1
|
Tian JH, Huang S, Wang ZH, Li JJ, Song X, Jiang ZT, Shi BS, Zhao YY, Zhang HY, Wang KR, Hu XY, Zhang X, Guo DS. Supramolecular discrimination and diagnosis-guided treatment of intracellular bacteria. Nat Commun 2025; 16:1016. [PMID: 39863571 DOI: 10.1038/s41467-025-56308-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 01/15/2025] [Indexed: 01/27/2025] Open
Abstract
Pathogenic intracellular bacteria pose a significant threat to global public health due to the barriers presented by host cells hindering the timely detection of hidden bacteria and the effective delivery of therapeutic agents. To address these challenges, we propose a tandem diagnosis-guided treatment paradigm. A supramolecular sensor array is developed for simple, rapid, accurate, and high-throughput identification of intracellular bacteria. This diagnostic approach executes the significant guiding missions of screening a customized host-guest drug delivery system by disclosing the rationale behind the discrimination. We design eight azocalix[4]arenes with differential active targeting, cellular internalization, and hypoxia responsiveness to penetrate cells and interact with bacteria. Loaded with fluorescent indicators, these azocalix[4]arenes form a sensor array capable of discriminating eight intracellular bacterial species without cell lysis or separation. By fingerprinting specimens collected from bacteria-infected mice, the facilitated accurate diagnosis offers valuable guidance for selecting appropriate antibiotics. Moreover, mannose-modified azocalix[4]arene (ManAC4A) is screened as a drug carrier efficiently taken up by macrophages. Doxycycline loaded with ManAC4A exhibits improved efficacy against methicillin-resistant Staphylococcus aureus-infected peritonitis. This study introduces an emerging paradigm to intracellular bacterial diagnosis and treatment, offering broad potential in combating bacterial infectious diseases.
Collapse
Affiliation(s)
- Jia-Hong Tian
- College of Chemistry, Nankai University, Tianjin, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Siyuan Huang
- College of Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China
- Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin, China
| | - Ze-Han Wang
- College of Chemistry, Nankai University, Tianjin, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Juan-Juan Li
- College of Chemistry, Nankai University, Tianjin, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Xianhui Song
- College of Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China
- Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin, China
| | - Ze-Tao Jiang
- College of Chemistry, Nankai University, Tianjin, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China
| | - Bing-Sen Shi
- College of Chemistry and Materials Science, Hebei University, Baoding, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding, China
- Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, China
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, China
| | - Ying-Ying Zhao
- College of Chemistry and Materials Science, Hebei University, Baoding, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding, China
- Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, China
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, China
| | - Hui-Yan Zhang
- College of Chemistry and Materials Science, Hebei University, Baoding, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding, China
- Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, China
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, China
| | - Ke-Rang Wang
- College of Chemistry and Materials Science, Hebei University, Baoding, China
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, Hebei University, Baoding, China
- Key Laboratory of Medicinal Chemistry and Molecular Diagnosis (Ministry of Education), Hebei University, Baoding, China
- Key Laboratory of Chemical Biology of Hebei Province, Hebei University, Baoding, China
- Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, China
| | - Xin-Yue Hu
- College of Chemistry, Nankai University, Tianjin, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China.
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China.
| | - Xinge Zhang
- College of Chemistry, Nankai University, Tianjin, China.
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China.
- Tianjin Key Laboratory of Functional Polymer Materials, Nankai University, Tianjin, China.
| | - Dong-Sheng Guo
- College of Chemistry, Nankai University, Tianjin, China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, China.
- Key Laboratory of Functional Polymer Materials (Ministry of Education), Nankai University, Tianjin, China.
- Frontiers Science Center for New Organic Matter, Nankai University, Tianjin, China.
- Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin, China.
- Xinjiang Key Laboratory of Novel Functional Materials Chemistry, Kashi University, Kashi, China.
- College of Chemistry and Environmental Sciences, Kashi University, Kashi, China.
| |
Collapse
|
2
|
Ayilam Ramachandran R, Titone R, Abdallah JT, Rehman M, Cao M, Baniasadi H, Robertson DM. Inhibition of Unc-51-like-kinase is mitoprotective during Pseudomonas aeruginosa infection in corneal epithelial cells. mSphere 2025:e0053724. [PMID: 39791872 DOI: 10.1128/msphere.00537-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/10/2024] [Indexed: 01/12/2025] Open
Abstract
Pseudomonas aeruginosa (PA) is an opportunistic gram-negative pathogen that can infect the cornea, leading to permanent vision loss. Autophagy is a cannibalistic process that drives cytoplasmic components to the lysosome for degradation and/or recycling. Autophagy has been shown to play a key role in the removal of intracellular pathogens and, as such, is an important component of the innate immune response. Autophagy is intimately linked to mitochondria, organelles that mediate energy homeostasis, immune signaling, and cell death. Using a combination of biochemical and imaging approaches, we investigated the effects of PA on autophagy and host cell mitochondria in relation to pro-inflammatory cytokine expression. Using a standard invasive test strain of PA, we show that PA infection triggers dephosphorylation of the mechanistic target of rapamycin in corneal epithelial cells, leading to the induction of autophagy through ULK1/2. This was associated with robust mitochondrial depolarization, changes in mitochondrial ultrastructure, and an increase in IL-6 and IL-8 secretion. PA infection was also associated with an increase in purine metabolism by host cells. Treatment with the ULK1/2 inhibitor, MRT68921, which blocks phagophore formation, attenuated levels of intracellular PA in corneal epithelial cells. Unexpectedly, treatment of cells with MRT68921 blocked PA-induced mitochondrial depolarization and downregulated purine and pyrimidine metabolism. While MRT68921 attenuated the PA-induced increase in IL-6, it further increased IL-8 and neutrophil chemotaxis. This was associated with the nuclear internalization of NFκB. Taken together, these findings highlight a novel mechanism whereby the inhibition of ULK1/2 activity confers mitoprotection during PA infection in corneal epithelial cells.IMPORTANCEPseudomonas aeruginosa (PA) is a common pathogen that can cause severe disease in man. In the eye, PA infection can lead to blindness. In this study, we show that PA induces autophagy, a mechanism whereby cells recycle damaged proteins and organelles. PA infection further depolarizes mitochondria, leading to the release of pro-inflammatory mediators. Unexpectedly, the inhibition of ULK1/2, an enzyme involved in the early stages of autophagy, not only inhibits autophagy but enhances mitochondrial polarization. This leads to a reduction in intracellular levels of PA and changes in the inflammatory milieu. Together, these data suggest that the inhibition of ULK1/2 may be mitoprotective in corneal epithelial cells during PA infection.
Collapse
Affiliation(s)
| | | | - Joelle T Abdallah
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mahad Rehman
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mou Cao
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Hamid Baniasadi
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Danielle M Robertson
- Departments of Ophthalmology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
3
|
Grubwieser P, Böck N, Soto EK, Hilbe R, Moser P, Seifert M, Dichtl S, Govrins MA, Posch W, Sonnweber T, Nairz M, Theurl I, Trajanoski Z, Weiss G. Human airway epithelium controls Pseudomonas aeruginosa infection via inducible nitric oxide synthase. Front Immunol 2024; 15:1508727. [PMID: 39691712 PMCID: PMC11649544 DOI: 10.3389/fimmu.2024.1508727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 11/05/2024] [Indexed: 12/19/2024] Open
Abstract
Introduction Airway epithelial cells play a central role in the innate immune response to invading bacteria, yet adequate human infection models are lacking. Methods We utilized mucociliary-differentiated human airway organoids with direct access to the apical side of epithelial cells to model the initial phase of Pseudomonas aeruginosa respiratory tract infection. Results Immunofluorescence of infected organoids revealed that Pseudomonas aeruginosa invades the epithelial barrier and subsequently proliferates within the epithelial space. RNA sequencing analysis demonstrated that Pseudomonas infection stimulated innate antimicrobial immune responses, but specifically enhanced the expression of genes of the nitric oxide metabolic pathway. We demonstrated that activation of inducible nitric oxide synthase (iNOS) in airway organoids exposed bacteria to nitrosative stress, effectively inhibiting intra-epithelial pathogen proliferation. Pharmacological inhibition of iNOS resulted in expansion of bacterial proliferation whereas a NO producing drug reduced bacterial numbers. iNOS expression was mainly localized to ciliated epithelial cells of infected airway organoids, which was confirmed in primary human lung tissue during Pseudomonas pneumonia. Discussion Our findings highlight the critical role of epithelial-derived iNOS in host defence against Pseudomonas aeruginosa infection. Furthermore, we describe a human tissue model that accurately mimics the airway epithelium, providing a valuable framework for systemically studying host-pathogen interactions in respiratory infections.
Collapse
Affiliation(s)
- Philipp Grubwieser
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Nina Böck
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Erika Kvalem Soto
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Richard Hilbe
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Patrizia Moser
- INNPATH, Innsbruck Medical University Hospital, Innsbruck, Austria
| | - Markus Seifert
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Stefanie Dichtl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Miriam Alisa Govrins
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Wilfried Posch
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Thomas Sonnweber
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Manfred Nairz
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Igor Theurl
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
| | - Zlatko Trajanoski
- Biocenter, Institute of Bioinformatics, Medical University of Innsbruck, Innsbruck, Austria
| | - Günter Weiss
- Department of Internal Medicine II, Infectious Diseases, Immunology, Rheumatology, Medical University of Innsbruck, Innsbruck, Austria
- Christian Doppler Laboratory for Iron Metabolism and Anemia Research, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
4
|
Badger-Emeka L, Emeka P, Thirugnanasambantham K, Alatawi AS. The Role of Pseudomonas aeruginosa in the Pathogenesis of Corneal Ulcer, Its Associated Virulence Factors, and Suggested Novel Treatment Approaches. Pharmaceutics 2024; 16:1074. [PMID: 39204419 PMCID: PMC11360345 DOI: 10.3390/pharmaceutics16081074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (P. aeruginosa), is a diverse Gram-negative pathogen commonly associated with a wide spectrum of infections. It is indicated to be the most prevalent causative agent in the development of bacterial keratitis linked with the use of contact lens. Corneal infections attributed to P. aeruginosa frequently have poor clinical outcomes necessitating lengthy and costly therapies. Therefore, this review looks at the aetiology of P. aeruginosa bacterial keratitis as well as the bacterial drivers of its virulence and the potential therapeutics on the horizon. METHOD A literature review with the articles used for the review searched for and retrieved from PubMed, Scopus, and Google Scholar (date last accessed 1 April 2024). The keywords used for the search criteria were "Pseudomonas and keratitis, biofilm and cornea as well as P. aeruginosa". RESULTS P. aeruginosa is implicated in the pathogenesis of bacterial keratitis associated with contact lens usage. To reduce the potential seriousness of these infections, a variety of contact lens-cleaning options are available. However, continuous exposure to a range of antibiotics doses, from sub-inhibitory to inhibitory, has been shown to lead to the development of resistance to both antibiotics and disinfectant. Generally, there is a global public health concern regarding the rise of difficult-to-treat infections, particularly in the case of P. aeruginosa virulence in ocular infections. This study of the basic pathogenesis of a prevalent P. aeruginosa strain is therefore implicated in keratitis. To this effect, anti-virulence methods and phage therapy are being researched and developed in response to increasing antibiotic resistance. CONCLUSION This review has shown P. aeruginosa to be a significant cause of bacterial keratitis, particularly among users of contact lens. It also revealed treatment options, their advantages, and their drawbacks, including prospective candidates.
Collapse
Affiliation(s)
- Lorina Badger-Emeka
- Department of Biomedical Science, College of Medicine King Faisal University, Al Ahsa 31982, Saudi Arabia
| | - Promise Emeka
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| | | | - Abdulaziz S. Alatawi
- Department of Pharmaceutical Science, College of Clinical Pharmacy, King Faisal University, Al Ahsa 31982, Saudi Arabia; (P.E.); (A.S.A.)
| |
Collapse
|
5
|
Ayilam Ramachandran R, Baniasadi H, Robertson DM. Pseudomonas aeruginosa infection increases palmitoyl carnitine release by host-derived extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.13.603378. [PMID: 39026691 PMCID: PMC11257627 DOI: 10.1101/2024.07.13.603378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Pseudomonas aeruginosa (PA), an opportunistic gram-negative pathogen, is the most common pathogen identified in all culture positive cases of infectious keratitis. Extracellular vesicles (EVs) are released by most cells in the body and function in intercellular communication. We have previously reported a change in the proteome of host-derived EVs from corneal epithelial cells during PA infection. In the present study, we investigated changes in the metabolome of host-derived EVs from PA infected (PA-C EVs) and non-infected cells (C EVs). We found that one metabolite, palmitoyl carnitine (PAMC), was significantly upregulated in PA-C EVs. To determine the significance of PAMC release, we investigated the effect of PAMC treatment on corneal epithelial cells and neutrophils. EVs were isolated from culture media using size exclusion chromatography. EVs were then characterized using nanoparticle tracking analysis, transmission electron microscopy, and western blot. Metabolomics was performed using an untargeted approach. We found that palmitoyl carnitine (PAMC) was the most abundant metabolite present in PA-C EVs and was increased more than 3 fold compared to C EVs. Treatment of corneal epithelial cells with increasing levels of PAMC increased nuclear translocation of the NF-κB subunit p65. This was associated with an increase in IL-8 production and neutrophil migration. PAMC also increased levels of mitochondrial calcium. Upon inoculation of corneal epithelial cells with PA, 50 μM PAMC completely eradicated intracellular PA, but stimulated growth of extracellular PA. Taken together, these findings suggest that PA exploits EV release by host cells to deplete PAMC from the intracellular environment.
