1
|
Chen Y, Yuan Z, Sun L. The evolutionary diversification and antimicrobial potential of MPEG1 in Metazoa. Comput Struct Biotechnol J 2023; 21:5818-5828. [PMID: 38213882 PMCID: PMC10781884 DOI: 10.1016/j.csbj.2023.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 01/13/2024] Open
Abstract
Macrophage-expressed gene 1 (MPEG1) is an ancient immune effector known to exist in Cnidaria, Mollusca, Actinopterygii, and Mammalia. In this study, we examined the evolution and antibacterial potential of MPEG1 across Metazoa. By unbiased data-mining, MPEG1 orthologs were found in 11 of 34 screened phyla. In invertebrates, MPEG1 is present in the major phyla and exhibits intensive duplication. In vertebrates, class-based clades were formed by the major, generic MPEG1 (gMPEG1) in each class. However, there is a minority of unique MPEG1 (uMPEG1) from 71 species of 4 classes that clustered into a separate clade detached from all major class-based clades. gMPEG1 and uMPEG1 exhibit strong genomic collinearity and are surrounded by high-density transposons. gMPEG1 and uMPEG1 transcript expressions were most abundant in immune organs, but differed markedly in tissue specificity. Systematic analysis identified an antimicrobial peptide (AMP)-like segment in the C-terminal (CT) tail of MPEG1. Peptides based on the AMP-like regions of 35 representative MPEG1 were synthesized. Bactericidal activities were displayed by all peptides. Together these results suggest transposon-propelled evolutionary diversification of MPEG1 in Metazoa that has likely led to functional specialisation. This study also reveals a possible antimicrobial mechanism mediated directly and solely by the CT tail of MPEG1.
Collapse
Affiliation(s)
- Yuan Chen
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihao Yuan
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Sun
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences (CAS), Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Laoshan Laboratory, Qingdao 266237, China
- College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
2
|
Yu X, Ni T, Munson G, Zhang P, Gilbert RJC. Cryo-EM structures of perforin-2 in isolation and assembled on a membrane suggest a mechanism for pore formation. EMBO J 2022; 41:e111857. [PMID: 36245269 PMCID: PMC9713709 DOI: 10.15252/embj.2022111857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/29/2022] [Accepted: 09/09/2022] [Indexed: 01/15/2023] Open
Abstract
Perforin-2 (PFN2, MPEG1) is a key pore-forming protein in mammalian innate immunity restricting intracellular bacteria proliferation. It forms a membrane-bound pre-pore complex that converts to a pore-forming structure upon acidification; but its mechanism of conformational transition has been debated. Here we used cryo-electron microscopy, tomography and subtomogram averaging to determine structures of PFN2 in pre-pore and pore conformations in isolation and bound to liposomes. In isolation and upon acidification, the pre-assembled complete pre-pore rings convert to pores in both flat ring and twisted conformations. On membranes, in situ assembled PFN2 pre-pores display various degrees of completeness; whereas PFN2 pores are mainly incomplete arc structures that follow the same subunit packing arrangements as found in isolation. Both assemblies on membranes use their P2 β-hairpin for binding to the lipid membrane surface. Overall, these structural snapshots suggest a molecular mechanism for PFN2 pre-pore to pore transition on a targeted membrane, potentially using the twisted pore as an intermediate or alternative state to the flat conformation, with the capacity to cause bilayer distortion during membrane insertion.
