial member of the gastrointestinal tract microbiota in most terrestrial animals and a leading cause of opportunistic biofilm-associated infections, including endocarditis. Here, we provide evidence that E. faecalis can colonize the endocardial surface without pre-existing damage and in the absence of thrombus formation in a rabbit endovascular infection model. Using previously described light and scanning electron microscopy techniques, we show that inoculation of a well-characterized E. faecalis lab strain in the marginal ear vein of New Zealand White rabbits resulted in rapid colonization of the endocardium throughout the heart within 4 days of administration. Unexpectedly, ultrastructural imaging revealed that the microcolonies were firmly attached directly to the endocardium in areas without morphological evidence of gross tissue damage. Further, the attached bacterial aggregates were not associated with significant cellular components of coagulation or host extracellular matrix damage repair (i.e. platelets). These results suggest that the canonical model of mechanical surface damage as a prerequisite for bacterial attachment to host sub-endothelial components is not required. Furthermore, these findings are consistent with a model of initial establishment of stable, endocarditis-associated E. faecalis biofilm microcolonies that may provide a reservoir for the eventual valvular infection characteristic of clinical endocarditis. The similarities between the E. faecalis colonization and biofilm morphologies seen in this rabbit endovascular infection model and our previously published murine gastrointestinal colonization model indicate that biofilm production and common host cell attachment factors are conserved in disparate mammalian hosts under both commensal and pathogenic contexts.
Collapse
Affiliation(s)
- Aaron M T Barnes
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Kristi L Frank
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jennifer L Dale
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Dawn A Manias
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Jennifer L Powers
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| | - Gary M Dunny
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN 55455, USA
| |
Collapse
|
13
|
Barnes AMT, Frank KL, Dunny GM. Enterococcal Endocarditis: Hiding in Plain Sight. Front Cell Infect Microbiol 2021; 11:722482. [PMID: 34527603 PMCID: PMC8435889 DOI: 10.3389/fcimb.2021.722482] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/09/2021] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is a major opportunistic bacterial pathogen of increasing clinical relevance. A substantial body of experimental evidence suggests that early biofilm formation plays a critical role in these infections, as well as in colonization and persistence in the GI tract as a commensal member of the microbiome in most terrestrial animals. Animal models of experimental endocarditis generally involve inducing mechanical valve damage by cardiac catheterization prior to infection, and it has long been presumed that endocarditis vegetation formation resulting from bacterial attachment to the endocardial endothelium requires some pre-existing tissue damage. Here we review both historical and contemporary animal model studies demonstrating the robust ability of E. faecalis to directly attach and form stable microcolony biofilms encased within a bacterially-derived extracellular matrix on the undamaged endovascular endothelial surface. We also discuss the morphological similarities when these biofilms form on other host tissues, including when E. faecalis colonizes the GI epithelium as a commensal member of the normal vertebrate microbiome - hiding in plain sight where it can serve as a source for systemic infection via translocation. We propose that these phenotypes may allow the organism to persist as an undetected infection in asymptomatic individuals and thus provide an infectious reservoir for later clinical endocarditis.
Collapse
Affiliation(s)
- Aaron M. T. Barnes
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, United States
- Department of Laboratory Medicine and Pathology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| | - Kristi L. Frank
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, United States
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Gary M. Dunny
- Department of Microbiology and Immunology, University of Minnesota School of Medicine, Minneapolis, MN, United States
| |
Collapse
|
14
|
Kranjec C, Kristensen SS, Bartkiewicz KT, Brønner M, Cavanagh JP, Srikantam A, Mathiesen G, Diep DB. A bacteriocin-based treatment option for Staphylococcus haemolyticus biofilms. Sci Rep 2021; 11:13909. [PMID: 34230527 PMCID: PMC8260761 DOI: 10.1038/s41598-021-93158-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 06/15/2021] [Indexed: 01/19/2023] Open
Abstract
Bacteriocins are ribosomally-synthesized antimicrobial peptides, showing great potential as novel treatment options for multidrug-resistant pathogens. In this study, we designed a novel hybrid bacteriocin, Hybrid 1 (H1), by combing the N-terminal part and the C-terminal part of the related bacteriocins enterocin K1 (K1) and enterocin EJ97 (EJ97), respectively. Like the parental bacteriocins, H1 used the membrane-bound protease RseP as receptor, however, it differed from the others in the inhibition spectrum. Most notably, H1 showed a superior antimicrobial effect towards Staphylococcus haemolyticus—an important nosocomial pathogen. To avoid strain-dependency, we further evaluated H1 against 27 clinical and commensal S. haemolyticus strains, with H1 indeed showing high activity towards all strains. To curtail the rise of resistant mutants and further explore the potential of H1 as a therapeutic agent, we designed a bacteriocin-based formulation where H1 was used in combination with the broad-spectrum bacteriocins micrococcin P1 and garvicin KS. Unlike the individual bacteriocins, the three-component combination was highly effective against planktonic cells and completely eradicated biofilm-associated S. haemolyticus cells in vitro. Most importantly, the formulation efficiently prevented development of resistant mutants as well. These findings indicate the potential of a bacteriocins-based formulation as a treatment option for S. haemolyticus.
Collapse
Affiliation(s)
- Christian Kranjec
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Sofie S Kristensen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Karolina T Bartkiewicz
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Mikkel Brønner
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Jorunn P Cavanagh
- Pediatric Infections Group, Department of Pediatrics, University Hospital of North Norway, Tromsö, Norway.,Pediatric Infections Group, Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsö, Norway
| | - Aparna Srikantam
- Blue Peter Public Health and Research Centre, LEPRA Society, Hyderabad, India
| | - Geir Mathiesen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway.
| |
Collapse
|
15
|
Comparative Biofilm Assays Using Enterococcus faecalis OG1RF Identify New Determinants of Biofilm Formation. mBio 2021; 12:e0101121. [PMID: 34126766 PMCID: PMC8262879 DOI: 10.1128/mbio.01011-21] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterococcus faecalis is a common commensal organism and a prolific nosocomial pathogen that causes biofilm-associated infections. Numerous E. faecalis OG1RF genes required for biofilm formation have been identified, but few studies have compared genetic determinants of biofilm formation and biofilm morphology across multiple conditions. Here, we cultured transposon (Tn) libraries in CDC biofilm reactors in two different media and used Tn sequencing (TnSeq) to identify core and accessory biofilm determinants, including many genes that are poorly characterized or annotated as hypothetical. Multiple secondary assays (96-well plates, submerged Aclar discs, and MultiRep biofilm reactors) were used to validate phenotypes of new biofilm determinants. We quantified biofilm cells and used fluorescence microscopy to visualize biofilms formed by six Tn mutants identified using TnSeq and found that disrupting these genes (OG1RF_10350, prsA, tig, OG1RF_10576, OG1RF_11288, and OG1RF_11456) leads to significant time- and medium-dependent changes in biofilm architecture. Structural predictions revealed potential roles in cell wall homeostasis for OG1RF_10350 and OG1RF_11288 and signaling for OG1RF_11456. Additionally, we identified growth medium-specific hallmarks of OG1RF biofilm morphology. This study demonstrates how E. faecalis biofilm architecture is modulated by growth medium and experimental conditions and identifies multiple new genetic determinants of biofilm formation.
Collapse
|
16
|
Alonso B, Pérez-Granda MJ, Latorre MC, Sánchez-Carrillo C, Bouza E, Muñoz P, Guembe M. Production of biofilm by Staphylococcus aureus: Association with infective endocarditis? Enferm Infecc Microbiol Clin 2021; 40:S0213-005X(21)00081-1. [PMID: 33867187 DOI: 10.1016/j.eimc.2021.03.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/10/2021] [Accepted: 03/11/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVES Staphylococcus aureus is a well-known biofilm-producing pathogen that is capable of causing chronic infections owing to its ability to resist antibiotic treatment and obstruct the immune response. However, the possible association between high biofilm production and infective endocarditis (IE) has not been assessed. Our objective was to compare production of biofilm by S. aureus strains isolated from patients with bacteremia and IE, catheter-related bloodstream infection (C-RBSI), or non-device associated bacteremia. METHODS We isolated 260 S. aureus strains from the blood of patients with bacteremia who were diagnosed during hospital admission between 2012 and 2015. Patients were divided into 3 groups according to whether they had IE, C-RBSI, or non-device associated bacteremia. Biofilm production was measured in terms of biomass and metabolic activity using the crystal violet and XTT assays, respectively. High biomass and metabolic activity rates (based on tertile ranks classification) were compared between the 3 groups. RESULTS The high biomass and metabolic activity rates of each group were 41.9% and 37.2% for IE, 32.5% and 35.0%, for C-RBSI, and 29.0% and 33.3% for non-device associated bacteremia (p=0.325 and p=0.885, respectively). CONCLUSIONS High biomass and metabolic activity levels for S. aureus isolates from IE were similar to those of S. aureus isolates from C-RBSI or non-device associated bacteremia.