Collapse
|
6
|
Ramachandran RA, Abdallah JT, Rehman M, Baniasadi H, Blanton AM, Vizcaino S, Robertson DM. Pseudomonas aeruginosa impairs mitochondrial function and metabolism during infection of corneal epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.24.600521. [PMID: 38979356 PMCID: PMC11230238 DOI: 10.1101/2024.06.24.600521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Pseudomonas aeruginosa (PA) is a gram-negative opportunistic pathogen that can infect the cornea as a result of trauma or contact lens wear. In addition to their known energy producing role, mitochondria are important mediators of immune signaling and host defense. While certain pathogens have developed strategies to evade host defenses by modulating host mitochondrial dynamics and metabolism, the ability of PA to harness host cell mitochondria during corneal infection is unknown. Using a combination of biochemical and imaging techniques, we show that PA infection of corneal epithelial cells induced mitochondrial fission in a DRP1-dependent manner that preceded PINK1/Parkin and FUNDC1-mediated mitophagy. PA also impaired NADH-linked respiration through a reduction in complex 1. This corresponded to a decrease in metabolic pathways related to glycolysis and the TCA cycle. Metabolomics analysis further demonstrated an upregulation of the pentose phosphate pathway, arginine, purine, and pyrimidine metabolism in PA infected cells. These pathways may provide a key source of nucleotides, amino acids, and nitrogen for both the host cell and PA, in addition to antioxidant functions. Following treatment with gentamicin to kill all extracellular bacteria, metabolic flux analysis showed that corneal epithelial cells were able to restore mitochondrial function despite the continued presence of intracellular PA. Taken together, these data demonstrate that mitochondrial dysfunction and metabolic rewiring in host cells is triggered by extracellular PA, but once inside, PA requires healthy mitochondria to ensure host cell survival.
Collapse
|
7
|
Ayilam Ramachandran R, Lemoff A, Robertson DM. Extracellular vesicles released by host epithelial cells during Pseudomonas aeruginosa infection function as homing beacons for neutrophils. Cell Commun Signal 2024; 22:341. [PMID: 38907250 PMCID: PMC11191230 DOI: 10.1186/s12964-024-01609-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/10/2024] [Indexed: 06/23/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa (PA) is an opportunistic pathogen that can cause sight threatening infections in the eye and fatal infections in the cystic fibrosis airway. Extracellular vesicles (EVs) are released by host cells during infection and by the bacteria themselves; however, there are no studies on the composition and functional role of host-derived EVs during PA infection of the eye or lung. Here we investigated the composition and capacity of EVs released by PA infected epithelial cells to modulate innate immune responses in host cells. METHODS Human telomerase immortalized corneal epithelial cells (hTCEpi) cells and human telomerase immortalized bronchial epithelial cells (HBECs) were treated with a standard invasive test strain of Pseudomonas aeruginosa, PAO1, for 6 h. Host derived EVs were isolated by qEV size exclusion chromatography. EV proteomic profiles during infection were compared using mass spectrometry and functional studies were carried out using hTCEpi cells, HBECs, differentiated neutrophil-like HL-60 cells, and primary human neutrophils isolated from peripheral blood. RESULTS EVs released from PA infected corneal epithelial cells increased pro-inflammatory cytokine production in naïve corneal epithelial cells and induced neutrophil chemotaxis independent of cytokine production. The EVs released from PA infected bronchial epithelial cells were also chemotactic although they failed to induce cytokine secretion from naïve HBECs. At the proteomic level, EVs derived from PA infected corneal epithelial cells exhibited lower complexity compared to bronchial epithelial cells, with the latter having reduced protein expression compared to the non-infected control. CONCLUSIONS This is the first study to comprehensively profile EVs released by corneal and bronchial epithelial cells during Pseudomonas infection. Together, these findings show that EVs released by PA infected corneal and bronchial epithelial cells function as potent mediators of neutrophil migration, contributing to the exuberant neutrophil response that occurs during infection in these tissues.
Collapse
Affiliation(s)
| | - Andrew Lemoff
- The Departments of Biochemistry, UT Southwestern Medical Center, Dallas, TX, USA
| | - Danielle M Robertson
- The Departments of Ophthalmology, UT Southwestern Medical Center, Dallas, TX, USA.
- The Department of Ophthalmology, UT Southwestern Medical Center, 5323 Harry Hines Blvd, 75390-9057, Dallas, TX, USA.
| |
Collapse
|
8
|
Robino L, Sauto R, Morales C, Navarro N, González MJ, Cruz E, Neffa F, Zeballos J, Scavone P. Presence of intracellular bacterial communities in uroepithelial cells, a potential reservoir in symptomatic and non-symptomatic people. BMC Infect Dis 2024; 24:590. [PMID: 38886658 PMCID: PMC11181538 DOI: 10.1186/s12879-024-09489-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Urinary tract infection is one of the most common infections in humans, affecting women in more proportion. The bladder was considered sterile, but it has a urinary microbiome. Moreover, intracellular bacteria (IB) were observed in uroepithelial cells from children and women with urinary tract infections (UTIs). Here, we evaluated the presence of IB in urine from healthy people and patients with UTI symptoms. METHODS Midstream urine was self-collected from 141 donors, 77 females and 64 males; 72 belonged to the asymptomatic group and 69 were symptomatic. IB was characterized by a culture-dependent technique and visualized by confocal microscopy. Urine was also subjected to the classical uroculture and isolated bacteria were identified by MALDI-TOF. RESULTS One-hundred and fifteen uroculture were positive. A significant association was observed between the presence of symptoms and IB (P = 0.007). Moreover, a significant association between the presence of IB, symptoms and being female was observed (P = 0.03). From the cases with IB, Escherichia coli was the most frequent microorganism identified (34.7%), followed by Stenotrophomonas maltophilia (14.2%), Staphylococcus spp (14.2%), and Enterococcus faecalis (10.7%). Intracellular E. coli was associated with the symptomatic group (P = 0.02). Most of the intracellular Staphylococcus spp. were recovered from the asymptomatic group (P = 0.006). CONCLUSIONS Intracellular bacteria are present in patients with UTI but also in asymptomatic people. Here, we report for the first time, the presence of S. maltophilia, Staphylococcus spp., and Enterobacter cloacae as intracellular bacteria in uroepithelial cells. These findings open new insights into the comprehension of urinary tract infections, urinary microbiome and future therapies. Uroculture as the gold standard could not be enough for an accurate diagnosis in recurrent or complicated cases.
Collapse
Affiliation(s)
- Luciana Robino
- Unidad Academica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, UdelaR, Av. Dr. Navarro 3051, Montevideo, Uruguay
| | - Rafael Sauto
- Unidad Academica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, UdelaR, Av. Dr. Navarro 3051, Montevideo, Uruguay
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Cecilia Morales
- Unidad Academica de Bacteriología y Virología, Instituto de Higiene, Facultad de Medicina, UdelaR, Av. Dr. Navarro 3051, Montevideo, Uruguay
| | - Nicolás Navarro
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - María José González
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Erlen Cruz
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay
| | - Florencia Neffa
- Servicio de Urología, Hospital Maciel, Montevideo, Administración de Servicios de Salud del Estado, 25 de mayo 174, Montevideo, Uruguay
| | - Javier Zeballos
- Servicio de Urología, Hospital Maciel, Montevideo, Administración de Servicios de Salud del Estado, 25 de mayo 174, Montevideo, Uruguay
| | - Paola Scavone
- Laboratorio de Biofilms Microbianos, Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, Uruguay.
| |
Collapse
|
9
|
Crabbé A. Intracellular Pseudomonas aeruginosa: An Overlooked Reservoir in the Lungs of People with Cystic Fibrosis? Am J Respir Crit Care Med 2024; 209:1421-1423. [PMID: 38498854 PMCID: PMC11208970 DOI: 10.1164/rccm.202402-0388ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 03/18/2024] [Indexed: 03/20/2024] Open
Affiliation(s)
- Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology Ghent University Ghent, Belgium
| |
Collapse
|
10
|
Malet K, Faure E, Adam D, Donner J, Liu L, Pilon SJ, Fraser R, Jorth P, Newman DK, Brochiero E, Rousseau S, Nguyen D. Intracellular Pseudomonas aeruginosa within the Airway Epithelium of Cystic Fibrosis Lung Tissues. Am J Respir Crit Care Med 2024; 209:1453-1462. [PMID: 38324627 DOI: 10.1164/rccm.202308-1451oc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 02/07/2024] [Indexed: 02/09/2024] Open
Abstract
Rationale: Pseudomonas aeruginosa is the major bacterial pathogen colonizing the airways of adult patients with cystic fibrosis (CF) and causes chronic infections that persist despite antibiotic therapy. Intracellular bacteria may represent an unrecognized reservoir of bacteria that evade the immune system and antibiotic therapy. Although the ability of P. aeruginosa to invade and survive within epithelial cells has been described in vitro in different epithelial cell models, evidence of this intracellular lifestyle in human lung tissues is currently lacking. Objectives: To detect and characterize intracellular P. aeruginosa in CF airway epithelium from human lung explant tissues. Methods: We sampled lung explant tissues from patients with CF undergoing lung transplantation and non-CF lung donor control tissue. We analyzed lung tissue sections for the presence of intracellular P. aeruginosa using quantitative culture and microscopy, in parallel to histopathology and airway morphometry. Measurements and Main Results: P. aeruginosa was isolated from the lungs of seven patients with CF undergoing lung transplantation. Microscopic assessment revealed the presence of intracellular P. aeruginosa within airway epithelial cells in three of the seven patients analyzed at a varying but low frequency. We observed those events occurring in lung regions with high bacterial burden. Conclusions: This is the first study describing the presence of intracellular P. aeruginosa in CF lung tissues. Although intracellular P. aeruginosa in airway epithelial cells is likely relatively rare, our findings highlight the plausible occurrence of this intracellular bacterial reservoir in chronic CF infections.
Collapse
Affiliation(s)
- Karim Malet
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Emmanuel Faure
- Université de Lille, Centre National de la Recherche Scientifique, INSERM, Centre Hospitalier Universitaire Lille, Institut Pasteur de Lille, U1019-UMR 9017, Center for Infection and Immunity of Lille, Lille, France
- Centre Hospitalier Universitaire Lille, Service Universitaire de Maladies Infectieuses, Lille, France
| | - Damien Adam
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Jannik Donner
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Lin Liu
- Department of Respiratory and Critical Care Medicine and
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Sarah-Jeanne Pilon
- Department of Pathology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Richard Fraser
- Department of Pathology, McGill University Health Centre, Montreal, Quebec, Canada
| | - Peter Jorth
- Department of Pathology and Laboratory Medicine
- Department of Medicine, and
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California
- Division of Biology and Biological Engineering and
| | - Dianne K Newman
- Division of Biology and Biological Engineering and
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California; and
| | - Emmanuelle Brochiero
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Quebec, Canada
- Département de Médecine, Université de Montréal, Montréal, Quebec, Canada
| | - Simon Rousseau
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Dao Nguyen
- Meakins-Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- Department of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
11
|
Resko ZJ, Suhi RF, Thota AV, Kroken AR. Evidence for intracellular Pseudomonas aeruginosa. J Bacteriol 2024; 206:e0010924. [PMID: 38597609 PMCID: PMC11112991 DOI: 10.1128/jb.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024] Open
Abstract
Pseudomonas aeruginosa is a significant cause of global morbidity and mortality. Although it is often regarded as an extracellular pathogen toward human cells, numerous investigations report its ability to survive and replicate within host cells, and additional studies demonstrate specific mechanisms enabling it to adopt an intracellular lifestyle. This ability of P. aeruginosa remains less well-investigated than that of other intracellular bacteria, although it is currently gaining attention. If intracellular bacteria are not killed after entering host cells, they may instead receive protection from immune recognition and experience reduced exposure to antibiotic therapy, among additional potential advantages shared with other facultative intracellular pathogens. For this review, we compiled studies that observe intracellular P. aeruginosa across strains, cell types, and experimental systems in vitro, as well as contextualize these findings with the few studies that report similar observations in vivo. We also seek to address key findings that drove the perception that P. aeruginosa remains extracellular in order to reconcile what is currently understood about intracellular pathogenesis and highlight open questions regarding its contribution to disease.