Collapse
Affiliation(s)
- Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| | - Tao Ni
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Present address:
School of Biomedical Sciences, LKS Faculty of MedicineThe University of Hong KongPokfulamHong Kong SARChina
| | - George Munson
- Department of Microbiology and ImmunologyUniversity of Miami Miller School of MedicineMiamiFLUSA
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Diamond Light SourceHarwell Science and Innovation CampusDidcotUK
- Chinese Academy of Medical Sciences Oxford InstituteUniversity of OxfordOxfordUK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Centre for Human GeneticsUniversity of OxfordOxfordUK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen CollegeUniversity of OxfordOxfordUK
| |
Collapse
|
3
|
Hower S, McCormack R, Bartra SS, Alonso P, Podack ER, Shembade N, Plano GV. LPS modifications and AvrA activity of Salmonella enterica serovar Typhimurium are required to prevent Perforin-2 expression by infected fibroblasts and intestinal epithelial cells. Microb Pathog 2021; 154:104852. [PMID: 33762201 DOI: 10.1016/j.micpath.2021.104852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
Cellular Perforin-2 (MPEG1) is a pore-forming MACPF family protein that plays a critical role in the defense against bacterial pathogens. Macrophages, neutrophils, and several other cell types that are part of the front line of innate defenses constitutively express high levels of Perforin-2; whereas, most other cell types must be induced to express Perforin-2 by interferons (α, β and γ) and/or PAMPs such as LPS. In this study, we demonstrate that many bacterial pathogens can limit the expression of Perforin-2 in cells normally inducible for Perforin-2 expression, while ordinarily commensal or non-pathogenic bacteria triggered high levels of Perforin-2 expression in these same cell types. The mechanisms by which pathogens suppress Perforin-2 expression was explored further using Salmonella enterica serovar Typhimurium and cultured MEFs as well as intestinal epithelial cell lines. These studies identified multiple factors required to minimize the expression of Perforin-2 in cell types inducible for Perforin-2 expression. These included the PmrAB and PhoPQ two-component systems, select LPS modification enzymes and the Type III secretion effector protein AvrA.
Collapse
Affiliation(s)
- Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Ryan McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Sara Schesser Bartra
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Patricia Alonso
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eckhard R Podack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Noula Shembade
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA; Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL, 33136, USA
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
4
|
Merselis LC, Rivas ZP, Munson GP. Breaching the Bacterial Envelope: The Pivotal Role of Perforin-2 (MPEG1) Within Phagocytes. Front Immunol 2021; 12:597951. [PMID: 33692780 PMCID: PMC7937864 DOI: 10.3389/fimmu.2021.597951] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The membrane attack complex (MAC) of the complement system and Perforin-1 are well characterized innate immune effectors. MAC is composed of C9 and other complement proteins that target the envelope of gram-negative bacteria. Perforin-1 is deployed when killer lymphocytes degranulate to destroy virally infected or cancerous cells. These molecules polymerize with MAC-perforin/cholesterol-dependent cytolysin (MACPF/CDC) domains of each monomer deploying amphipathic β-strands to form pores through target lipid bilayers. In this review we discuss one of the most recently discovered members of this family; Perforin-2, the product of the Mpeg1 gene. Since their initial description more than 100 years ago, innumerable studies have made macrophages and other phagocytes some of the best understood cells of the immune system. Yet remarkably it was only recently revealed that Perforin-2 underpins a pivotal function of phagocytes; the destruction of phagocytosed microbes. Several studies have established that phagocytosed bacteria persist and in some cases flourish within phagocytes that lack Perforin-2. When challenged with either gram-negative or gram-positive pathogens Mpeg1 knockout mice succumb to infectious doses that the majority of wild-type mice survive. As expected by their immunocompromised phenotype, bacterial pathogens replicate and disseminate to deeper tissues of Mpeg1 knockout mice. Thus, this evolutionarily ancient gene endows phagocytes with potent bactericidal capability across taxa spanning sponges to humans. The recently elucidated structures of mammalian Perforin-2 reveal it to be a homopolymer that depends upon low pH, such as within phagosomes, to transition to its membrane-spanning pore conformation. Clinical manifestations of Mpeg1 missense mutations further highlight the pivotal role of Perforin-2 within phagocytes. Controversies and gaps within the field of Perforin-2 research are also discussed as well as animal models that may be used to resolve the outstanding issues. Our review concludes with a discussion of bacterial counter measures against Perforin-2.
