1
|
Ayala JC, Balthazar JT, Shafer WM. Transcriptional responses of Neisseria gonorrhoeae to glucose and lactate: implications for resistance to oxidative damage and biofilm formation. mBio 2024; 15:e0176124. [PMID: 39012148 PMCID: PMC11323468 DOI: 10.1128/mbio.01761-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 06/26/2024] [Indexed: 07/17/2024] Open
Abstract
Understanding how bacteria adapt to different environmental conditions is crucial for advancing knowledge regarding pathogenic mechanisms that operate during infection as well as efforts to develop new therapeutic strategies to cure or prevent infections. Here, we investigated the transcriptional response of Neisseria gonorrhoeae, the causative agent of gonorrhea, to L-lactate and glucose, two important carbon sources found in the host environment. Our study revealed extensive transcriptional changes that gonococci make in response to L-lactate, with 37% of the gonococcal transcriptome being regulated, compared to only 9% by glucose. We found that L-lactate induces a transcriptional program that would negatively impact iron transport, potentially limiting the availability of labile iron, which would be important in the face of the multiple hydrogen peroxide attacks encountered by gonococci during its lifecycle. Furthermore, we found that L-lactate-mediated transcriptional response promoted aerobic respiration and dispersal of biofilms, contrasting with an anaerobic condition previously reported to favor biofilm formation. Our findings suggest an intricate interplay between carbon metabolism, iron homeostasis, biofilm formation, and stress response in N. gonorrhoeae, providing insights into its pathogenesis and identifying potential therapeutic targets.IMPORTANCEGonorrhea is a prevalent sexually transmitted infection caused by the human pathogen Neisseria gonorrhoeae, with ca. 82 million cases reported worldwide annually. The rise of antibiotic resistance in N. gonorrhoeae poses a significant public health threat, highlighting the urgent need for alternative treatment strategies. By elucidating how N. gonorrhoeae responds to host-derived carbon sources such as L-lactate and glucose, this study offers insights into the metabolic adaptations crucial for bacterial survival and virulence during infection. Understanding these adaptations provides a foundation for developing novel therapeutic approaches targeting bacterial metabolism, iron homeostasis, and virulence gene expression. Moreover, the findings reported herein regarding biofilm formation and L-lactate transport and metabolism contribute to our understanding of N. gonorrhoeae pathogenesis, offering potential avenues for preventing and treating gonorrhea infections.
Collapse
Affiliation(s)
- Julio C. Ayala
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of STD Prevention, National Center for HIV, Viral Hepatitis, STD, and TB Prevention, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jacqueline T. Balthazar
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M. Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Bacterial Pathogenesis, Veterans Affairs Medical Center, Decatur, Georgia, USA
| |
Collapse
|
2
|
Potter AD, Criss AK. Dinner date: Neisseria gonorrhoeae central carbon metabolism and pathogenesis. Emerg Top Life Sci 2024; 8:15-28. [PMID: 37144661 PMCID: PMC10625648 DOI: 10.1042/etls20220111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 04/10/2023] [Accepted: 04/14/2023] [Indexed: 05/06/2023]
Abstract
Neisseria gonorrhoeae, the causative agent of the sexually transmitted infection gonorrhea, is a human-adapted pathogen that does not productively infect other organisms. The ongoing relationship between N. gonorrhoeae and the human host is facilitated by the exchange of nutrient resources that allow for N. gonorrhoeae growth in the human genital tract. What N. gonorrhoeae 'eats' and the pathways used to consume these nutrients have been a topic of investigation over the last 50 years. More recent investigations are uncovering the impact of N. gonorrhoeae metabolism on infection and inflammatory responses, the environmental influences driving N. gonorrhoeae metabolism, and the metabolic adaptations enabling antimicrobial resistance. This mini-review is an introduction to the field of N. gonorrhoeae central carbon metabolism in the context of pathogenesis. It summarizes the foundational work used to characterize N. gonorrhoeae central metabolic pathways and the effects of these pathways on disease outcomes, and highlights some of the most recent advances and themes under current investigation. This review ends with a brief description of the current outlook and technologies under development to increase understanding of how the pathogenic potential of N. gonorrhoeae is enabled by metabolic adaptation.
Collapse
Affiliation(s)
- Aimee D. Potter
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA USA
| |
Collapse
|
3
|
Meningococcal Urethritis: Old and New. J Clin Microbiol 2022; 60:e0057522. [PMID: 35969045 PMCID: PMC9667755 DOI: 10.1128/jcm.00575-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria meningitidis is a common commensal bacterium found in the respiratory tract, but it can also cause severe, invasive disease. Vaccines have been employed which have been successful in helping to prevent invasive disease caused by encapsulated N. meningitidis from the A, C, W, Y, and B serogroups. Currently, nonencapsulated N. meningitidis groups are more common commensals in the population than in the prevaccine era. One emerging nonencapsulated group of bacteria is the U.S. N. meningitidis urethritis clade (US_NmUC), which can cause meningococcal urethritis in men. US_NmUC has unique genotypic and phenotypic features that may increase its fitness in the male urethra. It is diagnostically challenging to identify and distinguish meningococcal urethritis from Neisseria gonorrhoeae, as the clinical presentation and microbiological findings are overlapping. In this review, the history of meningococcal urethritis, emergence of US_NmUC, laboratory diagnosis, and clinical treatment are all explored.
Collapse
|
4
|
Transcriptional regulation of a gonococcal gene encoding a virulence factor (L-lactate permease). PLoS Pathog 2019; 15:e1008233. [PMID: 31860664 PMCID: PMC6957213 DOI: 10.1371/journal.ppat.1008233] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 01/13/2020] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
GdhR is a GntR-type regulator of Neisseria gonorrhoeae encoded by a gene (gdhR) belonging to the MtrR regulon, which comprises multiple genes required for antibiotic resistance such as the mtrCDE efflux pump genes. In previous work we showed that loss of gdhR results in enhanced gonococcal fitness in a female mouse model of lower genital tract infection. Here, we used RNA-Seq to perform a transcriptional profiling study to determine the GdhR regulon. GdhR was found to regulate the expression of 2.3% of all the genes in gonococcal strain FA19, of which 39 were activated and 11 were repressed. Within the GdhR regulon we found that lctP, which encodes a unique L-lactate transporter and has been associated with gonococcal pathogenesis, was the highest of GdhR-repressed genes. By using in vitro transcription and DNase I footpriting assays we mapped the lctP transcriptional start site (TSS) and determined that GdhR directly inhibits transcription by binding to an inverted repeat sequence located 9 bases downstream of the lctP TSS. Epistasis analysis revealed that, while loss of lctP increased susceptibility of gonococci to hydrogen peroxide (H2O2) the loss of gdhR enhanced resistance; however, this GdhR-endowed property was reversed in a double gdhR lctP null mutant. We assessed the effect of different carbon sources on lctP expression and found that D-glucose, but not L-lactate or pyruvate, repressed lctP expression within a physiological concentration range but in a GdhR-independent manner. Moreover, we found that adding glucose to the medium enhanced susceptibility of gonococci to hydrogen peroxide. We propose a model for the role of lctP regulation via GdhR and glucose in the pathogenesis of N. gonorrhoeae.
