1
|
Cheng KKW, Fingerhut L, Duncan S, Prajna NV, Rossi AG, Mills B. In vitro and ex vivo models of microbial keratitis: Present and future. Prog Retin Eye Res 2024; 102:101287. [PMID: 39004166 DOI: 10.1016/j.preteyeres.2024.101287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Microbial keratitis (MK) is an infection of the cornea, caused by bacteria, fungi, parasites, or viruses. MK leads to significant morbidity, being the fifth leading cause of blindness worldwide. There is an urgent requirement to better understand pathogenesis in order to develop novel diagnostic and therapeutic approaches to improve patient outcomes. Many in vitro, ex vivo and in vivo MK models have been developed and implemented to meet this aim. Here, we present current in vitro and ex vivo MK model systems, examining their varied design, outputs, reporting standards, and strengths and limitations. Major limitations include their relative simplicity and the perceived inability to study the immune response in these MK models, an aspect widely accepted to play a significant role in MK pathogenesis. Consequently, there remains a dependence on in vivo models to study this aspect of MK. However, looking to the future, we draw from the broader field of corneal disease modelling, which utilises, for example, three-dimensional co-culture models and dynamic environments observed in bioreactors and organ-on-a-chip scenarios. These remain unexplored in MK research, but incorporation of these approaches will offer further advances in the field of MK corneal modelling, in particular with the focus of incorporation of immune components which we anticipate will better recapitulate pathogenesis and yield novel findings, therefore contributing to the enhancement of MK outcomes.
Collapse
Affiliation(s)
- Kelvin Kah Wai Cheng
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Leonie Fingerhut
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Sheelagh Duncan
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - N Venkatesh Prajna
- Department of Cornea and Refractive Surgery Services, Aravind Eye Hospital and Postgraduate Institute of Ophthalmology, Madurai, Tamil Nadu, India
| | - Adriano G Rossi
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom
| | - Bethany Mills
- Centre for Inflammation Research, Institute of Regeneration and Repair, University of Edinburgh, United Kingdom.
| |
Collapse
|
2
|
Fortingo N, Melnyk S, Sutton SH, Watsky MA, Bollag WB. Innate Immune System Activation, Inflammation and Corneal Wound Healing. Int J Mol Sci 2022; 23:ijms232314933. [PMID: 36499260 PMCID: PMC9740891 DOI: 10.3390/ijms232314933] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/14/2022] [Indexed: 12/05/2022] Open
Abstract
Corneal wounds resulting from injury, surgeries, or other intrusions not only cause pain, but also can predispose an individual to infection. While some inflammation may be beneficial to protect against microbial infection of wounds, the inflammatory process, if excessive, may delay corneal wound healing. An examination of the literature on the effect of inflammation on corneal wound healing suggests that manipulations that result in reductions in severe or chronic inflammation lead to better outcomes in terms of corneal clarity, thickness, and healing. However, some acute inflammation is necessary to allow efficient bacterial and fungal clearance and prevent corneal infection. This inflammation can be triggered by microbial components that activate the innate immune system through toll-like receptor (TLR) pathways. In particular, TLR2 and TLR4 activation leads to pro-inflammatory nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) activation. Similarly, endogenous molecules released from disrupted cells, known as damage-associated molecular patterns (DAMPs), can also activate TLR2, TLR4 and NFκB, with the resultant inflammation worsening the outcome of corneal wound healing. In sterile keratitis without infection, inflammation can occur though TLRs to impact corneal wound healing and reduce corneal transparency. This review demonstrates the need for acute inflammation to prevent pathogenic infiltration, while supporting the idea that a reduction in chronic and/or excessive inflammation will allow for improved wound healing.
Collapse
Affiliation(s)
- Nyemkuna Fortingo
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Samuel Melnyk
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Sarah H. Sutton
- Department of Medical Illustration, Augusta University, Augusta, GA 30907, USA
| | - Mitchell A. Watsky
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
| | - Wendy B. Bollag
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- James and Jean Culver Vision Discovery Institute, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30907, USA
- Charlie Norwood VA Medical Center, Augusta, GA 30904, USA
- Correspondence: ; Tel.: +61-(706)-721-0698
| |
Collapse
|
3
|
Ung L, Chodosh J. Foundational concepts in the biology of bacterial keratitis. Exp Eye Res 2021; 209:108647. [PMID: 34097906 PMCID: PMC8595513 DOI: 10.1016/j.exer.2021.108647] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/28/2021] [Accepted: 05/27/2021] [Indexed: 12/12/2022]
Abstract
Bacterial infections of the cornea, or bacterial keratitis (BK), are notorious for causing rapidly fulminant disease and permanent vision loss, even among treated patients. In the last sixty years, dramatic upward trajectories in the frequency of BK have been observed internationally, driven in large part by the commercialization of hydrogel contact lenses in the late 1960s. Despite this worsening burden of disease, current evidence-based therapies for BK - including broad-spectrum topical antibiotics and, if indicated, topical corticosteroids - fail to salvage vision in a substantial proportion of affected patients. Amid growing concerns of rapidly diminishing antibiotic utility, there has been renewed interest in urgently needed novel treatments that may improve clinical outcomes on an individual and public health level. Bridging the translational gap in the care of BK requires the identification of new therapeutic targets and rational treatment design, but neither of these aims can be achieved without understanding the complex biological processes that determine how bacterial corneal infections arise, progress, and resolve. In this chapter, we synthesize the current wealth of human and animal experimental data that now inform our understanding of basic BK pathophysiology, in context with modern concepts in ocular immunology and microbiology. By identifying the key molecular determinants of clinical disease, we explore how novel treatments can be developed and translated into routine patient care.
Collapse
Affiliation(s)
- Lawson Ung
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - James Chodosh
- Department of Ophthalmology, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA; Infectious Disease Institute, Massachusetts Eye and Ear, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
4
|
Zhang C, Chen M, Chi Z. Cytokine secretion and pyroptosis of cholesteatoma keratinocytes mediated by AIM2 inflammasomes in response to cytoplasmic DNA. Mol Med Rep 2021; 23:344. [PMID: 33760111 PMCID: PMC7974272 DOI: 10.3892/mmr.2021.11983] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/18/2021] [Indexed: 11/21/2022] Open
Abstract
Cholesteatoma constitutes an acquired benign epidermal non-permanent bone lesion that is locally destructive and patients often relapse. Inflammasomes, which mediate the maturation and production of IL-18 and IL-1β, resulting in pyroptosis, have been documented to serve a core function in multiple inflammatory conditions. Absent in melanoma 2 (AIM2) is an inflammasome that identifies cytoplasmic DNA and has previously been reported as a pivotal modulator of inflammatory responses. Therefore, the present study aimed to determine the expression levels of AIM2 in human cholesteatoma tissues, and elucidate its function in modulating cytokine production. The expression levels of IL-18, apoptosis-associated speck-like protein containing a CARD (ASC), IL-1β, AIM2 and caspase-1 were markedly elevated in cholesteatoma tissues. Protein expression levels of AIM2, caspase-1 and ASC were localized in the cellular cytoplasm, primarily in the granular and prickle-cell layers in the cholesteatoma epithelium. Induction using IFN-γ, as well as cytoplasmic DNA markedly activated the AIM2 inflammasome and elevated the release of IL-18 and IL-1β in human cholesteatoma keratinocytes. IFN-γ was found to enhance poly(dA:dT)-induced pyroptosis of cells and cytokine production. The results of the present study revealed that AIM2 expressed in human cholesteatoma serves a vital function in the inflammatory response by initiating the inflammasome signaling cascade in cholesteatoma.
Collapse
Affiliation(s)
- Chen Zhang
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Min Chen
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| | - Zhangcai Chi
- ENT Institute and Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai 200031, P.R. China
| |
Collapse
|
5
|
Stella NA, Brothers KM, Shanks RMQ. Differential susceptibility of airway and ocular surface cell lines to FlhDC-mediated virulence factors PhlA and ShlA from Serratia marcescens. J Med Microbiol 2021; 70:001292. [PMID: 33300860 PMCID: PMC8131021 DOI: 10.1099/jmm.0.001292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/24/2020] [Indexed: 12/26/2022] Open
Abstract
Introduction. Serratia marcescens is a bacterial pathogen that causes ventilator-associated pneumonia and ocular infections. The FlhD and FlhC proteins complex to form a heteromeric transcription factor whose regulon, in S. marcescens, regulates genes for the production of flagellum, phospholipase A and the cytolysin ShlA. The previously identified mutation, scrp-31, resulted in highly elevated expression of the flhDC operon. The scrp-31 mutant was observed to be more cytotoxic to human airway and ocular surface epithelial cells than the wild-type bacteria and the present study sought to identify the mechanism underlying the increased cytotoxicity phenotype.Hypothesis/Gap Statement. Although FlhC and FlhD have been implicated as virulence determinants, the mechanisms by which these proteins regulate bacterial cytotoxicity to different cell types remains unclear.Aim. This study aimed to evaluate the mechanisms of FlhDC-mediated cytotoxicity to human epithelial cells by S. marcescens.Methodology. Wild-type and mutant bacteria and bacterial secretomes were used to challenge airway and ocular surface cell lines as evaluated by resazurin and calcein AM staining. Pathogenesis was further tested using a Galleria mellonella infection model.Results. The increased cytotoxicity of scrp-31 bacteria and secretomes to both cell lines was eliminated by mutation of flhD and shlA. Mutation of the flagellin gene had no impact on cytotoxicity under any tested condition. Elimination of the phospholipase gene, phlA, had no effect on bacteria-induced cytotoxicity to either cell line, but reduced cytotoxicity caused by secretomes to airway epithelial cells. Mutation of flhD and shlA, but not phlA, reduced bacterial killing of G. mellonella larvae.Conclusion. This study indicates that the S. marcescens FlhDC-regulated secreted proteins PhlA and ShlA, but not flagellin, are cytotoxic to airway and ocular surface cells and demonstrates differences in human epithelial cell susceptibility to PhlA.
Collapse
Affiliation(s)
- Nicholas A. Stella
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Kimberly M. Brothers
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | - Robert M. Q. Shanks
- Charles T. Campbell Laboratory of Ophthalmic Microbiology, Department of Ophthalmology, University of Pittsburgh, Pittsburgh, PA 15213, USA
| |
Collapse
|
6
|
Konda N, Kaur I, Garg P, Chakrabarti S, Willcox MDP. Toll-like receptor gene polymorphisms in patients with keratitis. Cont Lens Anterior Eye 2020; 44:101352. [PMID: 32723620 DOI: 10.1016/j.clae.2020.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 07/13/2020] [Accepted: 07/14/2020] [Indexed: 01/10/2023]
Abstract
OBJECTIVE To investigate differences in SNPs in TLR genes between people who had keratitis and controls in an Indian population. METHODS 145 cases of keratitis and 189 matched controls were recruited. DNA was extracted from peripheral blood. Single nucleotide polymorphisms (SNP) in TLR2 (n = 6), TLR4 (n = 15), TLR5 (n = 13) and TLR9 (n = 10) were analysed. The risk of developing keratitis was assessed based on allele, genotype and haplotype associations. RESULTS For all cases of keratitis, the TLR4 SNP rs4986791 TC genotype frequency was significantly higher in cases (p = 0.006, OR = 1.96, 95 % CI 1.19-3.2). Including cases of only microbial keratitis (MK) revealed that genotypes in TLR2 SNP rs5743706 TA (p = 0.0001; OR = 8.61; 95 % CI 2.59-28.56)), TLR4 SNP s4986791 TC (p = 0.002; OR = 2.65; 95 % CI 1.39-5.07) were significantly more common for MK, whereas the TLR5 SNP rs2241096 A allele (p = 0.00316, OR = 0.42, 95 % CI 0.2-0.9286) and GA genotype (p = 0.016; OR = 0.45; 95 % CI 0.23-0.86) was significantly less common in MK cases. The TLR2 SNP rs5743706 genotype TA was significantly less common in the sterile keratitis (SK) group (p = 0.004, OR = 0.43, 95 %CI 0.24-0.77). Haplotype analysis of MK compared to controls showed that TLR2 AT was more common in controls (p = 0.003); TLR4 ACAC was more common in cases (p = 0.004); TLR5 TGGCA was more common in controls (p = 0.001). CONCLUSION The present study revealed multiple associations between variants across TLR genes, which may have implications for understanding the underlying host factors, risk of developing keratitis and molecular pathogenesis in keratitis.