Collapse
Affiliation(s)
- Zachary J. Resko
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Rachel F. Suhi
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Adam V. Thota
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Abby R. Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| |
Collapse
|
12
|
Hajjar H, Berry L, Wu Y, Touqui L, Vergunst AC, Blanc-Potard AB. Contribution of intramacrophage stages to Pseudomonas aeruginosa infection outcome in zebrafish embryos: insights from mgtC and oprF mutants. Sci Rep 2024; 14:6297. [PMID: 38491095 PMCID: PMC10943088 DOI: 10.1038/s41598-024-56725-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 03/10/2024] [Indexed: 03/18/2024] Open
Abstract
Pseudomonas aeruginosa often colonizes immunocompromised patients, causing acute and chronic infections. This bacterium can reside transiently inside cultured macrophages, but the contribution of the intramacrophic stage during infection remains unclear. MgtC and OprF have been identified as important bacterial factors when P. aeruginosa resides inside cultured macrophages. In this study, we showed that P. aeruginosa mgtC and oprF mutants, particular the latter one, had attenuated virulence in both mouse and zebrafish animal models of acute infection. To further investigate P. aeruginosa pathogenesis in zebrafish at a stage different from acute infection, we monitored bacterial load and visualized fluorescent bacteria in live larvae up to 4 days after infection. Whereas the attenuated phenotype of the oprF mutant was associated with a rapid elimination of bacteria, the mgtC mutant was able to persist at low level, a feature also observed with the wild-type strain in surviving larvae. Interestingly, these persistent bacteria can be visualized in macrophages of zebrafish. In a short-time infection model using a macrophage cell line, electron microscopy revealed that internalized P. aeruginosa wild-type bacteria were either released after macrophage lysis or remained intracellularly, where they were localized in vacuoles or in the cytoplasm. The mgtC mutant could also be detected inside macrophages, but without causing cell damage, whereas the oprF mutant was almost completely eliminated after phagocytosis, or localized in phagolysosomes. Taken together, our results show that the main role of OprF for intramacrophage survival impacts both acute and persistent infection by this bacterium. On the other hand, MgtC plays a clear role in acute infection but is not essential for bacterial persistence, in relation with the finding that the mgtC mutant is not completely eliminated by macrophages.
Collapse
Affiliation(s)
- Hélène Hajjar
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS-UMR5294, INSERM, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS-UMR5294, INSERM, Montpellier, France
| | - Yongzheng Wu
- Institut Pasteur, Université Paris Cité, CNRS UMR3691, Cellular Biology and Microbial Infection Unit, Paris, France
| | - Lhousseine Touqui
- Sorbonne Université, Inserm U938, Centre de Recherche Saint-Antoine (CRSA), Paris, France
- Institut Pasteur, Université de Paris Cité, Mucoviscidose et Bronchopathies Chroniques, Paris, France
| | - Annette C Vergunst
- Bacterial Virulence and Chronic Infections (VBIC), Université de Montpellier, INSERM, U1047, Nîmes, France.
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogens and Host Immunity (LPHI), Université de Montpellier, CNRS-UMR5294, INSERM, Montpellier, France.
| |
Collapse
|
13
|
Rafiei S, Bouzari M. Genomic analysis of vB_PaS-HSN4 bacteriophage and its antibacterial activity (in vivo and in vitro) against Pseudomonas aeruginosa isolated from burn. Sci Rep 2024; 14:2007. [PMID: 38263187 PMCID: PMC10805781 DOI: 10.1038/s41598-023-50916-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/28/2023] [Indexed: 01/25/2024] Open
Abstract
The most frequent infections caused by Pseudomonas aeruginosa are local infections in soft tissues, including burns. Today, phage use is considered a suitable alternative to cure infections caused by multi-drug-resistant (MDR) and extensively drug-resistant (XDR) bacteria. We investigated the potential of a novel phage (vB_PaS-HSN4) belonging to Caudoviricetes class, against XDR and MDR P. aeruginosa strains in vivo and in vitro. Its biological and genetic characteristics were investigated. The phage burst size and latent were 119 and 20 min, respectively. It could tolerate a broad range of salt concentrations, pH values, and temperatures. The combination with ciprofloxacin significantly enhanced biofilm removal after 24 h. The genome was dsDNA with a size of 44,534 bp and encoded 61 ORFs with 3 tRNA and 5 promoters. No virulence factor was observed in the phage genome. In the in vivo infection model, treatment with vB_PaS-HSN4 increased Galleria mellonella larvae survival (80%, 66%, and 60%) (MOI 100) and (60%, 40%, and 26%) (MOI 1) in the pre-treatment, co-treatment, and post-treatment experiments, respectively. Based on these characteristics, it can be considered for the cure of infections of burns caused by P. aeruginosa.
Collapse
Affiliation(s)
- Solmaz Rafiei
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran
| | - Majid Bouzari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Hezar-Jereeb Street, Isfahan, 81746-73441, Iran.
| |
Collapse
|
14
|
Kroken AR, Klein KA, Mitchell PS, Nieto V, Jedel EJ, Evans DJ, Fleiszig SMJ. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome. mSphere 2023; 8:e0035123. [PMID: 37589460 PMCID: PMC10597407 DOI: 10.1128/msphere.00351-23] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 06/30/2023] [Indexed: 08/18/2023] Open
Abstract
Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed that this involves multiple roles played by the type three secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with the activation of nuclear factor-κB as measured by p65 relocalization and tumor necrosis factor alpha transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the T3SS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa. IMPORTANCE Pseudomonas aeruginosa can exhibit an intracellular lifestyle within epithelial cells in vivo and in vitro. The type three secretion system (T3SS) effector ExoS contributes via multiple mechanisms, including extending the life of invaded host cells. Here, we aimed to understand the underlying cell death inhibited by ExoS when P. aeruginosa is intracellular. Results showed that intracellular P. aeruginosa lacking T3SS effectors could elicit rapid cell lysis via the noncanonical inflammasome pathway. Caspase-4 contributed to cell lysis even when the intracellular bacteria lacked the entire T33S and were consequently unable to escape vacuoles, representing a naturally occurring subpopulation during wild-type infection. Together, the data show the caspase-4 inflammasome as an epithelial cell defense against intracellular P. aeruginosa, and implicate its targeting as another mechanism by which ExoS preserves the host cell replicative niche.
Collapse
Affiliation(s)
- Abby R. Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Keith A. Klein
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, USA
| | - Patrick S. Mitchell
- Department of Microbiology, University of Washington, Seattle, Washington, USA
| | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - Eric J. Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
| | - David J. Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- College of Pharmacy, Touro University California, Vallejo, California, USA
| | - Suzanne M. J. Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, California, USA
- Graduate Groups in Vision Sciences, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, California, USA
| |
Collapse
|
15
|
Marasini S, Craig JP, Dean SJ, Leanse LG. Managing Corneal Infections: Out with the old, in with the new? Antibiotics (Basel) 2023; 12:1334. [PMID: 37627753 PMCID: PMC10451842 DOI: 10.3390/antibiotics12081334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023] Open
Abstract
There have been multiple reports of eye infections caused by antibiotic-resistant bacteria, with increasing evidence of ineffective treatment outcomes from existing therapies. With respect to corneal infections, the most commonly used antibiotics (fluoroquinolones, aminoglycosides, and cephalosporines) are demonstrating reduced efficacy against bacterial keratitis isolates. While traditional methods are losing efficacy, several novel technologies are under investigation, including light-based anti-infective technology with or without chemical substrates, phage therapy, and probiotics. Many of these methods show non-selective antimicrobial activity with potential development as broad-spectrum antimicrobial agents. Multiple preclinical studies and a limited number of clinical case studies have confirmed the efficacy of some of these novel methods. However, given the rapid evolution of corneal infections, their treatment requires rapid institution to limit the impact on vision and prevent complications such as scarring and corneal perforation. Given their rapid effects on microbial viability, light-based technologies seem particularly promising in this regard.
Collapse
Affiliation(s)
- Sanjay Marasini
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Jennifer P. Craig
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Simon J. Dean
- Department of Ophthalmology, New Zealand National Eye Centre, The University of Auckland, Auckland 1142, New Zealand; (S.M.); (J.P.C.); (S.J.D.)
| | - Leon G. Leanse
- Health and Sports Sciences Hub, Europa Point Campus, University of Gibraltar, Gibraltar GX11 1AA, Gibraltar
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
16
|
Kroken AR, Klein KA, Mitchell PS, Nieto V, Jedel EJ, Evans DJ, Fleiszig SMJ. Intracellular replication of Pseudomonas aeruginosa in epithelial cells requires suppression of the caspase-4 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.13.528260. [PMID: 36824932 PMCID: PMC9948977 DOI: 10.1101/2023.02.13.528260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Pathogenesis of Pseudomonas aeruginosa infections can include bacterial survival inside epithelial cells. Previously, we showed this involves multiple roles played by the type three-secretion system (T3SS), and specifically the effector ExoS. This includes ExoS-dependent inhibition of a lytic host cell response that subsequently enables intracellular replication. Here, we studied the underlying cell death response to intracellular P. aeruginosa, comparing wild-type to T3SS mutants varying in capacity to induce cell death and that localize to different intracellular compartments. Results showed that corneal epithelial cell death induced by intracellular P. aeruginosa lacking the T3SS, which remains in vacuoles, correlated with activation of NF-κB as measured by p65 relocalization and TNFα transcription and secretion. Deletion of caspase-4 through CRISPR-Cas9 mutagenesis delayed cell death caused by these intracellular T3SS mutants. Caspase-4 deletion also countered more rapid cell death caused by T3SS effector-null mutants still expressing the TSSS apparatus that traffic to the host cell cytoplasm, and in doing so rescued intracellular replication normally dependent on ExoS. While HeLa cells lacked a lytic death response to T3SS mutants, it was found to be enabled by interferon gamma treatment. Together, these results show that epithelial cells can activate the noncanonical inflammasome pathway to limit proliferation of intracellular P. aeruginosa, not fully dependent on bacterially-driven vacuole escape. Since ExoS inhibits the lytic response, the data implicate targeting of caspase-4, an intracellular pattern recognition receptor, as another contributor to the role of ExoS in the intracellular lifestyle of P. aeruginosa.
Collapse
Affiliation(s)
- Abby R Kroken
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL USA
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Keith A Klein
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, IL USA
| | | | - Vincent Nieto
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - Eric J Jedel
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
| | - David J Evans
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- College of Pharmacy, Touro University California, Vallejo, CA USA
| | - Suzanne M J Fleiszig
- Herbert Wertheim School of Optometry & Vision Science, University of California, Berkeley, CA USA
- Graduate Groups in Vision Sciences, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, CA USA
| |
Collapse
|
17
|
Ayilam Ramachandran R, Lemoff A, Robertson DM. Pseudomonas aeruginosa-Derived Extracellular Vesicles Modulate Corneal Inflammation: Role in Microbial Keratitis? Infect Immun 2023; 91:e0003623. [PMID: 36995231 PMCID: PMC10112165 DOI: 10.1128/iai.00036-23] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 02/16/2023] [Indexed: 03/31/2023] Open
Abstract
Pseudomonas aeruginosa keratitis occurs following trauma, in immunocompromised patients, and in otherwise healthy contact lens wearers. Characterized by a light-blocking infiltrate, P. aeruginosa keratitis is the most serious complication associated with contact lens wear and, in severe cases, can lead to vision loss. Bacterial extracellular vesicles (B EVs) are membrane-enclosed nanometer-scale particles secreted from bacteria and are packed with bioactive molecules. B EVs have been shown to mediate biological functions that regulate host pathogenic responses. In the present study, we isolated P. aeruginosa-derived EVs using size exclusion chromatography and compared the proteomic compositions and functional activities of P. aeruginosa-derived EVs and P. aeruginosa-derived free protein (FP) on corneal epithelial cells and neutrophils. Importantly, P. aeruginosa-derived EVs and FP exhibited unique protein profiles, with EVs being enriched in P. aeruginosa virulence proteins. P. aeruginosa-derived EVs promoted corneal epithelial cell secretion of interleukin-6 (IL-6) and IL-8, whereas these cytokines were not upregulated following treatment with FP. In contrast, FP had a negative effect on the host inflammatory response and impaired neutrophil killing. Both P. aeruginosa-derived EVs and FP promoted intracellular bacterial survival in corneal epithelial cells. Collectively, these data suggest that P. aeruginosa-derived EVs and FP may play a critical role in the pathogenesis of corneal infection by interfering with host innate immune defense mechanisms.
Collapse
Affiliation(s)
| | - Andrew Lemoff
- Department of Ophthalmology, UT Southwestern Medical Center, Dallas, Texas, USA
| | | |
Collapse
|
18
|
Akinduti PA, George OW, Ohore HU, Ariyo OE, Popoola ST, Adeleye AI, Akinwande KS, Popoola JO, Rotimi SO, Olufemi FO, Omonhinmin CA, Olasehinde GI. Evaluation of Efflux-Mediated Resistance and Biofilm formation in Virulent Pseudomonas aeruginosa Associated with Healthcare Infections. Antibiotics (Basel) 2023; 12:antibiotics12030626. [PMID: 36978493 PMCID: PMC10044907 DOI: 10.3390/antibiotics12030626] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/19/2022] [Accepted: 07/29/2022] [Indexed: 03/30/2023] Open
Abstract
Pseudomonas aeruginosa is a significant pathogen identified with healthcare-associated infections. The present study evaluates the role of biofilm and efflux pump activities in influencing high-level resistance in virulent P. aeruginosa strains in clinical infection. Phenotypic resistance in biotyped Pseudomonas aeruginosa (n = 147) from diagnosed disease conditions was classified based on multiple antibiotic resistance (MAR) indices and analysed with logistic regression for risk factors. Efflux pump activity, biofilm formation, and virulence factors were analysed for optimal association in Pseudomonas infection using receiver operation characteristics (ROC). Age-specificity (OR [CI] = 0.986 [0.946-1.027]), gender (OR [CI] = 1.44 [0.211-9.827]) and infection sources (OR [CI] = 0.860 [0.438-1.688]) were risk variables for multidrug resistance (MDR)-P. aeruginosa infection (p < 0.05). Biofilm formers caused 48.2% and 18.5% otorrhea and wound infections (95% CI = 0.820-1.032; p = 0.001) respectively and more than 30% multidrug resistance (MDR) strains demonstrated high-level efflux pump activity (95% CI = 0.762-1.016; p = 0.001), protease (95% CI = 0.112-0.480; p = 0.003), lipase (95% CI = 0.143-0.523; p = 0.001), and hemolysin (95% CI = 1.109-1.780; p = 0.001). Resistance relatedness of more than 80% and 60% to cell wall biosynthesis inhibitors (ceftazidime, ceffproxil, augumentin, ampicillin) and, DNA translational and transcriptional inhibitors (gentamicin, ciprofloxacin, ofloxacin, nitrofurantoin) were observed (p < 0.05). Strong efflux correlation (r = 0.85, p = 0.034) with MDR strains, with high predictive performances in efflux pump activity (ROC-AUC 0.78), biofilm formation (ROC-AUC 0.520), and virulence hierarchical-clustering. Combine activities of the expressed efflux pump and biofilm formation in MDR-P. aeruginosa pose risk to clinical management and infection control.