Collapse
|
5
|
Jen FEC, Semchenko EA, Day CJ, Seib KL, Jennings MP. The Neisseria gonorrhoeae Methionine Sulfoxide Reductase (MsrA/B) Is a Surface Exposed, Immunogenic, Vaccine Candidate. Front Immunol 2019; 10:137. [PMID: 30787927 PMCID: PMC6372556 DOI: 10.3389/fimmu.2019.00137] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 01/16/2019] [Indexed: 12/13/2022] Open
Abstract
Control of the sexually transmitted infection gonorrhea is a major public health challenge, due to the recent emergence of multidrug resistant strains of Neisseria gonorrhoeae, and there is an urgent need for novel therapies or a vaccine to prevent gonococcal disease. In this study, we evaluated the methionine sulfoxide reductase (MsrA/B) of N. gonorrhoeae as a potential vaccine candidate, in terms of its expression, sequence conservation, localization, immunogenicity, and the functional activity of antibodies raised to it. Gonococcal MsrA/B has previously been shown to reduce methionine sulfoxide [Met(O)] to methionine (Met) in oxidized proteins and protect against oxidative stress. Here we have shown that the gene encoding MsrA/B is present, highly conserved, and expressed in all N. gonorrhoeae strains investigated, and we determined that MsrA/B is surface is exposed on N. gonorrhoeae. Recombinant MsrA/B is immunogenic, and mice immunized with MsrA/B and either aluminum hydroxide gel adjuvant or Freund's adjuvant generated a humoral immune response, with predominantly IgG1 antibodies. Higher titers of IgG2a, IgG2b, and IgG3 were detected in mice immunized with MsrA/B-Freund's adjuvant compared to MsrA/B-aluminum hydroxide adjuvant, while IgM titers were similar for both adjuvants. Antibodies generated by MsrA/B-Freund's in mice mediated bacterial killing via both serum bactericidal activity and opsonophagocytic activity. Anti-MsrA/B was also able to functionally block the activity of MsrA/B by inhibiting binding to its substrate, Met(O). We propose that recombinant MsrA/B is a promising vaccine antigen for N. gonorrhoeae.
Collapse
Affiliation(s)
- Freda E-C Jen
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Evgeny A Semchenko
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Christopher J Day
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Kate L Seib
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| | - Michael P Jennings
- Institute for Glycomics, Griffith University, Gold Coast, QLD, Australia
| |
Collapse
|
6
|
Abstract
The abundance of oxidants and reductants must be balanced for an organism to thrive. Bacteria have evolved methods to prevent redox imbalances and to mitigate their deleterious consequences through the expression of detoxification enzymes, antioxidants, and systems to repair or degrade damaged proteins and DNA. Regulating these processes in response to redox changes requires sophisticated surveillance strategies ranging from metal chelation to direct sensing of toxic reactive oxygen species. In the case of bacterial pathogens, stress that threatens to disrupt redox homeostasis can derive from endogenous sources (produced by the bacteria) or exogenous sources (produced by the host). This minireview summarizes the sources of redox stress encountered during infection, the mechanisms by which bacterial pathogens diminish the damaging effects of redox stress, and the clever ways some organisms have evolved to thrive in the face of redox challenges during infection.
Collapse
|
7
|
Rahman SF, Kantor RS, Huddy R, Thomas BC, van Zyl AW, Harrison STL, Banfield JF. Genome-resolved metagenomics of a bioremediation system for degradation of thiocyanate in mine water containing suspended solid tailings. Microbiologyopen 2017; 6. [PMID: 28215046 PMCID: PMC5458468 DOI: 10.1002/mbo3.446] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/19/2016] [Indexed: 11/13/2022] Open
Abstract
Thiocyanate (SCN−) is a toxic compound that forms when cyanide (CN−), used to recover gold, reacts with sulfur species. SCN−‐degrading microbial communities have been studied, using bioreactors fed synthetic wastewater. The inclusion of suspended solids in the form of mineral tailings, during the development of the acclimatized microbial consortium, led to the selection of an active planktonic microbial community. Preliminary analysis of the community composition revealed reduced microbial diversity relative to the laboratory‐based reactors operated without suspended solids. Despite minor upsets during the acclimation period, the SCN− degradation performance was largely unchanged under stable operating conditions. Here, we characterized the microbial community in the SCN− degrading bioreactor that included solid particulate tailings and determined how it differed from the biofilm‐based communities in solids‐free reactor systems inoculated from the same source. Genome‐based analysis revealed that the presence of solids decreased microbial diversity, selected for different strains, suppressed growth of thiobacilli inferred to be primarily responsible for SCN− degradation, and promoted growth of Trupera, an organism not detected in the reactors without solids. In the solids reactor community, heterotrophy and aerobic respiration represent the dominant metabolisms. Many organisms have genes for denitrification and sulfur oxidation, but only one Thiobacillus sp. in the solids reactor has SCN− degradation genes. The presence of the solids prevented floc and biofilm formation, leading to the observed reduced microbial diversity. Collectively the presence of the solids and lack of biofilm community may result in a process with reduced resilience to process perturbations, including fluctuations in the influent composition and pH. The results from this investigation have provided novel insights into the community composition of this industrially relevant community, giving potential for improved process control and operation through ongoing process monitoring.
Collapse
Affiliation(s)
- Sumayah F Rahman
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Rose S Kantor
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Robert Huddy
- Department of Chemical Engineering, Center for Bioprocess Engineering Research, University of Cape Town, Cape Town, South Africa
| | - Brian C Thomas
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA
| | - Andries W van Zyl
- Department of Chemical Engineering, Center for Bioprocess Engineering Research, University of Cape Town, Cape Town, South Africa
| | - Susan T L Harrison
- Department of Chemical Engineering, Center for Bioprocess Engineering Research, University of Cape Town, Cape Town, South Africa
| | - Jillian F Banfield
- Department of Earth and Planetary Sciences, University of California, Berkeley, CA, USA.,Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA, USA
| |
Collapse
|
8
|
Qayyum S, Sharma D, Bisht D, Khan AU. Protein translation machinery holds a key for transition of planktonic cells to biofilm state in Enterococcus faecalis : A proteomic approach. Biochem Biophys Res Commun 2016; 474:652-659. [DOI: 10.1016/j.bbrc.2016.04.145] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/30/2016] [Indexed: 11/26/2022]
|
9
|
Vázquez-Torres A, Bäumler AJ. Nitrate, nitrite and nitric oxide reductases: from the last universal common ancestor to modern bacterial pathogens. Curr Opin Microbiol 2015; 29:1-8. [PMID: 26426528 DOI: 10.1016/j.mib.2015.09.002] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/01/2015] [Accepted: 09/08/2015] [Indexed: 01/16/2023]
Abstract
The electrochemical gradient that ensues from the enzymatic activity of cytochromes such as nitrate reductase, nitric oxide reductase, and quinol oxidase contributes to the bioenergetics of the bacterial cell. Reduction of nitrogen oxides by bacterial pathogens can, however, be uncoupled from proton translocation and biosynthesis of ATP or NH4(+), but still linked to quinol and NADH oxidation. Ancestral nitric oxide reductases, as well as cytochrome c oxidases and quinol bo oxidases evolved from the former, are capable of binding and detoxifying nitric oxide to nitrous oxide. The NO-metabolizing activity associated with these cytochromes can be a sizable source of antinitrosative defense in bacteria during their associations with host cells. Nitrosylation of terminal cytochromes arrests respiration, reprograms bacterial metabolism, stimulates antioxidant defenses and alters antibiotic cytotoxicity. Collectively, the bioenergetics and regulation of redox homeostasis that accompanies the utilization of nitrogen oxides and detoxification of nitric oxide by cytochromes of the electron transport chain increases fitness of many Gram-positive and -negative pathogens during their associations with invertebrate and vertebrate hosts.