Collapse
Affiliation(s)
- Leidy C Merselis
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - Zachary P Rivas
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| | - George P Munson
- Department of Microbiology and Immunology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States
| |
Collapse
|
5
|
Choi KM, Cho DH, Joo MS, Choi HS, Kim MS, Han HJ, Cho MY, Hwang SD, Kim DH, Park CI. Functional characterization and gene expression profile of perforin-2 in starry flounder (Platichthys stellatus). FISH & SHELLFISH IMMUNOLOGY 2020; 107:511-518. [PMID: 33217563 DOI: 10.1016/j.fsi.2020.11.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/26/2020] [Accepted: 11/09/2020] [Indexed: 06/11/2023]
Abstract
The membrane attack complex/perforin (MACPF) superfamily consists of multifunctional proteins that form pores on the membrane surface of microorganisms to induce their death and have various immune-related functions. PFN2 is a perforin-like protein with an MACPF domain, and humans with deficient PFN2 levels have increased susceptibility to bacterial infection, which can lead to fatal consequences for some patients. Therefore, in this study, we confirmed the antimicrobial function of PFN2 in starry flounder (Platichthys stellatus). The molecular properties were confirmed based on the verified amino acid sequence of PsPFN2. In addition, the expression characteristics of tissue-specific and pathogen-specific PsPFN2 mRNA were also confirmed. The recombinant protein was produced using Escherichia coli, and the antimicrobial activity was then confirmed. The coding sequence of PFN2 (PsPFN2) in P. stellatus consists of 710 residues. The MACPF domain was conserved throughout evolution, as shown by multiple sequence alignment and phylogenetic analysis. PsPFN2 mRNA is abundantly distributed in immune-related organs such as the spleen and gills of healthy starry flounder, and significant expression changes were confirmed after artificial infection by bacteria or viruses. We cloned the MACPF domain region of PFN2 to produce a recombinant protein (rPFN2) and confirmed its antibacterial effect against a wide range of bacterial species and the parasite (Miamiensis avidus).
Collapse
Affiliation(s)
- Kwang-Min Choi
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Dong-Hee Cho
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Min-Soo Joo
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea
| | - Hye-Sung Choi
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Myoung Sug Kim
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Hyun-Ja Han
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Mi Young Cho
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Seong Don Hwang
- Pathology Research Division, National Institute of Fisheries Science, 408-1 Sirang-ri, Gijang-up, Gijang-gun, Busan, 46083, Republic of Korea
| | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, 45, Yongso-ro, Nam-Gu., Busan, Republic of Korea.
| | - Chan-Il Park
- Department of Marine Biology & Aquaculture, College of Marine Science, Gyeongsang National University, 455, Tongyeong, 650-160, Republic of Korea.
| |
Collapse
|
6
|
Huitema L, Phillips T, Alexeev V, Tomic-Canic M, Pastar I, Igoucheva O. Intracellular escape strategies of Staphylococcus aureus in persistent cutaneous infections. Exp Dermatol 2020; 30:1428-1439. [PMID: 33179358 DOI: 10.1111/exd.14235] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/19/2020] [Accepted: 11/04/2020] [Indexed: 12/14/2022]
Abstract
Pathogenic invasion of Staphylococcus aureus is a major concern in patients with chronic skin diseases like atopic dermatitis (AD), epidermolysis bullosa (EB), or chronic diabetic foot and venous leg ulcers, and can result in persistent and life-threatening chronic non-healing wounds. Staphylococcus aureus is generally recognized as extracellular pathogens. However, S. aureus can also invade, hide and persist in skin cells to contribute to wound chronicity. The intracellular life cycle of S. aureus is currently incompletely understood, although published studies indicate that its intracellular escape strategies play an important role in persistent cutaneous infections. This review provides current scientific knowledge about the intracellular life cycle of S. aureus in skin cells, which can be classified into professional and non-professional antigen-presenting cells, and its strategies to escape adaptive defense mechanisms. First, we discuss phenotypic switch of S. aureus, which affects intracellular routing and degradation. This review also evaluates potential intracellular escape mechanism of S. aureus to avoid intracellular degradation and antigen presentation, preventing an immune response. Furthermore, we discuss potential drug targets that can interfere with the intracellular life cycle of S. aureus. Taken together, this review aimed to increase scientific understanding about the intracellular life cycle of S. aureus into skin cells and its strategies to evade the host immune response, information that is crucial to reduce pathogenic invasion and life-threatening persistence of S. aureus in chronic cutaneous infections.