Collapse
Affiliation(s)
- Beatriz Alonso
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - María Jesús Pérez-Granda
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Cardiac Surgery Postoperative Care Unit, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain
| | - María Consuelo Latorre
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Carlos Sánchez-Carrillo
- Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | - Emilio Bouza
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - Patricia Muñoz
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; CIBER Enfermedades Respiratorias-CIBERES (CB06/06/0058), Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid, Madrid, Spain
| | - María Guembe
- Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain.
| |
Collapse
|
17
|
Antibiotic Resistance and Virulence Genes in Enterococcus faecalis Isolated From Human Dental Plaque. INFECTIOUS DISEASES IN CLINICAL PRACTICE 2021. [DOI: 10.1097/ipc.0000000000000989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Reinseth I, Tønnesen HH, Carlsen H, Diep DB. Exploring the Therapeutic Potenital of the Leaderless Enterocins K1 and EJ97 in the Treatment of Vancomycin-Resistant Enterococcal Infection. Front Microbiol 2021; 12:649339. [PMID: 33679682 PMCID: PMC7925398 DOI: 10.3389/fmicb.2021.649339] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/13/2022] Open
Abstract
The membrane-bound protease Eep is an important virulence factor in pathogenic enterococci. The protein is involved in stress response via the RIP pathway which is crucial for pathogenic enterococci to evade host immune attacks during infection. Eep serves also as a receptor for the bacteriocins enterocin K1 and enterocin EJ97. The bacteriocins kill Enterococcus faecium and E. faecalis, respectively, and their antibiotic resistant derivatives including vancomycin resistant enterococci (VRE). This functional duality of Eep makes these two enterocins very promising as options in the prospective treatment of enterococcal infections because wildtype enterococcal cells (with an intact Eep) are sensitive to the bacteriocins while bacteriocin-resistant-mutants (without a functional Eep) become less virulent. As a first step to explore their therapeutic potential in the treatment of systemic enterococcal infections, we investigated the compatibility of the bacteriocins with human blood, and the phenotypic changes of eep-mutants toward different stress conditions. We found that the bacteriocins were compatible with blood, as they did not cause haemolysis and that the bacteriocins retained most of their antibacterial effect when incubated in blood. The bacteriocins were autoclavable which is a crucial criterium for the development of parenteral administration. Eep-mutants, which became resistant to the bacteriocin were, as expected, less capable to withstand stress conditions such as exposure to lysozyme and desiccation. Further, their ability to chain, a trait implicated in niche adaptation as well as being necessary for genetic transfer via conjugation, was also severely affected. Together, these results indicate that the bacteriocins are promising for treatment of VRE infection.
Collapse
Affiliation(s)
- Ingvild Reinseth
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Hanne H Tønnesen
- Section of Pharmaceutics and Social Pharmacy, Department of Pharmacy, University of Oslo, Blindern, Oslo, Norway
| | - Harald Carlsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| | - Dzung B Diep
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
19
|
Suryaletha K, Chandrika SK, Thomas S. Comprehensive genomics depict accessory genes encoding pathogenicity and biofilm determinants in Enterococcus faecalis. Future Microbiol 2021; 16:175-184. [PMID: 33528277 DOI: 10.2217/fmb-2020-0111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Enterococcus faecalis is a leading nosocomial pathogen in biofilm-associated polymicrobial infections. The study aims to understand pathogenicity and biofilm determinants of the pathogen by genome analysis. Methodology: Genome sequencing of a strong biofilm forming clinical isolate Enterococcus faecalis SK460 devoid of Fsr quorum-signaling system, was performed and comparative genomics was carried out among a set of pathogenic biofilm formers and nonpathogenic weak biofilm formers. Results: Analysis revealed a pool of virulence and adhesion related factors associated with pathogenicity. Absence of CRISPR-Cas system facilitated acquisition of pheromone responsive plasmid, pathogenicity island and phages. Comprehensive analysis identified a subset of accessory genes encoding polysaccharide lyase, sugar phosphotransferase system, phage proteins and transcriptional regulators exclusively in pathogenic biofilm formers. Conclusion: The study identified a set of genes specific to pathogenic biofilm formers and these can act as targets which in turn help to develop future treatment endeavors against enterococcal infections.
Collapse
Affiliation(s)
- Karthika Suryaletha
- Cholera & Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Sivakumar K Chandrika
- Distributed Information Sub-Centre, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| | - Sabu Thomas
- Cholera & Biofilm Research Laboratory, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, Kerala, India
| |
Collapse
|
20
|
Abstract
The division and cell wall (dcw) cluster is a highly conserved region of the bacterial genome consisting of genes that encode several cell division and cell wall synthesis factors, including the central division protein FtsZ. The region immediately downstream of ftsZ encodes the ylm genes and is conserved across diverse lineages of Gram-positive bacteria and Cyanobacteria In some organisms, this region remains part of the dcw cluster, but in others, it appears as an independent operon. A well-studied protein coded from this region is the positive FtsZ regulator SepF (YlmF), which anchors FtsZ to the membrane. Recent developments have shed light on the importance of SepF in a range of species. Additionally, new studies are highlighting the importance of the other conserved genes in this neighborhood. In this minireview, we aim to bring together the current research linking the ylm region to cell division and highlight further questions surrounding these conserved genes.
Collapse
|
21
|
Fleming D, Redman W, Welch GS, Mdluli NV, Rouchon CN, Frank KL, Rumbaugh KP. Utilizing glycoside hydrolases to improve the quantitation and visualization of biofilm bacteria. Biofilm 2020; 2:100037. [PMID: 33447822 PMCID: PMC7798457 DOI: 10.1016/j.bioflm.2020.100037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 08/21/2020] [Indexed: 01/06/2023] Open
Abstract
The complexity of microbial biofilms offers several challenges to the use of traditional means of microbial research. In particular, it can be difficult to calculate accurate numbers of biofilm bacteria, because even after thorough homogenization or sonication, small pieces of the biofilm remain, which contain numerous bacterial cells and result in inaccurately low colony forming units (CFU). In addition, imaging of infected tissue ex vivo often results in a disparity between the CFU and the number of bacterial cells observed under the microscope. We hypothesized that this phenomenon is due to the biofilm extracellular polymeric substance decreasing the accessibility of stains and antibodies to the embedded bacterial cells. In this study, we describe incorporating EPS-degrading glycoside hydrolases for CFU determination to obtain a more accurate estimation of the viable cells and for immunohistochemistry to disrupt the biofilm matrix and increase primary antibody binding to the bacterial cells.