Collapse
Affiliation(s)
- Nagaraju Konda
- School of Optometry and Vision Science, University of New South Wales, Australia; Brien Holden Vision Institute, Sydney, Australia; School of Medical Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Inderjeet Kaur
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Prashant Garg
- The Cornea Institute, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Subhabrata Chakrabarti
- Brien Holden Eye Research Centre, L. V. Prasad Eye Institute, Hyderabad, Telangana, India
| | - Mark D P Willcox
- School of Optometry and Vision Science, University of New South Wales, Australia.
| |
Collapse
|
7
|
Zhou Z, Kim JW, Qi J, Eo SK, Lim CW, Kim B. Toll-Like Receptor 5 Signaling Ameliorates Liver Fibrosis by Inducing Interferon β-Modulated IL-1 Receptor Antagonist in Mice. THE AMERICAN JOURNAL OF PATHOLOGY 2020; 190:614-629. [PMID: 31972159 DOI: 10.1016/j.ajpath.2019.11.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/17/2019] [Accepted: 11/05/2019] [Indexed: 02/08/2023]
Abstract
Bacterial flagellin, recognized by cell surface of Toll-like receptor (TLR) 5, is a potent activator of many types of cells, leading to the activation of innate or adaptive immunity, which are pivotal in regulating fibrotic process. However, the exact role of TLR5 signaling in hepatic fibrogenesis remains unclear, and this study aims to elucidate its underlying mechanisms. Flagellin was injected to hepatotoxin- and cholestasis-induced liver fibrosis murine models. Flagellin-induced TLR5 activation significantly decreased the severity of liver fibrosis. Interestingly, the expression levels of IL-1 receptor antagonist (IL1RN) and interferon (IFN)β markedly increased in fibrotic livers on flagellin treatment. Consistently, in vivo activation of TLR5 signaling markedly increased IFNβ and IL1RN expression in the livers. Notably, flagellin injection significantly exacerbated the severity of liver fibrosis in IFN-α/β receptor 1 (IFNAR1) knockout mice. Furthermore, hepatic expression of IL1RN in the fibrotic livers of IFNAR1 knockout mice was significantly lower than those of wild-type mice. In support of these findings, flagellin-mediated IL1RN production is not sufficient to alleviate the severity of hepatic fibroinflammatory responses in IFNAR1-deficient milieu. Finally, hepatic stellate cells treated with IL1RN had significantly decreased cellular activation and its associated fibrogenic responses. Collectively, manipulation of TLR5 signaling may be a promising therapeutic strategy for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Zixiong Zhou
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jong-Won Kim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Jing Qi
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Seong Kug Eo
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Chae Woong Lim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea
| | - Bumseok Kim
- Biosafety Research Institute, and the BK21 Plus Program, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeonbuk, South Korea.
| |
Collapse
|
8
|
Fleiszig SMJ, Kroken AR, Nieto V, Grosser MR, Wan SJ, Metruccio MME, Evans DJ. Contact lens-related corneal infection: Intrinsic resistance and its compromise. Prog Retin Eye Res 2019; 76:100804. [PMID: 31756497 DOI: 10.1016/j.preteyeres.2019.100804] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 12/20/2022]
Abstract
Contact lenses represent a widely utilized form of vision correction with more than 140 million wearers worldwide. Although generally well-tolerated, contact lenses can cause corneal infection (microbial keratitis), with an approximate annualized incidence ranging from ~2 to ~20 cases per 10,000 wearers, and sometimes resulting in permanent vision loss. Research suggests that the pathogenesis of contact lens-associated microbial keratitis is complex and multifactorial, likely requiring multiple conspiring factors that compromise the intrinsic resistance of a healthy cornea to infection. Here, we outline our perspective of the mechanisms by which contact lens wear sometimes renders the cornea susceptible to infection, focusing primarily on our own research efforts during the past three decades. This has included studies of host factors underlying the constitutive barrier function of the healthy cornea, its response to bacterial challenge when intrinsic resistance is not compromised, pathogen virulence mechanisms, and the effects of contact lens wear that alter the outcome of host-microbe interactions. For almost all of this work, we have utilized the bacterium Pseudomonas aeruginosa because it is the leading cause of lens-related microbial keratitis. While not yet common among corneal isolates, clinical isolates of P. aeruginosa have emerged that are resistant to virtually all currently available antibiotics, leading the United States CDC (Centers for Disease Control) to add P. aeruginosa to its list of most serious threats. Compounding this concern, the development of advanced contact lenses for biosensing and augmented reality, together with the escalating incidence of myopia, could portent an epidemic of vision-threatening corneal infections in the future. Thankfully, technological advances in genomics, proteomics, metabolomics and imaging combined with emerging models of contact lens-associated P. aeruginosa infection hold promise for solving the problem - and possibly life-threatening infections impacting other tissues.
Collapse
Affiliation(s)
- Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, USA; Graduate Group in Vision Science, University of California, Berkeley, CA, USA; Graduate Groups in Microbiology and Infectious Diseases & Immunity, University of California, Berkeley, CA, USA.
| | - Abby R Kroken
- School of Optometry, University of California, Berkeley, CA, USA
| | - Vincent Nieto
- School of Optometry, University of California, Berkeley, CA, USA
| | | | - Stephanie J Wan
- Graduate Group in Vision Science, University of California, Berkeley, CA, USA
| | | | - David J Evans
- School of Optometry, University of California, Berkeley, CA, USA; College of Pharmacy, Touro University California, Vallejo, CA, USA
| |
Collapse
|
9
|
Mahin Samadi P, Gerami P, Elmi A, Khanaki K, Faezi S. Pseudomonas aeruginosa keratitis: passive immunotherapy with antibodies raised against divalent flagellin. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2019; 22:58-64. [PMID: 30944709 PMCID: PMC6437458 DOI: 10.22038/ijbms.2018.31499.7643] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Objective(s): Pseudomonas aeruginosa infections such as keratitis are considered among the major health problems worldwide due to the complexity of pathogenesis and antibiotic resistance crisis, thus, finding new effective approaches for prevention and treatment of the infections seem to be still vital. In this report, we aimed to investigate the therapeutic effects of topical administration of the antibodies against type a and b-flagellin (FLA and FLB) in Pseudomonas keratitis model of infection in mice. Materials and Methods: Scratched corneas of mice were treated with approximately 107 CFUs/eye of PAK and/or PAO1 strains of P. aeruginosa. Specific IgG to FLA, FLB or divalent flagellin were topically applied to the infected corneas for 20 min, 24, and 36 hr post-infection. The bacterial burden and myeloperoxidase activity (as a marker for polymorphonuclears (PMNs) infiltration) were determined in the corneas. The biological activity of the anti-FLA and FLB IgG was evaluated in vitro by opsonophagocytosis test. Results: Compared to other treated corneas, divalent anti-flagellin IgG treatment showed a significant decrease in the bacterial CFUs and myeloperoxidase activity in the infected corneas (P<0.05). Results of opsonophagocytosis revealed that the specific antibodies raised against FLA and FLB had more potent opsonic killing activity on their homologous strains as compared with control group (P<0.05). Conclusion: It appears that in P. aeruginosa keratitis, topical administration of the combined antibodies likely via decreasing the bacterial load, and PMNs infiltration as well as increasing opsonophagocytosis could lead to dramatic improvement of the infected corneas.
Collapse
Affiliation(s)
- Pariya Mahin Samadi
- Department of Microbiology, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran
| | - Parmida Gerami
- Department of Microbiology, Biology Research Center, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Ali Elmi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Korosh Khanaki
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Sobhan Faezi
- Medical Biotechnology Research Center, School of Paramedicine, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
10
|
Cui X, Gao N, Me R, Xu J, Yu FSX. TSLP Protects Corneas From Pseudomonas aeruginosa Infection by Regulating Dendritic Cells and IL-23-IL-17 Pathway. Invest Ophthalmol Vis Sci 2019; 59:4228-4237. [PMID: 30128494 PMCID: PMC6103385 DOI: 10.1167/iovs.18-24672] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose We sought to determine the role of epithelium-produced thymic stromal lymphopoietin (TSLP) and its underlying mechanisms in corneal innate immune defense against Pseudomonas (P.) aeruginosa keratitis. Methods The expression of TSLP and TSLPR in cultured human corneal epithelial cells (HCECs) and mouse corneas was determined by PCR, Western, and/or ELISA. Cellular localization of TSLP receptor (TSLPR) was determined by whole mount confocal microscopy. TSLP-TSLPR signaling was downregulated by neutralizing antibodies and/or small interfering (si)RNA; their effects on the severity of P. aeruginosa–keratitis and cytokine expression were assessed using clinical scoring, bacterial counting, PMN infiltration, and real-time PCR. The role of dendritic cells (DCs) in corneal innate immunity was determined by local DC depletion using CD11c-DTR mice. Results P. aeruginosa–infection induced the expression of TSLP and TSLPR in both cultured primary HCECs and in C57BL/6 mouse corneas. While TSLP was mostly expressed by epithelial cells, CD11c-positive cells were positive for TSLPR. Targeting TSLP or TSLPR with neutralizing antibodies or TSLPR with siRNA resulted in more severe keratitis, attributable to an increase in bacterial burden and PMN infiltration. TSLPR neutralization significantly suppressed infection-induced TSLP and interleukin (IL)-17C expression and augmented the expression of IL-23 and IL-17A. Local depletion of DCs markedly increased the severity of keratitis and exhibited no effects on TSLP and IL-23 expression while suppressing IL-17A and C expression in P. aeruginosa–infected corneas. Conclusions The epithelium-expressed TSLP plays a protective role in P. aeruginosa keratitis through targeting of DCs and in an IL-23/IL-17 signaling pathway-related manner.
Collapse
Affiliation(s)
- Xinhan Cui
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States.,Eye and ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Rao Me
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Jianjiang Xu
- Eye and ENT Hospital of Fudan University, Xuhui District, Shanghai, China
| | - Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
11
|
Chen K, Fu Q, Liang S, Liu Y, Qu W, Wu Y, Wu X, Wei L, Wang Y, Xiong Y, Wang W, Wu M. Stimulator of Interferon Genes Promotes Host Resistance Against Pseudomonas aeruginosa Keratitis. Front Immunol 2018; 9:1225. [PMID: 29922287 PMCID: PMC5996077 DOI: 10.3389/fimmu.2018.01225] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 05/16/2018] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is the leading cause of bacterial keratitis, especially in those who wear contact lens and who are immunocompromised. Once the invading pathogens are recognized by pattern recognition receptors expressed on the innate immune cells, the innate immune response is stimulated to exert host defense function, which is the first line to fight against PA infection. As a converging point of cytosolic DNA sense signaling, stimulator of interferon genes (STING) was reported to participate in host–pathogen interaction. However, the role of STING in regulating PA-induced corneal inflammation and bacterial clearance remains unknown. Our data demonstrated that STING was activated in murine model of PA keratitis and in in vitro-cultured macrophages, indicated by Western blot, immunostaining, and flow cytometry. To explore the role of STING in PA keratitis, we used siRNA to silence STING and 2′,3′-cGAMP to activate STING in vivo and in vitro, and the in vivo data found out that STING promoted host resistance against PA infection. To investigate the reason why STING played a protective role in PA keratitis, the inflammatory cytokine secretion and bacterial load were measured by using real-time PCR and bacterial plate count, respectively. Our data demonstrated that STING suppressed the production of inflammatory cytokines and enhanced bacterial elimination in murine model of PA keratitis and in PA-infected macrophages. To further investigate the mechanism beneath, the phosphorylation of mitogen-activated protein kinase, the nuclear translocation of nuclear factor-κB (NF-κB) and the bactericidal mechanism were measured by western-blot, immunofluorescence, and real-time PCR, respectively. Our data indicated that STING suppressed inflammatory cytokine expressing via restraining NF-κB activity and enhanced inducible NO synthase expression, an oxygen-dependent bactericidal mechanism. In conclusion, this study demonstrated that STING promoted host resistance against PA keratitis and played a protective role in PA-infected corneal disease, via inhibiting corneal inflammation and enhancing bacterial killing.