Collapse
Affiliation(s)
- Paul A Akinduti
- Microbiology Unit, Department of Biological Sciences, Covenant University, PMB 1023, Ota 112104, Ogun State, Nigeria
| | - Onome W George
- Microbiology Unit, Department of Biological Sciences, Covenant University, PMB 1023, Ota 112104, Ogun State, Nigeria
| | - Hannah U Ohore
- Microbiology Unit, Department of Biological Sciences, Covenant University, PMB 1023, Ota 112104, Ogun State, Nigeria
| | | | - Samuel T Popoola
- Microbiology Unit, Department of Biological Sciences, Covenant University, PMB 1023, Ota 112104, Ogun State, Nigeria
| | - Adenike I Adeleye
- Veterinary Teaching Hospital, Federal University of Agriculture, Abeokuta 110124, Ogun State, Nigeria
| | - Kazeem S Akinwande
- Department of Chemical Pathology and Immunology, Federal Medical Centre, Abeokuta 110124, Ogun State, Nigeria
| | - Jacob O Popoola
- Applied Biology and Biotechnology Unit, Department of Biological Sciences, Covenant University, PMB 1023, Ota 112104, Ogun State, Nigeria
| | - Solomon O Rotimi
- Department of Biochemistry and Molecular Biology, Covenant University, PMB 1023, Ota 112104, Ogun State, Nigeria
| | - Fredrick O Olufemi
- Department of Veterinary Microbiology and Virology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta 110124, Ogun State, Nigeria
| | - Conrad A Omonhinmin
- Applied Biology and Biotechnology Unit, Department of Biological Sciences, Covenant University, PMB 1023, Ota 112104, Ogun State, Nigeria
| | - Grace I Olasehinde
- Microbiology Unit, Department of Biological Sciences, Covenant University, PMB 1023, Ota 112104, Ogun State, Nigeria
| |
Collapse
|
19
|
Pseudomonas aeruginosa Can Diversify after Host Cell Invasion to Establish Multiple Intracellular Niches. mBio 2022; 13:e0274222. [PMID: 36374039 PMCID: PMC9765609 DOI: 10.1128/mbio.02742-22] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Within epithelial cells, Pseudomonas aeruginosa depends on its type III secretion system (T3SS) to escape vacuoles and replicate rapidly in the cytosol. Previously, it was assumed that intracellular subpopulations remaining T3SS-negative (and therefore in vacuoles) were destined for degradation in lysosomes, supported by data showing vacuole acidification. Here, we report in both corneal and bronchial human epithelial cells that vacuole-associated bacteria can persist, sometimes in the same cells as cytosolic bacteria. Using a combination of phase-contrast, confocal, and correlative light-electron microscopy (CLEM), we also found they can demonstrate biofilm-associated markers: cdrA and cyclic-di-GMP (c-di-GMP). Vacuolar-associated bacteria, but not their cytosolic counterparts, tolerated the cell-permeable antibiotic ofloxacin. Surprisingly, use of mutants showed that both persistence in vacuoles and ofloxacin tolerance were independent of the biofilm-associated protein CdrA or exopolysaccharides (Psl, Pel, alginate). A T3SS mutant (ΔexsA) unable to escape vacuoles phenocopied vacuole-associated subpopulations in wild-type PAO1-infected cells, with results revealing that epithelial cell death depended upon bacterial viability. Intravital confocal imaging of infected mouse corneas confirmed that P. aeruginosa formed similar intracellular subpopulations within epithelial cells in vivo. Together, these results show that P. aeruginosa differs from other pathogens by diversifying intracellularly into vacuolar and cytosolic subpopulations that both contribute to pathogenesis. Their different gene expression and behavior (e.g., rapid replication versus slow replication/persistence) suggest cooperation favoring both short- and long-term interests and another potential pathway to treatment failure. How this intracellular diversification relates to previously described "acute versus chronic" virulence gene-expression phenotypes of P. aeruginosa remains to be determined. IMPORTANCE Pseudomonas aeruginosa can cause sight- and life-threatening opportunistic infections, and its evolving antibiotic resistance is a growing concern. Most P. aeruginosa strains can invade host cells, presenting a challenge to therapies that do not penetrate host cell membranes. Previously, we showed that the P. aeruginosa type III secretion system (T3SS) plays a pivotal role in survival within epithelial cells, allowing escape from vacuoles, rapid replication in the cytoplasm, and suppression of host cell death. Here, we report the discovery of a novel T3SS-negative subpopulation of intracellular P. aeruginosa within epithelial cells that persist in vacuoles rather than the cytoplasm and that tolerate a cell-permeable antibiotic (ofloxacin) that is able to kill cytosolic bacteria. Classical biofilm-associated markers, although demonstrated by this subpopulation, are not required for vacuolar persistence or antibiotic tolerance. These findings advance our understanding of how P. aeruginosa hijacks host cells, showing that it diversifies into multiple populations with T3SS-negative members enabling persistence while rapid replication is accomplished by more vulnerable T3SS-positive siblings. Intracellular P. aeruginosa persisting and tolerating antibiotics independently of the T3SS or biofilm-associated factors could present additional challenges to development of more effective therapeutics.
Collapse
|
20
|
Pseudomonas aeruginosa Induces Interferon-β Production to Promote Intracellular Survival. Microbiol Spectr 2022; 10:e0155022. [PMID: 36190409 PMCID: PMC9603546 DOI: 10.1128/spectrum.01550-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is known as one kind of extracellular pathogens. However, more evidence showed that PA encounters the intracellular environment in different mammalian cell types. Little is known of innate immune factors modulating intracellular PA survival. In the present study, we proposed that interferon-β (IFN-β) is beneficial to the survival of PA in the cytoplasm of macrophages. Furthermore, we found that interleukin-1β (IL-1β) induced by PA suppresses IFN-β response driven by the cGAS-STING-TBK1 pathway. Mechanistically, IL-1β decreased the production of cyclic GMP-AMP (cGAMP) by activating AKT kinase. cGAMP is necessarily sufficient to stimulate the transcription of IFN-β via the STING adaptor-TBK1 kinase-IRF3 transcription factor axis. Thus, our findings uncovered a novel module for PA intracellular survival involving IFN-β production restricted by IL-1β and provided a strong rationale for a potential clinical strategy against pulmonary PA infection patients. IMPORTANCE The link between innate immunity and intracellular Pseudomonas aeruginosa is unclear. Our studies illuminated the role of interferon-β (IFN-β) in remote intracellular PA infection. Furthermore, our experimental evidence also indicated that IL-1β is a negative regulator of IFN-β production and, in particular, P. aeruginosa infection. The inhibition of IFN-β may be used as a potential therapeutic method against pulmonary PA infection.
Collapse
|
21
|
Septin barriers protect mammalian host cells against Pseudomonas aeruginosa invasion. Cell Rep 2022; 41:111510. [DOI: 10.1016/j.celrep.2022.111510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/29/2022] [Accepted: 09/23/2022] [Indexed: 11/24/2022] Open
|
22
|
A Model of Intracellular Persistence of Pseudomonas aeruginosa in Airway Epithelial Cells. Cell Microbiol 2022. [DOI: 10.1155/2022/5431666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudomonas aeruginosa (P.a.) is a major human pathogen capable of causing chronic infections in hosts with weakened barrier functions and host defenses, most notably airway infections commonly observed in individuals with the genetic disorder cystic fibrosis (CF). While mainly described as an extracellular pathogen, previous in vitro studies have described the molecular events leading to P.a. internalization in diverse epithelial cell types. However, the long-term fate of intracellular P.a. remains largely unknown. Here, we developed a model allowing for a better understanding of long-term (up to 120 h) intracellular bacterial survival in the airway epithelial cell line BEAS-2B. Using a tobramycin protection assay, we characterized the internalization, long-term intracellular survival, and cytotoxicity of the lab strain PAO1, as well as clinical CF isolates, and conducted analyses at the single-cell level using confocal microscopy and flow cytometry techniques. We observed that infection at low multiplicity of infection allows for intracellular survival up to 120 h post-infection without causing significant host cytotoxicity. Finally, infection with clinical isolates revealed significant strain-to-strain heterogeneity in intracellular survival, including a high persistence phenotype associated with bacterial replication within host cells. Future studies using this model will further elucidate the host and bacterial mechanisms that promote P. aeruginosa intracellular persistence in airway epithelial cells, a potentially unrecognized bacterial reservoir during chronic infections.
Collapse
|
23
|
Wang G, Wei W, Jiang Z, Jiang J, Han J, Zhang H, Hu J, Zhang P, Li X, Chen T, He J, Li Z, Lai J, Liang H, Ning C, Ye L. Talaromyces marneffei activates the AIM2-caspase-1/-4-GSDMD axis to induce pyroptosis in hepatocytes. Virulence 2022; 13:963-979. [PMID: 35639503 PMCID: PMC9176249 DOI: 10.1080/21505594.2022.2080904] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Talaromyces marneffei tends to induce systemic infection in immunocompromised individuals, which is one of the causes of the high mortality. The underlying molecular mechanisms of T.marneffei-induced abnormal liver function are still poorly understood. In this study, we found that T.marneffei-infected patients could develop abnormal liver function, evidenced by reduced albumin and increased levels of aspartate aminotransferase (AST) and AST/alanine aminotransferase (ALT). T. marneffei-infected mice exhibited similar characteristics. In vitro investigations showed that T.marneffei induced the death of AML-12 cells. Furthermore, we determined that T.marneffei infection induced pyroptosis in hepatocytes of C57BL/6J mice and AML-12 cells, demonstrated by the increase of AIM2, caspase-1/-4, Gasdermin D(GSDMD) and pyroptosis-related cytokines in T.marneffei-infected mice/cells. Importantly, cell death was markedly suppressed in the presence of VX765 (an inhibitor of caspase-1/-4). Furthermore, in the presence of VX765, T.marneffei-induced pyroptosis was blocked. Nevertheless, necroptosis and apoptosis were also detected in infected animal model at 14 days post-infection. In conclusion, T.marneffei induces pyroptosis in hepatocytes through activation of the AIM2-caspase-1/-4-GSDMD axis, which may be an important cause of liver damage, and other death pathways including necroptosis and apoptosis may also be involved in the later stage of infection.
Collapse
Affiliation(s)
- Gang Wang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Wudi Wei
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhongsheng Jiang
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Junjun Jiang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jing Han
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hong Zhang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jiaguang Hu
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Peng Zhang
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Xu Li
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Tao Chen
- Department of Infectious Diseases, Liuzhou People's Hospital, Liuzhou, Guangxi, China
| | - Jinhao He
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhen Li
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Jingzhen Lai
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Hao Liang
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Guangxi Collaborative Innovation Center for Biomedicine, Life Science Institute, Guangxi Medical University, Nanning, Guangxi, China
| | - Chuanyi Ning
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China.,Nursing College, Guangxi Medical University, Nanning, Guangxi, China
| | - Li Ye
- Guangxi Key Laboratory of AIDS Prevention and Treatment, School of Public Health, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
24
|
Bais S, Norwillo A, Ruthel G, Herbert DR, Freedman BD, Greenberg RM. Schistosome TRPML channels play a role in neuromuscular activity and tegumental integrity. Biochimie 2022; 194:108-117. [PMID: 34990770 PMCID: PMC8950431 DOI: 10.1016/j.biochi.2021.12.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 12/16/2021] [Accepted: 12/31/2021] [Indexed: 11/02/2022]
Abstract
Schistosomiasis is a neglected tropical disease caused by parasitic flatworms of the genus Schistosoma. Mono-therapeutic treatment of this disease with the drug praziquantel, presents challenges such as inactivity against immature worms and inability to prevent reinfection. Importantly, ion channels are important targets for many current anthelmintics. Transient receptor potential (TRP) channels are important mediators of sensory signals with marked effects on cellular functions and signaling pathways. TRPML channels are a class of Ca2+-permeable TRP channels expressed on endolysosomal membranes. They regulate lysosomal function and trafficking, among other functions. Schistosoma mansoni is predicted to have a single TRPML gene (SmTRPML) with two splice variants differing by 12 amino acids. This study focuses on exploring the physiological properties of SmTRPML channels to better understand their role in schistosomes. In mammalian cells expressing SmTRPML, TRPML activators elicit a rise in intracellular Ca2+. In these cells, SmTRPML localizes both to lysosomes and the plasma membrane. These same TRPML activators elicit an increase in adult worm motility that is dependent on SmTRPML expression, indicating a role for these channels in parasite neuromuscular activity. Suppression of SmTRPML in adult worms, or exposure of adult worms to TRPML inhibitors, results in tegumental vacuolations, balloon-like surface exudates, and membrane blebbing, similar to that found following TRPML loss in other organisms. Together, these findings indicate that SmTRPML may regulate the function of the schistosome endolysosomal system. Further, the role of SmTRPML in neuromuscular activity and in parasite tegumental integrity establishes this channel as a candidate anti-schistosome drug target.