Collapse
Affiliation(s)
- Derek Fleming
- Departments of Surgery, Immunology and Molecular Microbiology, and the Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Whitni Redman
- Departments of Surgery, Immunology and Molecular Microbiology, and the Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Garrett S Welch
- Departments of Surgery, Immunology and Molecular Microbiology, and the Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Nontokozo V Mdluli
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Candace N Rouchon
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kristi L Frank
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Kendra P Rumbaugh
- Departments of Surgery, Immunology and Molecular Microbiology, and the Burn Center of Research Excellence, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
22
|
Roles of the Site 2 Protease Eep in Staphylococcus aureus. J Bacteriol 2020; 202:JB.00046-20. [PMID: 32457050 DOI: 10.1128/jb.00046-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 05/21/2020] [Indexed: 01/02/2023] Open
Abstract
In Enterococcus faecalis, the site 2 protease Eep generates sex pheromones, including cAM373. Intriguingly, in Staphylococcus aureus, a peptide similar to cAM373, named cAM373_SA, is produced from the camS gene. Here, we report that the staphylococcal Eep homolog is not only responsible for the production of cAM373_SA but also critical for staphylococcal virulence. As with other Eep proteins, the staphylococcal Eep protein has four transmembrane (TM) domains, with the predicted zinc metalloprotease active site (HEXXH) in the first TM domain. eep deletion reduced the cAM373_SA activity in the culture supernatant to the level of the camS deletion mutant. It also markedly decreased the cAM373 peptide peak in a high-performance liquid chromatography (HPLC) analysis. Proteomics analysis showed that Eep affects the production and/or the release of diverse proteins, including the signal peptidase subunit SpsB and the surface proteins SpA, SasG, and FnbA. eep deletion decreased the adherence of S. aureus to host epithelial cells; however, the adherence of the eep mutant was increased by overexpression of the surface proteins SpA, SasG, and FnbA. eep deletion reduced staphylococcal resistance to killing by human neutrophils as well as survival in a murine model of blood infection. The overexpression of the surface protein SpA in the eep mutant increased bacterial survival in the liver. Our study illustrates that in S. aureus, Eep not only generates cAM373_SA but also contributes to the survival of the bacterial pathogen in the host.IMPORTANCE The emergence of multidrug-resistant Staphylococcus aureus makes the treatment of staphylococcal infections much more difficult. S. aureus can acquire a drug resistance gene from other bacteria, such as Enterococcus faecalis Intriguingly, S. aureus produces a sex pheromone for the E. faecalis plasmid pAM373, raising the possibility that S. aureus actively promotes plasmid conjugation from E. faecalis In this study, we found that the staphylococcal Eep protein is responsible for sex pheromone processing and contributes to the survival of the bacteria in the host. These results will enhance future research on the drug resistance acquisition of S. aureus and can lead to the development of novel antivirulence drugs.
Collapse
|
23
|
Khan F, Pham DTN, Oloketuyi SF, Kim YM. Antibiotics Application Strategies to Control Biofilm Formation in Pathogenic Bacteria. Curr Pharm Biotechnol 2020; 21:270-286. [PMID: 31721708 DOI: 10.2174/1389201020666191112155905] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 04/09/2019] [Accepted: 10/31/2019] [Indexed: 12/17/2022]
Abstract
BACKGROUND The establishment of a biofilm by most pathogenic bacteria has been known as one of the resistance mechanisms against antibiotics. A biofilm is a structural component where the bacterial community adheres to the biotic or abiotic surfaces by the help of Extracellular Polymeric Substances (EPS) produced by bacterial cells. The biofilm matrix possesses the ability to resist several adverse environmental factors, including the effect of antibiotics. Therefore, the resistance of bacterial biofilm-forming cells could be increased up to 1000 times than the planktonic cells, hence requiring a significantly high concentration of antibiotics for treatment. METHODS Up to the present, several methodologies employing antibiotics as an anti-biofilm, antivirulence or quorum quenching agent have been developed for biofilm inhibition and eradication of a pre-formed mature biofilm. RESULTS Among the anti-biofilm strategies being tested, the sub-minimal inhibitory concentration of several antibiotics either alone or in combination has been shown to inhibit biofilm formation and down-regulate the production of virulence factors. The combinatorial strategies include (1) combination of multiple antibiotics, (2) combination of antibiotics with non-antibiotic agents and (3) loading of antibiotics onto a carrier. CONCLUSION The present review paper describes the role of several antibiotics as biofilm inhibitors and also the alternative strategies adopted for applications in eradicating and inhibiting the formation of biofilm by pathogenic bacteria.
Collapse
Affiliation(s)
- Fazlurrahman Khan
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Biotechnology, School of Engineering and Technology, Sharda University, Greater Noida 201306, U.P., India
| | - Dung T N Pham
- Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| | - Sandra F Oloketuyi
- Laboratory for Environmental and Life Sciences, University of Nova Gorica 5000, Nova Gorica, Slovenia
| | - Young-Mog Kim
- Marine-Integrated Bionics Research Center, Pukyong National University, Busan 48513, Korea.,Department of Food Science and Technology, Pukyong National University, Busan 48513, Korea
| |
Collapse
|
24
|
Zheng J, Chen Z, Lin Z, Sun X, Bai B, Xu G, Chen J, Yu Z, Qu D. Radezolid Is More Effective Than Linezolid Against Planktonic Cells and Inhibits Enterococcus faecalis Biofilm Formation. Front Microbiol 2020; 11:196. [PMID: 32117185 PMCID: PMC7033516 DOI: 10.3389/fmicb.2020.00196] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/28/2020] [Indexed: 01/24/2023] Open
Abstract
The aim of this study was to compare the effects of radezolid and linezolid on planktonic and biofilm cells of Enterococcus faecalis. A total of 302 E. faecalis clinical isolates were collected, and the minimum inhibitory concentrations (MICs) of radezolid and linezolid were determined by the agar dilution method. Changes in the transcriptome of a high-level, in vitro-induced linezolid-resistant isolate were assessed by RNA sequencing and RT-qPCR, and the roles of efflux pump-related genes were confirmed by overexpression analysis. Biofilm biomass was evaluated by crystal violet staining and the adherent cells in the biofilms were quantified according to CFU numbers. The MIC50/MIC90 values of radezolid (0.25/0.50 mg/L) against the 302 E. faecalis clinical isolates were eightfold lower than those of linezolid (2/4 mg/L). The radezolid MICs against the high-level linezolid-resistant isolates (linezolid MICs ≥ 64 mg/L) increased to ≥ 4 mg/L with mutations in the four copies of the V domain of the 23S rRNA gene. The mRNA expression level of OG1RF_12220 (mdlB2, multidrug ABC superfamily ATP-binding cassette transporter) increased in the high-level linezolid-resistant isolates, and radezolid and linezolid MICs against the linezolid-sensitive isolate increased with overexpression of OG1RF_12220. Radezolid (at 1/4 or 1/8× the MIC) inhibited E. faecalis biofilm formation to a greater extent than linezolid, which was primarily achieved through the inhibition of ahrC, esp, relA, and relQ transcription in E. faecalis. In conclusion, radezolid is more effective than linezolid against planktonic E. faecalis cells and inhibits biofilm formation by this bacterium.
Collapse
Affiliation(s)
- Jinxin Zheng
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhong Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhiwei Lin
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Xiang Sun
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Bing Bai
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Guangjian Xu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.,Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Junwen Chen
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Zhijian Yu
- Department of Infectious Diseases and the Key Laboratory of Endogenous Infection, Shenzhen Nanshan People's Hospital, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, School of Basic Medical Science and Institutes of Biomedical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| |
Collapse
|
25
|
Sianglum W, Muangngam K, Joycharat N, Voravuthikunchai SP. Mechanism of Action and Biofilm Inhibitory Activity of Lupinifolin Against Multidrug-Resistant Enterococcal Clinical Isolates. Microb Drug Resist 2019; 25:1391-1400. [DOI: 10.1089/mdr.2018.0391] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Wipawadee Sianglum
- Department of Microbiology, Faculty of Science, Prince of Songkhla University, Hat Yai, Thailand
- Excellence Research Laboratory on Natural Products, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Kanitta Muangngam
- Department of Microbiology, Faculty of Science, Prince of Songkhla University, Hat Yai, Thailand
- Excellence Research Laboratory on Natural Products, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| | - Nantiya Joycharat
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Hat Yai, Thailand
| | - Supayang Piyawan Voravuthikunchai
- Department of Microbiology, Faculty of Science, Prince of Songkhla University, Hat Yai, Thailand
- Excellence Research Laboratory on Natural Products, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
- Natural Product Research Center of Excellence, Faculty of Science, Prince of Songkla University, Hat Yai, Thailand
| |
Collapse
|
26
|
Exploiting biofilm phenotypes for functional characterization of hypothetical genes in Enterococcus faecalis. NPJ Biofilms Microbiomes 2019; 5:23. [PMID: 31552139 PMCID: PMC6753144 DOI: 10.1038/s41522-019-0099-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/21/2019] [Indexed: 12/12/2022] Open
Abstract
Enterococcus faecalis is a commensal organism as well as an important nosocomial pathogen, and its infections are typically linked to biofilm formation. Nearly 25% of the E. faecalis OG1RF genome encodes hypothetical genes or genes of unknown function. Elucidating their function and how these gene products influence biofilm formation is critical for understanding E. faecalis biology. To identify uncharacterized early biofilm determinants, we performed a genetic screen using an arrayed transposon (Tn) library containing ~2000 mutants in hypothetical genes/intergenic regions and identified eight uncharacterized predicted protein-coding genes required for biofilm formation. We demonstrate that OG1RF_10435 encodes a phosphatase that modulates global protein expression and arginine catabolism and propose renaming this gene bph (biofilm phosphatase). We present a workflow for combining phenotype-driven experimental and computational evaluation of hypothetical gene products in E. faecalis, which can be used to study hypothetical genes required for biofilm formation and other phenotypes of diverse bacteria.