Collapse
Affiliation(s)
- Kang Chen
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Qiang Fu
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Siping Liang
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Yiting Liu
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Wenting Qu
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Yongjian Wu
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| | - Xinger Wu
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Lei Wei
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yi Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yujuan Xiong
- Department of Laboratory Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Weijia Wang
- Department of Laboratory Medicine, Zhongshan Hospital of Sun Yat-sen University, Zhongshan, China
| | - Minhao Wu
- Program of Pathobiology and Immunology, Fifth Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.,Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Liu X, Chen J, Qu C, Bo G, Jiang L, Zhao H, Zhang J, Lin Y, Hua Y, Yang P, Huang N, Yang Z. A Mussel-Inspired Facile Method to Prepare Multilayer-AgNP-Loaded Contact Lens for Early Treatment of Bacterial and Fungal Keratitis. ACS Biomater Sci Eng 2018; 4:1568-1579. [PMID: 33445314 DOI: 10.1021/acsbiomaterials.7b00977] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xiaoqi Liu
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Jiang Chen
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Chao Qu
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Gong Bo
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Lang Jiang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Hui Zhao
- School of Medicine, University of Electronic Science and Technology of China, No. 2006, Xiyuan Ave West Hi-Tech Zone, Chengdu, CN 611731, China
| | - Jing Zhang
- Department of Ophthalmology, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Yin Lin
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Yu Hua
- Department of Laboratory Medicine, Sichuan Academy of Medical Sciences and Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| | - Ping Yang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Nan Huang
- Institute of Biomaterials and Surface Engineering, Key Lab for Advanced Technologies of Materials, Ministry of Education, Southwest Jiaotong University, No. 111 of the North First Section of Second Ring Road, Chengdu, CN 610031, China
| | - Zhenglin Yang
- Sichuan Key Laboratory for Disease Gene Study, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, No. 32 of the West Second Section of First Ring Road, Chengdu, CN 610072, China
| |
Collapse
|
13
|
Metruccio MME, Tam C, Evans DJ, Xie AL, Stern ME, Fleiszig SMJ. Contributions of MyD88-dependent receptors and CD11c-positive cells to corneal epithelial barrier function against Pseudomonas aeruginosa. Sci Rep 2017; 7:13829. [PMID: 29062042 PMCID: PMC5653778 DOI: 10.1038/s41598-017-14243-w] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/06/2017] [Indexed: 12/19/2022] Open
Abstract
Previously we reported that corneal epithelial barrier function against Pseudomonas aeruginosa was MyD88-dependent. Here, we explored contributions of MyD88-dependent receptors using vital mouse eyes and confocal imaging. Uninjured IL-1R (−/−) or TLR4 (−/−) corneas, but not TLR2 (−/−), TLR5 (−/−), TLR7 (−/−), or TLR9 (−/−), were more susceptible to P. aeruginosa adhesion than wild-type (3.8-fold, 3.6-fold respectively). Bacteria adherent to the corneas of IL-1R (−/−) or TLR5 (−/−) mice penetrated beyond the epithelial surface only if the cornea was superficially-injured. Bone marrow chimeras showed that bone marrow-derived cells contributed to IL-1R-dependent barrier function. In vivo, but not ex vivo, stromal CD11c+ cells responded to bacterial challenge even when corneas were uninjured. These cells extended processes toward the epithelial surface, and co-localized with adherent bacteria in superficially-injured corneas. While CD11c+ cell depletion reduced IL-6, IL-1β, CXCL1, CXCL2 and CXCL10 transcriptional responses to bacteria, and increased susceptibility to bacterial adhesion (>3-fold), the epithelium remained resistant to bacterial penetration. IL-1R (−/−) corneas also showed down-regulation of IL-6 and CXCL1 genes with and without bacterial challenge. These data show complex roles for TLR4, TLR5, IL-1R and CD11c+ cells in constitutive epithelial barrier function against P. aeruginosa, with details dependent upon in vivo conditions.
Collapse
Affiliation(s)
| | - Connie Tam
- School of Optometry, University of California, Berkeley, CA, 94720, USA.,Cole Eye Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - David J Evans
- School of Optometry, University of California, Berkeley, CA, 94720, USA.,College of Pharmacy, Touro University California, Vallejo, CA, 94592, USA
| | - Anna L Xie
- School of Optometry, University of California, Berkeley, CA, 94720, USA
| | | | - Suzanne M J Fleiszig
- School of Optometry, University of California, Berkeley, CA, 94720, USA. .,Graduate Groups in Vision Science, Microbiology, and Infectious Diseases & Immunity, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
14
|
Immunization with Bivalent Flagellin Protects Mice against Fatal Pseudomonas aeruginosa Pneumonia. J Immunol Res 2017; 2017:5689709. [PMID: 29201922 PMCID: PMC5671732 DOI: 10.1155/2017/5689709] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Revised: 08/25/2017] [Accepted: 09/10/2017] [Indexed: 01/21/2023] Open
Abstract
Pseudomonas aeruginosa lung infections present a major challenge to healthcare systems worldwide because they are commonly associated with high morbidity and mortality. Here, we demonstrate the protective efficacy of type a and b flagellins (bivalent flagellin) against acute fatal pneumonia in mice. Mice immunized intranasally with a bivalent flagellin vaccine were challenged by different flagellated strains of P. aeruginosa in an acute pneumonia model. Besides the protective effect of the vaccine, we further measured the host innate and cellular immunity responses. The immunized mice in our study were protected against both strains. Remarkably, active immunization with type a or b flagellin significantly improved survival of mice against heterologous strain compared to flagellin a or b antisera. We also showed that after an intranasal challenge by P. aeruginosa strain, neutrophils are recruited to the airways of vaccinated mice, and that the bivalent flagellin vaccine was proved to be protective by the generated CD4+IL-17+ Th17 cells. In conclusion, bivalent flagellin vaccine can confer protection against different strains of P. aeruginosa in an acute pneumonia mouse model by eliciting effective cellular and humoral immune responses, including increased IL-17 production and improved opsonophagocytic killing.
Collapse
|
15
|
Reins RY, Courson J, Lema C, Redfern RL. MyD88 contribution to ocular surface homeostasis. PLoS One 2017; 12:e0182153. [PMID: 28796783 PMCID: PMC5552092 DOI: 10.1371/journal.pone.0182153] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 07/13/2017] [Indexed: 12/18/2022] Open
Abstract
The cornea must maintain homeostasis, enabling rapid response to injury and microbial insult, to protect the eye from insult and infection. Toll-like receptors (TLRs) are critical to this innate immune response through the recognition and response to pathogens. Myeloid differentiation primary response (MyD88) is a key signaling molecule necessary for Toll-like receptor (TLR) and interleukin-1 receptor (IL-1R)-mediated immune defense and has been shown to be necessary for corneal defense during infection. Here, we examined the intrinsic role of TLR signaling in ocular surface tissues by determining baseline levels of inflammatory mediators, the response to mechanical stimuli, and corneal infection in MyD88-deficient mice (MyD88-/-). In addition, cytokine, chemokine, and matrix metalloproteinase (MMP) expression was determined in ocular surface cells exposed to a panel of TLR agonists. Compared to wild-type (WT) animals, MyD88-/- mice expressed lower MMP-9 levels in the cornea and conjunctiva. Corneal IL-1α, TNFα, and conjunctival IL-1α, IL-2, IL-6, and IL-9 levels were also significantly reduced. Additionally, CXCL1 and RANTES expression was lower in both MyD88-/- tissues compared to WT and IL-1R-/- mice. Interestingly, MyD88-/- mice had lower corneal sensitivities (1.01±0.31 gm/mm2) than both WT (0.59±0.16 gm/mm2) and IL-1R-/- (0.52±0.08 gm/mm2). Following Pseudomonas aeruginosa challenge, MyD88-/- mice had better clinical scores (0.5±0.0) compared to IL-1R-/- (1.5±0.6) and WT (2.3±0.3) animals, but had significantly more corneal bacterial isolates. However, no signs of infection were detected in inoculated uninjured corneas from either MyD88 or IL-1R-deficient mice. This work furthers our understanding of the importance of TLR signaling in corneal defense and immune homeostasis, showing that a lack of MyD88 may compromise the baseline innate response to insult.
Collapse
Affiliation(s)
- Rose Y. Reins
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Justin Courson
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Carolina Lema
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
| | - Rachel L. Redfern
- The Ocular Surface Institute, College of Optometry, University of Houston, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
16
|
Dong C, Gao N, Ross BX, Yu FSX. ISG15 in Host Defense Against Candida albicans Infection in a Mouse Model of Fungal Keratitis. Invest Ophthalmol Vis Sci 2017; 58:2948-2958. [PMID: 28599020 PMCID: PMC5469425 DOI: 10.1167/iovs.17-21476] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Purpose ISG15, a di-ubiquitin-like protein, is critical for controlling certain viral and bacterial infections. We sought to determine if ISG15 plays a role in corneal innate immunity against Candida albicans (C. albicans) using a C57BL/6 (B6) mouse model of human fungal keratitis. Methods Scarified corneas of adult B6 mice were pretreated with TLR5 ligand flagellin and then inoculated with C. albicans. The expression of ISG15 and other genes involved in ISG15 conjugation (ISGylation) was determined by real-time PCR. ISG15 expression and distribution in infected corneas were assessed by immunohistochemistry. ISGylation was examined by Western blotting. siRNA knockdown and recombinant ISG15 were used to elucidate the effects of ISG15 on controlling fungal keratitis by clinical scoring, fungal number plate counting, ELISA cytokine determination, and polymorphonuclear leukocytes (PMN) infiltration measurement. Results Heat-killed C. albicans induced expression of ISG15, and hBD2 was markedly enhanced by flagellin-pretreatment in cultured human primary corneal epithelial cells (CECs). In vivo, C. albicans infection induced the expression of ISG15, ISGylation-associated genes (UBE1L, UBCH8, and HERC5), and ISGylation in mouse CECs, all of which were enhanced by flagellin-pretreatment. siRNA knockdown of ISG15 increased keratitis severity, dampened flagellin-induced protection, and greatly suppressed the expressions of ISGylation enzymes, IFN-γ, but not CXCL2 in B6 mouse CECs. Recombinant ISG15, on the other hand, enhanced corneal innate immunity against C. albicans and suppressed infection-induced IL-1β, but not IL-Ra expression. ISG15 alone induced the expression of IL-1Ra, CXCL10, and CRAMP in mouse CECs. ISG15 was upregulated and secreted in cultured human CECs in response to challenge in a type 1 IFN-dependent manner. Conclusions Our data, for the first time, demonstrate that ISG15 acts as an immunomodulator in the cornea and plays a critical role in controlling fungal keratitis.
Collapse
Affiliation(s)
- Chen Dong
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States 2College of Biological Engineering, Henan University of Technology, Zhengzhou, Henan, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Bing X Ross
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| | - Fu-Shin X Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan, United States
| |
Collapse
|
17
|
Ross BX, Gao N, Cui X, Standiford TJ, Xu J, Yu FSX. IL-24 Promotes Pseudomonas aeruginosa Keratitis in C57BL/6 Mouse Corneas. THE JOURNAL OF IMMUNOLOGY 2017; 198:3536-3547. [PMID: 28330899 DOI: 10.4049/jimmunol.1602087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 02/27/2017] [Indexed: 01/28/2023]
Abstract
The aim of this study was to elucidate the expression and functions of IL-24 in C57BL/6 mouse corneas in response to Pseudomonas aeruginosa infection. Among IL-20R cytokines, only IL-24 was induced at both mRNA and protein levels by infection at early time points. The upregulation of IL-24 was dampened by flagellin pretreatment, which protects the corneas from microbial infection. Time course studies revealed bimodal early and later peaks of IL-24 expression, a pattern shared with suppressor of cytokine signaling (SOCS)3 but not IL-1β or IL-6. Silencing of IL-24 enhanced S100A8/A9 expression and suppressed SOCS3, IL-1β, IL-1RN, and matrix metalloproteinase 13 expression at 6 h postinfection. Downregulation of the IL-24 signaling pathway significantly reduced the severity of keratitis, whereas rIL-24 exacerbated P. aeruginosa-mediated tissue destruction. In vitro, rIL-1β induced the expression of SOCS3, IL-24, IL-1β, and IL-6 in primary cultured human corneal epithelial cells. rIL-24, alternatively, stimulated the expression of SOCS3, but not the others. In conclusion, IL-24 promotes P. aeruginosa keratitis through the suppression of early protective mucosal immunity, culminating in increased severity of P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Bing X Ross
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Nan Gao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| | - Xinhan Cui
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201.,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201.,Eye and Ear, Nose, and Throat Hospital of Fudan University, Xuhui District, Shanghai 200031, China; and
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI 48109
| | - Jianjiang Xu
- Eye and Ear, Nose, and Throat Hospital of Fudan University, Xuhui District, Shanghai 200031, China; and
| | - Fu-Shin X Yu
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, MI 48201; .,Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI 48201
| |
Collapse
|
18
|
Markova EY, Polunina EG, Pron'ko NA, Venediktova LV, Kurganova OV. [Ocular surface viral diseases in children]. Vestn Oftalmol 2016; 132:68-72. [PMID: 27600898 DOI: 10.17116/oftalma2016132468-72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
UNLABELLED Over the past 15 years the number of children with inflammatory eye diseases has increased by five-six times. Data analysis of Moscow children's health clinics in 2014 showed that for 40,000 outpatients a viral infection was observed in 49,000 cases, whereas some children suffered from the viral infection twice or thrice. 344 children (0.7 percent) had the viral infection accompanied by keratoconjunctivitis. According to 2015 data, viral infection was observed in 37,957 children, including 325 outpatients (0.8 percent) with keratoconjunctivitis. AIM To analyze clinical features and treatment options of ocular surface viral diseases in children. MATERIAL AND METHODS We observed 140 children aged 2 to 13 years with ocular surface viral diseases. RESULTS Despite the presence of corneal disorders, in 95 percent of children changes were reversible - in 1.5 months corneal opacity was not observed. Yet five percent of children, despite the intensive treatment, had bacterial complications, causing decrease in visual acuity. CONCLUSION In case of viral infections, ophthalmologists, pediatricians and general practitioners should all be aware of ocular manifestations of these diseases. Even if adequate therapy for ocular surface viral disorders is appointed, in five percent of cases complications are possible, causing decline in visual function. Changes in vision can be a result of general disease manifestation, and only timely and proper treatment will help to relieve the symptoms of inflammation and prevent complications.The results of our observations revealed that the addition of Ophtalmoferon medication to the complex therapy of ocular surface diseases in children showed a high therapeutic efficacy and a good safety profile. This medication, in contrast to other antiviral agents, is available in the form of ready-to-use eye drops, significantly enhancing medication compliance in outpatients.