Collapse
Affiliation(s)
- Swarna Bais
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA.
| | - Abigail Norwillo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Bruce D Freedman
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| | - Robert M Greenberg
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
25
|
Stapleton F, Shrestha GS, Vijay AK, Carnt N. Epidemiology, Microbiology, and Genetics of Contact Lens-Related and Non-Contact Lens-Related Infectious Keratitis. Eye Contact Lens 2022; 48:127-133. [PMID: 35192567 DOI: 10.1097/icl.0000000000000884] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/30/2021] [Indexed: 01/14/2023]
Abstract
ABSTRACT Infectious keratitis is a rare but severe condition associated with a range of ocular and systemic predisposing conditions, including ocular trauma, prior surgery, surface disease, and contact lens (CL) wear. This review explores the epidemiology of infectious keratitis, specifically the differences in disease incidence and risk factors, causative organism profile and virulence characteristics and host microbiome, genetics, gene expression, proteomics, and metabolomic characteristics in CL-related and non-CL-related diseases. Differences exist in the epidemiology, demographics, causative organisms, and their virulence characteristics in CL-related and non-CL-related diseases, and there is less evidence to support differences between these groups of individuals in the ocular surface microbiome, genetics, and pathways of disease. Genetic variations, however, in the host immune profile are implicated in both the onset and severity of infectious keratitis in CL and non-CL wearers. As technologies in metabolomics, proteomics, and genomics improved to be better able to process small-volume samples from the ocular surface, there will be improved understanding of the interplay between the CL, ocular surface, host immune profile, and the microbial environment. This may result in a more personalized approach in the management of disease to reduce disease severity.
Collapse
Affiliation(s)
- Fiona Stapleton
- School of Optometry and Vision Science, UNSW Sydney, Australia
| | | | | | | |
Collapse
|
26
|
Kember M, Grandy S, Raudonis R, Cheng Z. Non-Canonical Host Intracellular Niche Links to New Antimicrobial Resistance Mechanism. Pathogens 2022; 11:pathogens11020220. [PMID: 35215166 PMCID: PMC8876822 DOI: 10.3390/pathogens11020220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/03/2022] [Accepted: 02/05/2022] [Indexed: 12/04/2022] Open
Abstract
Globally, infectious diseases are one of the leading causes of death among people of all ages. The development of antimicrobials to treat infectious diseases has been one of the most significant advances in medical history. Alarmingly, antimicrobial resistance is a widespread phenomenon that will, without intervention, make currently treatable infections once again deadly. In an era of widespread antimicrobial resistance, there is a constant and pressing need to develop new antibacterial drugs. Unraveling the underlying resistance mechanisms is critical to fight this crisis. In this review, we summarize some emerging evidence of the non-canonical intracellular life cycle of two priority antimicrobial-resistant bacterial pathogens: Pseudomonas aeruginosa and Staphylococcus aureus. The bacterial factors that modulate this unique intracellular niche and its implications in contributing to resistance are discussed. We then briefly discuss some recent research that focused on the promises of boosting host immunity as a combination therapy with antimicrobials to eradicate these two particular pathogens. Finally, we summarize the importance of various strategies, including surveillance and vaccines, in mitigating the impacts of antimicrobial resistance in general.
Collapse
|
27
|
Kroken AR, Gajenthra Kumar N, Yahr TL, Smith BE, Nieto V, Horneman H, Evans DJ, Fleiszig SMJ. Exotoxin S secreted by internalized Pseudomonas aeruginosa delays lytic host cell death. PLoS Pathog 2022; 18:e1010306. [PMID: 35130333 PMCID: PMC8853526 DOI: 10.1371/journal.ppat.1010306] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 02/17/2022] [Accepted: 01/25/2022] [Indexed: 12/22/2022] Open
Abstract
The Pseudomonas aeruginosa toxin ExoS, secreted by the type III secretion system (T3SS), supports intracellular persistence via its ADP-ribosyltransferase (ADPr) activity. For epithelial cells, this involves inhibiting vacuole acidification, promoting vacuolar escape, countering autophagy, and niche construction in the cytoplasm and within plasma membrane blebs. Paradoxically, ExoS and other P. aeruginosa T3SS effectors can also have antiphagocytic and cytotoxic activities. Here, we sought to reconcile these apparently contradictory activities of ExoS by studying the relationships between intracellular persistence and host epithelial cell death. Methods involved quantitative imaging and the use of antibiotics that vary in host cell membrane permeability to selectively kill intracellular and extracellular populations after invasion. Results showed that intracellular P. aeruginosa mutants lacking T3SS effector toxins could kill (permeabilize) cells when extracellular bacteria were eliminated. Surprisingly, wild-type strain PAO1 (encoding ExoS, ExoT and ExoY) caused cell death more slowly, the time extended from 5.2 to 9.5 h for corneal epithelial cells and from 10.2 to 13.0 h for HeLa cells. Use of specific mutants/complementation and controls for initial invasion showed that ExoS ADPr activity delayed cell death. Triggering T3SS expression only after bacteria invaded cells using rhamnose-induction in T3SS mutants rescued the ExoS-dependent intracellular phenotype, showing that injected effectors from extracellular bacteria were not required. The ADPr activity of ExoS was further found to support internalization by countering the antiphagocytic activity of both the ExoS and ExoT RhoGAP domains. Together, these results show two additional roles for ExoS ADPr activity in supporting the intracellular lifestyle of P. aeruginosa; suppression of host cell death to preserve a replicative niche and inhibition of T3SS effector antiphagocytic activities to allow invasion. These findings add to the growing body of evidence that ExoS-encoding (invasive) P. aeruginosa strains can be facultative intracellular pathogens, and that intracellularly secreted T3SS effectors contribute to pathogenesis. While the ADPr domain of the T3SS effector ExoS plays multiple roles in the intracellular lifestyle of P. aeruginosa, ExoS can also be cytotoxic and/or antiphagocytic. Here, we show that when P. aeruginosa enters the cytosol of epithelial cells, cell death is triggered independently of T3SS effector toxins, but ExoS ADPr activity delays this to enable continued intracellular survival and replication. Using rhamnose induction to express the T3SS only after invasion restored this ExoS-dependent phenotype, showing that intracellularly secreted effectors can enable intracellular pathogenesis. ExoS ADPr activity also countered antiphagocytic activity of ExoS and ExoT RhoGAP domains. These results show two additional roles for ExoS ADPr activity in promoting internalization of P. aeruginosa and protecting the intracellular niche, continuing to challenge the notions that P. aeruginosa is exclusively an extracellular pathogen, that it needs to inject T3SS effectors across plasma membranes, and that ExoS is necessarily cytotoxic to host cells.
Collapse
Affiliation(s)
- Abby R. Kroken
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois, United States of America
| | - Naren Gajenthra Kumar
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Timothy L. Yahr
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Benjamin E. Smith
- Vision Science Program, University of California, Berkeley, Berkeley, California, United States of America
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - Hart Horneman
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
| | - David J. Evans
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
- College of Pharmacy, Touro University California, Vallejo, California, United States of America
| | - Suzanne M. J. Fleiszig
- School of Optometry, University of California, Berkeley, Berkeley, California, United States of America
- Vision Science Program, University of California, Berkeley, Berkeley, California, United States of America
- Graduate Groups in Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, Berkeley, California, United States of America
- * E-mail:
| |
Collapse
|
28
|
Shen E, Yang J, Tsuei KSC. The role of Type III secretion system in the pathogenesis of Pseudomonas aeruginosa microbial keratitis. Tzu Chi Med J 2022; 34:8-14. [PMID: 35233350 PMCID: PMC8830546 DOI: 10.4103/tcmj.tcmj_47_21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/11/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022] Open
Abstract
Pseudomonas aeruginosa is the most commonly isolated Gram-negative pathogen causing sight-threatening microbial keratitis (MK). Contact lens wear is the most significant risk factor associated with pseudomonal MK. Understanding the pathogenesis of MK due to P. aeruginosa and its interactions with contact lenses is crucial in preventing these often rapidly progressive and highly antibiotic-resistant infections. Bacterial virulence factor Type III secretion system (T3SS) has significant interplays between contact lens material, antibiotic sensitivity, disinfectant selectivity, and bacterial cell invasion. Depending on the T3SS exotoxins produced, P. aeruginosa strains are divided into cytotoxic or invasive strains. Cytotoxic strains are relatively resistant to commercial disinfectants, while invasive strains are more antibiotic resistant. Therefore, contact lens wearers are more predisposed to cytotoxic P. aeruginosa infections, and patients with trauma or previous surgery are more prone to infection by invasive strains. Previous studies with mutant P. aeruginosa strains unable to produce T3SS exotoxins were more susceptible to disinfectants and less able to adhere to soft contact lenses, indicating an essential role of T3SS in bacterial virulence. Invasion of P. aeruginosa intracellularly was found to be associated with control of scaffold protein IQ-domain GTPase-activating protein 1 (IQGAP1) and human corneal epithelial cell tight junctions. Knockdown of IQGAP1 strengthened tight junctions that prevented intracellular survival of invasive P. aeruginosa strains and enhanced corneal epithelial cell survival. These novel findings of the vital role of T3SS in the pathogenesis of pseudomonal MKs will provide new guidelines in both prevention and treatment of this common eye-blinding infection.
Collapse
|
29
|
Amiss AS, von Pein JB, Webb JR, Condon ND, Harvey PJ, Phan MD, Schembri MA, Currie BJ, Sweet MJ, Craik DJ, Kapetanovic R, Henriques ST, Lawrence N. Modified horseshoe crab peptides target and kill bacteria inside host cells. Cell Mol Life Sci 2021; 79:38. [PMID: 34971427 PMCID: PMC11071844 DOI: 10.1007/s00018-021-04041-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 12/14/2022]
Abstract
Bacteria that occupy an intracellular niche can evade extracellular host immune responses and antimicrobial molecules. In addition to classic intracellular pathogens, other bacteria including uropathogenic Escherichia coli (UPEC) can adopt both extracellular and intracellular lifestyles. UPEC intracellular survival and replication complicates treatment, as many therapeutic molecules do not effectively reach all components of the infection cycle. In this study, we explored cell-penetrating antimicrobial peptides from distinct structural classes as alternative molecules for targeting bacteria. We identified two β-hairpin peptides from the horseshoe crab, tachyplesin I and polyphemusin I, with broad antimicrobial activity toward a panel of pathogenic and non-pathogenic bacteria in planktonic form. Peptide analogs [I11A]tachyplesin I and [I11S]tachyplesin I maintained activity toward bacteria, but were less toxic to mammalian cells than native tachyplesin I. This important increase in therapeutic window allowed treatment with higher concentrations of [I11A]tachyplesin I and [I11S]tachyplesin I, to significantly reduce intramacrophage survival of UPEC in an in vitro infection model. Mechanistic studies using bacterial cells, model membranes and cell membrane extracts, suggest that tachyplesin I and polyphemusin I peptides kill UPEC by selectively binding and disrupting bacterial cell membranes. Moreover, treatment of UPEC with sublethal peptide concentrations increased zinc toxicity and enhanced innate macrophage antimicrobial pathways. In summary, our combined data show that cell-penetrating peptides are attractive alternatives to traditional small molecule antibiotics for treating UPEC infection, and that optimization of native peptide sequences can deliver effective antimicrobials for targeting bacteria in extracellular and intracellular environments.