Collapse
|
27
|
Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA. Biofilm-associated infection by enterococci. Nat Rev Microbiol 2018; 17:82-94. [DOI: 10.1038/s41579-018-0107-z] [Citation(s) in RCA: 163] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
28
|
Colomer-Winter C, Gaca AO, Chuang-Smith ON, Lemos JA, Frank KL. Basal levels of (p)ppGpp differentially affect the pathogenesis of infective endocarditis in Enterococcus faecalis. MICROBIOLOGY (READING, ENGLAND) 2018; 164:1254-1265. [PMID: 30091695 PMCID: PMC6600344 DOI: 10.1099/mic.0.000703] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Accepted: 07/18/2018] [Indexed: 12/19/2022]
Abstract
The alarmone (p)ppGpp mediates the stringent response and has a recognized role in bacterial virulence. We previously reported a stringent response-like state in Enterococcus faecalis isolated from a rabbit foreign body abscess model and showed that E. faecalis mutants with varying levels of cellular (p)ppGpp [Δrel, ΔrelQ and the (p)ppGpp0 ΔrelΔrelQ] had differential abilities to persist within abscesses. In this study, we investigated whether (p)ppGpp contributes to the pathogenesis of E. faecalis infective endocarditis (IE), a biofilm infection of the heart valves. While the stringent response was not activated in heart valve-associated E. faecalis, deletion of the gene encoding the bifunctional (p)ppGpp synthetase/hydrolase Rel significantly impaired valve colonization. These results indicate that the presence of (p)ppGpp is dispensable for E. faecalis to cause IE, whereas the ability to regulate (p)ppGpp levels is critical for valve colonization. Next, we characterized how basal (p)ppGpp levels affect processes associated with IE pathogenesis. Despite being defective in binding to BSA-coated polystyrene surfaces, the Δrel strain bound to collagen- and fibronectin-coated surfaces and ex vivo porcine heart valves as well as the parent and ΔrelΔrelQ strains, ruling out the possibility that the impaired IE phenotype was due to an attachment defect. Moreover, differences in cellular (p)ppGpp levels did not affect extracellular gelatinase activity but significantly impaired enterococcal invasion of human coronary artery endothelial cells. Taken together, this study uncovers for the first time the fact that differences in basal (p)ppGpp levels, rather than the stringent response, differentially affect processes that contribute to the pathogenesis of IE.
Collapse
Affiliation(s)
- Cristina Colomer-Winter
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Anthony O. Gaca
- Center for Oral Biology and Department of Microbiology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
- Present address: Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Olivia N. Chuang-Smith
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Present address: Bridge to MD and Pathway to American University of Antigua (AUA) Programs, Manipal Education Americas, LLC, New York, NY, USA
| | - José A. Lemos
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, FL, USA
| | - Kristi L. Frank
- Department of Microbiology and Immunology, University of Minnesota Medical School, Minneapolis, MN, USA
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| |
Collapse
|
29
|
Comprehensive Functional Analysis of the Enterococcus faecalis Core Genome Using an Ordered, Sequence-Defined Collection of Insertional Mutations in Strain OG1RF. mSystems 2018; 3:mSystems00062-18. [PMID: 30225373 PMCID: PMC6134198 DOI: 10.1128/msystems.00062-18] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022] Open
Abstract
The robust ability of Enterococcus faecalis to survive outside the host and to spread via oral-fecal transmission and its high degree of intrinsic and acquired antimicrobial resistance all complicate the treatment of hospital-acquired enterococcal infections. The conserved E. faecalis core genome serves as an important genetic scaffold for evolution of this bacterium in the modern health care setting and also provides interesting vaccine and drug targets. We used an innovative pooling/sequencing strategy to map a large collection of arrayed transposon insertions in E. faecalis OG1RF and generated an arrayed library of defined mutants covering approximately 70% of the OG1RF genome. Then, we performed high-throughput transposon sequencing experiments using this library to determine core genomic determinants of bile resistance in OG1RF. This collection is a valuable resource for comprehensive, functional enterococcal genomics using both traditional and high-throughput approaches and enables immediate recovery of mutants of interest. Enterococcus faecalis is a common commensal bacterium in animal gastrointestinal (GI) tracts and a leading cause of opportunistic infections of humans in the modern health care setting. E. faecalis OG1RF is a plasmid-free strain that contains few mobile elements yet retains the robust survival characteristics, intrinsic antibiotic resistance, and virulence traits characteristic of most E. faecalis genotypes. To facilitate interrogation of the core enterococcal genetic determinants for competitive fitness in the GI tract, biofilm formation, intrinsic antimicrobial resistance, and survival in the environment, we generated an arrayed, sequence-defined set of chromosomal transposon insertions in OG1RF. We used an orthogonal pooling strategy in conjunction with Illumina sequencing to identify a set of mutants with unique, single Himar-based transposon insertions. The mutants contained insertions in 1,926 of 2,651 (72.6%) annotated open reading frames and in the majority of hypothetical protein-encoding genes and intergenic regions greater than 100 bp in length, which could encode small RNAs. As proof of principle of the usefulness of this arrayed transposon library, we created a minimal input pool containing 6,829 mutants chosen for maximal genomic coverage and used an approach that we term SMarT (sequence-defined marinertechnology) transposon sequencing (TnSeq) to identify numerous genetic determinants of bile resistance in E. faecalis OG1RF. These included several genes previously associated with bile acid resistance as well as new loci. Our arrayed library allows functional screening of a large percentage of the genome with a relatively small number of mutants, reducing potential effects of bottlenecking, and enables immediate recovery of mutants following competitions. IMPORTANCE The robust ability of Enterococcus faecalis to survive outside the host and to spread via oral-fecal transmission and its high degree of intrinsic and acquired antimicrobial resistance all complicate the treatment of hospital-acquired enterococcal infections. The conserved E. faecalis core genome serves as an important genetic scaffold for evolution of this bacterium in the modern health care setting and also provides interesting vaccine and drug targets. We used an innovative pooling/sequencing strategy to map a large collection of arrayed transposon insertions in E. faecalis OG1RF and generated an arrayed library of defined mutants covering approximately 70% of the OG1RF genome. Then, we performed high-throughput transposon sequencing experiments using this library to determine core genomic determinants of bile resistance in OG1RF. This collection is a valuable resource for comprehensive, functional enterococcal genomics using both traditional and high-throughput approaches and enables immediate recovery of mutants of interest.
Collapse
|
30
|
Expression of Adhesive Pili and the Collagen-Binding Adhesin Ace Is Activated by ArgR Family Transcription Factors in Enterococcus faecalis. J Bacteriol 2018; 200:JB.00269-18. [PMID: 29986940 DOI: 10.1128/jb.00269-18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022] Open
Abstract
It was shown previously that the disruption of the ahrC gene encoding a predicted ArgR family transcription factor results in a severe defect in biofilm formation in vitro, as well as a significant attenuation of virulence of Enterococcus faecalis strain OG1RF in multiple experimental infection models. Using transcriptome sequencing (RNA-seq), we observed ahrC-dependent changes in the expression of more than 20 genes. AhrC-repressed genes included predicted determinants of arginine catabolism and several other metabolic genes and predicted transporters, while AhrC-activated genes included determinants involved in the production of surface protein adhesins. Most notably, the structural and regulatory genes of the ebp locus encoding adhesive pili were positively regulated, as well as the ace gene, encoding a collagen-binding adhesin. Using lacZ transcription reporter fusions, we determined that ahrC and a second argR transcription factor gene, argR2, both function to activate the expression of ebpR, which directly activates the transcription of the pilus structural genes. Our data suggest that in the wild-type E. faecalis, the low levels of EbpR limit the expression of pili and that biofilm biomass is also limited by the amount of pili expressed by the bacteria. The expression of ace is similarly enhanced by AhrC and ArgR2, but ace expression is not dependent on EbpR. Our results demonstrate the existence of novel regulatory cascades controlled by a pair of ArgR family transcription factors that might function as a heteromeric protein complex.IMPORTANCE Cell surface adhesins play critical roles in the formation of biofilms, host colonization, and the pathogenesis of opportunistic infections by Enterococcus faecalis Here, we present new results showing that the expression of two major enterococcal surface adhesins, ebp pili, and the collagen-binding protein Ace is positively regulated at the transcription level by two argR family transcription factors, AhrC and ArgR2. In the case of pili, the direct target of regulation is the ebpR gene, previously shown to activate the transcription of the pilus structural genes, while the activation of ace transcription appears to be directly impacted by the two ArgR proteins. These transcription factors may represent new targets for blocking enterococcal infections.