Collapse
Affiliation(s)
- E Yu Markova
- Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow, Russian Federation, 117997; Moscow Children's Health Clinic #12, 1 Eletskaya St., Moscow, Russian Federation, 115583
| | - E G Polunina
- Institute of Postgraduate Education, Federal Medical Biological Agency, 91 Volokolamskoe Shosse, Moscow, Russian Federation, 125371
| | - N A Pron'ko
- Moscow Children's Health Clinic #12, 1 Eletskaya St., Moscow, Russian Federation, 115583
| | - L V Venediktova
- Moscow Children's Health Clinic #12, 1 Eletskaya St., Moscow, Russian Federation, 115583
| | - O V Kurganova
- Pirogov Russian National Research Medical University, 1 Ostrovityanova St., Moscow, Russian Federation, 117997
| |
Collapse
|
19
|
Chen K, Fu Q, Li D, Wu Y, Sun S, Zhang X. Wnt3a suppresses Pseudomonas aeruginosa-induced inflammation and promotes bacterial killing in macrophages. Mol Med Rep 2016; 13:2439-46. [PMID: 26846714 PMCID: PMC4768980 DOI: 10.3892/mmr.2016.4869] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 01/11/2016] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is a common Gram‑negative bacterium and can cause serious infections, including hospital‑acquired pneumonia, suppurative bacterial keratitis and acute burn wound infection. The pathogenesis of PA infections is closely associated with excessive inflammatory responses and bacterial virulence factors. Wingless‑type MMTV integration site family, member 3A (Wnt3a), an upstream mediator in the canonical Wnt signaling pathway, has been implicated as a regulator of inflammation. However, its role in PA‑induced inflammation and bacterial clearance remains unknown. In the present study, the efficacy of Wnt3a conditioned media (Wnt3a‑CM) was assessed using western blotting and immunofluorescence, which showed that β‑catenin, a downstream molecule of Wnt3a, was upregulated and translocated to the nucleus following exposure to 50% Wnt3a‑CM for 6 h. To explore the role of Wnt3a in PA‑induced inflammation, the mRNA levels of pro‑inflammatory cytokines and apoptosis in macrophages were measured using reverse transcription‑quantitative polymerase chain reaction and flow cytometry, respectively. This indicated that Wnt3a suppressed inflammation by reducing the production of pro‑inflammatory cytokines and by promoting apoptosis in macrophages. Furthermore, the mechanism of macrophage‑mediated bacterial killing was investigated, and the results indicated that Wnt3a enhanced macrophage‑mediated intracellular bacterial killing via the induction of the production of cathelicidin‑related antimicrobial peptide and β‑defensins 1. Taken together, the current study explored the role of Wnt3a in inflammation and bacterial invasion, which may provide an improved understanding of host resistance to PA infection.
Collapse
Affiliation(s)
- Kang Chen
- Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat‑Sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Qiang Fu
- Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat‑Sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Dandan Li
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Yongjian Wu
- Department of Immunology, Institute of Human Virology, Zhongshan School of Medicine, Sun Yat‑Sen University, Guangzhou, Guangdong 510080, P.R. China
| | - Shijun Sun
- Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat‑Sen University, Zhongshan, Guangdong 528403, P.R. China
| | - Xiumin Zhang
- Division of Clinical Laboratory, Zhongshan Hospital of Sun Yat‑Sen University, Zhongshan, Guangdong 528403, P.R. China
| |
Collapse
|
20
|
Sabharwal N, Chhibber S, Harjai K. Divalent flagellin immunotherapy provides homologous and heterologous protection in experimental urinary tract infections in mice. Int J Med Microbiol 2016; 306:29-37. [DOI: 10.1016/j.ijmm.2015.11.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/21/2015] [Accepted: 11/24/2015] [Indexed: 11/28/2022] Open
|
21
|
Si Y, Chen YB, Chen SJ, Zheng YQ, Liu X, Liu Y, Jiang HL, Xu G, Li ZH, Huang QH, Xiong H, Zhang ZG. TLR4 drives the pathogenesis of acquired cholesteatoma by promoting local inflammation and bone destruction. Sci Rep 2015; 5:16683. [PMID: 26639190 PMCID: PMC4671024 DOI: 10.1038/srep16683] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 10/16/2015] [Indexed: 12/31/2022] Open
Abstract
Acquired cholesteatoma is a chronic inflammatory disease characterized by both hyperkeratinized squamous epithelial overgrowth and bone destruction. Toll-like receptor (TLR) activation and subsequent inflammatory cytokine production are closely associated with inflammatory bone disease. However, the expression and function of TLRs in cholesteatoma remain unclear.We observed inflammatory cell infiltration of the matrix and prematrix of human acquired cholesteatoma, as well as dramatically increased expression of TLR4 and the pro-inflammatory cytokines TNF-α and IL-1β. TLR2 exhibited an up-regulation that was not statistically significant. TLR4 expression in human acquired cholesteatoma correlated with disease severity; the number of TLR4-positive cells increased with an increased degree of cholesteatoma, invasion, bone destruction, and hearing loss. Moreover, TLR4 deficiency was protective against experimental acquired cholesteatoma-driven bone destruction and hearing loss, as it reduced local TNF-α and IL-1β expression and impaired osteoclast formation by decreasing expression of the osteoclast effectors receptor activator of nuclear factor (NF)-κB ligand (RANKL) and tartrate-resistant acid phosphatase (TRAP). TLR2 deficiency did not relieve disease severity, inflammatory responses, or osteoclast formation. Moreover, neither TLR2 nor TLR4 deficiency had an effect on antimicrobial peptides, inducible iNOS,BD-2 expression or bacterial clearance. Therefore, TLR4 may promote cholesteatoma-induced bone destruction and deafness by enhancing inflammatory responses and osteoclastogenesis.
Collapse
Affiliation(s)
- Yu Si
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Yu Bin Chen
- Department of Otolaryngology Head and Neck Surgery, The third affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630. China
| | - Sui Jun Chen
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Yi Qing Zheng
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Xiang Liu
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Yi Liu
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Huai Li Jiang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Guo Xu
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Zhuo Hao Li
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Qiu Hong Huang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Hao Xiong
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| | - Zhi Gang Zhang
- Department of Otolaryngology Head and Neck Surgery, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120. China
- Institute of Hearing and Speech-Language Science, Sun Yat-sen University, Guangzhou, 510120. China
| |
Collapse
|
22
|
Abstract
Advanced purulent corneal ulcer, as well as abscess, is a serious vision-threatening condition notable for its fulminant course and possible loss of the eye due to endophthalmitis. Its leading causes, pathogenesis, and classifications are described and analyzed in this paper.
Collapse
Affiliation(s)
- Evg A Kasparova
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| | - Evg A Kasparova
- Research Institute of Eye Diseases, 11 A, B, Rossolimo St., Moscow, Russian Federation, 119021
| |
Collapse
|
23
|
Chitinase 3-Like 1 Promotes Candida albicans Killing and Preserves Corneal Structure and Function by Controlling Host Antifungal Responses. Infect Immun 2015; 83:4154-64. [PMID: 26238714 DOI: 10.1128/iai.00980-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/30/2015] [Indexed: 12/17/2022] Open
Abstract
Chitinase 3-like 1 (CHI3L1) has been shown to play a role in promoting antibacterial responses, decreasing tissue injury, and enhancing pulmonary repair. This study sought to elucidate the role of CHI3L1 in augmenting the corneal innate immune response to Candida albicans infection in an animal model of fungal keratitis. Flagellin applied topically 24 h prior to C. albicans inoculation significantly protected the corneal from C. albicans and induced CHI3L1 expression in C57BL/6 mouse corneas. CHI3L1, however, played a detectable but minor role in flagellin-induced protection. While C. albicans keratitis was more severe in the corneas treated with Chi3l1 small interfering RNA (siRNA), corneas treated with recombinant CHI3L1 before C. albicans inoculation had markedly ameliorated keratitis, reduced fungal load, and decreased polymorphonucleocyte (PMN) infiltration in an interleukin 13 receptor α2 (IL-13Rα2)-dependent manner. CHI3L1 treatment resulted in the induction of the antimicrobial peptides β-defensin 3, CRAMP, and chemokine CXCL10 and its receptor CXCR3 in corneal epithelial cells. Importantly, CHI3L1 administered after C. albicans inoculation also had strong protection against fungal keratitis, suggesting a therapeutic window. This is the first report demonstrating that CHI3L1 is induced during fungal infection, where it acts as an immunomodulator to promote fungal clearance and to regulate antifungal innate immune responses in the cornea.
Collapse
|
24
|
Montanaro J, Inic-Kanada A, Ladurner A, Stein E, Belij S, Bintner N, Schlacher S, Schuerer N, Mayr UB, Lubitz W, Leisch N, Barisani-Asenbauer T. Escherichia coli Nissle 1917 bacterial ghosts retain crucial surface properties and express chlamydial antigen: an imaging study of a delivery system for the ocular surface. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:3741-54. [PMID: 26229437 PMCID: PMC4516183 DOI: 10.2147/dddt.s84370] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
To target chronic inflammatory ocular surface diseases, a drug delivery platform is needed that is safe, possesses immunomodulatory properties, and can be used either for drug delivery, or as a foreign antigen carrier. A new therapeutic approach that we have previously proposed uses nonliving bacterial ghosts (BGs) as a carrier-delivery system which can be engineered to carry foreign antigens and/or be loaded with therapeutic drugs. The parent strain chosen for development of our BG delivery system is the probiotic Escherichia coli strain Nissle 1917 (EcN), whose intrinsic properties trigger the innate immune system with the flagella and fimbriae used to attach and stimulate epithelial cells. In previous studies, we have shown that EcN BGs are safe for the ocular surface route, but evidence that EcN BGs retain flagella and fimbriae after transformation, has never been visually confirmed. In this study, we used different visualization techniques to determine whether flagella and fimbriae are retained on EcN BGs engineered either for drug delivery or as a foreign antigen carrier. We have also shown by immunoelectron microscopy that EcN retains two foreign antigens after processing to become EcN BGs. Furthermore, we demonstrated that BGs derived from EcN and expressing a foreign antigen attachment to conjunctival epithelial cells in vitro without causing reduced cell viability. These results are an important step in constructing a delivery system based on a nonliving probiotic that is suitable for use in ocular surface diseases pairing immunomodulation and targeted delivery.