Collapse
Affiliation(s)
- Andrés Vázquez-Torres
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, CO, United States; Veterans Affairs Eastern Colorado Health Care System, Denver, CO, United States.
| | - Andreas J Bäumler
- Department of Medical Microbiology and Immunology, University of California Davis, School of Medicine, Davis, CA, United States.
| |
Collapse
|
10
|
Arora DP, Hossain S, Xu Y, Boon EM. Nitric Oxide Regulation of Bacterial Biofilms. Biochemistry 2015; 54:3717-28. [PMID: 25996573 DOI: 10.1021/bi501476n] [Citation(s) in RCA: 133] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Biofilms are surface-associated, multicellular communities of bacteria. Once established, they are extremely difficult to eradicate by antimicrobial treatment. It has been demonstrated in many species that biofilm formation may be regulated by the diatomic signaling molecule nitric oxide (NO). Although this is still a relatively new area of research, we review here the literature reporting an effect of NO on bacterial biofilm formation, emphasizing dose-dependent responses to NO concentrations when possible. Where it has been investigated, the underlying NO sensors or signaling pathways are also discussed. Most of the examples of NO-mediated biofilm regulation have been documented with exogenously applied NO, but we also survey possible natural sources of NO in biofilm regulation, including endogenously generated NO. Finally, because of the apparent broad-spectrum, antibiofilm effects of NO, NO-releasing materials and prodrugs have also been explored in this minireview.
Collapse
Affiliation(s)
- Dhruv P Arora
- †Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Sajjad Hossain
- §Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Yueming Xu
- †Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States
| | - Elizabeth M Boon
- †Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, United States.,§Graduate Program in Molecular and Cellular Biology, Stony Brook University, Stony Brook, New York 11794-3400, United States
| |
Collapse
|
11
|
Ralstonia solanacearum uses inorganic nitrogen metabolism for virulence, ATP production, and detoxification in the oxygen-limited host xylem environment. mBio 2015; 6:e02471. [PMID: 25784703 PMCID: PMC4453514 DOI: 10.1128/mbio.02471-14] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3−), nitrite (NO2−), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R. solanacearum. Xylem fluid contained ~25 mM NO3−, corresponding to R. solanacearum’s optimal NO3− concentration for anaerobic growth in vitro. We tested the hypothesis that R. solanacearum uses inorganic nitrogen species to respire and grow during pathogenesis by making deletion mutants that each lacked a step in nitrate respiration (ΔnarG), denitrification (ΔaniA, ΔnorB, and ΔnosZ), or NO detoxification (ΔhmpX). The ΔnarG, ΔaniA, and ΔnorB mutants grew poorly on NO3− compared to the wild type, and they had reduced adenylate energy charge levels under anaerobiosis. While NarG-dependent NO3− respiration directly enhanced growth, AniA-dependent NO2− reduction did not. NO2− and NO inhibited growth in culture, and their removal depended on denitrification and NO detoxification. Thus, NO3− acts as a TEA, but the resulting NO2− and NO likely do not. None of the mutants grew as well as the wild type in planta, and strains lacking AniA (NO2− reductase) or HmpX (NO detoxification) had reduced virulence on tomato. Thus, R. solanacearum exploits host NO3− to respire, grow, and cause disease. Degradation of NO2− and NO is also important for successful infection and depends on denitrification and NO detoxification systems. The plant-pathogenic bacterium Ralstonia solanacearum causes bacterial wilt, one of the world’s most destructive crop diseases. This pathogen’s explosive growth in plant vascular xylem is poorly understood. We used biochemical and genetic approaches to show that R. solanacearum rapidly depletes oxygen in host xylem but can then respire using host nitrate as a terminal electron acceptor. The microbe uses its denitrification pathway to detoxify the reactive nitrogen species nitrite (a product of nitrate respiration) and nitric oxide (a plant defense signal). Detoxification may play synergistic roles in bacterial wilt virulence by converting the host’s chemical weapon into an energy source. Mutant bacterial strains lacking elements of the denitrification pathway could not grow as well as the wild type in tomato plants, and some mutants were also reduced in virulence. Our results show how a pathogen’s metabolic activity can alter the host environment in ways that increase pathogen success.
Collapse
|
12
|
Lewis AM, Matzdorf SS, Endres JL, Windham IH, Bayles KW, Rice KC. Examination of the Staphylococcus aureus nitric oxide reductase (saNOR) reveals its contribution to modulating intracellular NO levels and cellular respiration. Mol Microbiol 2015; 96:651-69. [PMID: 25651868 DOI: 10.1111/mmi.12962] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2015] [Indexed: 12/21/2022]
Abstract
Staphylococcus aureus nitrosative stress resistance is due in part to flavohemoprotein (Hmp). Although hmp is present in all sequenced S. aureus genomes, 37% of analyzed strains also contain nor, encoding a predicted quinol-type nitric oxide (NO) reductase (saNOR). DAF-FM staining of NO-challenged wild-type, nor, hmp and nor hmp mutant biofilms suggested that Hmp may have a greater contribution to intracellular NO detoxification relative to saNOR. However, saNOR still had a significant impact on intracellular NO levels and complemented NO detoxification in a nor hmp mutant. When grown as NO-challenged static (low-oxygen) cultures, hmp and nor hmp mutants both experienced a delay in growth initiation, whereas the nor mutant's ability to initiate growth was comparable with the wild-type strain. However, saNOR contributed to cell respiration in this assay once growth had resumed, as determined by membrane potential and respiratory activity assays. Expression of nor was upregulated during low-oxygen growth and dependent on SrrAB, a two-component system that regulates expression of respiration and nitrosative stress resistance genes. High-level nor promoter activity was also detectable in a cell subpopulation near the biofilm substratum. These results suggest that saNOR contributes to NO-dependent respiration during nitrosative stress, possibly conferring an advantage to nor+ strains in vivo.
Collapse
Affiliation(s)
- A M Lewis
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611-0700, USA
| | | | | | | | | | | |
Collapse
|
13
|
The presence of biofilm-producing bacteria on tonsils is associated with increased exhaled nitric oxide levels: preliminary data in children who experience recurrent exacerbations of chronic tonsillitis. The Journal of Laryngology & Otology 2015; 129:267-72. [PMID: 25655099 DOI: 10.1017/s0022215115000031] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND It has been suggested that bacterial biofilms may be a causative factor in the aetiopathogenesis of chronic tonsillitis. Involvement of exhaled nitric oxide has been previously considered, with conflicting findings. OBJECTIVE A pilot study was performed to investigate the relationship between exhaled nitric oxide levels and the presence of tonsillar biofilm-producing bacteria in children with chronic tonsillitis. METHOD Tonsillar biofilm-producing bacteria on bioptic specimens taken during tonsillectomy were assessed by means of spectrophotometry. RESULTS Analysis was based on 24 children aged 5-10 years (median, 7.5 years). Biofilm-producing bacteria were found in 40.9 per cent of specimens. The median exhaled nitric oxide level was 11.6 ppb (range, 3.2-22.3 ppb). There was a significant relationship between the presence of biofilm-producing bacteria and increased exhaled nitric oxide levels (p = 0.03). Children with exhaled nitric oxide levels of more than 8 ppb were at three times greater risk of developing tonsillar biofilm-producing bacteria than those with lower levels. CONCLUSION Our findings suggest the possibility of discriminating children with chronic biofilm-sustained tonsillar infections on the basis of exhaled nitric oxide levels.