Collapse
Affiliation(s)
- Anna S Amiss
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jessica B von Pein
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jessica R Webb
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, 0811, Australia
| | - Nicholas D Condon
- Australian Cancer Research Foundation/Institute for Molecular Bioscience Cancer Biology Imaging Facility, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Peta J Harvey
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Minh-Duy Phan
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, The University of Queensland, Queensland, Australia
| | - Bart J Currie
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, NT, 0811, Australia
- Department of Infectious Diseases and Northern Territory Medical Program, Royal Darwin Hospital, Darwin, NT, 0811, Australia
| | - Matthew J Sweet
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - David J Craik
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ronan Kapetanovic
- Institute for Molecular Bioscience, IMB Centre for Inflammation and Disease Research and Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Friedrich Miescher Institute for Biomedical Research, 4058, Basel, BS, Switzerland.
| | - Sónia Troeira Henriques
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
- Queensland University of Technology, School of Biomedical Sciences, Translational Research Institute, Brisbane, QLD, 4102, Australia.
| | - Nicole Lawrence
- Institute for Molecular Bioscience, Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
30
|
Subramaniam S, Joyce P, Thomas N, Prestidge CA. Bioinspired drug delivery strategies for repurposing conventional antibiotics against intracellular infections. Adv Drug Deliv Rev 2021; 177:113948. [PMID: 34464665 DOI: 10.1016/j.addr.2021.113948] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 12/11/2022]
Abstract
Bacteria have developed a wealth of strategies to avoid and resist the action of antibiotics, one of which involves pathogens invading and forming reservoirs within host cells. Due to the poor cell membrane permeability, stability and retention of conventional antibiotics, this renders current treatments largely ineffective, since achieving a therapeutically relevant antibiotic concentration at the site of intracellular infection is not possible. To overcome such challenges, current antibiotics are 'repurposed' via reformulation using micro- or nano-carrier systems that effectively encapsulate and deliver therapeutics across cellular membranes of infected cells. Bioinspired materials that imitate the uptake of biological particulates and release antibiotics in response to natural stimuli are recently explored to improve the targeting and specificity of this 'nanoantibiotic' approach. In this review, the mechanisms of internalization and survival of intracellular bacteria are elucidated, effectively accentuating the current treatment challenges for intracellular infections and the implications for repurposing conventional antibiotics. Key case studies of nanoantibiotics that have drawn inspiration from natural biological particles and cellular uptake pathways to effectively eradicate intracellular pathogens are detailed, clearly highlighting the rational for harnessing bioinspired drug delivery strategies.
Collapse
Affiliation(s)
- Santhni Subramaniam
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Paul Joyce
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia
| | - Nicky Thomas
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia; The Basil Hetzel Institute for Translational Health Research, Woodville, SA 5011, Australia
| | - Clive A Prestidge
- University of South Australia, UniSA Clinical and Health Sciences, SA 5000, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Adelaide, SA 5000, Australia.
| |
Collapse
|
31
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Li Q, Wang H, Tan L, Zhang S, Lin L, Tang X, Pan Y. Oral Pathogen Fusobacterium nucleatum Coaggregates With Pseudomonas aeruginosa to Modulate the Inflammatory Cytotoxicity of Pulmonary Epithelial Cells. Front Cell Infect Microbiol 2021; 11:643913. [PMID: 33816348 PMCID: PMC8017200 DOI: 10.3389/fcimb.2021.643913] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 03/02/2021] [Indexed: 12/22/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is the third leading cause of mortality worldwide, and inflammatory damage induced by bacterial infections is an important contributor to the etiology of COPD. Fusobacterium nucleatum, a recognized periodontal pathogen, is considered as a biomarker of lung function deterioration of COPD patients coinfected with Pseudomonas aerugionsa, but the underlying mechanism is still unclear. This study established single- and dual-species infection models, bacterial simultaneous and sequential infection models, and found that F. nucleatum could coaggregate with P. aeruginosa to synergistically invade into pulmonary epithelial cells and transiently resist P. aeruginosa-induced cytotoxic damage to amplify IL-6 and TNF-α associated inflammation in pulmonary epithelial cells simultaneously infected with P. aeruginosa and F. nucleatum. Furthermore, F. nucleatum pretreatment or subsequential infection could maintain or even aggravate P. aeruginosa-induced inflammatory cytotoxicity of pulmonary epithelial cells. These results indicate that oral pathogen F. nucleatum coaggregates with P. aeruginosa to facilitate bacterial invasion and modulates the inflammatory cytotoxicity of pulmonary epithelial cells, which may contribute to lung function deterioration of COPD patients accompanied with P. aeruginosa and F. nucleatum coinfection.
Collapse
Affiliation(s)
- Qian Li
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Hongyan Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Lisi Tan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Shuwei Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Li Lin
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Xiaolin Tang
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| | - Yaping Pan
- Liaoning Provincial Key Laboratory of Oral Diseases, Department of Oral Biology, School and Hospital of Stomatology, China Medical University, Shenyang, China.,Liaoning Provincial Key Laboratory of Oral Diseases, Department of Periodontics, School and Hospital of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
33
|
Huang Z, Kłodzińska SN, Wan F, Nielsen HM. Nanoparticle-mediated pulmonary drug delivery: state of the art towards efficient treatment of recalcitrant respiratory tract bacterial infections. Drug Deliv Transl Res 2021; 11:1634-1654. [PMID: 33694082 PMCID: PMC7945609 DOI: 10.1007/s13346-021-00954-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2021] [Indexed: 12/16/2022]
Abstract
Recalcitrant respiratory tract infections caused by bacteria have emerged as one of the greatest health challenges worldwide. Aerosolized antimicrobial therapy is becoming increasingly attractive to combat such infections, as it allows targeted delivery of high drug concentrations to the infected organ while limiting systemic exposure. However, successful aerosolized antimicrobial therapy is still challenged by the diverse biological barriers in infected lungs. Nanoparticle-mediated pulmonary drug delivery is gaining increasing attention as a means to overcome the biological barriers and accomplish site-specific drug delivery by controlling release of the loaded drug(s) at the target site. With the aim to summarize emerging efforts in combating respiratory tract infections by using nanoparticle-mediated pulmonary delivery strategies, this review provides a brief introduction to the bacterial infection-related pulmonary diseases and the biological barriers for effective treatment of recalcitrant respiratory tract infections. This is followed by a summary of recent advances in design of inhalable nanoparticle-based drug delivery systems that overcome the biological barriers and increase drug bioavailability. Finally, challenges for the translation from exploratory laboratory research to clinical application are also discussed and potential solutions proposed.
Collapse
Affiliation(s)
- Zheng Huang
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Sylvia Natalie Kłodzińska
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark
| | - Feng Wan
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| | - Hanne Mørck Nielsen
- Center for Biopharmaceuticals and Biobarriers in Drug Delivery, Department of Pharmacy, University of Copenhagen, Universitetsparken 2, DK-2100, Copenhagen Ø, Denmark.
| |
Collapse
|
34
|
Moussouni M, Berry L, Sipka T, Nguyen-Chi M, Blanc-Potard AB. Pseudomonas aeruginosa OprF plays a role in resistance to macrophage clearance during acute infection. Sci Rep 2021; 11:359. [PMID: 33432030 PMCID: PMC7801371 DOI: 10.1038/s41598-020-79678-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/11/2020] [Indexed: 12/14/2022] Open
Abstract
While considered an extracellular pathogen, Pseudomonas aeruginosa has been reported to be engulfed by macrophages in cellular and animal models. However, the role of macrophages in P. aeruginosa clearance in vivo remains poorly studied. The major outer membrane porin OprF has been recently shown to be involved in P. aeruginosa fate within cultured macrophages and analysis of an oprF mutant may thus provide insights to better understand the relevance of this intramacrophage stage during infection. In the present study, we investigated for the first time the virulence of a P. aeruginosa oprF mutant in a vertebrate model that harbors functional macrophages, the zebrafish (Danio rerio) embryo, which offers powerful tools to address macrophage–pathogen interactions. We established that P. aeruginosa oprF mutant is attenuated in zebrafish embryos in a macrophage-dependent manner. Visualization and quantification of P. aeruginosa bacteria phagocytosed by macrophages after injection into closed cavities suggested that the attenuated phenotype of oprF mutant is not linked to higher macrophage recruitment nor better phagocytosis than wild-type strain. Using cultured macrophages, we showed an intramacrophage survival defect of P. aeruginosa oprF mutant, which is correlated with elevated association of bacteria with acidic compartments. Notably, treatment of embryos with bafilomycin, an inhibitor of acidification, increased the sensibility of embryos towards both wild-type and oprF mutant, and partially suppressed the attenuation of oprF mutant. Taken together, this work supports zebrafish embryo as state-of-the-art model to address in vivo the relevance of P. aeruginosa intramacrophage stage. Our results highlight the contribution of macrophages in the clearance of P. aeruginosa during acute infection and suggest that OprF protects P. aeruginosa against macrophage clearance by avoiding bacterial elimination in acidified phagosomes.
Collapse
Affiliation(s)
- Malika Moussouni
- Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France
| | - Laurence Berry
- Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France
| | - Tamara Sipka
- Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France
| | - Mai Nguyen-Chi
- Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France
| | - Anne-Béatrice Blanc-Potard
- Laboratory of Pathogen-Host Interactions (LPHI), CNRS-UMR5235, Université de Montpellier, Montpellier, France.
| |
Collapse
|
35
|
Armentrout EI, Kundracik EC, Rietsch A. Cell-type-specific hypertranslocation of effectors by the Pseudomonas aeruginosa type III secretion system. Mol Microbiol 2020; 115:305-319. [PMID: 33012037 DOI: 10.1111/mmi.14617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/22/2020] [Indexed: 12/23/2022]
Abstract
Many Gram-negative pathogens use a type III secretion system (T3SS) to promote disease by injecting effector proteins into host cells. Common to many T3SSs is that injection of effector proteins is feedback inhibited. The mechanism of feedback inhibition and its role in pathogenesis are unclear. In the case of P. aeruginosa, the effector protein ExoS is central to limiting effector injection. ExoS is bifunctional, with an amino-terminal RhoGAP and a carboxy-terminal ADP-ribosyltransferase domain. We demonstrate that both domains are required to fully feedback inhibit effector injection. The RhoGAP-, but not the ADP-ribosyltransferase domain of the related effector protein ExoT also participates. Feedback inhibition does not involve translocator insertion nor pore-formation. Instead, feedback inhibition is due, in part, to a loss of the activating trigger for effector injection, and likely also decreased translocon stability. Surprisingly, feedback inhibition is abrogated in phagocytic cells. The lack of feedback inhibition in these cells requires phagocytic uptake of the bacteria, but cannot be explained through acidification of the phagosome or calcium limitation. Given that phagocytes are crucial for controlling P. aeruginosa infections, our data suggest that feedback inhibition allows P. aeruginosa to direct its effector arsenal against the cell types most damaging to its survival.
Collapse
Affiliation(s)
- Erin I Armentrout
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Emma C Kundracik
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| | - Arne Rietsch
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
36
|
Mukherjee K, Khatua B, Mandal C. Sialic Acid-Siglec-E Interactions During Pseudomonas aeruginosa Infection of Macrophages Interferes With Phagosome Maturation by Altering Intracellular Calcium Concentrations. Front Immunol 2020; 11:332. [PMID: 32184783 PMCID: PMC7059019 DOI: 10.3389/fimmu.2020.00332] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 02/10/2020] [Indexed: 11/24/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is commonly associated with nosocomial and chronic infections of lungs. We have earlier demonstrated that an acidic sugar, sialic acid, is present in PA which is recognized and bound by sialic acid binding immunoglobulin type lectins (siglecs) expressed on neutrophils. Here, we have tried to gain a detailed insight into the immunosuppressive role of sialic acid-siglec interactions in macrophage-mediated clearance of sialylated PA (PA+Sia). We have demonstrated that PA+Sia shows enhanced binding (~1.5-fold) to macrophages due to additional interactions between sialic acids and siglec-E and exhibited more phagocytosis. However, internalization of PA+Sia is associated with a reduction in respiratory burst and increase in anti-inflammatory cytokines secretion which is reversed upon desialylation of the bacteria. Phagocytosis of PA+Sia is also associated with reduced intracellular calcium ion concentrations and altered calcium-dependent signaling which negatively affects phagosome maturation. Consequently, although more PA+Sia was localized in early phagosomes (Rab5 compartment), only fewer bacteria reach into the late phagosomal compartment (Rab7). Possibly, this leads to reduced phagosome lysosome fusion where reduced numbers of PA+Sia are trafficked into lysosomes, compared to PA−Sia. Thus, internalized PA+Sia remain viable and replicates intracellularly in macrophages. We have also demonstrated that such siglec-E-sialic acid interaction recruited SHP-1/SHP-2 phosphatases which modulate MAPK and NF-κB signaling pathways. Disrupting sialic acid-siglec-E interaction by silencing siglec-E in macrophages results in improved bactericidal response against PA+Sia characterized by robust respiratory burst, enhanced intracellular calcium levels and nuclear translocation of p65 component of NF-κB complex leading to increased pro-inflammatory cytokine secretion. Taken together, we have identified that sialic acid-siglec-E interactions is another pathway utilized by PA in order to suppress macrophage antimicrobial responses and inhibit phagosome maturation, thereby persisting as an intracellular pathogen in macrophages.