Collapse
Affiliation(s)
- Jacqueline Montanaro
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Aleksandra Inic-Kanada
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Angela Ladurner
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Elisabeth Stein
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Sandra Belij
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nora Bintner
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Simone Schlacher
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | - Nadine Schuerer
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| | | | | | - Nikolaus Leisch
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Talin Barisani-Asenbauer
- Laura Bassi Centres of Expertise, OCUVAC - Centre of Ocular Inflammation and Infection, Centre for Pathophysiology, Infectiology, and Immunology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
25
|
Unexpected Roles for Toll-Like Receptor 4 and TRIF in Intraocular Infection with Gram-Positive Bacteria. Infect Immun 2015. [PMID: 26195555 DOI: 10.1128/iai.00502-15] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Inflammation caused by infection with Gram-positive bacteria is typically initiated by interactions with Toll-like receptor 2 (TLR2). Endophthalmitis, an infection and inflammation of the posterior segment of the eye, can lead to vision loss when initiated by a virulent microbial pathogen. Endophthalmitis caused by Bacillus cereus develops as acute inflammation with infiltrating neutrophils, and vision loss is potentially catastrophic. Residual inflammation observed during B. cereus endophthalmitis in TLR2(-/-) mice led us to investigate additional innate pathways that may trigger intraocular inflammation. We first hypothesized that intraocular inflammation during B. cereus endophthalmitis would be controlled by MyD88- and TRIF-mediated signaling, since MyD88 and TRIF are the major adaptor molecules for all bacterial TLRs. In MyD88(-/-) and TRIF(-/-) mice, we observed significantly less intraocular inflammation than in eyes from infected C57BL/6J mice, suggesting an important role for these TLR adaptors in B. cereus endophthalmitis. These results led to a second hypothesis, that TLR4, the only TLR that signals through both MyD88 and TRIF signaling pathways, contributed to inflammation during B. cereus endophthalmitis. Surprisingly, B. cereus-infected TLR4(-/-) eyes also had significantly less intraocular inflammation than infected C57BL/6J eyes, indicating an important role for TLR4 in B. cereus endophthalmitis. Taken together, our results suggest that TLR4, TRIF, and MyD88 are important components of the intraocular inflammatory response observed in experimental B. cereus endophthalmitis, identifying a novel innate immune interaction for B. cereus and for this disease.
Collapse
|
26
|
Talreja D, Singh PK, Kumar A. In Vivo Role of TLR2 and MyD88 Signaling in Eliciting Innate Immune Responses in Staphylococcal Endophthalmitis. Invest Ophthalmol Vis Sci 2015; 56:1719-32. [PMID: 25678692 DOI: 10.1167/iovs.14-16087] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
PURPOSE The purpose of this study was to investigate the protective mechanisms evoked by TLR2 and MyD88 signaling in bacterial endophthalmitis in vivo. METHODS Endophthalmitis was induced in wild-type (WT), TLR2(-/-), MyD88(-/-), and Cnlp(-/-) mice by intravitreal injections of a laboratory strain (RN6390) and two endophthalmitis isolates of Staphylococcus aureus. Disease progression was monitored by assessing corneal and vitreous haze, bacterial burden, and retinal tissue damage. Levels of inflammatory cytokines/chemokines were determined using quantitative RT-PCR (qRT-PCR) and ELISA. Flow cytometry was used to assess neutrophil infiltration. Cathelicidin-related antimicrobial peptide (CRAMP) expression was determined by immunostaining and dot blot. RESULTS Eyes infected with either laboratory or clinical isolates exhibited higher levels of inflammatory mediators at the early stages of infection (≤24 hours) in WT mice than in TLR2(-/-) or MyD88(-/-) mice. However, their levels surpassed that of WT mice at the later stages of infection (>48 hours), coinciding with increased bacterial burden and retinal damage. Both TLR2(-/-) and MyD88(-/-) retinas produced reduced levels of CRAMP, and its deficiency (Cnlp(-/-)) rendered the mice susceptible to increased bacterial burden and retinal tissue damage as early as 1 day post infection. Analyses of inflammatory mediators and neutrophil levels in WT versus Cnlp(-/-) mice showed a trend similar to that observed in TLR2 and MyD88 KO mice. Furthermore, we observed that even a 10-fold lower infective dose of S. aureus was sufficient to cause endophthalmitis in TLR2(-/-) and MyD88(-/-) mice. CONCLUSIONS TLR2 and MyD88 signaling plays an important role in protecting the retina from staphylococcal endophthalmitis by production of the antimicrobial peptide CRAMP.
Collapse
Affiliation(s)
- Deepa Talreja
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States Department of Biological Sciences, Oakland University, Rochester, Michigan, United States
| | - Pawan Kumar Singh
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States Department of Anatomy and Cell Biology, Wayne State University, Detroit, Michigan, United States
| | - Ashok Kumar
- Department of Ophthalmology/Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
27
|
Gao N, Kumar A, Yu FSX. Matrix Metalloproteinase-13 as a Target for Suppressing Corneal Ulceration Caused by Pseudomonas aeruginosa Infection. J Infect Dis 2015; 212:116-27. [PMID: 25589337 DOI: 10.1093/infdis/jiv016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 12/23/2014] [Indexed: 12/20/2022] Open
Abstract
PURPOSE Pseudomonas aeruginosa keratitis is characterized by severe corneal ulceration. This study investigated whether matrix metalloproteinase-13 (MMP13) is involved in P. aeruginosa-induced corneal ulceration and whether it therefore can be targeted for preventing P. aeruginosa keratitis. METHODS MMP13 expression in P. aeruginosa-infected C57BL/6 mouse corneas was assessed by quantitative polymerase chain reaction and immunohistochemistry analyses. An MMP13-inhibitor (MMP13i) was either injected subconjunctivally prior to or coapplied topically with gatifloxacin 16 hours after infection. Disease severity was assessed by corneal imaging, clinical scoring, bacterial burden, neutrophil infiltration, and CXCL2 expression. Corneal damage and infiltration were also determined by immunohistochemistry analysis and whole-mount confocal microscopy. RESULTS P. aeruginosa infection induced an increased expression of MMP13 in mouse corneas from 6 to 24 hours after infection in a Toll-liked receptor 5-dependent manner. Subconjunctival injection of MMP13i prior to P. aeruginosa inoculation significantly decreased keratitis severity, as evidenced by preserved epithelium integrity and intact basement membrane, leading to reduced bacterial dissemination to the stroma. Furthermore, topical coapplication of MMP13i with gatifloxacin greatly improved disease outcomes, including accelerated opacity dissolution; decreased inflammation, cellular infiltration, and collagen disorganization; and basement membrane preservation. CONCLUSIONS Elevated MMP13 activity may contribute to P. aeruginosa keratitis through basement membrane degradation, and its inhibition could potentially be used as an adjunctive therapy to treat microbial keratitis and other mucosal infections.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Ashok Kumar
- Department of Ophthalmology Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| | - Fu-Shin X Yu
- Department of Ophthalmology Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
28
|
Sabharwal N, Chhibber S, Harjai K. New possibility for providing protection against urinary tract infection caused by Pseudomonas aeruginosa by non-adjuvanted flagellin ‘b’ induced immunity. Immunol Lett 2014; 162:229-38. [DOI: 10.1016/j.imlet.2014.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 09/07/2014] [Accepted: 10/12/2014] [Indexed: 11/16/2022]
|
29
|
Rajalakshmy AR, Malathi J, Madhavan HN. HCV core and NS3 proteins mediate toll like receptor induced innate immune response in corneal epithelium. Exp Eye Res 2014; 128:117-28. [DOI: 10.1016/j.exer.2014.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 09/02/2014] [Accepted: 09/29/2014] [Indexed: 12/24/2022]
|
30
|
Sun H, Yang G, Liang T, Zhang C, Song J, Han J, Hou G. Non-invasive imaging of allogeneic transplanted skin graft by 131I-anti-TLR5 mAb. J Cell Mol Med 2014; 18:2437-44. [PMID: 25283154 PMCID: PMC4302649 DOI: 10.1111/jcmm.12423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Accepted: 08/13/2014] [Indexed: 12/12/2022] Open
Abstract
Although 18F-fluorodeoxyglucose (18F-FDG) uptake can be used for the non-invasive detection and monitoring of allograft rejection by activated leucocytes, this non-specific accumulation is easily impaired by immunosuppressants. Our aim was to evaluate a 131I-radiolabelled anti-Toll-like receptor 5 (TLR5) mAb for non-invasive in vivo graft visualization and quantification in allogeneic transplantation mice model, compared with the non-specific radiotracer 18F-FDG under using of immunosuppressant. Labelling, binding, and stability studies were performed. BALB/c mice transplanted with C57BL/6 skin grafts, with or without rapamycin treatment (named as allo-treated group or allo-rejection group), were injected with 131I-anti-TLR5 mAb, 18F-FDG, or mouse isotype 131I-IgG, respectively. Whole-body phosphor-autoradiography and ex vivo biodistribution studies were obtained. Whole-body phosphor-autoradiography showed 131I-anti-TLR5 mAb uptake into organs that were well perfused with blood at 1 hr and showed clear graft images from 12 hrs onwards. The 131I-anti-TLR5 mAb had significantly higher graft uptake and target-to-non-target ratio in the allo-treated group, as determined by semi-quantification of phosphor-autoradiography images; these results were consistent with ex vivo biodistribution studies. However, high 18F-FDG uptake was not observed in the allo-treated group. The highest allograft-skin-to-native-skin ratio (A:N) of 131I-anti-TLR5 mAb uptake was significantly higher than the ratio for 18F-FDG (7.68 versus 1.16, respectively). 131I-anti-TLR5 mAb uptake in the grafts significantly correlated with TLR5 expression in the allograft area. The accumulation of 131I-IgG was comparable in both groups. We conclude that radiolabelled anti-TLR5 mAb is capable of detecting allograft with high target specificity after treatment with the immunosuppressive drug rapamycin.
Collapse
Affiliation(s)
- Hukui Sun
- Key Laboratory for Experimental Teratology of the Ministry of Education and Institute of Experimental Nuclear Medicine, School of Medicine, Shandong University, Ji'nan, Shandong, China
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu X, Gao N, Dong C, Zhou L, Mi QS, Standiford TJ, Yu FSX. Flagellin-induced expression of CXCL10 mediates direct fungal killing and recruitment of NK cells to the cornea in response to Candida albicans infection. Eur J Immunol 2014; 44:2667-79. [PMID: 24965580 PMCID: PMC4165733 DOI: 10.1002/eji.201444490] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 04/29/2014] [Accepted: 06/20/2014] [Indexed: 11/10/2022]
Abstract
We previously showed that topical flagellin induces profound mucosal innate protection in the cornea against microbial infection, a response involving multiple genes and cell types. In this study, we used a Candida albicans (CA)-C57BL/6 mouse keratitis model to delineate the contribution of CXCL10- and CXCR3-expressing cells in flagellin-induced protection. Flagellin pretreatment markedly enhanced CXCL10 expression at 6 h post CA infection (hpi), but significantly dampened CXCL10 expression at 24 hpi. At the cellular level, CXCL10 was expressed in the epithelia at 6 hpi in flagellin-pretreated corneas, and concentrated at lesion sites 24 hpi. CXCR3-expressing cells were detected in great numbers at 24 hpi, organized within clusters at the lesion sites in CA-infected corneas. CXCL10 or CXCR3 neutralization increased keratitis severity and dampened flagellin-induced protection. CXCR3-positive cells were identified as NK cells, the depletion of which resulted in severe CA keratitis. Contributions from NK T-cells were excluded by finding no change in flagellin-induced protection in Rag1 KO mice. Recombinant CXCL10 inhibited CA growth in vitro and accelerated fungal clearance and inflammation resolution in vivo. Taken together, our data indicate that epithelium-expressed CXCL10 plays a critical role in fungal clearance and that CXCR3-expressing NK cells contribute to CA eradication in mouse corneas.