Collapse
|
14
|
Nitric oxide treatment for the control of reverse osmosis membrane biofouling. Appl Environ Microbiol 2015; 81:2515-24. [PMID: 25636842 DOI: 10.1128/aem.03404-14] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Biofouling remains a key challenge for membrane-based water treatment systems. This study investigated the dispersal potential of the nitric oxide (NO) donor compound, PROLI NONOate, on single- and mixed-species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis (RO) membranes. The potential of PROLI NONOate to control RO membrane biofouling was also examined. Confocal microscopy revealed that PROLI NONOate exposure induced biofilm dispersal in all but two of the bacteria tested and successfully dispersed mixed-species biofilms. The addition of 40 μM PROLI NONOate at 24-h intervals to a laboratory-scale RO system led to a 92% reduction in the rate of biofouling (pressure rise over a given period) by a bacterial community cultured from an industrial RO membrane. Confocal microscopy and extracellular polymeric substances (EPS) extraction revealed that PROLI NONOate treatment led to a 48% reduction in polysaccharides, a 66% reduction in proteins, and a 29% reduction in microbial cells compared to the untreated control. A reduction in biofilm surface coverage (59% compared to 98%, treated compared to control) and average thickness (20 μm compared to 26 μm, treated compared to control) was also observed. The addition of PROLI NONOate led to a 22% increase in the time required for the RO module to reach its maximum transmembrane pressure (TMP), further indicating that NO treatment delayed fouling. Pyrosequencing analysis revealed that the NO treatment did not significantly alter the microbial community composition of the membrane biofilm. These results present strong evidence for the application of PROLI NONOate for prevention of RO biofouling.
Collapse
|
15
|
Abstract
The exclusive reservoir of the genus Neisseria is the human. Of the broad range of species that comprise the Neisseria, only two are frequently pathogenic, and only one of those is a resident of the nasopharynx. Although Neisseria meningitidis can cause severe disease if it invades the bloodstream, the vast majority of interactions between humans and Neisseria are benign, with the bacteria inhabiting its mucosal niche as a non-invasive commensal. Understandably, with the exception of Neisseria gonorrhoeae, which preferentially colonises the urogenital tract, the neisseriae are extremely well adapted to survival in the human nasopharynx, their sole biological niche. The purpose of this review is to provide an overview of the molecular mechanisms evolved by Neisseria to facilitate colonisation and survival within the nasopharynx, focussing on N. meningitidis. The organism has adapted to survive in aerosolised transmission and to attach to mucosal surfaces. It then has to replicate in a nutrition-poor environment and resist immune and competitive pressure within a polymicrobial complex. Temperature and relative gas concentrations (nitric oxide and oxygen) are likely to be potent initial signals of arrival within the nasopharyngeal environment, and this review will focus on how N. meningitidis responds to these to increase the likelihood of its survival.
Collapse
|
16
|
Nazzari E, Torretta S, Pignataro L, Marchisio P, Esposito S. Role of biofilm in children with recurrent upper respiratory tract infections. Eur J Clin Microbiol Infect Dis 2014; 34:421-9. [PMID: 25318897 DOI: 10.1007/s10096-014-2261-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/06/2014] [Indexed: 12/30/2022]
Abstract
Recurrent respiratory tract infections (RRTIs) are very common in children and a major challenge for pediatricians. In the last few years, bacterial biofilms have been linked to RRTIs and antibiotic resistance, and have raised serious concerns regarding the therapeutic management of recurrent middle ear diseases, chronic rhinosinusitis, and recurrent pharyngotonsillitis. This paper aims to review the new insights into biofilm-related upper respiratory tract infections in children and possible therapeutic strategies. It focuses on the clinical implications for recurrent disease and on studies in pediatric patients. Analysis of the literature showed that the involvement of bacterial biofilm in recurrent upper airway tract infections is an emerging problem that may lead to serious concerns about infection control. Despite the large amount of research within this field, detailed insight into the complex structure of bacterial biofilms and the ultrastructural and biochemical mechanisms responsible for its evasion of the immune system and resistance to treatments is currently lacking. In the future, additional emphasis should be placed on biofilm management as a component of therapeutic strategies. This goal can be attained by finding feasible methods for detecting biofilms in vivo and identifying effective methods for administering treatments that eradicate preexisting bacterial biofilms or hinder bacterial adhesion to respiratory cells.
Collapse
Affiliation(s)
- E Nazzari
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via Commenda no. 9, 20122, Milan, Italy
| | | | | | | | | |
Collapse
|
17
|
[Networks involving quorum sensing, cyclic-di-GMP and nitric oxide on biofilm production in bacteria]. Rev Argent Microbiol 2014; 46:242-55. [PMID: 25444134 DOI: 10.1016/s0325-7541(14)70079-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 06/03/2014] [Indexed: 01/06/2023] Open
Abstract
Bacterial biofilms are ubiquitous in nature, and their flexibility is derived in part from a complex extracellular matrix that can be made-to-order to cope with environmental demand. Although common developmental stages leading to biofilm formation have been described, an in-depth knowledge of genetic and signaling is required to understand biofilm formation. Bacteria detect changes in population density by quorum sensing and particular environmental conditions, using signals such as cyclic di-GMP or nitric oxide. The significance of understanding these signaling pathways lies in that they control a broad variety of functions such as biofilm formation, and motility, providing benefits to bacteria as regards host colonization, defense against competitors, and adaptation to changing environments. Due to the importance of these features, we here review the signaling network and regulatory connections among quorum sensing, c-di-GMP and nitric oxide involving biofilm formation.
Collapse
|
18
|
Tankersley A, Frank MB, Bebak M, Brennan R. Early effects of Staphylococcus aureus biofilm secreted products on inflammatory responses of human epithelial keratinocytes. JOURNAL OF INFLAMMATION-LONDON 2014; 11:17. [PMID: 24936153 PMCID: PMC4059087 DOI: 10.1186/1476-9255-11-17] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 05/30/2014] [Indexed: 01/20/2023]
Abstract
BACKGROUND Chronic wounds such as diabetic foot ulcers, pressure ulcers, and venous leg ulcers contribute to a considerable amount of mortality in the U.S. annually. The inability of these wounds to heal has now been associated with the presence of microbial biofilms. The aim of this study was to determine if products secreted by S. aureus biofilms play an active role in chronic wounds by promoting inflammation, which is a hallmark of chronic wounds. METHODS In vitro experiments were conducted to examine changes in gene expression profiles and inflammatory response of human epithelial keratinocytes (HEKa) exposed to products secreted by S. aureus grown in biofilms or products secreted by S. aureus grown planktonically. RESULTS After only two hours of exposure, gene expression microarray data showed marked differences in inflammatory, apoptotic, and nitric oxide responses between HEKa cells exposed to S. aureus biofilm conditioned media (BCM) and HEKa cells exposed to S. aureus planktonic conditioned media (PCM). As early as 4 hours post exposure, ELISA results showed significant increases in IL-6, IL-8, TNFα, and CXCL2 production by HEKa cells exposed to BCM compared to HEKa cells exposed to PCM or controls. Nitric oxide assay data also showed significant increases in nitric oxide production by HEKa cells treated with BCM compared to HEKa cells treated with PCM, or controls. CONCLUSIONS Taken together, these results support and extend previous findings that indicate products secreted by S. aureus biofilms directly contribute to the chronic inflammation associated with chronic wounds.