Collapse
|
31
|
Whiteside SA, Dave S, Seney SL, Wang P, Reid G, Burton JP. Enterococcus faecalis persistence in pediatric patients treated with antibiotic prophylaxis for recurrent urinary tract infections. Future Microbiol 2018; 13:1095-1115. [DOI: 10.2217/fmb-2018-0048] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Enterococcus faecalis is one of the most common causes of recurrent urinary tract infection (RUTI), yet enterococcal pathogenesis is poorly understood. Our aims were to identify the prevalence of enterococci in RUTI patients and characterize the enterococcal response to nitrofurantoin and trimethoprim-sulfamethoxazole. Materials & methods: We studied pediatric patients receiving antibiotic prophylaxis and those only under clinical observation for 12 months (n = 39). We then assessed the response of uropathogenic E. faecalis to nitrofurantoin and trimethoprim–sulfamethoxazole. Results: Enterococci were isolated from almost half of patients and exposure of Enterococcus to nitrofurantoin increased virulence properties; this did not correlate with increased expression of virulence factors. Conclusion: Our results demonstrate that antibiotic prophylaxis may not be suitable for treatment of enterococcal RUTI (NCT02357758).
Collapse
Affiliation(s)
- Samantha A Whiteside
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Sumit Dave
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | | | - Peter Wang
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Gregor Reid
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| | - Jeremy P Burton
- Department of Surgery, Division of Urology, London, Ontario, Canada
- Department of Microbiology & Immunology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario, Canada
- Lawson Health Research Institute, London, Ontario, Canada
| |
Collapse
|
32
|
Magana M, Sereti C, Ioannidis A, Mitchell CA, Ball AR, Magiorkinis E, Chatzipanagiotou S, Hamblin MR, Hadjifrangiskou M, Tegos GP. Options and Limitations in Clinical Investigation of Bacterial Biofilms. Clin Microbiol Rev 2018; 31:e00084-16. [PMID: 29618576 PMCID: PMC6056845 DOI: 10.1128/cmr.00084-16] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bacteria can form single- and multispecies biofilms exhibiting diverse features based upon the microbial composition of their community and microenvironment. The study of bacterial biofilm development has received great interest in the past 20 years and is motivated by the elegant complexity characteristic of these multicellular communities and their role in infectious diseases. Biofilms can thrive on virtually any surface and can be beneficial or detrimental based upon the community's interplay and the surface. Advances in the understanding of structural and functional variations and the roles that biofilms play in disease and host-pathogen interactions have been addressed through comprehensive literature searches. In this review article, a synopsis of the methodological landscape of biofilm analysis is provided, including an evaluation of the current trends in methodological research. We deem this worthwhile because a keyword-oriented bibliographical search reveals that less than 5% of the biofilm literature is devoted to methodology. In this report, we (i) summarize current methodologies for biofilm characterization, monitoring, and quantification; (ii) discuss advances in the discovery of effective imaging and sensing tools and modalities; (iii) provide an overview of tailored animal models that assess features of biofilm infections; and (iv) make recommendations defining the most appropriate methodological tools for clinical settings.
Collapse
Affiliation(s)
- Maria Magana
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
| | - Christina Sereti
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Microbiology, Thriassio General Hospital, Attiki, Greece
| | - Anastasios Ioannidis
- Department of Clinical Microbiology, Athens Medical School, Aeginition Hospital, Athens, Greece
- Department of Nursing, Faculty of Human Movement and Quality of Life Sciences, University of Peloponnese, Sparta, Greece
| | - Courtney A Mitchell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, Tennessee, USA
| | - Anthony R Ball
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| | - Emmanouil Magiorkinis
- Department of Hygiene, Epidemiology and Medical Statistics, Medical School, University of Athens, Athens-Goudi, Greece
| | | | - Michael R Hamblin
- Harvard-MIT Division of Health Science and Technology, Cambridge, Massachusetts, USA
- Department of Dermatology, Harvard Medical School, Boston, Massachusetts, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Maria Hadjifrangiskou
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - George P Tegos
- Gliese 623b, Mendon, Massachusetts, USA
- GAMA Therapeutics LLC, Pepperell, Massachusetts, USA
| |
Collapse
|
33
|
Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol 2018; 13:915-932. [PMID: 29882414 PMCID: PMC6060398 DOI: 10.2217/fmb-2018-0043] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caries and periodontitis are the two most common human dental diseases and are caused by dysbiosis of oral flora. Although commensal microorganisms have been demonstrated to protect against pathogens and promote oral health, most previous studies have addressed pathogenesis rather than commensalism. Streptococcus sanguinis is a commensal bacterium that is abundant in the oral biofilm and whose presence is correlated with health. Here, we focus on the mechanism of biofilm formation in S. sanguinis and the interaction of S. sanguinis with caries- and periodontitis-associated pathogens. In addition, since S. sanguinis is well known as a cause of infective endocarditis, we discuss the relationship between S. sanguinis biofilm formation and its pathogenicity in endocarditis.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lorna C Macleod
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
34
|
Robinson J, Rostami N, Casement J, Vollmer W, Rickard A, Jakubovics N. ArcR modulates biofilm formation in the dental plaque colonizerStreptococcus gordonii. Mol Oral Microbiol 2018; 33:143-154. [DOI: 10.1111/omi.12207] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2017] [Indexed: 01/20/2023]
Affiliation(s)
- J.C. Robinson
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - N. Rostami
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| | - J. Casement
- Bioinformatics Support Unit; Newcastle University; Newcastle upon Tyne UK
| | - W. Vollmer
- Centre for Bacterial Cell Biology; Newcastle University; Newcastle upon Tyne UK
| | - A.H. Rickard
- Department of Epidemiology; School of Public Health; University of Michigan; Ann Arbor MI USA
| | - N.S. Jakubovics
- School of Dental Sciences; Newcastle University; Newcastle upon Tyne UK
| |
Collapse
|
35
|
Goh HMS, Yong MHA, Chong KKL, Kline KA. Model systems for the study of Enterococcal colonization and infection. Virulence 2017; 8:1525-1562. [PMID: 28102784 PMCID: PMC5810481 DOI: 10.1080/21505594.2017.1279766] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 12/30/2016] [Accepted: 01/04/2017] [Indexed: 02/07/2023] Open
Abstract
Enterococcus faecalis and Enterococcus faecium are common inhabitants of the human gastrointestinal tract, as well as frequent opportunistic pathogens. Enterococci cause a range of infections including, most frequently, infections of the urinary tract, catheterized urinary tract, bloodstream, wounds and surgical sites, and heart valves in endocarditis. Enterococcal infections are often biofilm-associated, polymicrobial in nature, and resistant to antibiotics of last resort. Understanding Enterococcal mechanisms of colonization and pathogenesis are important for identifying new ways to manage and intervene with these infections. We review vertebrate and invertebrate model systems applied to study the most common E. faecalis and E. faecium infections, with emphasis on recent findings examining Enterococcal-host interactions using these models. We discuss strengths and shortcomings of each model, propose future animal models not yet applied to study mono- and polymicrobial infections involving E. faecalis and E. faecium, and comment on the significance of anti-virulence strategies derived from a fundamental understanding of host-pathogen interactions in model systems.