Collapse
Affiliation(s)
- Xiaowei Liu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Gao
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chen Dong
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Li Zhou
- Henry Ford Immunology Program, Department of Dermatology, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Qing-Sheng Mi
- Henry Ford Immunology Program, Department of Dermatology, Department of Internal Medicine, Henry Ford Health System, Detroit, MI, USA
| | - Theodore J. Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Fu-Shin X. Yu
- Departments of Ophthalmology and Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
32
|
Hua X, Yuan X, Tang X, Li Z, Pflugfelder SC, Li DQ. Human corneal epithelial cells produce antimicrobial peptides LL-37 and β-defensins in response to heat-killed Candida albicans. Ophthalmic Res 2014; 51:179-86. [PMID: 24662332 DOI: 10.1159/000357977] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/13/2013] [Indexed: 12/20/2022]
Abstract
AIMS To explore the innate response of human corneal epithelial cells (HCECs) exposed to fungus by producing antimicrobial peptides LL-37 and β-defensins. METHODS Primary HCECs were treated with heat-killed Candida albicans (HKCA) at different doses (10(3)-10(6) cells/ml) for 2-48 h. The cells were subjected to total RNA extraction, reverse transcription and quantitative real-time PCR for mRNA expression. Cells treated for 48 h were used for immunofluorescent staining and ELISA. RESULTS Human LL-37 and β-defensins (hBDs) 1-4 were detected in normal HCECs. The mRNA expression of LL-37, hBD2, and hBD3 was dose-dependently induced by HKCA with their peak levels at 4 h. HKCA (10(6) cells/ml) stimulated the mRNA of LL-37, hBD2, and hBD3 4.33 ± 1.81, 3.75 ± 1.31, and 4.91 ± 1.09 fold, respectively, in HCECs. The stimulated production of LL-37, hBD2, and hBD3 by HKCA was confirmed at protein levels by immunofluorescent staining and ELISA. The protein production of LL-37, hBD2, and hBD3 significantly increased to 109.1 ± 18.2 pg/ml, 4.33 ± 1.67 ng/ml, and 296.9 ± 81.8 pg/ml, respectively, in culture medium of HCECs exposed to HKCA (10(6) cells/ml) compared to untreated HCECs. CONCLUSIONS HCECs produce antimicrobial peptides, LL-37, hBD2 and hBD3, in response to stimulation of HKCA, which suggests a novel innate immune mechanism of the ocular surface in defense against fungal invasion.
Collapse
Affiliation(s)
- Xia Hua
- Tianjin Eye Hospital, Clinical College of Ophthalmology, Tianjin Medical University, Tianjin, China
| | | | | | | | | | | |
Collapse
|
33
|
Hao J, Zhang C, Liang T, Song J, Hou G. rFliC prolongs allograft survival in association with the activation of recipient Tregs in a TLR5-dependent manner. Cell Mol Immunol 2014; 11:206-14. [PMID: 24097035 PMCID: PMC4003372 DOI: 10.1038/cmi.2013.44] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/02/2013] [Accepted: 08/08/2013] [Indexed: 12/21/2022] Open
Abstract
Allorejection remains an obstacle for successful organ transplantation. Although different types of immunosuppressive agents are effective for controlling rejection and prolonging graft survival, drug treatment is limited because of side effects and toxicity. Therefore, it is necessary and urgent to identify new candidate drugs for inducing allotolerance. Recently, it has been reported that bacterial flagellin induces the immunosuppressive activity of regulatory T cells (Tregs) in humans in vitro. In the present study, we analyzed the effects of recombinant flagellin (rFliC) on allograft survival and explored the underlying mechanisms associated with the activation of recipient Tregs in a murine skin allotransplantation model. The results showed that rFliC administration (3 mg/kg, once per day for 3 days, i.p.) prolonged allograft survival (mean survival time: 18.4±1.1 days) compared to the control group (10±0.7 days, P<0.01). Additionally, higher positive expression of Toll-like receptor 5 (TLR5) was detected within the allograft administered with rFliC. The frequency of CD4(+)CD25(+)Foxp3(+) Tregs; the expression of Treg-related factors TLR5, Foxp3, TGF-β1 and IL-10; and the proliferation and suppression of Tregs were increased following rFliC administration compared to the control. Moreover, the increased expression of tolerance-related molecules and the proliferation of Tregs induced by rFliC were attenuated by an anti-TLR5 blocking antibody both in vivo and in vitro. In conclusion, rFliC administration prolongs the survival of allografts, which is associated with the activation of recipient Tregs in a TLR5-dependent manner. rFliC may be a new candidate for anti-allorejection therapy.
Collapse
|
34
|
Yoon GS, Dong C, Gao N, Kumar A, Standiford TJ, Yu FSX. Interferon regulatory factor-1 in flagellin-induced reprogramming: potential protective role of CXCL10 in cornea innate defense against Pseudomonas aeruginosa infection. Invest Ophthalmol Vis Sci 2013; 54:7510-21. [PMID: 24130180 DOI: 10.1167/iovs.13-12453] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
PURPOSE We previously showed that pre-exposure of the cornea to Toll-like receptor (TLR)5 ligand flagellin induces strong protective innate defense against microbial pathogens and hypothesized that flagellin modulates gene expression at the transcriptional levels. Thus, we sought to determine the role of one transcription factor, interferon regulatory factor (IRF1), and its target gene CXCL10 therein. METHODS Superarray was used to identify transcription factors differentially expressed in Pseudomonas aeruginosa-challenged human corneal epithelial cells (CECs) with or without flagellin pretreatment. The expression of CXCL10, IRF1, LI-8(CXCL2), and IFNγ was determined by PCR, immunohistochemistry, Western/dot blotting, and/or ELISA. IRF1 knockout mice, CXCL10 and IFNγ neutralization, and NK cell depletion were used to define in vivo regulation and function of CXCL10. The severity of P. aeruginosa was assessed using clinical scoring, slit-lamp microscopy, bacterial counting, polymorphonuclear leukocytes (PMN) infiltration, and macrophage inflammatory protein 2/Chemokine (C-X-C motif) ligand 2 (MIP-2/CXCL2) expression. RESULTS Flagellin pretreatment drastically affected P. aeruginosa-induced IRF1 expression in human CECs. However, flagellin pretreatment augmented the P. aeruginosa-induced expression of Irf1 and its target gene Cxcl10 in B6 mouse corneas. Irf1 deficiency reduced infection-triggered CXCL10 expression, increased keratitis severity, and attenuated flagellin-elicited protection compared to values in wild-type (WT) controls. CXCL10 neutralization in the cornea of WT mice displayed pathogenesis similar to that of IRF1⁻/⁻ mice. IFNγ receptor neutralization and NK cell depletion prevented flagellin-augmented IRF1 and CXCL10 expression and increased the susceptibility to P. aeruginosa infection in mouse corneas. CONCLUSIONS IRF1 plays a role in the corneal innate immune response by regulating CXCL10 expression. IFNγ-producing NK cells augment the epithelial expression of IRF1 and CXCL10 and thus contribute to the innate defense of the cornea against P. aeruginosa infection.
Collapse
Affiliation(s)
- Gi Sang Yoon
- Department of Anatomy and Cell Biology, Kresge Eye Institute, Wayne State University, Detroit, Michigan
| | | | | | | | | | | |
Collapse
|
35
|
Pandey RK, Yu FS, Kumar A. Targeting toll-like receptor signaling as a novel approach to prevent ocular infectious diseases. Indian J Med Res 2013; 138:609-19. [PMID: 24434316 PMCID: PMC3928694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Toll-like receptors (TLRs) play a key role in the innate immune response to invading pathogens. Thus, their discovery has opened up a wide range of therapeutic possibilities for various infectious and inflammatory diseases. In the last several years, extensive research efforts have provided a considerable wealth of information on the expression and function of TLRs in the eye, with significant implications for better understanding of pathogenesis of infectious eye diseases affecting the cornea, uvea, and the retina. In this review, by using bacterial keratitis and endophthalmitis as examples, we discuss the possibilities of targeting TLR signaling for the prevention or treatment of ocular infectious diseases.
Collapse
Affiliation(s)
- Rajeev K. Pandey
- Department of Ophthalmology, Kresge Eye Institute, Detroit, MI, USA
| | - Fu-shin Yu
- Department of Ophthalmology, Kresge Eye Institute, Detroit, MI, USA,Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Ashok Kumar
- Department of Ophthalmology, Kresge Eye Institute, Detroit, MI, USA,Department of Anatomy & Cell Biology, Wayne State University School of Medicine, Detroit, MI, USA,Reprint requests: Dr Ashok Kumar, Department of Ophthalmology / Kresge Eye Institute, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI 48201, USA e-mail:
| |
Collapse
|
36
|
Muramatsu S, Tamada T, Nara M, Murakami K, Kikuchi T, Kanehira M, Maruyama Y, Ebina M, Nukiwa T, Ichinose M. Flagellin/TLR5 signaling potentiates airway serous secretion from swine tracheal submucosal glands. Am J Physiol Lung Cell Mol Physiol 2013; 305:L819-30. [PMID: 24097563 DOI: 10.1152/ajplung.00053.2013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Airway serous secretion is essential for the maintenance of mucociliary transport in airway mucosa, which is responsible for the upregulation of mucosal immunity. Although there are many articles concerning the importance of Toll-like receptors (TLRs) in airway immune systems, the direct relationship between TLRs and airway serous secretion has not been well investigated. Here, we focused on whether TLR5 ligand flagellin, which is one of the components of Pseudomonas aeruginosa, is involved in the upregulation of airway serous secretion. Freshly isolated swine tracheal submucosal gland cells were prepared, and the standard patch-clamp technique was applied for measurements of the whole cell ionic responses of these cells. Flagellin showed potentiating effects on these oscillatory currents induced by physiologically relevant low doses of acetylcholine (ACh) in a dose-dependent manner. These potentiating effects were TLR5 dependent but TLR4 independent. Both nitric oxide (NO) synthase inhibitors and cGMP-dependent protein kinase (cGK) inhibitors abolished these flagellin-induced potentiating effects. Furthermore, TLR5 was abundantly expressed on tracheal submucosal glands. Flagellin/TLR5 signaling further accelerated the intracellular NO synthesis induced by ACh. These findings suggest that TLR5 takes part in the airway mucosal defense systems as a unique endogenous potentiator of airway serous secretions and that NO/cGMP/cGK signaling is involved in this rapid potentiation by TLR5 signaling.
Collapse
Affiliation(s)
- Soshi Muramatsu
- Dept. of Respiratory Medicine, Tohoku Univ. Graduate School of Medicine, 1-1 Seiryo-machi, Aoba-ku, Sendai 980-8574, JAPAN.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Gao N, Yoon GS, Liu X, Mi X, Chen W, Standiford TJ, Yu FSX. Genome-wide transcriptional analysis of differentially expressed genes in flagellin-pretreated mouse corneal epithelial cells in response to Pseudomonas aeruginosa: involvement of S100A8/A9. Mucosal Immunol 2013; 6:993-1005. [PMID: 23340821 PMCID: PMC3722258 DOI: 10.1038/mi.2012.137] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 11/23/2012] [Accepted: 12/10/2012] [Indexed: 02/04/2023]
Abstract
We previously showed that pre-exposure of the cornea to Toll-like receptor 5 ligand flagellin induces profound mucosal innate protection against infections by modifying gene expression. Taking advantage of easily procurable epithelial cell population, this study is the first report to use genome-wide cDNA microarray approach to document genes associated with flagellin-induced protection against Pseudomonas aeruginosa in corneal epithelial cells (CECs). Infection altered the expression of 675 genes (497 up and 178 down), while flagellin pretreatment followed by infection resulted in a great increase in 890 gene upregulated and 37 genes downregulated. Comparing these two groups showed 209 differentially expressed genes (157 up, 52 down). Notably, among 114 genes categorized as defense related, S100A8/A9 are the two most highly induced genes by flagellin, and their expression in the corneal was confirmed by realtime PCR and immunohistochemistry. Neutralization of S100A8 and, to a less extent, A9, resulted in significantly increased bacterial burden and severe keratitis. Collectively, our study identifies many differentially expressed genes by flagellin in CECs in response to Pseudomonas. These novel gene expression signatures provide new insights and clues into the nature of protective mechanisms established by flagellin and new therapeutic targets for reducing inflammation and for controlling microbial infection.