Collapse
Affiliation(s)
- Leonie Huitema
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Taylor Phillips
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Vitali Alexeev
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
7
|
Hung LY, Tanaka Y, Herbine K, Pastore C, Singh B, Ferguson A, Vora N, Douglas B, Zullo K, Behrens EM, Li Hui Tan T, Kohanski MA, Bryce P, Lin C, Kambayashi T, Reed DR, Brown BL, Cohen NA, Herbert DR. Cellular context of IL-33 expression dictates impact on anti-helminth immunity. Sci Immunol 2020; 5:5/53/eabc6259. [PMID: 33188058 DOI: 10.1126/sciimmunol.abc6259] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/28/2020] [Indexed: 12/13/2022]
Abstract
Interleukin-33 (IL-33) is a pleiotropic cytokine that can promote type 2 inflammation but also drives immunoregulation through Foxp3+Treg expansion. How IL-33 is exported from cells to serve this dual role in immunosuppression and inflammation remains unclear. Here, we demonstrate that the biological consequences of IL-33 activity are dictated by its cellular source. Whereas IL-33 derived from epithelial cells stimulates group 2 innate lymphoid cell (ILC2)-driven type 2 immunity and parasite clearance, we report that IL-33 derived from myeloid antigen-presenting cells (APCs) suppresses host-protective inflammatory responses. Conditional deletion of IL-33 in CD11c-expressing cells resulted in lowered numbers of intestinal Foxp3+Treg cells that express the transcription factor GATA3 and the IL-33 receptor ST2, causing elevated IL-5 and IL-13 production and accelerated anti-helminth immunity. We demonstrate that cell-intrinsic IL-33 promoted mouse dendritic cells (DCs) to express the pore-forming protein perforin-2, which may function as a conduit on the plasma membrane facilitating IL-33 export. Lack of perforin-2 in DCs blocked the proliferative expansion of the ST2+Foxp3+Treg subset. We propose that perforin-2 can provide a plasma membrane conduit in DCs that promotes the export of IL-33, contributing to mucosal immunoregulation under steady-state and infectious conditions.
Collapse
Affiliation(s)
- Li-Yin Hung
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Yukinori Tanaka
- Department of Dental Anesthesiology and Pain Management, Tohoku University Hospital, Sendai, Miyagi 980-8574, Japan
| | - Karl Herbine
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Christopher Pastore
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brenal Singh
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Annabel Ferguson
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nisha Vora
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bonnie Douglas
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kelly Zullo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Edward M Behrens
- Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Tiffany Li Hui Tan
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Kohanski
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Paul Bryce
- Immunology and Inflammation Therapeutic Area, Sanofi US, Cambridge, MA 02319, USA
| | - Cailu Lin
- Monell Chemical Senses Center, Philadelphia, PA 19104, USA
| | - Taku Kambayashi
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Breann L Brown
- Department of Biochemistry, Center for Structural Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Noam A Cohen
- Department of Otorhinolaryngology-Head and Neck Surgery, Perelman School of Medicine at The University of Pennsylvania, Philadelphia, PA 19104, USA.,Monell Chemical Senses Center, Philadelphia, PA 19104, USA.,Michael J. Crescenz Veterans Affairs Medical Center Surgical Service, Philadelphia, PA 19104, USA
| | - De'Broski R Herbert
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
8
|
Krawczyk PA, Laub M, Kozik P. To Kill But Not Be Killed: Controlling the Activity of Mammalian Pore-Forming Proteins. Front Immunol 2020; 11:601405. [PMID: 33281828 PMCID: PMC7691655 DOI: 10.3389/fimmu.2020.601405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 10/20/2020] [Indexed: 01/01/2023] Open
Abstract
Pore-forming proteins (PFPs) are present in all domains of life, and play an important role in host-pathogen warfare and in the elimination of cancers. They can be employed to deliver specific effectors across membranes, to disrupt membrane integrity interfering with cell homeostasis, and to lyse membranes either destroying intracellular organelles or entire cells. Considering the destructive potential of PFPs, it is perhaps not surprising that mechanisms controlling their activity are remarkably complex, especially in multicellular organisms. Mammalian PFPs discovered to date include the complement membrane attack complex (MAC), perforins, as well as gasdermins. While the primary function of perforin-1 and gasdermins is to eliminate infected or cancerous host cells, perforin-2 and MAC can target pathogens directly. Yet, all mammalian PFPs are in principle capable of generating pores in membranes of healthy host cells which-if uncontrolled-could have dire, and potentially lethal consequences. In this review, we will highlight the strategies employed to protect the host from destruction by endogenous PFPs, while enabling timely and efficient elimination of target cells.