Collapse
Affiliation(s)
- Kaustuv Mukherjee
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Biswajit Khatua
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Chitra Mandal
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
37
|
Mancl JM, Suarez C, Liang WG, Kovar DR, Tang WJ. Pseudomonas aeruginosa exoenzyme Y directly bundles actin filaments. J Biol Chem 2020; 295:3506-3517. [PMID: 32019868 DOI: 10.1074/jbc.ra119.012320] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/23/2020] [Indexed: 11/06/2022] Open
Abstract
Pseudomonas aeruginosa uses a type III secretion system (T3SS) to inject cytotoxic effector proteins into host cells. The promiscuous nucleotidyl cyclase, exoenzyme Y (ExoY), is one of the most common effectors found in clinical P. aeruginosa isolates. Recent studies have revealed that the nucleotidyl cyclase activity of ExoY is stimulated by actin filaments (F-actin) and that ExoY alters actin cytoskeleton dynamics in vitro, via an unknown mechanism. The actin cytoskeleton plays an important role in numerous key biological processes and is targeted by many pathogens to gain competitive advantages. We utilized total internal reflection fluorescence microscopy, bulk actin assays, and EM to investigate how ExoY impacts actin dynamics. We found that ExoY can directly bundle actin filaments with high affinity, comparable with eukaryotic F-actin-bundling proteins, such as fimbrin. Of note, ExoY enzymatic activity was not required for F-actin bundling. Bundling is known to require multiple actin-binding sites, yet small-angle X-ray scattering experiments revealed that ExoY is a monomer in solution, and previous data suggested that ExoY possesses only one actin-binding site. We therefore hypothesized that ExoY oligomerizes in response to F-actin binding and have used the ExoY structure to construct a dimer-based structural model for the ExoY-F-actin complex. Subsequent mutational analyses suggested that the ExoY oligomerization interface plays a crucial role in mediating F-actin bundling. Our results indicate that ExoY represents a new class of actin-binding proteins that modulate the actin cytoskeleton both directly, via F-actin bundling, and indirectly, via actin-activated nucleotidyl cyclase activity.
Collapse
Affiliation(s)
- Jordan M Mancl
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | - Cristian Suarez
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Wenguang G Liang
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | - David R Kovar
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, Illinois 60637
| | - Wei-Jen Tang
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637.
| |
Collapse
|
38
|
Margalit A, Kavanagh K, Carolan JC. Characterization of the Proteomic Response of A549 Cells Following Sequential Exposure to Aspergillus fumigatus and Pseudomonas aeruginosa. J Proteome Res 2020; 19:279-291. [PMID: 31693381 DOI: 10.1021/acs.jproteome.9b00520] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Aspergillus fumigatus and Pseudomonas aeruginosa are the most prevalent fungal and bacterial pathogens associated with cystic-fibrosis-related infections, respectively. P. aeruginosa eventually predominates as the primary pathogen, though it is unknown why this is the case. Label-free quantitative proteomics was employed to investigate the cellular response of the alveolar epithelial cell line, A549, to coexposure of A. fumigatus and P. aeruginosa. These studies revealed a significant increase in the rate of P. aeruginosa proliferation where A. fumigatus was present. Shotgun proteomics performed on A549 cells exposed to either A. fumigatus or P. aeruginosa or to A. fumigatus and P. aeruginosa sequentially revealed distinct changes to the host cell proteome in response to either or both pathogens. While key signatures of infection were retained among all pathogen-exposed groups, including changes in mitochondrial activity and energy output, the relative abundance of proteins associated with endocytosis, phagosomes, and lysosomes was decreased in sequentially exposed cells compared to cells exposed to either pathogen. Our findings indicate that A. fumigatus renders A549 cells unable to internalize bacteria, thus providing an environment in which P. aeruginosa can proliferate. This research provides novel insights into the whole-cell proteomic response of A549 cells to A. fumigatus and P. aeruginosa and highlights distinct differences in the proteome following sequential exposure to both pathogens, which may explain why P. aeruginosa can predominate.
Collapse
Affiliation(s)
- Anatte Margalit
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - Kevin Kavanagh
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| | - James C Carolan
- Department of Biology , Maynooth University , Maynooth, Co. Kildare W23F2H6 , Ireland
| |
Collapse
|
39
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
40
|
Hritonenko V, Metruccio M, Evans D, Fleiszig S. Epithelial cell lysates induce ExoS expression and secretion by Pseudomonas aeruginosa. FEMS Microbiol Lett 2019. [PMID: 29518189 DOI: 10.1093/femsle/fny053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The type three secretion system (T3SS) is important for the intracellular survival of Pseudomonas aeruginosa. Known T3SS inducers include low Ca2+, serum or host cell contact. Here, we used corneal epithelial cell lysates to test if host cytosolic factors could also induce the T3SS. Invasive P. aeruginosa strain PAO1 was exposed to cell lysates for 16 h, and expression of T3SS effectors determined by q-PCR and Western immunoblot. Lysate exposure reduced PAO1 growth (∼5-fold) versus trypticase soy broth (TSB), but also resulted in appearance of a protein in culture supernatants, but not bacterial cell pellets, which reacted with antibody raised against ExoS. T3SS-inducing media (TSBi) caused the expression and secretion of ExoS and ExoT. Heat-treated lysates induced the protein; 1:3 diluted lysates did not. The protein that bound anti-ExoS antibody was found in supernatants of lysate-exposed exoT mutants, but not exoS or pscC mutants, suggesting a secreted form of ExoS, albeit slightly larger than that induced by TSBi. Lysate-exposed strain PAK expressed the same protein. Lysates caused PAO1 exoS and exoT gene expression, but only ∼20% and ∼6% of TSBi, respectively. T3SS induction by epithelial cell lysates could help explain T3SS expression by internalized P. aeruginosa.
Collapse
Affiliation(s)
| | - Matteo Metruccio
- School of Optometry, University of California, Berkeley, CA 94720-2020, USA
| | - David Evans
- School of Optometry, University of California, Berkeley, CA 94720-2020, USA.,College of Pharmacy, Touro University California, Vallejo, CA 94592-2020, USA
| | - Suzanne Fleiszig
- School of Optometry, University of California, Berkeley, CA 94720-2020, USA.,Graduate Groups in Vision Science, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, CA 94720-2020, USA
| |
Collapse
|
41
|
Nieto V, Kroken AR, Grosser MR, Smith BE, Metruccio MME, Hagan P, Hallsten ME, Evans DJ, Fleiszig SMJ. Type IV Pili Can Mediate Bacterial Motility within Epithelial Cells. mBio 2019; 10:e02880-18. [PMID: 31431558 PMCID: PMC6703432 DOI: 10.1128/mbio.02880-18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 07/31/2019] [Indexed: 02/07/2023] Open
Abstract
Pseudomonas aeruginosa is among bacterial pathogens capable of twitching motility, a form of surface-associated movement dependent on type IV pili (T4P). Previously, we showed that T4P and twitching were required for P. aeruginosa to cause disease in a murine model of corneal infection, to traverse human corneal epithelial multilayers, and to efficiently exit invaded epithelial cells. Here, we used live wide-field fluorescent imaging combined with quantitative image analysis to explore how twitching contributes to epithelial cell egress. Results using time-lapse imaging of cells infected with wild-type PAO1 showed that cytoplasmic bacteria slowly disseminated throughout the cytosol at a median speed of >0.05 μm s-1 while dividing intracellularly. Similar results were obtained with flagellin (fliC) and flagellum assembly (flhA) mutants, thereby excluding swimming, swarming, and sliding as mechanisms. In contrast, pilA mutants (lacking T4P) and pilT mutants (twitching motility defective) appeared stationary and accumulated in expanding aggregates during intracellular division. Transmission electron microscopy confirmed that these mutants were not trapped within membrane-bound cytosolic compartments. For the wild type, dissemination in the cytosol was not prevented by the depolymerization of actin filaments using latrunculin A and/or the disruption of microtubules using nocodazole. Together, these findings illustrate a novel form of intracellular bacterial motility differing from previously described mechanisms in being directly driven by bacterial motility appendages (T4P) and not depending on polymerized host actin or microtubules.IMPORTANCE Host cell invasion can contribute to disease pathogenesis by the opportunistic pathogen Pseudomonas aeruginosa Previously, we showed that the type III secretion system (T3SS) of invasive P. aeruginosa strains modulates cell entry and subsequent escape from vacuolar trafficking to host lysosomes. However, we also showed that mutants lacking either type IV pili (T4P) or T4P-dependent twitching motility (i) were defective in traversing cell multilayers, (ii) caused less pathology in vivo, and (iii) had a reduced capacity to exit invaded cells. Here, we report that after vacuolar escape, intracellular P. aeruginosa can use T4P-dependent twitching motility to disseminate throughout the host cell cytoplasm. We further show that this strategy for intracellular dissemination does not depend on flagellin and resists both host actin and host microtubule disruption. This differs from mechanisms used by previously studied pathogens that utilize either host actin or microtubules for intracellular dissemination independently of microbe motility appendages.
Collapse
Affiliation(s)
- Vincent Nieto
- School of Optometry, University of California, Berkeley, California, USA
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, California, USA
| | - Melinda R Grosser
- School of Optometry, University of California, Berkeley, California, USA
| | - Benjamin E Smith
- Vision Science Program, University of California, Berkeley, California, USA
| | | | - Patrick Hagan
- Undergraduate Research Apprentice Program, University of California, Berkeley, California, USA
| | - Mary E Hallsten
- Undergraduate Research Apprentice Program, University of California, Berkeley, California, USA
| | - David J Evans
- School of Optometry, University of California, Berkeley, California, USA
- College of Pharmacy, Touro University California, Vallejo, California, USA
| | - Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, California, USA
- Vision Science Program, University of California, Berkeley, California, USA
- Graduate Group in Microbiology, University of California, Berkeley, California, USA
- Graduate Group in Infectious Diseases and Immunity, University of California, Berkeley, California, USA
| |
Collapse
|
42
|
Feng C, Huang Y, He W, Cheng X, Liu H, Huang Y, Ma B, Zhang W, Liao C, Wu W, Shao Y, Xu D, Su Z, Lu W. Tanshinones: First-in-Class Inhibitors of the Biogenesis of the Type 3 Secretion System Needle of Pseudomonas aeruginosa for Antibiotic Therapy. ACS CENTRAL SCIENCE 2019; 5:1278-1288. [PMID: 31403076 PMCID: PMC6662154 DOI: 10.1021/acscentsci.9b00452] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Indexed: 05/17/2023]
Abstract
The type 3 secretion system (T3SS) found as cell-surface appendages of many pathogenic Gram-negative bacteria, although nonessential for bacterial survival, is an important therapeutic target for drug discovery and development aimed at inhibiting bacterial virulence without inducing antibiotic resistance. We designed a fluorescence-polarization-based assay for high-throughput screening as a mechanistically well-defined general strategy for antibiotic discovery targeting the T3SS and made a serendipitous discovery of a subset of tanshinones-natural herbal compounds in traditional Chinese medicine widely used for the treatment of cardiovascular and cerebrovascular diseases-as effective inhibitors of the biogenesis of the T3SS needle of multi-drug-resistant Pseudomonas aeruginosa. By inhibiting the T3SS needle assembly and, thus, cytotoxicity and pathogenicity, selected tanshinones reduced the secretion of bacterial virulence factors toxic to macrophages in vitro, and rescued experimental animals challenged with lethal doses of Pseudomonas aeruginosa in a murine model of acute pneumonia. As first-in-class inhibitors with a demonstrable safety profile in humans, tanshinones may be used directly to alleviate Pseudomonas-aeruginosa-associated pulmonary infections without inducing antibiotic resistance. Since the T3SS is highly conserved among Gram-negative bacteria, this antivirulence strategy may be applicable to the discovery and development of novel classes of antibiotics refractory to existing resistance mechanisms for the treatment of many bacterial infections.
Collapse
Affiliation(s)
- Chao Feng
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Yinong Huang
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Wangxiao He
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Xiyao Cheng
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Huili Liu
- State
Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese
Academy of Sciences, Wuhan 430071, China
| | - Yongqi Huang
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Bohan Ma
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Wei Zhang
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Chongbing Liao
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Weihui Wu
- State Key
Laboratory of Medicinal Chemical Biology, Key Laboratory of Molecular
Microbiology and Technology of the Ministry of Education, Department
of Microbiology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yongping Shao
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Dan Xu
- Center
for Translational Medicine, Frontier Institute of Science
and Technology, Shaanxi Institute of Pediatric Diseases, Affiliated Children’s
Hospital, and Key Laboratory of Biomedical Information Engineering of the Ministry
of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an 710054, China
| | - Zhengding Su
- Department
of Biological and Food Engineering, Hubei
University of Technology, Wuhan 430068, China
| | - Wuyuan Lu
- Institute
of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| |
Collapse
|
43
|
Garai P, Berry L, Moussouni M, Bleves S, Blanc-Potard AB. Killing from the inside: Intracellular role of T3SS in the fate of Pseudomonas aeruginosa within macrophages revealed by mgtC and oprF mutants. PLoS Pathog 2019; 15:e1007812. [PMID: 31220187 PMCID: PMC6586356 DOI: 10.1371/journal.ppat.1007812] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 05/02/2019] [Indexed: 12/19/2022] Open
Abstract
While considered solely an extracellular pathogen, increasing evidence indicates that Pseudomonas aeruginosa encounters intracellular environment in diverse mammalian cell types, including macrophages. In the present study, we have deciphered the intramacrophage fate of wild-type P. aeruginosa PAO1 strain by live and electron microscopy. P. aeruginosa first resided in phagosomal vacuoles and subsequently could be detected in the cytoplasm, indicating phagosomal escape of the pathogen, a finding also supported by vacuolar rupture assay. The intracellular bacteria could eventually induce cell lysis, both in a macrophage cell line and primary human macrophages. Two bacterial factors, MgtC and OprF, recently identified to be important for survival of P. aeruginosa in macrophages, were found to be involved in bacterial escape from the phagosome as well as in cell lysis caused by intracellular bacteria. Strikingly, type III secretion system (T3SS) genes of P. aeruginosa were down-regulated within macrophages in both mgtC and oprF mutants. Concordantly, cyclic di-GMP (c-di-GMP) level was increased in both mutants, providing a clue for negative regulation of T3SS inside macrophages. Consistent with the phenotypes and gene expression pattern of mgtC and oprF mutants, a T3SS mutant (ΔpscN) exhibited defect in phagosomal escape and macrophage lysis driven by internalized bacteria. Importantly, these effects appeared to be largely dependent on the ExoS effector, in contrast with the known T3SS-dependent, but ExoS independent, cytotoxicity caused by extracellular P. aeruginosa towards macrophages. Moreover, this macrophage damage caused by intracellular P. aeruginosa was found to be dependent on GTPase Activating Protein (GAP) domain of ExoS. Hence, our work highlights T3SS and ExoS, whose expression is modulated by MgtC and OprF, as key players in the intramacrophage life of P. aeruginosa which allow internalized bacteria to lyse macrophages. The ability of professional phagocytes to ingest and kill microorganisms is central to host defense and Pseudomonas aeruginosa has developed mechanisms to avoid being killed by phagocytes. While considered an extracellular pathogen, P. aeruginosa has been reported to be engulfed by macrophages in animal models. Here, we visualized the fate of P. aeruginosa within cultured macrophages, revealing macrophage lysis driven by intracellular P. aeruginosa. Two bacterial factors, MgtC and OprF, recently discovered to be involved in the intramacrophage survival of P. aeruginosa, appeared to play a role in this cytotoxicity caused by intracellular bacteria. We provided evidence that type III secretion system (T3SS) gene expression is lowered intracellularly in mgtC and oprF mutants. We further showed that intramacrophage P. aeruginosa uses its T3SS, specifically the ExoS effector, to promote phagosomal escape and cell lysis. We thus describe a transient intramacrophage stage of P. aeruginosa that could contribute to bacterial dissemination.