Collapse
Affiliation(s)
- Amy Tankersley
- Biology Department, University of Central Oklahoma, 100 North University Drive, Edmond, Oklahoma 73034, USA
| | - Mark Barton Frank
- Microarray Research Facility, Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Melissa Bebak
- Microarray Research Facility, Arthritis and Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Robert Brennan
- Biology Department, University of Central Oklahoma, 100 North University Drive, Edmond, Oklahoma 73034, USA
| |
Collapse
|
19
|
Abstract
Neisseria meningitidis is a worldwide cause of meningitis and septicemia leading at least to 50,000 deaths every year. Nevertheless, N. meningitidis is also a commensal bacterium that asymptomatically colonizes the epithelial cells of the nasopharynx of 10 to 30% of healthy individuals. Occasionally, N. meningitidis crosses the nasopharyngeal barrier and enters the bloodstream. During bacteremia, N. meningitidis may adhere to endothelial cells of brain vessels and invade meninges. To identify the genes required for meningococcal host colonization, we screened a signature-tagged transposon mutagenesis library using an innovative in vitro colonization model in order to identify mutants displaying decreased capacity to colonize human epithelial cells. Approximately 1,600 defined insertion mutants of invasive serogroup C strain NEM8013 were screened. Candidate mutants were tested individually for quantification of bacterial biomass with confocal microscope and COMSTAT software. Five mutants were demonstrated to exhibit significantly decreased colonization ability. The identified genes, including narP and estD, appeared to be involved in adaptation to hypoxic conditions and stress resistance. Interestingly, the genes fadD1, nnrS, and NMV_2034 (encoding a putative thioredoxin), prior to this study, had not been shown to be involved in colonization. Therefore, we provide here insights into the meningococcal functions necessary for the bacterium to adapt to growth on host cells.
Collapse
|
20
|
Speed switching of gonococcal surface motility correlates with proton motive force. PLoS One 2013; 8:e67718. [PMID: 23826337 PMCID: PMC3691265 DOI: 10.1371/journal.pone.0067718] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 05/21/2013] [Indexed: 11/29/2022] Open
Abstract
Bacterial type IV pili are essential for adhesion to surfaces, motility, microcolony formation, and horizontal gene transfer in many bacterial species. These polymers are strong molecular motors that can retract at two different speeds. In the human pathogen Neisseria gonorrhoeae speed switching of single pili from 2 µm/s to 1 µm/s can be triggered by oxygen depletion. Here, we address the question how proton motive force (PMF) influences motor speed. Using pHluorin expression in combination with dyes that are sensitive to transmembrane ΔpH gradient or transmembrane potential ΔΨ, we measured both components of the PMF at varying external pH. Depletion of PMF using uncouplers reversibly triggered switching into the low speed mode. Reduction of the PMF by ≈ 35 mV was enough to trigger speed switching. Reducing ATP levels by inhibition of the ATP synthase did not induce speed switching. Furthermore, we showed that the strictly aerobic Myxococcus xanthus failed to move upon depletion of PMF or oxygen, indicating that although the mechanical properties of the motor are conserved, its regulatory inputs have evolved differently. We conclude that depletion of PMF triggers speed switching of gonococcal pili. Although ATP is required for gonococcal pilus retraction, our data indicate that PMF is an independent additional energy source driving the high speed mode.
Collapse
|
21
|
Characterization of an ntrX mutant of Neisseria gonorrhoeae reveals a response regulator that controls expression of respiratory enzymes in oxidase-positive proteobacteria. J Bacteriol 2013; 195:2632-41. [PMID: 23564168 DOI: 10.1128/jb.02062-12] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
NtrYX is a sensor-histidine kinase/response regulator two-component system that has had limited characterization in a small number of Alphaproteobacteria. Phylogenetic analysis of the response regulator NtrX showed that this two-component system is extensively distributed across the bacterial domain, and it is present in a variety of Betaproteobacteria, including the human pathogen Neisseria gonorrhoeae. Microarray analysis revealed that the expression of several components of the respiratory chain was reduced in an N. gonorrhoeae ntrX mutant compared to that in the isogenic wild-type (WT) strain 1291. These included the cytochrome c oxidase subunit (ccoP), nitrite reductase (aniA), and nitric oxide reductase (norB). Enzyme activity assays showed decreased cytochrome oxidase and nitrite reductase activities in the ntrX mutant, consistent with microarray data. N. gonorrhoeae ntrX mutants had reduced capacity to survive inside primary cervical cells compared to the wild type, and although they retained the ability to form a biofilm, they exhibited reduced survival within the biofilm compared to wild-type cells, as indicated by LIVE/DEAD staining. Analyses of an ntrX mutant in a representative alphaproteobacterium, Rhodobacter capsulatus, showed that cytochrome oxidase activity was also reduced compared to that in the wild-type strain SB1003. Taken together, these data provide evidence that the NtrYX two-component system may be a key regulator in the expression of respiratory enzymes and, in particular, cytochrome c oxidase, across a wide range of proteobacteria, including a variety of bacterial pathogens.
Collapse
|
22
|
Shewell LK, Ku SC, Schulz BL, Jen FEC, Mubaiwa TD, Ketterer MR, Apicella MA, Jennings MP. Recombinant truncated AniA of pathogenic Neisseria elicits a non-native immune response and functional blocking antibodies. Biochem Biophys Res Commun 2013; 431:215-20. [PMID: 23313483 DOI: 10.1016/j.bbrc.2012.12.132] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 12/30/2012] [Indexed: 10/27/2022]
Abstract
AniA of the pathogenic Neisseria is glycosylated in its C-terminal repeat region by the pilin glycosylation (pgl) pathway. AniA appears to be unique among bacterial nitrite reductases as it contains an N-terminal extension that includes a lipid modification site as well as a C-terminal extension that is glycosylated. Immunising with various glycoforms of the AniA protein demonstrated a strong humoral immune response to the basal monosaccharide. In addition, when animals were immunised with a truncated form of AniA, completely lacking the glycosylated C-terminal region, the antibody response was directed against AniA regardless of the glycosylation state of the protein. Immuno-SEM confirmed that AniA is expressed on the cell surface in Neisseria gonorrhoeae. Antisera generated against a truncated, non-glycosylated, recombinant form of the AniA protein are capable of blocking nitrite reductase function in a whole cell assay. We propose that recombinant modified AniA has potential as a vaccine antigen for N. gonorrhoeae.
Collapse
Affiliation(s)
- Lucy K Shewell
- Institute for Glycomics, Griffith University, Gold Coast, Queensland 4222, Australia
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Barnes RJ, Bandi RR, Wong WS, Barraud N, McDougald D, Fane A, Kjelleberg S, Rice SA. Optimal dosing regimen of nitric oxide donor compounds for the reduction of Pseudomonas aeruginosa biofilm and isolates from wastewater membranes. BIOFOULING 2013; 29:203-212. [PMID: 23368407 DOI: 10.1080/08927014.2012.760069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Membrane fouling by bacterial biofilms remains a key challenge for membrane-based water purification systems. Here, the optimal biofilm dispersal potential of three nitric oxide (NO) donor compounds, viz. sodium nitroprusside, 6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine (MAHMA NONOate) and 1-(hydroxy-NNO-azoxy)-L-proline, disodium salt, was investigated using Pseudomonas aeruginosa PAO1 as a model organism. Dispersal was quantitatively assessed by confocal microscopy [bacterial cells and the components of the extracellular polymeric substances (EPS) (polysaccharides and extracellular DNA)] and colony-forming unit counts. The three NO donor compounds had different optimal exposure times and concentrations, with MAHMA NONOate being the optimal NO donor compound. Biofilm dispersal correlated with a reduction in both bacterial cells and EPS. MAHMA NONOate also reduced single species biofilms formed by bacteria isolated from industrial membrane bioreactor and reverse osmosis membranes, as well as in isolates combined to generate mixed species biofilms. The data present strong evidence for the application of these NO donor compounds for prevention of biofouling in an industrial setting.