Collapse
Affiliation(s)
- Patrycja A Krawczyk
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Marco Laub
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Patrycja Kozik
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Cambridge Biomedical Campus, Cambridge, United Kingdom
| |
Collapse
|
9
|
Merselis LC, Jiang SY, Nelson SF, Lee H, Prabaker KK, Baker JL, Munson GP, Butte MJ. MPEG1/Perforin-2 Haploinsufficiency Associated Polymicrobial Skin Infections and Considerations for Interferon-γ Therapy. Front Immunol 2020; 11:601584. [PMID: 33224153 PMCID: PMC7670069 DOI: 10.3389/fimmu.2020.601584] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Macrophage expressed gene 1 (MPEG1) is highly expressed in macrophages and other phagocytes. The gene encodes a bactericidal pore-forming protein, dubbed Perforin-2. Structural-, animal-, and cell-based studies have established that perforin-2 facilitates the destruction of phagocytosed microbes upon its activation within acidic phagosomes. Relative to wild-type controls, Mpeg1 knockout mice suffer significantly higher mortality rates when challenged with gram-negative or -positive pathogens. Only four variants of MPEG1 have been functionally characterized, each in association with pulmonary infections. Here we report a new MPEG1 non-sense variant in a patient with the a newly described association with persistent polymicrobial infections of the skin and soft tissue. Case Description A young adult female patient was evaluated for recurrent abscesses and cellulitis of the breast and demonstrated a heterozygous, rare variant in MPEG1 p.Tyr430*. Multiple courses of broad-spectrum antimicrobials and surgical incision and drainage failed to resolve the infection. Functional studies revealed that the truncation variant resulted in significantly reduced capacity of the patient’s phagocytes to kill intracellular bacteria. Patient-derived macrophages responded to interferon gamma (IFN-γ) by significantly increasing the expression of MPEG1. IFN-γ treatment supported perforin-2 dependent bactericidal activity and wound healing. Conclusions This case expands the phenotype of MPEG1 deficiency to include severe skin and soft tissue infection. We showed that haploinsufficiency of perforin-2 reduced the bactericidal capacity of human phagocytes. Interferon-gamma therapy increases expression of perforin-2, which may compensate for such variants. Thus, treatment with IFN-γ could help prevent infections.
Collapse
Affiliation(s)
- Leidy C Merselis
- University of Miami Miller School of Medicine, Department of Microbiology and Immunology, Miami, FL, United States
| | - Shirley Y Jiang
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, United States
| | - Stanley F Nelson
- Department of Human Genetics, University of California Los Angeles, Los Angeles CA, United States.,Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States.,California Center for Rare Diseases, Institute for Precision Health, University of California Los Angeles, Los Angeles, CA, United States
| | - Hane Lee
- Department of Human Genetics, University of California Los Angeles, Los Angeles CA, United States.,Department of Pathology and Laboratory Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Kavitha K Prabaker
- Division of Infectious Diseases, Department of Medicine, University of California Los Angeles, Los Angeles, CA, United States
| | - Jennifer L Baker
- Department of Surgery, University of California Los Angeles, Los Angeles, CA, United States
| | - George P Munson
- University of Miami Miller School of Medicine, Department of Microbiology and Immunology, Miami, FL, United States
| | - Manish J Butte
- Division of Immunology, Allergy, and Rheumatology, Department of Pediatrics, University of California Los Angeles, Los Angeles, CA, United States.,California Center for Rare Diseases, Institute for Precision Health, University of California Los Angeles, Los Angeles, CA, United States.,Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
10
|
Bayly-Jones C, Pang SS, Spicer BA, Whisstock JC, Dunstone MA. Ancient but Not Forgotten: New Insights Into MPEG1, a Macrophage Perforin-Like Immune Effector. Front Immunol 2020; 11:581906. [PMID: 33178209 PMCID: PMC7593815 DOI: 10.3389/fimmu.2020.581906] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/25/2020] [Indexed: 12/29/2022] Open
Abstract
Macrophage-expressed gene 1 [MPEG1/Perforin-2 (PRF2)] is an ancient metazoan protein belonging to the Membrane Attack Complex/Perforin (MACPF) branch of the MACPF/Cholesterol Dependent Cytolysin (CDC) superfamily of pore-forming proteins (PFPs). MACPF/CDC proteins are a large and extremely diverse superfamily that forms large transmembrane aqueous channels in target membranes. In humans, MACPFs have known roles in immunity and development. Like perforin (PRF) and the membrane attack complex (MAC), MPEG1 is also postulated to perform a role in immunity. Indeed, bioinformatic studies suggest that gene duplications of MPEG1 likely gave rise to PRF and MAC components. Studies reveal partial or complete loss of MPEG1 causes an increased susceptibility to microbial infection in both cells and animals. To this end, MPEG1 expression is upregulated in response to proinflammatory signals such as tumor necrosis factor α (TNFα) and lipopolysaccharides (LPS). Furthermore, germline mutations in MPEG1 have been identified in connection with recurrent pulmonary mycobacterial infections in humans. Structural studies on MPEG1 revealed that it can form oligomeric pre-pores and pores. Strikingly, the unusual domain arrangement within the MPEG1 architecture suggests a novel mechanism of pore formation that may have evolved to guard against unwanted lysis of the host cell. Collectively, the available data suggest that MPEG1 likely functions as an intracellular pore-forming immune effector. Herein, we review the current understanding of MPEG1 evolution, regulation, and function. Furthermore, recent structural studies of MPEG1 are discussed, including the proposed mechanisms of action for MPEG1 bactericidal activity. Lastly limitations, outstanding questions, and implications of MPEG1 models are explored in the context of the broader literature and in light of newly available structural data.