Collapse
Affiliation(s)
- H. M. Sharon Goh
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - M. H. Adeline Yong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| | - Kelvin Kian Long Chong
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
- Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
36
|
Xu W, Flores-Mireles AL, Cusumano ZT, Takagi E, Hultgren SJ, Caparon MG. Host and bacterial proteases influence biofilm formation and virulence in a murine model of enterococcal catheter-associated urinary tract infection. NPJ Biofilms Microbiomes 2017; 3:28. [PMID: 29134108 PMCID: PMC5673934 DOI: 10.1038/s41522-017-0036-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/27/2017] [Accepted: 10/03/2017] [Indexed: 12/19/2022] Open
Abstract
Enterococcus faecalis is a leading causative agent of catheter-associated urinary tract infection (CAUTI), the most common hospital-acquired infection. Its ability to grow and form catheter biofilm is dependent upon host fibrinogen (Fg). Examined here are how bacterial and host proteases interact with Fg and contribute to virulence. Analysis of mutants affecting the two major secreted proteases of E. faecalis OG1RF (GelE, SprE) revealed that while the loss of either had no effect on virulence in a murine CAUTI model or for formation of Fg-dependent biofilm in urine, the loss of both resulted in CAUTI attenuation and defective biofilm formation. GelE−, but not SprE− mutants, lost the ability to degrade Fg in medium, while paradoxically, both could degrade Fg in urine. The finding that SprE was activated independently of GelE in urine by a host trypsin-like protease resolved this paradox. Treatment of catheter-implanted mice with inhibitors of both host-derived and bacterial-derived proteases dramatically reduced catheter-induced inflammation, significantly inhibited dissemination from bladder to kidney and revealed an essential role for a host cysteine protease in promoting pathogenesis. These data show that both bacterial and host proteases contribute to CAUTI, that host proteases promote dissemination and suggest new strategies for therapeutic intervention. Identifying bacterial and host enzymes that support biofilm formation may help prevent urinary tract infections caused by catheters. Enterococcus faecalis bacteria is a leading cause of catheter-associated urinary tract infections, the most common type of hospital-acquired infections. Michael Caparon and colleagues at Washington University School of Medicine in Missouri, USA, studied these infections in mice. They examined the effects of two protein-degrading enzymes, both from the bacterium and one can be activated by urine trypsin-like protease from the animals. Mutations that impaired either one of the enzymes had no effect on the infection, but when both the bacterial enzymes were impaired by mutation the formation of biofilms was significantly reduced. Treating the mice with chemicals that inhibited both bacterial and host enzymes dramatically reduced catheter-induced inflammation and related problems. This suggests drugs targeting these enzymes could be useful in clinical care.
Collapse
Affiliation(s)
- Wei Xu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| | - Ana L Flores-Mireles
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| | - Zachary T Cusumano
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA.,Present Address: NextCure Inc., Beltsville, MD USA
| | - Enzo Takagi
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| | - Michael G Caparon
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, Saint Louis, MO 63110-1093 USA
| |
Collapse
|
37
|
Gram-Positive Uropathogens, Polymicrobial Urinary Tract Infection, and the Emerging Microbiota of the Urinary Tract. Microbiol Spectr 2017; 4. [PMID: 27227294 DOI: 10.1128/microbiolspec.uti-0012-2012] [Citation(s) in RCA: 211] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gram-positive bacteria are a common cause of urinary-tract infection (UTI), particularly among individuals who are elderly, pregnant, or who have other risk factors for UTI. Here we review the epidemiology, virulence mechanisms, and host response to the most frequently isolated Gram-positive uropathogens: Staphylococcus saprophyticus, Enterococcus faecalis, and Streptococcus agalactiae. We also review several emerging, rare, misclassified, and otherwise underreported Gram-positive pathogens of the urinary tract including Aerococcus, Corynebacterium, Actinobaculum, and Gardnerella. The literature strongly suggests that urologic diseases involving Gram-positive bacteria may be easily overlooked due to limited culture-based assays typically utilized for urine in hospital microbiology laboratories. Some UTIs are polymicrobial in nature, often involving one or more Gram-positive bacteria. We herein review the risk factors and recent evidence for mechanisms of bacterial synergy in experimental models of polymicrobial UTI. Recent experimental data has demonstrated that, despite being cleared quickly from the bladder, some Gram-positive bacteria can impact pathogenic outcomes of co-infecting organisms. When taken together, the available evidence argues that Gram-positive bacteria are important uropathogens in their own right, but that some can be easily overlooked because they are missed by routine diagnostic methods. Finally, a growing body of evidence demonstrates that a surprising variety of fastidious Gram-positive bacteria may either reside in or be regularly exposed to the urinary tract and further suggests that their presence is widespread among women, as well as men. Experimental studies in this area are needed; however, there is a growing appreciation that the composition of bacteria found in the bladder could be a potentially important determinant in urologic disease, including susceptibility to UTI.
Collapse
|
38
|
Abstract
Urinary tract infections (UTI) are among the most common bacterial infections in humans, affecting millions of people every year. UTI cause significant morbidity in women throughout their lifespan, in infant boys, in older men, in individuals with underlying urinary tract abnormalities, and in those that require long-term urethral catheterization, such as patients with spinal cord injuries or incapacitated individuals living in nursing homes. Serious sequelae include frequent recurrences, pyelonephritis with sepsis, renal damage in young children, pre-term birth, and complications of frequent antimicrobial use including high-level antibiotic resistance and Clostridium difficile colitis. Uropathogenic E. coli (UPEC) cause the vast majority of UTI, but less common pathogens such as Enterococcus faecalis and other enterococci frequently take advantage of an abnormal or catheterized urinary tract to cause opportunistic infections. While antibiotic therapy has historically been very successful in controlling UTI, the high rate of recurrence remains a major problem, and many individuals suffer from chronically recurring UTI, requiring long-term prophylactic antibiotic regimens to prevent recurrent UTI. Furthermore, the global emergence of multi-drug resistant UPEC in the past ten years spotlights the need for alternative therapeutic and preventative strategies to combat UTI, including anti-infective drug therapies and vaccines. In this chapter, we review recent advances in the field of UTI pathogenesis, with an emphasis on the identification of promising drug and vaccine targets. We then discuss the development of new UTI drugs and vaccines, highlighting the challenges these approaches face and the need for a greater understanding of urinary tract mucosal immunity.
Collapse
|
39
|
Abstract
Infective endocarditis affects approximately 100,000 individuals in the USA. Medical advances have contributed to the rise of the disease, and no new therapies have emerged in the last 50 years to control the surge of this life-threatening infection. The rabbit vascular physiology and immune response mechanisms are similar to humans. Hence, the rabbit model of infective endocarditis is an excellent research tool with which to address many questions regarding development of endocarditis, for the testing of new therapies, and for the study of the molecular mechanisms used by infectious agents to cause disease. This chapter describes the surgical procedure required to study infective endocarditis in damaged native valves, therefore closely mimicking human disease.
Collapse
|
40
|
Barnes AMT, Dale JL, Chen Y, Manias DA, Greenwood Quaintance KE, Karau MK, Kashyap PC, Patel R, Wells CL, Dunny GM. Enterococcus faecalis readily colonizes the entire gastrointestinal tract and forms biofilms in a germ-free mouse model. Virulence 2016; 8:282-296. [PMID: 27562711 DOI: 10.1080/21505594.2016.1208890] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The mammalian gastrointestinal (GI) tract is a complex organ system with a twist-a significant portion of its composition is a community of microbial symbionts. The microbiota plays an increasingly appreciated role in many clinically-relevant conditions. It is important to understand the details of biofilm development in the GI tract since bacteria in this state not only use biofilms to improve colonization, biofilm bacteria often exhibit high levels of resistance to common, clinically relevant antibacterial drugs. Here we examine the initial colonization of the germ-free murine GI tract by Enterococcus faecalis-one of the first bacterial colonizers of the naïve mammalian gut. We demonstrate strong morphological similarities to our previous in vitro E. faecalis biofilm microcolony architecture using 3 complementary imaging techniques: conventional tissue Gram stain, immunofluorescent imaging (IFM) of constitutive fluorescent protein reporter expression, and low-voltage scanning electron microscopy (LV-SEM). E. faecalis biofilm microcolonies were readily identifiable throughout the entire lower GI tract, from the duodenum to the colon. Notably, biofilm development appeared to occur as discrete microcolonies directly attached to the epithelial surface rather than confluent sheets of cells throughout the GI tract even in the presence of high (>109) fecal bacterial loads. An in vivo competition experiment using a pool of 11 select E. faecalis mutant strains containing sequence-defined transposon insertions showed the potential of this model to identify genetic factors involved in E. faecalis colonization of the murine GI tract.