Collapse
Affiliation(s)
- Robert J Barnes
- Advanced Environmental Biotechnology Centre, Nanyang Technological University, Singapore, Singapore
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Kalia D, Merey G, Nakayama S, Zheng Y, Zhou J, Luo Y, Guo M, Roembke BT, Sintim HO. Nucleotide, c-di-GMP, c-di-AMP, cGMP, cAMP, (p)ppGpp signaling in bacteria and implications in pathogenesis. Chem Soc Rev 2012; 42:305-41. [PMID: 23023210 DOI: 10.1039/c2cs35206k] [Citation(s) in RCA: 261] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
For an organism to survive, it must be able to sense its environment and regulate physiological processes accordingly. Understanding how bacteria integrate signals from various environmental factors and quorum sensing autoinducers to regulate the metabolism of various nucleotide second messengers c-di-GMP, c-di-AMP, cGMP, cAMP and ppGpp, which control several key processes required for adaptation is key for efforts to develop agents to curb bacterial infections. In this review, we provide an update of nucleotide signaling in bacteria and show how these signals intersect or integrate to regulate the bacterial phenotype. The intracellular concentrations of nucleotide second messengers in bacteria are regulated by synthases and phosphodiesterases and a significant number of these metabolism enzymes had been biochemically characterized but it is only in the last few years that the effector proteins and RNA riboswitches, which regulate bacterial physiology upon binding to nucleotides, have been identified and characterized by biochemical and structural methods. C-di-GMP, in particular, has attracted immense interest because it is found in many bacteria and regulate both biofilm formation and virulence factors production. In this review, we discuss how the activities of various c-di-GMP effector proteins and riboswitches are modulated upon c-di-GMP binding. Using V. cholerae, E. coli and B. subtilis as models, we discuss how both environmental factors and quorum sensing autoinducers regulate the metabolism and/or processing of nucleotide second messengers. The chemical syntheses of the various nucleotide second messengers and the use of analogs thereof as antibiofilm or immune modulators are also discussed.
Collapse
Affiliation(s)
- Dimpy Kalia
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Castiglione N, Rinaldo S, Giardina G, Stelitano V, Cutruzzolà F. Nitrite and nitrite reductases: from molecular mechanisms to significance in human health and disease. Antioxid Redox Signal 2012; 17:684-716. [PMID: 22304560 DOI: 10.1089/ars.2011.4196] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nitrite, previously considered physiologically irrelevant and a simple end product of endogenous nitric oxide (NO) metabolism, is now envisaged as a reservoir of NO to be activated in response to oxygen (O(2)) depletion. In the first part of this review, we summarize and compare the mechanisms of nitrite-dependent production of NO in selected bacteria and in eukaryotes. Bacterial nitrite reductases, which are copper or heme-containing enzymes, play an important role in the adaptation of pathogens to O(2) limitation and enable microrganisms to survive in the human body. In mammals, reduction of nitrite to NO under hypoxic conditions is carried out in tissues and blood by an array of metalloproteins, including heme-containing proteins and molybdenum enzymes. In humans, tissues play a more important role in nitrite reduction, not only because most tissues produce more NO than blood, but also because deoxyhemoglobin efficiently scavenges NO in blood. In the second part of the review, we outline the significance of nitrite in human health and disease and describe the recent advances and pitfalls of nitrite-based therapy, with special attention to its application in cardiovascular disorders, inflammation, and anti-bacterial defence. It can be concluded that nitrite (as well as nitrate-rich diet for long-term applications) may hold promise as therapeutic agent in vascular dysfunction and ischemic injury, as well as an effective compound able to promote angiogenesis.
Collapse
Affiliation(s)
- Nicoletta Castiglione
- Department of Biochemical Sciences, Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University of Rome, Rome, Italy
| | | | | | | | | |
Collapse
|
26
|
Barraud N, Kardak BG, Yepuri NR, Howlin RP, Webb JS, Faust SN, Kjelleberg S, Rice SA, Kelso MJ. Cephalosporin-3′-diazeniumdiolates: Targeted NO-Donor Prodrugs for Dispersing Bacterial Biofilms. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201202414] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
27
|
Barraud N, Kardak BG, Yepuri NR, Howlin RP, Webb JS, Faust SN, Kjelleberg S, Rice SA, Kelso MJ. Cephalosporin-3′-diazeniumdiolates: Targeted NO-Donor Prodrugs for Dispersing Bacterial Biofilms. Angew Chem Int Ed Engl 2012; 51:9057-60. [DOI: 10.1002/anie.201202414] [Citation(s) in RCA: 121] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/18/2012] [Indexed: 11/06/2022]
|
28
|
Neisseria meningitidis and Neisseria gonorrhoeae are differently adapted in the regulation of denitrification: single nucleotide polymorphisms that enable species-specific tuning of the aerobic–anaerobic switch. Biochem J 2012; 445:69-79. [DOI: 10.1042/bj20111984] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The closely related pathogenic Neisseria species N. meningitidis and N. gonorrhoeae are able to respire in the absence of oxygen, using nitrite as an alternative electron acceptor. aniA (copper-containing nitrite reductase) is tightly regulated by four transcriptional regulators: FNR (fumarate and nitrate reductase), NarP, FUR (Ferric uptake regulator) and NsrR. The four regulators control expression of aniA in N. meningitidis by binding to specific and distinct regions of the promoter. We show in the present study that FUR and NarP are both required for the induction of expression of aniA in N. meningitidis, and that they bind adjacent to one another in a non-co-operative manner. Activation via FUR/NarP is dependent on their topological arrangement relative to the RNA polymerase-binding site. Analysis of the sequence of the aniA promoters from multiple N. meningitidis and N. gonorrhoeae strains indicates that there are species-specific single nucleotide polymorphisms, in regions predicted to be important for regulator binding. These sequence differences alter both the in vitro DNA binding and the promoter activation in intact cells by key activators FNR (oxygen sensor) and NarP (which is activated by nitrite in N. meningitidis). The weak relative binding of FNR to the N. gonorrhoeae aniA promoter (compared to N. meningitidis) is compensated for by a higher affinity of the gonococcal aniA promoter for NarP. Despite containing nearly identical genes for catalysing and regulating denitrification, variations in the promoter for the aniA gene appear to have been selected to enable the two pathogens to tune differentially their responses to environmental variables during the aerobic–anaerobic switch.