Collapse
Affiliation(s)
- N Gao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - G Sang Yoon
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 4717 St, Antoine Street, Detroit, Michigan, USA
| | - X Liu
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 4717 St, Antoine Street, Detroit, Michigan, USA
- Department of Ophthalmology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - X Mi
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - W Chen
- Genomic Core Lab of National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland, USA
| | - TJ Standiford
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - F-SX Yu
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, 4717 St, Antoine Street, Detroit, Michigan, USA
| |
Collapse
|
38
|
Pearlman E, Sun Y, Roy S, Karmakar M, Hise AG, Szczotka-Flynn L, Ghannoum M, Chinnery HR, McMenamin PG, Rietsch A. Host defense at the ocular surface. Int Rev Immunol 2013; 32:4-18. [PMID: 23360155 DOI: 10.3109/08830185.2012.749400] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Microbial infections of the cornea frequently cause painful, blinding and debilitating disease that is often difficult to treat and may require corneal transplantation. In addition, sterile corneal infiltrates that are associated with contact lens wear cause pain, visual impairment and photophobia. In this article, we review the role of Toll-Like Receptors (TLR) in bacterial keratitis and sterile corneal infiltrates, and describe the role of MD-2 regulation in LPS responsiveness by corneal epithelial cells. We conclude that both live bacteria and bacterial products activate Toll-Like Receptors in the cornea, which leads to chemokine production and neutrophil recruitment to the corneal stroma. While neutrophils are essential for bacterial killing, they also cause tissue damage that results in loss of corneal clarity. These disparate outcomes, therefore, represent a spectrum of disease severity based on this pathway, and further indicate that targeting the TLR pathway is a feasible approach to treating inflammation caused by live bacteria and microbial products. Further, as the P. aeruginosa type III secretion system (T3SS) also plays a critical role in disease pathogenesis by inducing neutrophil apoptosis and facilitating bacterial growth in the cornea, T3SS exotoxins are additional targets for therapy for P. aeruginosa keratitis.
Collapse
Affiliation(s)
- Eric Pearlman
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Zaidi T, Zaidi T, Yoong P, Pier GB. Staphylococcus aureus corneal infections: effect of the Panton-Valentine leukocidin (PVL) and antibody to PVL on virulence and pathology. Invest Ophthalmol Vis Sci 2013; 54:4430-8. [PMID: 23737477 DOI: 10.1167/iovs.13-11701] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE Community-associated methicillin-resistant Staphylococcus aureus strains expressing Panton-Valentine leukocidin (PVL) are associated with severe skin and soft tissue infections, necrotizing pneumonia, and eye infections. We determined PVL's toxicity on infected mouse and cultured human corneal epithelial cells and the role of PVL and antibody to PVL in pathogenesis of murine keratitis. METHODS Cytotoxicity on corneas and corneal epithelial cells was evaluated by LDH assays. Scratched corneas of female A/J mice were inoculated with approximately 10⁷ CFU/eye of either WT S. aureus, isogenic ΔPVL, or strains overproducing PVL. Antibodies to PVL or control sera were topically applied to infected corneas 0, 24, and 32 hours postinfection, corneas scored for pathology and tissue levels of S. aureus were determined. RESULTS PVL expression augmented the cytotoxicity of S. aureus on infected mouse corneas and human cultured corneal epithelial cells. Variable effects on leukocyte recruitment, pathogenesis, and immunity were obtained in the in vivo studies. Inactivation of PVL in USA300 strains caused reduced pathology and bacterial counts. Results were variable when comparing WT and ΔPVL USA400 strains, while USA400 strains overproducing PVL caused increased bacterial burdens. Topical treatment with polyclonal antibody to PVL yielded significant reductions in corneal pathology and bacterial CFU in corneas infected with USA300 strains, whereas effects were inconsistent in eyes infected with USA400 strains. CONCLUSIONS PVL enhanced the virulence of a subset of MRSA strains in a keratitis model. Coupled with a variable effect of antibody treatment, it appears that PVL plays an inconsistent role in pathogenesis and immunity to S. aureus corneal infection.
Collapse
Affiliation(s)
- Tanweer Zaidi
- Division of Infectious Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | | | | | | |
Collapse
|
40
|
Shao H, Scott SG, Nakata C, Hamad AR, Chakravarti S. Extracellular matrix protein lumican promotes clearance and resolution of Pseudomonas aeruginosa keratitis in a mouse model. PLoS One 2013; 8:e54765. [PMID: 23358433 PMCID: PMC3554612 DOI: 10.1371/journal.pone.0054765] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 12/14/2012] [Indexed: 11/19/2022] Open
Abstract
Lumican is an extracellular protein that associates with CD14 on the surface of macrophages and neutrophils, and promotes CD14-TLR4 mediated response to bacterial lipopolysaccharides (LPS). Lumican-deficient (Lum(-/-)) mice and macrophages are impaired in TLR4 signals; raising the possibility that lumican may regulate host response to live bacterial infections. In a recent study we showed that invitro Lum(-/-) macrophages are impaired in phagocytosis of gram-negative bacteria and in a lung infection model the Lum(-/-) mice showed poor survival. The cornea is an immune privileged barrier tissue that relies primarily on innate immunity to protect against ocular infections. Lumican is a major component of the cornea, yet its role in counteracting live bacteria in the cornea remains poorly understood. Here we investigated Pseudomonas aeruginosa infections of the cornea in Lum(-/-) mice. By flow cytometry we found that 24 hours after infection macrophage and neutrophil counts were lower in the cornea of Lum(-/-) mice compared to wild types. Infected Lum(-/-) corneas showed lower levels of the leukocyte chemoattractant CXCL1 by 24-48 hours of infection, and increased bacterial counts up to 5 days after infection, compared to Lum(+/-) mice. The pro-inflammatory cytokine TNF-α was comparably low 24 hours after infection, but significantly higher in the Lum(-/-) compared to Lum(+/-) infected corneas by 2-5 days after infection. Taken together, the results indicate that lumican facilitates development of an innate immune response at the earlier stages of infection and lumican deficiency leads to poor bacterial clearance and resolution of corneal inflammation at a later stage.
Collapse
Affiliation(s)
- Hanjuan Shao
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Sherri-Gae Scott
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Chiaki Nakata
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Abdel R. Hamad
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
| | - Shukti Chakravarti
- Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Cell Biology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
41
|
Toll-like receptor 2 ligand pretreatment attenuates retinal microglial inflammatory response but enhances phagocytic activity toward Staphylococcus aureus. Infect Immun 2012; 80:2076-88. [PMID: 22431652 DOI: 10.1128/iai.00149-12] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Staphylococcus aureus is a leading cause of severe endophthalmitis, which often results in vision loss in some patients. Previously, we showed that Toll-like receptor 2 (TLR2) ligand pretreatment prevented the development of staphylococcal endophthalmitis in mice and suggested that microglia might be involved in this protective effect (Kumar A, Singh CN, Glybina IV, Mahmoud TH, Yu FS. J. Infect. Dis. 201:255-263, 2010). The aim of the present study was to understand how microglial innate response is modulated by TLR2 ligand pretreatment. Here, we demonstrate that S. aureus infection increased the CD11b(+) CD45(+) microglial/macrophage population in the C57BL/6 mouse retina. Using cultured primary retinal microglia and a murine microglial cell line (BV-2), we found that these cells express TLR2 and that its expression is increased upon stimulation with bacteria or an exclusive TLR2 ligand, Pam3Cys. Furthermore, challenge of primary retinal microglia with S. aureus and its cell wall components peptidoglycan (PGN) and lipoteichoic acid (LTA) induced the secretion of proinflammatory mediators (tumor necrosis factor alpha [TNF-α] and MIP-2). This innate response was attenuated by a function-blocking anti-TLR2 antibody or by small interfering RNA (siRNA) knockdown of TLR2. In order to assess the modulation of the innate response, microglia were pretreated with a low dose (0.1 or 1 μg/ml) of Pam3Cys and then challenged with live S. aureus. Our data showed that S. aureus-induced production of proinflammatory mediators is dramatically reduced in pretreated microglia. Importantly, microglia pretreated with the TLR2 agonist phagocytosed significantly more bacteria than unstimulated cells. Together, our data suggest that TLR2 plays an important role in retinal microglial innate response to S. aureus, and its sensitization inhibits inflammatory response while enhancing phagocytic activity.
Collapse
|
42
|
Kumar A, Shamsuddin N. Retinal Muller glia initiate innate response to infectious stimuli via toll-like receptor signaling. PLoS One 2012; 7:e29830. [PMID: 22253793 PMCID: PMC3253788 DOI: 10.1371/journal.pone.0029830] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 12/05/2011] [Indexed: 11/18/2022] Open
Abstract
Ocular surgeries and trauma predispose the eye to develop infectious endophthalmitis, which often leads to vision loss. The mechanisms of initiation of innate defense in this disease are not well understood but are presumed to involve retinal glial cells. We hypothesize that retinal Muller glia can recognize and respond to invading pathogens via TLRs, which are key regulators of the innate immune system. Using the mouse retinal sections, human retinal Muller cell line (MIO-M1), and primary mouse retinal Muller cells, we show that they express known human TLR1-10, adaptor molecules MyD88, TRIF, TRAM, and TRAF6, and co-receptors MD2 and CD14. Consistent with the gene expression, protein levels were also detected for the TLRs. Moreover, stimulation of the Muller glia with TLR 2, 3, 4, 5, 7 and 9 agonists resulted in an increased TLR expression as assayed by Western blot and flow cytometry. Furthermore, TLR agonists or live pathogen (S. aureus, P. aeruginosa, & C. albicans)-challenged Muller glia produced significantly higher levels of inflammatory mediators (TNF-α, IL-1β, IL-6 and IL-8), concomitantly with the activation of NF-κB, p38 and Erk signaling. This data suggests that Muller glia directly contributes to retinal innate defense by recognizing microbial patterns under infectious conditions; such as those in endophthalmitis.
Collapse
Affiliation(s)
- Ashok Kumar
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States of America.
| | | |
Collapse
|
43
|
Kolar SS, McDermott AM. Role of host-defence peptides in eye diseases. Cell Mol Life Sci 2011; 68:2201-13. [PMID: 21584809 PMCID: PMC3637883 DOI: 10.1007/s00018-011-0713-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 10/18/2022]
Abstract
The eye and its associated tissues including the lacrimal system and lids have evolved several defence mechanisms to prevent microbial invasion. Included among this armory are several host-defence peptides. These multifunctional molecules are being studied not only for their endogenous antimicrobial properties but also for their potential therapeutic effects. Here the current knowledge of host-defence peptide expression in the eye will be summarised. The role of these peptides in eye disease will be discussed with the primary focus being on infectious keratitis, inflammatory conditions including dry eye and wound healing. Finally the potential of using host-defence peptides and their mimetics/derivatives for the treatment and prevention of eye diseases is addressed.
Collapse
Affiliation(s)
- Satya S. Kolar
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| | - Alison M. McDermott
- College of Optometry, University of Houston, 4901 Calhoun Road, 505 J Davis Armistead Bldg, Houston, TX 77204-2020 USA
| |
Collapse
|
44
|
Guo H, Gao J, Wu X. Toll-like receptor 2 siRNA suppresses corneal inflammation and attenuates Aspergillus fumigatus keratitis in rats. Immunol Cell Biol 2011; 90:352-7. [PMID: 21647173 DOI: 10.1038/icb.2011.49] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Toll-like receptors (TLRs) are key components of innate immunity that detect microbial infection and trigger host defense responses. However, they are capable of initiating both protective and damaging immune responses, as exaggerated expression of inflammatory components can have devastating effects on the host. We previously reported that TLR2 in corneal epithelium has an important role in the pathogenesis of fungal keratitis, however, how the corneal inflammation is modulated remains to be elucidated. This study aims to investigate the effect of targeting TLR2 on Aspergillus fumigatus keratitis in rats. The control or TLR2 small interfering RNA (siRNA) was applied sub-conjunctively and topically to the cornea. TLR2 immunostaining was performed to determine the feasibility of TLR2 siRNA delivery. Production of inflammatory cytokines and chemokines were determined by real-time quantitative PCR. Polymorphonuclear leukocyte (PMN) infiltration was assessed by myeloperoxidase activity. It was found that rat corneas treated with TLR2 siRNA showed a significant reduction of TLR2 expression in corneal epithelium. TLR2 siRNA treatment improved the outcome of keratitis, which was characterized by decreased corneal opacity, less corneal perforation, suppressed PMN infiltration, reduced production of inflammatory cytokines and chemokines, and less fungal burden. In conclusion, TLR2 siRNA treatment attenuated A. fumigatus keratitis by suppressing corneal inflammation and preventing fungal invasion, suggesting a novel avenue to control fungal infection and avert damage caused by excessive inflammation.