Collapse
Affiliation(s)
- Preeti Garai
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Laurence Berry
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Malika Moussouni
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
| | - Sophie Bleves
- LISM, Institut de Microbiologie de la Méditerranée, CNRS & Aix-Marseille Univ, Marseille, France
| | - Anne-Béatrice Blanc-Potard
- Laboratoire de Dynamique des Interactions Membranaires Normales et Pathologiques, Université de Montpellier, CNRS-UMR5235, Montpellier, France
- * E-mail:
| |
Collapse
|
44
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
45
|
Mohankumar V, Ramalingam S, Chidambaranathan GP, Prajna L. Autophagy induced by type III secretion system toxins enhances clearance of Pseudomonas aeruginosa from human corneal epithelial cells. Biochem Biophys Res Commun 2018; 503:1510-1515. [DOI: 10.1016/j.bbrc.2018.07.071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 07/13/2018] [Indexed: 10/28/2022]
|
46
|
The Impact of ExoS on Pseudomonas aeruginosa Internalization by Epithelial Cells Is Independent of fleQ and Correlates with Bistability of Type Three Secretion System Gene Expression. mBio 2018; 9:mBio.00668-18. [PMID: 29717012 PMCID: PMC5930308 DOI: 10.1128/mbio.00668-18] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is internalized into multiple types of epithelial cell in vitro and in vivo and yet is often regarded as an exclusively extracellular pathogen. Paradoxically, ExoS, a type three secretion system (T3SS) effector, has antiphagocytic activities but is required for intracellular survival of P. aeruginosa and its occupation of bleb niches in epithelial cells. Here, we addressed mechanisms for this dichotomy using invasive (ExoS-expressing) P. aeruginosa and corresponding effector-null isogenic T3SS mutants, effector-null mutants of cytotoxic P. aeruginosa with and without ExoS transformation, antibiotic exclusion assays, and imaging using a T3SS-GFP reporter. Except for effector-null PA103, all strains were internalized while encoding ExoS. Intracellular bacteria showed T3SS activation that continued in replicating daughter cells. Correcting the fleQ mutation in effector-null PA103 promoted internalization by >10-fold with or without ExoS. Conversely, mutating fleQ in PAO1 reduced internalization by >10-fold, also with or without ExoS. Effector-null PA103 remained less well internalized than PAO1 matched for fleQ status, but only with ExoS expression, suggesting additional differences between these strains. Quantifying T3SS activation using GFP fluorescence and quantitative reverse transcription-PCR (qRT-PCR) showed that T3SS expression was hyperinducible for strain PA103ΔexoUT versus other isolates and was unrelated to fleQ status. These findings support the principle that P. aeruginosa is not exclusively an extracellular pathogen, with internalization influenced by the relative proportions of T3SS-positive and T3SS-negative bacteria in the population during host cell interaction. These data also challenge current thinking about T3SS effector delivery into host cells and suggest that T3SS bistability is an important consideration in studying P. aeruginosa pathogenesis. P. aeruginosa is often referred to as an extracellular pathogen, despite its demonstrated capacity to invade and survive within host cells. Fueling the confusion, P. aeruginosa encodes T3SS effectors with anti-internalization activity that, paradoxically, play critical roles in intracellular survival. Here, we sought to address why ExoS does not prevent internalization of the P. aeruginosa strains that natively encode it. Results showed that ExoS exerted unusually strong anti-internalization activity under conditions of expression in the effector-null background of strain PA103, often used to study T3SS effector activity. Inhibition of internalization was associated with T3SS hyperinducibility and ExoS delivery. PA103 fleQ mutation, preventing flagellar assembly, further reduced internalization but did so independently of ExoS. The results revealed intracellular T3SS expression by all strains and suggested that T3SS bistability influences P. aeruginosa internalization. These findings reconcile controversies in the literature surrounding P. aeruginosa internalization and support the principle that P. aeruginosa is not exclusively an extracellular pathogen.
Collapse
|
47
|
Kamaruzzaman NF, Kendall S, Good L. Targeting the hard to reach: challenges and novel strategies in the treatment of intracellular bacterial infections. Br J Pharmacol 2017; 174:2225-2236. [PMID: 27925153 PMCID: PMC5481648 DOI: 10.1111/bph.13664] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/20/2016] [Accepted: 10/06/2016] [Indexed: 12/22/2022] Open
Abstract
Infectious diseases continue to threaten human and animal health and welfare globally, impacting millions of lives and causing substantial economic loss. The use of antibacterials has been only partially successful in reducing disease impact. Bacterial cells are inherently resilient, and the therapy challenge is increased by the development of antibacterial resistance, the formation of biofilms and the ability of certain clinically important pathogens to invade and localize within host cells. Invasion into host cells provides protection from both antibacterials and the host immune system. Poor delivery of antibacterials into host cells causes inadequate bacterial clearance, resulting in chronic and unresolved infections. In this review, we discuss the challenges associated with existing antibacterial therapies with a focus on intracellular pathogens. We consider the requirements for successful treatment of intracellular infections and novel platforms currently under development. Finally, we discuss novel strategies to improve drug penetration into host cells. As an example, we discuss our recent demonstration that the cell penetrating cationic polymer polyhexamethylene biguanide has antibacterial activity against intracellular Staphylococcus aureus. LINKED ARTICLES This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
- Faculty of Veterinary MedicineUniversiti Malaysia KelantanLocked Bag 36, Pengkalan Chepa16100Kota BharuKelantanMalaysia
| | - Sharon Kendall
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| | - Liam Good
- Department of Pathology and Pathogen BiologyRoyal Veterinary College, University of LondonNW10TUUK
| |
Collapse
|
48
|
Macrophages, but not neutrophils, are critical for proliferation of Burkholderia cenocepacia and ensuing host-damaging inflammation. PLoS Pathog 2017. [PMID: 28651010 PMCID: PMC5501683 DOI: 10.1371/journal.ppat.1006437] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacteria of the Burkholderia cepacia complex (Bcc) can cause devastating pulmonary infections in cystic fibrosis (CF) patients, yet the precise mechanisms underlying inflammation, recurrent exacerbations and transition from chronic stages to acute infection and septicemia are not known. Bcc bacteria are generally believed to have a predominant extracellular biofilm life style in infected CF lungs, similar to Pseudomonas aeruginosa, but this has been challenged by clinical observations which show Bcc bacteria predominantly in macrophages. More recently, Bcc bacteria have emerged in nosocomial infections of patients hospitalized for reasons unrelated to CF. Research has abundantly shown that Bcc bacteria can survive and replicate in mammalian cells in vitro, yet the importance of an intracellular life style during infection in humans is unknown. Here we studied the contribution of innate immune cell types to fatal pro-inflammatory infection caused by B. cenocepacia using zebrafish larvae. In strong contrast to the usual protective role for macrophages against microbes, our results show that these phagocytes significantly worsen disease outcome. We provide new insight that macrophages are critical for multiplication of B. cenocepacia in the host and for development of a fatal, pro-inflammatory response that partially depends on Il1-signalling. In contrast, neutrophils did not significantly contribute to disease outcome. In subcutaneous infections that are dominated by neutrophil-driven phagocytosis, the absence of a functional NADPH oxidase complex resulted in a small but measurably higher increase in bacterial growth suggesting the oxidative burst helps limit bacterial multiplication; however, neutrophils were unable to clear the bacteria. We suggest that paradigm-changing approaches are needed for development of novel antimicrobials to efficiently disarm intracellular bacteria of this group of highly persistent, opportunistic pathogens.
Collapse
|
49
|
The Measles Virus Receptor SLAMF1 Can Mediate Particle Endocytosis. J Virol 2017; 91:JVI.02255-16. [PMID: 28100610 PMCID: PMC5355598 DOI: 10.1128/jvi.02255-16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/03/2017] [Indexed: 12/11/2022] Open
Abstract
The signaling lymphocyte activation molecule F1 (SLAMF1) is both a microbial sensor and entry receptor for measles virus (MeV). Herein, we describe a new role for SLAMF1 to mediate MeV endocytosis that is in contrast with the alternative, and generally accepted, model that MeV genome enters cells only after fusion at the cell surface. We demonstrated that MeV engagement of SLAMF1 induces dramatic but transient morphological changes, most prominently in the formation of membrane blebs, which were shown to colocalize with incoming viral particles, and rearrangement of the actin cytoskeleton in infected cells. MeV infection was dependent on these dynamic cytoskeletal changes as well as fluid uptake through a macropinocytosis-like pathway as chemical inhibition of these processes inhibited entry. Moreover, we identified a role for the RhoA-ROCK-myosin II signaling axis in this MeV internalization process, highlighting a novel role for this recently characterized pathway in virus entry. Our study shows that MeV can hijack a microbial sensor normally involved in bacterial phagocytosis to drive endocytosis using a complex pathway that shares features with canonical viral macropinocytosis, phagocytosis, and mechanotransduction. This uptake pathway is specific to SLAMF1-positive cells and occurs within 60 min of viral attachment. Measles virus remains a significant cause of mortality in human populations, and this research sheds new light on the very first steps of infection of this important pathogen. IMPORTANCE Measles is a significant disease in humans and is estimated to have killed over 200 million people since records began. According to current World Health Organization statistics, it still kills over 100,000 people a year, mostly children in the developing world. The causative agent, measles virus, is a small enveloped RNA virus that infects a broad range of cells during infection. In particular, immune cells are infected via interactions between glycoproteins found on the surface of the virus and SLAMF1, the immune cell receptor. In this study, we have investigated the steps governing entry of measles virus into SLAMF1-positive cells and identified endocytic uptake of viral particles. This research will impact our understanding of morbillivirus-related immunosuppression as well as the application of measles virus as an oncolytic therapeutic.
Collapse
|
50
|
Mesquita FS, Brito C, Mazon Moya MJ, Pinheiro JC, Mostowy S, Cabanes D, Sousa S. Endoplasmic reticulum chaperone Gp96 controls actomyosin dynamics and protects against pore-forming toxins. EMBO Rep 2016; 18:303-318. [PMID: 28039206 DOI: 10.15252/embr.201642833] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 11/09/2022] Open
Abstract
During infection, plasma membrane (PM) blebs protect host cells against bacterial pore-forming toxins (PFTs), but were also proposed to promote pathogen dissemination. However, the details and impact of blebbing regulation during infection remained unclear. Here, we identify the endoplasmic reticulum chaperone Gp96 as a novel regulator of PFT-induced blebbing. Gp96 interacts with non-muscle myosin heavy chain IIA (NMHCIIA) and controls its activity and remodelling, which is required for appropriate coordination of bleb formation and retraction. This mechanism involves NMHCIIA-Gp96 interaction and their recruitment to PM blebs and strongly resembles retraction of uropod-like structures from polarized migrating cells, a process that also promotes NMHCIIA-Gp96 association. Consistently, Gp96 and NMHCIIA not only protect the PM integrity from listeriolysin O (LLO) during infection by Listeria monocytogenes but also affect cytoskeletal organization and cell migration. Finally, we validate the association between Gp96 and NMHCIIA in vivo and show that Gp96 is required to protect hosts from LLO-dependent killing.
Collapse
Affiliation(s)
- Francisco Sarmento Mesquita
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal
| | - Cláudia Brito
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Maria J Mazon Moya
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, UK
| | - Jorge Campos Pinheiro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Serge Mostowy
- Section of Microbiology, MRC Centre for Molecular Bacteriology and Infection (CMBI), Imperial College London, London, UK
| | - Didier Cabanes
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal .,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal
| | - Sandra Sousa
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal .,Group of Molecular Microbiology, IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|