Collapse
Affiliation(s)
- Charles Bayly-Jones
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Siew Siew Pang
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - Bradley A Spicer
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| | - James C Whisstock
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia.,John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Michelle A Dunstone
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Melbourne, VIC, Australia.,Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, VIC, Australia
| |
Collapse
|
11
|
Pastar I, O'Neill K, Padula L, Head CR, Burgess JL, Chen V, Garcia D, Stojadinovic O, Hower S, Plano GV, Thaller SR, Tomic-Canic M, Strbo N. Staphylococcus epidermidis Boosts Innate Immune Response by Activation of Gamma Delta T Cells and Induction of Perforin-2 in Human Skin. Front Immunol 2020; 11:550946. [PMID: 33042139 PMCID: PMC7525037 DOI: 10.3389/fimmu.2020.550946] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Accepted: 08/18/2020] [Indexed: 01/03/2023] Open
Abstract
Perforin-2 (P-2) is an antimicrobial protein with unique properties to kill intracellular bacteria. Gamma delta (GD) T cells, as the major T cell population in epithelial tissues, play a central role in protective and pathogenic immune responses in the skin. However, the tissue-specific mechanisms that control the innate immune response and the effector functions of GD T cells, especially the cross-talk with commensal organisms, are not very well understood. We hypothesized that the most prevalent skin commensal microorganism, Staphylococcus epidermidis, may play a role in regulating GD T cell-mediated cutaneous responses. We analyzed antimicrobial protein P-2 expression in human skin at a single cell resolution using an amplified fluorescence in situ hybridization approach to detect P-2 mRNA in combination with immunophenotyping. We show that S. epidermidis activates GD T cells and upregulates P-2 in human skin ex vivo in a cell-specific manner. Furthermore, P-2 upregulation following S. epidermidis stimulation correlates with increased ability of skin cells to kill intracellular Staphylococcus aureus. Our findings are the first to reveal that skin commensal bacteria induce P-2 expression, which may be utilized beneficially to modulate host innate immune responses and protect from skin infections.