Collapse
Affiliation(s)
- Hui Guo
- Department of Ophthalmology, Qilu Hospital of Shandong University, Jinan, PR China
| | | | | |
Collapse
|
45
|
Gao N, Kumar A, Guo H, Wu X, Wheater M, Yu FSX. Topical flagellin-mediated innate defense against Candida albicans keratitis. Invest Ophthalmol Vis Sci 2011; 52:3074-82. [PMID: 21310913 DOI: 10.1167/iovs.10-5928] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE This study was conducted to investigate whether flagellin, the sole ligand of Toll-like receptor-5 (TLR5), induces an innate defense that is sufficient to protect injured corneas from Candida albicans. METHODS Scarified corneas of adult B6, TLR5(-/-), Camp(-/-) (cathelicidin-related antimicrobial peptide), or PMN-depleted mice were pretreated with Pseudomonas aeruginosa flagellin or a mutant and then were inoculated with C. albicans. The corneas were compared for disease progression, cytokine and Camp expression, and PMN infiltration before and after C. albicans infection. Disease progress was recorded by digital photography and clinical scoring, cytokine levels were determined by ELISA, the levels of Camp gene product were assessed by Western blot, and PMN infiltration was measured by MPO determination and immunohistochemistry. RESULTS Topical application of flagellin induced profound protection against Candida keratitis in a TLR5-dependent manner. The improved disease outcome including reduced tissue inflammation and rapid functional recovery can be attributed to a marked decrease in fungal burden at the early stage of C. albicans infection in flagellin-exposed B6 mouse corneas. Although both PMN infiltration and Camp upregulation contributed to corneal innate defense against fungal infection, Camp ablation totally, and PMN depletion partially, abrogated flagellin-induced fungal clearance in B6 mouse corneas. CONCLUSIONS Flagellin induces a strong innate defense and promotes robust resistance to C. albicans infection in the cornea. Topical flagellin or its mimetic may become a new prophylactic agent for preventing contact lens or trauma/injury-associated microbial keratitis.
Collapse
Affiliation(s)
- Nan Gao
- Department of Ophthalmology, Kresge Eye Institute, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | | | | | | | |
Collapse
|
46
|
Robertson DM, Parks QM, Young RL, Kret J, Poch KR, Malcolm KC, Nichols DP, Nichols M, Zhu M, Cavanagh HD, Nick JA. Disruption of contact lens-associated Pseudomonas aeruginosa biofilms formed in the presence of neutrophils. Invest Ophthalmol Vis Sci 2011; 52:2844-50. [PMID: 21245396 DOI: 10.1167/iovs.10-6469] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
PURPOSE To evaluate the capacity of neutrophils to enhance biofilm formation on contact lenses by an infectious Pseudomonas aeruginosa (PA) corneal isolate. Agents that target F-actin and DNA were tested as a therapeutic strategy for disrupting biofilms formed in the setting of neutrophils in vitro and for limiting the infectious bioburden in vivo. METHODS Biofilm formation by infectious PA strain 6294 was assessed in the presence of neutrophils on a static biofilm plate and on unworn etafilcon A soft contact lenses. A d-isomer of poly(aspartic acid) was used alone and with DNase to reduce biofilm formation on test contact lenses. The gentamicin survival assay was used to determine the effectiveness of the test compound in reducing subsequent intracellular bacterial load in the corneal epithelium in a contact lens infection model in the rabbit. RESULTS In a static reactor and on hydrogel lenses, PA biofilm density was enhanced 30-fold at 24 hours in the presence of neutrophils (P < 0.0001). The combination of DNase and anionic poly(aspartic acid) reduced the PA biofilms formed in the presence of activated neutrophils by 79.2% on hydrogel contact lenses (P < 0.001). An identical treatment resulted in a 41% reduction in internalized PA in the rabbit corneal epithelium after 24 hours (P = 0.03). CONCLUSIONS These results demonstrate that PA can exploit the presence of neutrophils to form biofilm on contact lenses within a short time. Incorporation of F-actin and DNA represent a mechanism for neutrophil-induced biofilm enhancement and are targets for available agents to disrupt pathogenic biofilms formed on contact lenses and as a treatment for established corneal infections.
Collapse
Affiliation(s)
- Danielle M Robertson
- Department of Ophthalmology, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9057, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Animal models of bacterial keratitis. J Biomed Biotechnol 2011; 2011:680642. [PMID: 21274270 PMCID: PMC3022227 DOI: 10.1155/2011/680642] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2010] [Revised: 11/29/2010] [Accepted: 12/09/2010] [Indexed: 11/20/2022] Open
Abstract
Bacterial keratitis is a disease of the cornea characterized by pain, redness, inflammation, and opacity. Common causes of this disease are Pseudomonas aeruginosa and Staphylococcus aureus. Animal models of keratitis have been used to elucidate both the bacterial factors and the host inflammatory response involved in the disease. Reviewed herein are animal models of bacterial keratitis and some of the key findings in the last several decades.
Collapse
|
48
|
Redfern RL, Reins RY, McDermott AM. Toll-like receptor activation modulates antimicrobial peptide expression by ocular surface cells. Exp Eye Res 2010; 92:209-20. [PMID: 21195713 DOI: 10.1016/j.exer.2010.12.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2010] [Revised: 11/19/2010] [Accepted: 12/06/2010] [Indexed: 01/08/2023]
Abstract
The ability of the ocular surface to respond to pathogens is in part attributed to toll-like receptors (TLRs) that recognize conserved motifs on various microbes. This study examines TLR expression on various ocular surface cells, if TLR agonists can modulate the expression of antimicrobial peptides (AMPs), human beta defensins (hBD) and cathelicidin (hCAP-18/LL-37) which maybe functionally active against Pseudomonas aeruginosa (PA) and if TLR agonists or AMPs can modulate TLR mRNA expression. TLR1-10 mRNA expression was examined in corneal epithelial, corneal stromal cells and conjunctival epithelial cells by RT-PCR. To confirm protein expression flow cytometry or immunostaining was performed for selected TLRs on some cell cultures. Ocular surface cells were cultured with a range of TLR agonists and then hBD-1, 2, 3, or hCAP-18 mRNA and protein expression was determined by RT-PCR and immunoblotting. In some experiments, cells were cultured with a cocktail of agonists for TLR3, 5 and 6/2 and the antimicrobial activity of the culture media was tested against PA. TLR mRNA expression was also examined in primary human corneal epithelial cells (HCEC) treated with either 3 μg/ml of hBD-2, 5 μg/ml of LL-37 or TLR4, 5 and 9 agonists. Overall, the ocular surface cells expressed mRNA for most of the TLRs but some differences were found. TLR2 was not detected in corneal fibroblasts, TLR4 was not detected in primary cultured or freshly isolated HCEC, TLR5 was not detected in conjunctival epithelial cells (IOBA-NHC) and corneal fibroblasts, TLR7 was not detected in freshly isolated HCEC and TLR10 was not detected in HCEC and IOBA-NHC. TLR8 mRNA was not expressed by any of the samples tested. Immunostaining of cadaver corneas revealed TLR5 and 9 expression throughout the cornea while TLR3 was significantly expressed only in the epithelium. Flow cytometry and immunostaining revealed cultured fibroblasts expressed TLR9 but had no significant TLR3 expression. hBD-2 expression was upregulated by TLR1/2, 3, 4, 5 and 6/2 agonists depending on the cell type, whereas only the TLR3 agonist upregulated the expression of hCAP-18 in primary HCEC. The combination of TLR3, 5 and 6/2 agonists in primary HCEC, upregulated hBD-2 and hCAP-18 mRNA and peptide expression and secretion into the culture media, which significantly killed PA. This antimicrobial activity was primarily attributed to LL-37. TLR agonists did not modulate TLR expression itself, however, LL-37 or hBD-2 downregulated TLR5, 7 and/or 9 mRNA depending on the cell type. TLRs are expressed on the ocular surface and TLR agonists trigger the production of LL-37 and hBD-2, with LL-37 being particularly important for protecting the ocular surface against PA infection.
Collapse
Affiliation(s)
- Rachel L Redfern
- University of Houston, College of Optometry, 505 J. Davis Armistead Building, 4901 Calhoun Road, Houston, TX 77204-2020, USA
| | | | | |
Collapse
|
49
|
Sun Y, Karmakar M, Roy S, Ramadan RT, Williams SR, Howell S, Shive CL, Han Y, Stopford CM, Rietsch A, Pearlman E. TLR4 and TLR5 on corneal macrophages regulate Pseudomonas aeruginosa keratitis by signaling through MyD88-dependent and -independent pathways. THE JOURNAL OF IMMUNOLOGY 2010; 185:4272-83. [PMID: 20826748 DOI: 10.4049/jimmunol.1000874] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Pseudomonas aeruginosa is a major cause of blindness and visual impairment in the United States and worldwide. Using a murine model of keratitis in which abraded corneas are infected with P. aeruginosa parent and ΔfliC (aflagellar) strains 19660 and PAO1, we found that F4/80(+) macrophages were the predominant cell type in the cornea expressing TLR2, TLR4, and TLR5. Depletion of macrophages and dendritic cells using transgenic Mafia mice, in which Fas ligand is selectively activated in these cells, resulted in diminished cytokine production and cellular infiltration to the corneal stroma and unimpaired bacterial growth. TLR4(-/-) mice showed a similar phenotype postinfection with ΔfliC strains, whereas TLR4/5(-/-) mice were susceptible to corneal infection with parent strains. Bone marrow-derived macrophages stimulated with ΔfliC bacteria induced Toll/IL-1R intracellular domain (TIR)-containing adaptor inducing IFN-β (TRIF)-dependent phosphorylation of IFN regulatory factor 3 in addition to TIR-containing adaptor protein/MyD88-dependent phosphorylation of IκB and nuclear translocation of the p65 subunit of NFκB. Furthermore, TRIF(-/-) mice showed a similar phenotype as TLR4(-/-) mice in regulating only ΔfliC bacteria, whereas MyD88(-/-) mice were unable to clear parent or ΔfliC bacteria. Finally, IL-1R1(-/-) and IL-1α/β(-/-) mice were highly susceptible to infection. Taken together, these findings indicate that P. aeruginosa activates TLR4/5 on resident corneal macrophages, which signal through TRIF and TIR-containing adaptor protein/MyD88 pathways, leading to NF-κB translocation to the nucleus, transcription of CXCL1 and other CXC chemokines, recruitment of neutrophils to the corneal stroma, and subsequent bacterial killing and tissue damage. IL-1α and IL-1β are also produced, which activate an IL-1R1/MyD88-positive feedback loop in macrophages and IL-1R on other resident cells in the cornea.
Collapse
Affiliation(s)
- Yan Sun
- Department of Ophthalmology and Visual Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kumar A, Gao N, Standiford TJ, Gallo RL, Yu FSX. Topical flagellin protects the injured corneas from Pseudomonas aeruginosa infection. Microbes Infect 2010; 12:978-89. [PMID: 20601077 DOI: 10.1016/j.micinf.2010.06.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2010] [Revised: 06/15/2010] [Accepted: 06/17/2010] [Indexed: 10/19/2022]
Abstract
Among bacterial pathogens, Pseudomonas (P.) aeruginosa infection is the most sight threatening. The corneal innate immune responses are key mediators of the host's defense to P. aeruginosa. Using a mouse model of Pseudomonas keratitis, we evaluated the protective effects of topical application of flagellin, a ligand for Toll-Like receptor 5 (TLR5), on the development of Pseudomonas keratitis and elucidated the underlying mechanisms. Topical application of purified flagellin 6 and 24 h prior to P. aeruginosa inoculation on injured mouse corneas significantly attenuated clinical symptoms of P. aeruginosa keratitis, decreased bacterial burden, and suppressed infection induced inflammation in the B6 mouse cornea. Topical application of flagellin on wounded cornea induced PMN infiltration and markedly upregulated cathelicidin-related antimicrobial peptide (CRAMP) expression. In PMN depleted mice, flagellin promoted bacterial clearance in the cornea compared to that of the PBS treated mice, but was unable to prevent corneal perforation and systemic bacterial dissemination and sepses. Deletion of CRAMP increased corneal susceptibility to P. aeruginosa and abolished flagellin-induced protection in B6 mice. Our findings illustrate the profound protective effect of flagellin on the cornea innate defense, a response that can be exploited for prophylactic purposes to prevent contact lens associated Pseudomonas keratitis.
Collapse
Affiliation(s)
- Ashok Kumar
- Departments of Ophthalmology and Anatomy & Cell Biology, Kresge Eye Institute, Wayne State University School of Medicine, 4717 St. Antoine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|