Collapse
|
29
|
Phillips NJ, Steichen CT, Schilling B, Post DMB, Niles RK, Bair TB, Falsetta ML, Apicella MA, Gibson BW. Proteomic analysis of Neisseria gonorrhoeae biofilms shows shift to anaerobic respiration and changes in nutrient transport and outermembrane proteins. PLoS One 2012; 7:e38303. [PMID: 22701624 PMCID: PMC3368942 DOI: 10.1371/journal.pone.0038303] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 05/03/2012] [Indexed: 02/07/2023] Open
Abstract
Neisseria gonorrhoeae, the causative agent of gonorrhea, can form biofilms in vitro and in vivo. In biofilms, the organism is more resistant to antibiotic treatment and can serve as a reservoir for chronic infection. We have used stable isotope labeling by amino acids in cell culture (SILAC) to compare protein expression in biofilm and planktonic organisms. Two parallel populations of N. gonorrhoeae strain 1291, which is an arginine auxotroph, were grown for 48 h in continuous-flow chambers over glass, one supplemented with (13)C(6)-arginine for planktonic organisms and the other with unlabeled arginine for biofilm growth. The biofilm and planktonic cells were harvested and lysed separately, and fractionated into three sequential protein extracts. Corresponding heavy (H) planktonic and light (L) biofilm protein extracts were mixed and separated by 1D SDS-PAGE gels, and samples were extensively analyzed by liquid chromatography-mass spectrometry. Overall, 757 proteins were identified, and 152 unique proteins met a 1.5-fold cutoff threshold for differential expression with p-values <0.05. Comparing biofilm to planktonic organisms, this set included 73 upregulated and 54 downregulated proteins. Nearly a third of the upregulated proteins were involved in energy metabolism, with cell envelope proteins making up the next largest group. Of the downregulated proteins, the largest groups were involved in protein synthesis and energy metabolism. These proteomics results were compared with our previously reported results from transcriptional profiling of gonococcal biofilms using microarrays. Nitrite reductase and cytochrome c peroxidase, key enzymes required for anaerobic growth, were detected as highly upregulated in both the proteomic and transcriptomic datasets. These and other protein expression changes observed in the present study were consistent with a shift to anaerobic respiration in gonococcal biofilms, although changes in membrane proteins not explicitly related to this shift may have other functions.
Collapse
Affiliation(s)
- Nancy J. Phillips
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
| | - Christopher T. Steichen
- Department of Microbiology, College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Birgit Schilling
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Deborah M. B. Post
- Buck Institute for Research on Aging, Novato, California, United States of America
| | - Richard K. Niles
- Department of Obstetrics, Gynecology, and Reproductive Biology, University of California San Francisco, San Francisco, California, United States of America
| | - Thomas B. Bair
- Department of Microbiology, College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Megan L. Falsetta
- Department of Microbiology, College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Michael A. Apicella
- Department of Microbiology, College of Medicine, The University of Iowa, Iowa City, Iowa, United States of America
| | - Bradford W. Gibson
- Department of Pharmaceutical Chemistry, University of California San Francisco, San Francisco, California, United States of America
- Buck Institute for Research on Aging, Novato, California, United States of America
- * E-mail:
| |
Collapse
|
30
|
Phenotypic characterization of a copA mutant of Neisseria gonorrhoeae identifies a link between copper and nitrosative stress. Infect Immun 2011; 80:1065-71. [PMID: 22184419 DOI: 10.1128/iai.06163-11] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NGO0579 is annotated copA in the Neisseria gonorrhoeae chromosome, suggesting that it encodes a cation-transporting ATPase specific for copper ions. Compared to wild-type cells, a copA mutant was more sensitive to killing by copper ions but not to other transition metals. The mutant also accumulated a greater amount of copper, consistent with the predicted role of CopA as a copper efflux pump. The copA mutant showed a reduced ability to invade and survive within human cervical epithelial cells, although its ability to form a biofilm on the surface of these cells was not significantly different from that of the wild type. In the presence of copper, the copA mutant exhibited increased sensitivity to killing by nitrite or nitric oxide. Therefore, we concluded that copper ion efflux catalyzed by CopA is linked to the nitrosative stress defense system of Neisseria gonorrhoeae. These observations suggest that copper may exert its effects as an antibacterial agent in the innate immune system via an interaction with reactive nitrogen species.
Collapse
|
31
|
Sandal I, Inzana TJ, Molinaro A, De Castro C, Shao JQ, Apicella MA, Cox AD, St Michael F, Berg G. Identification, structure, and characterization of an exopolysaccharide produced by Histophilus somni during biofilm formation. BMC Microbiol 2011; 11:186. [PMID: 21854629 PMCID: PMC3224263 DOI: 10.1186/1471-2180-11-186] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 08/19/2011] [Indexed: 01/15/2023] Open
Abstract
Background Histophilus somni, a gram-negative coccobacillus, is an obligate inhabitant of bovine and ovine mucosal surfaces, and an opportunistic pathogen responsible for respiratory disease and other systemic infections in cattle and sheep. Capsules are important virulence factors for many pathogenic bacteria, but a capsule has not been identified on H. somni. However, H. somni does form a biofilm in vitro and in vivo, and the biofilm matrix of most bacteria consists of a polysaccharide. Results Following incubation of H. somni under growth-restricting stress conditions, such as during anaerobiosis, stationary phase, or in hypertonic salt, a polysaccharide could be isolated from washed cells or culture supernatant. The polysaccharide was present in large amounts in broth culture sediment after H. somni was grown under low oxygen tension for 4-5 days (conditions favorable to biofilm formation), but not from planktonic cells during log phase growth. Immuno-transmission electron microscopy showed that the polysaccharide was not closely associated with the cell surface, and was of heterogeneous high molecular size by gel electrophoresis, indicating it was an exopolysaccharide (EPS). The EPS was a branched mannose polymer containing some galactose, as determined by structural analysis. The mannose-specific Moringa M lectin and antibodies to the EPS bound to the biofilm matrix, demonstrating that the EPS was a component of the biofilm. The addition of N-acetylneuraminic acid to the growth medium resulted in sialylation of the EPS, and increased biofilm formation. Real-time quantitative reverse transcription-polymerase chain reaction analyses indicated that genes previously identified in a putative polysaccharide locus were upregulated when the bacteria were grown under conditions favorable to a biofilm, compared to planktonic cells. Conclusions H. somni is capable of producing a branching, mannose-galactose EPS polymer under growth conditions favorable to the biofilm phase of growth, and the EPS is a component of the biofilm matrix. The EPS can be sialylated in strains with sialyltransferase activity, resulting in enhanced density of the biofilm, and suggesting that EPS and biofilm formation may be important to persistence in the bovine host. The EPS may be critical to virulence if the biofilm state is required for H. somni to persist in systemic sites.
Collapse
Affiliation(s)
- Indra Sandal
- Center for Molecular Medicine and Infectious Diseases, Virginia-Maryland Regional College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Falsetta ML, Steichen CT, McEwan AG, Cho C, Ketterer M, Shao J, Hunt J, Jennings MP, Apicella MA. The Composition and Metabolic Phenotype of Neisseria gonorrhoeae Biofilms. Front Microbiol 2011; 2:75. [PMID: 21833322 PMCID: PMC3153042 DOI: 10.3389/fmicb.2011.00075] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/30/2011] [Indexed: 12/02/2022] Open
Abstract
Neisseria gonorrhoeae has been shown to form biofilms during cervical infection. Thus, biofilm formation may play an important role in the infection of women. The ability of N. gonorrhoeae to form membrane blebs is crucial to biofilm formation. Blebs contain DNA and outer membrane structures, which have been shown to be major constituents of the biofilm matrix. The organism expresses a DNA thermonuclease that is involved in remodeling of the biofilm matrix. Comparison of the transcriptional profiles of gonococcal biofilms and planktonic runoff indicate that genes involved in anaerobic metabolism and oxidative stress tolerance are more highly expressed in biofilm. The expression of aniA, ccp, and norB, which encode nitrite reductase, cytochrome c peroxidase, and nitric oxide reductase respectively, is required for mature biofilm formation over glass and human cervical cells. In addition, anaerobic respiration occurs in the substratum of gonococcal biofilms and disruption of the norB gene required for anaerobic respiration, results in a severe biofilm attenuation phenotype. It has been demonstrated that accumulation of nitric oxide (NO) contributes to the phenotype of a norB mutant and can retard biofilm formation. However, NO can also enhance biofilm formation, and this is largely dependent on the concentration and donation rate or steady-state kinetics of NO. The majority of the genes involved in gonococcal oxidative stress tolerance are also required for normal biofilm formation, as mutations in the following genes result in attenuated biofilm formation over cervical cells and/or glass: oxyR, gor, prx, mntABC, trxB, and estD. Overall, biofilm formation appears to be an adaptation for coping with the environmental stresses present in the female genitourinary tract. Therefore, this review will discuss the studies, which describe the composition and metabolic phenotype of gonococcal biofilms.