Collapse
Affiliation(s)
- Aaron M T Barnes
- a Departments of Microbiology & Immunology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Jennifer L Dale
- a Departments of Microbiology & Immunology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Yuqing Chen
- a Departments of Microbiology & Immunology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Dawn A Manias
- a Departments of Microbiology & Immunology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Kerryl E Greenwood Quaintance
- b Department of Laboratory Medicine and Pathology , Division of Clinical Microbiology, Mayo Clinic , Rochester , MN , USA
| | - Melissa K Karau
- b Department of Laboratory Medicine and Pathology , Division of Clinical Microbiology, Mayo Clinic , Rochester , MN , USA
| | - Purna C Kashyap
- c Division of Gastroenterology , Department of Medicine , Mayo Clinic , Rochester , MN , USA
| | - Robin Patel
- b Department of Laboratory Medicine and Pathology , Division of Clinical Microbiology, Mayo Clinic , Rochester , MN , USA.,d Department of Medicine , Division of Infectious Disease, Mayo Clinic , Rochester , MN , USA
| | - Carol L Wells
- a Departments of Microbiology & Immunology , University of Minnesota Medical School , Minneapolis , MN , USA.,e Laboratory Medicine and Pathology , University of Minnesota Medical School , Minneapolis , MN , USA
| | - Gary M Dunny
- a Departments of Microbiology & Immunology , University of Minnesota Medical School , Minneapolis , MN , USA
| |
Collapse
|
41
|
Olawale AK, David OM, Oluyege AO, Osuntoyinbo RT, Laleye SA, Famurewa O. Histopathological changes induced in an animal model by potentially pathogenic Enterococcus faecalis strains recovered from ready-to-eat food outlets in Osun State, Nigeria. Infect Drug Resist 2015; 8:181-7. [PMID: 26170700 PMCID: PMC4492643 DOI: 10.2147/idr.s61381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Enterococci have been implicated as an emerging important cause of several diseases and multiple antibiotic resistance. However, there is little information about the prevalence of pathogenic and/or antibiotic-resistant Enterococcus faecalis in ready-to-eat foods in Nigeria. Here we report the pathogenic potential of three selected antibiotic-resistant E. faecalis strains isolated from food canteens and food outlets with different virulence determinant genes, including EFC 12 (with gel+, esp+, cylA+, and asa1+), EFT 148 (with gel+, ace+, and asa1+), and EFS 18 (with esp+ and cylA+) in an animal model. Enterococcemia, hematological parameters, and histopathological changes in organ tissues were examined in experimental animals. The results showed differences in enterococcemia and hematological parameters between the control group and experimental animal group. Enterococcemia was observed for 7 days, and the animal group infected with EFC 12 showed the highest growth rate, followed by EFT 148, with the lowest growth rate seen in the EFS 18-infected group. White blood cell count, packed cell volume, and platelets were significantly reduced (P<0.05) in the experimental animals compared with the controls. White blood cells decreased drastically during the study period in rats challenged with EFC 12 (from 7,800 to 6,120 per mm3) but levels remained higher in the control group (from 9,228 to 9,306 per mm3). Histopathological changes included areas of pronounced hemorrhage, necrosis, and distortion in liver tissues, which were more marked in rats infected with EFC 12, followed by EFT 148, then EFS 18. The results of this study suggest the presence of potentially pathogenic E. faecalis strains in food canteens and food outlets; hence, there is a need for strict adherence to good hygiene practices in the study area owing to the epidemiological significance of foods.
Collapse
Affiliation(s)
- Adetunji Kola Olawale
- Department of Applied Sciences, Osun State Polytechnic, Iree, Nigeria ; Department of Microbiology, University of Ado-Ekiti, Ado-Ekiti, Nigeria
| | - Oluwole Moses David
- Department of Microbiology, University of Ado-Ekiti, Ado-Ekiti, Nigeria ; Phytomedicine Research Centre, Department of Botany, University of Fort Hare, Alice, South Africa
| | | | | | | | - Oladiran Famurewa
- Department of Microbiology, University of Ado-Ekiti, Ado-Ekiti, Nigeria
| |
Collapse
|
42
|
Frank KL, Vergidis P, Brinkman CL, Greenwood Quaintance KE, Barnes AMT, Mandrekar JN, Schlievert PM, Dunny GM, Patel R. Evaluation of the Enterococcus faecalis Biofilm-Associated Virulence Factors AhrC and Eep in Rat Foreign Body Osteomyelitis and In Vitro Biofilm-Associated Antimicrobial Resistance. PLoS One 2015; 10:e0130187. [PMID: 26076451 PMCID: PMC4467866 DOI: 10.1371/journal.pone.0130187] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 05/18/2015] [Indexed: 02/01/2023] Open
Abstract
Enterococcus faecalis can cause healthcare-associated biofilm infections, including those of orthopedic devices. Treatment of enterococcal prosthetic joint infection is difficult, in part, due to biofilm-associated antimicrobial resistance. We previously showed that the E. faecalis OG1RF genes ahrC and eep are in vitro biofilm determinants and virulence factors in animal models of endocarditis and catheter-associated urinary tract infection. In this study, we evaluated the role of these genes in a rat acute foreign body osteomyelitis model and in in vitro biofilm-associated antimicrobial resistance. Osteomyelitis was established for one week following the implantation of stainless steel orthopedic wires inoculated with E. faecalis strains OG1RF, ΩahrC, and ∆eep into the proximal tibiae of rats. The median bacterial loads recovered from bones and wires did not differ significantly between the strains at multiple inoculum concentrations. We hypothesize that factors present at the infection site that affect biofilm formation, such as the presence or absence of shear force, may account for the differences in attenuation in the various animal models we have used to study the ΩahrC and ∆eep strains. No differences among the three strains were observed in the planktonic and biofilm antimicrobial susceptibilities to ampicillin, vancomycin, daptomycin, linezolid, and tetracycline. These findings suggest that neither ahrC nor eep directly contribute to E. faecalis biofilm-associated antimicrobial resistance. Notably, the experimental evidence that the biofilm attachment mutant ΩahrC displays biofilm-associated antimicrobial resistance suggests that surface colonization alone is sufficient for E. faecalis cells to acquire the biofilm antimicrobial resistance phenotype.
Collapse
Affiliation(s)
- Kristi L. Frank
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Paschalis Vergidis
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Cassandra L. Brinkman
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Kerryl E. Greenwood Quaintance
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Aaron M. T. Barnes
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Jayawant N. Mandrekar
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Patrick M. Schlievert
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gary M. Dunny
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Robin Patel
- Division of Clinical Microbiology, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, United States of America
- Division of Infectious Diseases, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
43
|
Jakubovics NS, Robinson JC, Samarian DS, Kolderman E, Yassin SA, Bettampadi D, Bashton M, Rickard AH. Critical roles of arginine in growth and biofilm development by Streptococcus gordonii. Mol Microbiol 2015; 97:281-300. [PMID: 25855127 DOI: 10.1111/mmi.13023] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2015] [Indexed: 01/13/2023]
Abstract
Streptococcus gordonii is an oral commensal and an early coloniser of dental plaque. In vitro, S. gordonii is conditionally auxotrophic for arginine in monoculture but biosynthesises arginine when coaggregated with Actinomyces oris. Here, we investigated the arginine-responsive regulatory network of S. gordonii and the basis for conditional arginine auxotrophy. ArcB, the catabolic ornithine carbamoyltransferase involved in arginine degradation, was also essential for arginine biosynthesis. However, arcB was poorly expressed following arginine depletion, indicating that arcB levels may limit S. gordonii arginine biosynthesis. Arginine metabolism gene expression was tightly co-ordinated by three ArgR/AhrC family regulators, encoded by argR, ahrC and arcR genes. Microarray analysis revealed that > 450 genes were regulated in response to rapid shifts in arginine concentration, including many genes involved in adhesion and biofilm formation. In a microfluidic salivary biofilm model, low concentrations of arginine promoted S. gordonii growth, whereas high concentrations (> 5 mM arginine) resulted in dramatic reductions in biofilm biomass and changes to biofilm architecture. Collectively, these data indicate that arginine metabolism is tightly regulated in S. gordonii and that arginine is critical for gene regulation, cellular growth and biofilm formation. Manipulating exogenous arginine concentrations may be an attractive approach for oral biofilm control.