Collapse
Affiliation(s)
- Megan L Falsetta
- Department of Microbiology, The University of Iowa Iowa City, IA, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
The Moraxella catarrhalis nitric oxide reductase is essential for nitric oxide detoxification. J Bacteriol 2011; 193:2804-13. [PMID: 21441505 DOI: 10.1128/jb.00139-11] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Moraxella catarrhalis is a Gram-negative obligate aerobe that is an important cause of human respiratory tract infections. The M. catarrhalis genome encodes a predicted truncated denitrification pathway that reduces nitrate to nitrous oxide. We have previously shown that expression of both the M. catarrhalis aniA (encoding a nitrite reductase) and norB (encoding a putative nitric oxide reductase) genes is repressed by the transcriptional regulator NsrR under aerobic conditions and that M. catarrhalis O35E nsrR mutants are unable to grow in the presence of low concentrations of nitrite (W. Wang, et al., J. Bacteriol. 190:7762-7772, 2008). In this study, we constructed an M. catarrhalis norB mutant and showed that planktonic growth of this mutant is inhibited by low levels of nitrite, whether or not an nsrR mutation is present. To determine the importance of NorB in this truncated denitrification pathway, we analyzed the metabolism of nitrogen oxides by norB, aniA norB, and nsrR norB mutants. We found that norB mutants are unable to reduce nitric oxide and produce little or no nitrous oxide from nitrite. Furthermore, nitric oxide produced from nitrite by the AniA protein is bactericidal for a Moraxella catarrhalis O35E norB mutant but not for wild-type O35E bacteria under aerobic growth conditions in vitro, suggesting that nitric oxide catabolism in M. catarrhalis is accomplished primarily by the norB gene product. Measurement of bacterial protein S-nitrosylation directly implicates nitrosative stress resulting from AniA-dependent nitric oxide formation as a cause of the growth inhibition of norB and nsrR mutants by nitrite.
Collapse
|
34
|
The Neisseria gonorrhoeae biofilm matrix contains DNA, and an endogenous nuclease controls its incorporation. Infect Immun 2011; 79:1504-11. [PMID: 21300774 DOI: 10.1128/iai.01162-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neisseria gonorrhoeae has been shown to produce biofilms both in experimental flow chambers and in the human host. Our laboratory has shown that extracellular DNA is an essential component of the gonococcal matrix. We have also identified a gene in N. gonorrhoeae, which we designated nuc. This gene has homology with the staphylococcus-secreted thermonuclease. Our laboratory has characterized nuc through phenotypic analysis of a nuc deletion mutant. Biofilms grown with this strain are significantly thicker and of greater biomass than the N. gonorrhoeae 1291 parent strain. Confocal microscopy indicates that the increased size of the mutant biofilms appears to be due to elevated amounts of extracellular DNA in the biofilm matrix. Chromosomal complementation of the nuc mutation restored the wild-type biofilm phenotype. In addition, we have cloned and expressed the Nuc protein in Escherichia coli, and our data indicate that it has the ability to digest multiple forms of DNA and is a thermonuclease. The ability of Nuc to digest DNA also extends to its ability to disrupt established gonococcal biofilms through degradation of the DNA in the biofilm matrix. Our studies indicate that the N. gonorrhoeae biofilm contains DNA and that the Nuc protein appears to play a role in biofilm formation and remodeling.
Collapse
|
35
|
Isabella VM, Clark VL. Deep sequencing-based analysis of the anaerobic stimulon in Neisseria gonorrhoeae. BMC Genomics 2011; 12:51. [PMID: 21251255 PMCID: PMC3032703 DOI: 10.1186/1471-2164-12-51] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2010] [Accepted: 01/20/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Maintenance of an anaerobic denitrification system in the obligate human pathogen, Neisseria gonorrhoeae, suggests that an anaerobic lifestyle may be important during the course of infection. Furthermore, mounting evidence suggests that reduction of host-produced nitric oxide has several immunomodulary effects on the host. However, at this point there have been no studies analyzing the complete gonococcal transcriptome response to anaerobiosis. Here we performed deep sequencing to compare the gonococcal transcriptomes of aerobically and anaerobically grown cells. Using the information derived from this sequencing, we discuss the implications of the robust transcriptional response to anaerobic growth. RESULTS We determined that 198 chromosomal genes were differentially expressed (~10% of the genome) in response to anaerobic conditions. We also observed a large induction of genes encoded within the cryptic plasmid, pJD1. Validation of RNA-seq data using translational-lacZ fusions or RT-PCR demonstrated the RNA-seq results to be very reproducible. Surprisingly, many genes of prophage origin were induced anaerobically, as well as several transcriptional regulators previously unknown to be involved in anaerobic growth. We also confirmed expression and regulation of a small RNA, likely a functional equivalent of fnrS in the Enterobacteriaceae family. We also determined that many genes found to be responsive to anaerobiosis have also been shown to be responsive to iron and/or oxidative stress. CONCLUSIONS Gonococci will be subject to many forms of environmental stress, including oxygen-limitation, during the course of infection. Here we determined that the anaerobic stimulon in gonococci was larger than previous studies would suggest. Many new targets for future research have been uncovered, and the results derived from this study may have helped to elucidate factors or mechanisms of virulence that may have otherwise been overlooked.
Collapse
Affiliation(s)
- Vincent M Isabella
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Virginia L Clark
- Department of Microbiology and Immunology, School of Medicine and Dentistry, University of Rochester, Box 672, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
36
|
Hurdle JG, O'Neill AJ, Chopra I, Lee RE. Targeting bacterial membrane function: an underexploited mechanism for treating persistent infections. Nat Rev Microbiol 2011; 9:62-75. [PMID: 21164535 DOI: 10.1038/nrmicro2474] [Citation(s) in RCA: 613] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Persistent infections involving slow-growing or non-growing bacteria are hard to treat with antibiotics that target biosynthetic processes in growing cells. Consequently, there is a need for antimicrobials that can treat infections containing dormant bacteria. In this Review, we discuss the emerging concept that disrupting the bacterial membrane bilayer or proteins that are integral to membrane function (including membrane potential and energy metabolism) in dormant bacteria is a strategy for treating persistent infections. The clinical applicability of these approaches is exemplified by the efficacy of lipoglycopeptides that damage bacterial membranes and of the diarylquinoline TMC207, which inhibits membrane-bound ATP synthase. Despite some drawbacks, membrane-active agents form an important new means of eradicating recalcitrant, non-growing bacteria.
Collapse
Affiliation(s)
- Julian G Hurdle
- Department of Biology, University of Texas at Arlington, Arlington, Texas 76019, USA.
| | | | | | | |
Collapse
|