Collapse
Affiliation(s)
| | - Jill C Robinson
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Derek S Samarian
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Ethan Kolderman
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Sufian A Yassin
- School of Dental Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Deepti Bettampadi
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| | - Matthew Bashton
- Bioinformatics Support Unit, Newcastle University, Newcastle upon Tyne, UK
| | - Alexander H Rickard
- School of Public Health, Department of Epidemiology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
44
|
Charyeva O, Neilands J, Svensäter G, Wennerberg A. Bacterial Biofilm Formation on Resorbing Magnesium Implants. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ojmm.2015.51001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
45
|
Leuck AM, Johnson JR, Dunny GM. A widely used in vitro biofilm assay has questionable clinical significance for enterococcal endocarditis. PLoS One 2014; 9:e107282. [PMID: 25255085 PMCID: PMC4177788 DOI: 10.1371/journal.pone.0107282] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 08/06/2014] [Indexed: 01/07/2023] Open
Abstract
Biofilm formation may play an important role in the pathogenesis of infections caused by Enterococcus faecalis, including endocarditis. Most biofilm studies use a polystyrene dish assay to quantify biofilm biomass. However, recent studies of E. faecalis strains in tissue and animal models suggest that polystyrene dish results need to be interpreted with caution. We evaluated 158 clinical E. faecalis isolates using a polystyrene dish assay and found variation in biofilm formation, with many isolates forming little biofilm even when different types of media were used. However, all tested clinical isolates were able to form biofilms on porcine heart valve explants. Dextrose-enhanced biofilm formation in the polystyrene dish assay was found in 6/12 (50%) of clinical isolates tested and may explain some, but not all of the differences between the polystyrene dish assay and the heart valve assay. These findings suggest that in studies assessing the clinical relevance of enterococcal biofilm-forming ability, ex vivo biofilm formation on a relevant tissue surface may be warranted to validate results of in vitro assays.
Collapse
Affiliation(s)
- Anne-Marie Leuck
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| | - James R. Johnson
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, United States of America
- VA Health Care System, Minneapolis, Minnesota, United States of America
| | - Gary M. Dunny
- Department of Microbiology, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
46
|
Cook LC, Federle MJ. Peptide pheromone signaling in Streptococcus and Enterococcus. FEMS Microbiol Rev 2013; 38:473-92. [PMID: 24118108 DOI: 10.1111/1574-6976.12046] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 01/08/2023] Open
Abstract
Intercellular chemical signaling in bacteria, commonly referred to as quorum sensing (QS), relies on the production and detection of compounds known as pheromones to elicit coordinated responses among members of a community. Pheromones produced by Gram-positive bacteria are comprised of small peptides. Based on both peptide structure and sensory system architectures, Gram-positive bacterial signaling pathways may be classified into one of four groups with a defining hallmark: cyclical peptides of the Agr type, peptides that contain Gly-Gly processing motifs, sensory systems of the RNPP family, or the recently characterized Rgg-like regulatory family. The recent discovery that Rgg family members respond to peptide pheromones increases substantially the number of species in which QS is likely a key regulatory component. These pathways control a variety of fundamental behaviors including conjugation, natural competence for transformation, biofilm development, and virulence factor regulation. Overlapping QS pathways found in multiple species and pathways that utilize conserved peptide pheromones provide opportunities for interspecies communication. Here we review pheromone signaling identified in the genera Enterococcus and Streptococcus, providing examples of all four types of pathways.
Collapse
Affiliation(s)
- Laura C Cook
- Department of Medicinal Chemistry and Pharmacognosy, Center for Pharmaceutical Biotechnology, University of Illinois at Chicago, Chicago, IL, USA
| | | |
Collapse
|
47
|
Haemophilus responses to nutritional immunity: epigenetic and morphological contribution to biofilm architecture, invasion, persistence and disease severity. PLoS Pathog 2013; 9:e1003709. [PMID: 24130500 PMCID: PMC3795038 DOI: 10.1371/journal.ppat.1003709] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Accepted: 08/30/2013] [Indexed: 12/18/2022] Open
Abstract
In an effort to suppress microbial outgrowth, the host sequesters essential nutrients in a process termed nutritional immunity. However, inflammatory responses to bacterial insult can restore nutritional resources. Given that nutrient availability modulates virulence factor production and biofilm formation by other bacterial species, we hypothesized that fluctuations in heme-iron availability, particularly at privileged sites, would similarly influence Haemophilus biofilm formation and pathogenesis. Thus, we cultured Haemophilus through sequential heme-iron deplete and heme-iron replete media to determine the effect of transient depletion of internal stores of heme-iron on multiple pathogenic phenotypes. We observed that prior heme-iron restriction potentiates biofilm changes for at least 72 hours that include increased peak height and architectural complexity as compared to biofilms initiated from heme-iron replete bacteria, suggesting a mechanism for epigenetic responses that participate in the changes observed. Additionally, in a co-infection model for human otitis media, heme-iron restricted Haemophilus, although accounting for only 10% of the inoculum (90% heme-iron replete), represented up to 99% of the organisms recovered at 4 days. These data indicate that fluctuations in heme-iron availability promote a survival advantage during disease. Filamentation mediated by a SulA-related ortholog was required for optimal biofilm peak height and persistence during experimental otitis media. Moreover, severity of disease in response to heme-iron restricted Haemophilus was reduced as evidenced by lack of mucosal destruction, decreased erythema, hemorrhagic foci and vasodilatation. Transient restriction of heme-iron also promoted productive invasion events leading to the development of intracellular bacterial communities. Taken together, these data suggest that nutritional immunity, may, in fact, foster long-term phenotypic changes that better equip bacteria for survival at infectious sites. Clinical management of upper and lower respiratory tract diseases caused by nontypeable Haemophilus influenzae (NTHI) is a significant socioeconomic burden. Therapies targeting the pathogenic lifestyle of NTHI remain non-existent due to a lack of understanding of host microenvironmental cues and bacterial responses that dictate NTHI persistence. Iron availability influences bacterial virulence traits and biofilm formation; yet, host sequestration of iron serves to restrict bacterial growth. We predicted that fluctuations in availability of iron-containing compounds, typically associated with infection, would impact NTHI pathogenesis. We demonstrated that transient restriction of heme-iron triggered an epigenetic developmental program that enhanced NTHI biofilm architecture, directly influenced by induced morphological changes in bacterial length. Heme-iron restricted bacteria were primed for survival in the mammalian middle ear, due in part to an observed reduction in host inflammation coinciding with a striking reduction in host mucosal epithelial damage, compared to that observed in response to heme-iron replete NTHI. Moreover, transiently restricted NTHI were more invasive of epithelial cells resulting in formation of intracellular bacterial communities. Our findings significantly advance our understanding of how host immune pressure and nutrient availability influence pathogenic behaviors that impact disease severity.
Collapse
|
48
|
Eep confers lysozyme resistance to enterococcus faecalis via the activation of the extracytoplasmic function sigma factor SigV. J Bacteriol 2013; 195:3125-34. [PMID: 23645601 DOI: 10.1128/jb.00291-13] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Enterococcus faecalis is a commensal bacterium found in the gastrointestinal tract of most mammals, including humans, and is one of the leading causes of nosocomial infections. One of the hallmarks of E. faecalis pathogenesis is its unusual ability to tolerate high concentrations of lysozyme, which is an important innate immune component of the host. Previous studies have shown that the presence of lysozyme leads to the activation of SigV, an extracytoplasmic function (ECF) sigma factor in E. faecalis, and that the deletion of sigV increases the susceptibility of the bacterium toward lysozyme. Here, we describe the contribution of Eep, a membrane-bound zinc metalloprotease, to the activation of SigV under lysozyme stress by its effects on the stability of the anti-sigma factor RsiV. We demonstrate that the Δeep mutant phenocopies the ΔsigV mutant in lysozyme, heat, ethanol, and acid stress susceptibility. We also show, using an immunoblot analysis, that in an eep deletion mutant, the anti-sigma factor RsiV is only partially degraded after lysozyme exposure, suggesting that RsiV is processed by unknown protease(s) prior to the action of Eep. An additional observation is that the deletion of rsiV, which results in constitutive SigV expression, leads to chaining of cells, suggesting that SigV might be involved in regulating cell wall-modifying enzymes important in cell wall turnover. We also demonstrate that, in the absence of eep or sigV, enterococci bind significantly more lysozyme, providing a plausible explanation for the increased sensitivity of these mutants toward lysozyme.
Collapse
|