Collapse
Affiliation(s)
- Irena Pastar
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Katelyn O'Neill
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Cheyanne R Head
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Jamie L Burgess
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Vivien Chen
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Olivera Stojadinovic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Seth R Thaller
- Division of Plastic Surgery Dewitt Daughtry, Department of Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Marjana Tomic-Canic
- Wound Healing and Regenerative Medicine Research Program, Dr. Phillip Frost Department of Dermatology and Cutaneous Surgery, University of Miami Miller School of Medicine, Miami, FL, United States
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL, United States
| |
Collapse
|
12
|
Gayle P, McGaughey V, Hernandez R, Wylie M, Colletti RC, Nguyen KL, Arons M, Padula L, Strbo N, Schesser K. Maternal- and Fetal-Encoded Perforin-2 Limits Placental Infection by a Bloodborne Pathogen. THE JOURNAL OF IMMUNOLOGY 2020; 205:1878-1885. [PMID: 32839236 DOI: 10.4049/jimmunol.2000615] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/24/2020] [Indexed: 12/31/2022]
Abstract
Placental immune responses are highly regulated to strike a balance between protection and tolerance. For relatively mild infections, protection encompasses both the mother and fetus; however, during worsening conditions, protection becomes exclusively reserved for the mother. Previously, we and others have shown that the host factor perforin-2 plays a central role in protecting mice and cells against infection. In this study, we analyzed perforin-2 activity in the mouse placenta to determine whether perforin-2 plays a similarly protective role. We show that perforin-2 is critical for inhibiting Listeria monocytogenes colonization of the placenta and fetus and that this protection is due to both maternal and fetal-encoded perforin-2. Perforin-2 mRNA is readily detectable in individual immune cells of the decidua, and these levels are further enhanced specifically in decidual macrophages during high-dose infections that result in fetal expulsion. Unexpectedly, inductive perforin-2 expression in decidual macrophages did not occur during milder infections in which fetal viability remained intact. This pattern of expression significantly differed from that observed in splenic macrophages in which inductive perforin-2 expression was observed in both high and mild infection conditions. In the placenta, inductive perforin-2 expression in decidual macrophages was coincident with their polarization from a CD206+ MHC class IIlo to CD206- MHC class IIhi phenotype that normally occurs in the placenta during high-burden infections. Our results suggest that perforin-2 is part of a host response that is protective either for both the mother and fetus in milder infections or exclusively for the mother during high-dose infections.
Collapse
Affiliation(s)
- Petoria Gayle
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Vanessa McGaughey
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Rosmely Hernandez
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Marina Wylie
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Rachel C Colletti
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Ka Lam Nguyen
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Marshall Arons
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Laura Padula
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Kurt Schesser
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
13
|
Keb G, Fields KA. An Ancient Molecular Arms Race: Chlamydia vs. Membrane Attack Complex/Perforin (MACPF) Domain Proteins. Front Immunol 2020; 11:1490. [PMID: 32760406 PMCID: PMC7371996 DOI: 10.3389/fimmu.2020.01490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/08/2020] [Indexed: 12/16/2022] Open
Abstract
Dynamic interactions that govern the balance between host and pathogen determine the outcome of infection and are shaped by evolutionary pressures. Eukaryotic hosts have evolved elaborate and formidable defense mechanisms that provide the basis for innate and adaptive immunity. Proteins containing a membrane attack complex/Perforin (MACPF) domain represent an important class of immune effectors. These pore-forming proteins induce cell killing by targeting microbial or host membranes. Intracellular bacteria can be shielded from MACPF-mediated killing, and Chlamydia spp. represent a successful paradigm of obligate intracellular parasitism. Ancestors of present-day Chlamydia likely originated at evolutionary times that correlated with or preceded many host defense pathways. We discuss the current knowledge regarding how chlamydiae interact with the MACPF proteins Complement C9, Perforin-1, and Perforin-2. Current evidence indicates a degree of resistance by Chlamydia to MACPF effector mechanisms. In fact, chlamydiae have acquired and adapted their own MACPF-domain protein to facilitate infection.
Collapse
Affiliation(s)
- Gabrielle Keb
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| | - Kenneth A Fields
- Department of Microbiology, Immunology & Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, United States
| |
Collapse
|
14
|
Abstract
Immune cells use a variety of membrane-disrupting proteins [complement, perforin, perforin-2, granulysin, gasdermins, mixed lineage kinase domain-like pseudokinase (MLKL)] to induce different kinds of death of microbes and host cells, some of which cause inflammation. After activation by proteolytic cleavage or phosphorylation, these proteins oligomerize, bind to membrane lipids, and disrupt membrane integrity. These membrane disruptors play a critical role in both innate and adaptive immunity. Here we review our current knowledge of the functions, specificity, activation, and regulation of membrane-disrupting immune proteins and what is known about the mechanisms behind membrane damage, the structure of the pores they form, how the cells expressing these lethal proteins are protected, and how cells targeted for destruction can sometimes escape death by repairing membrane damage.
Collapse
Affiliation(s)
- Xing Liu
- Center for Microbes, Development and Health; Key Laboratory of Molecular Virology and Immunology; Institut Pasteur of Shanghai; Chinese Academy of Sciences, Shanghai 200031, China;
| | - Judy Lieberman
- Program in Cellular and Molecular Medicine, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts 02115, USA;
| |
Collapse
|
15
|
McCormack R, Hunte R, Podack ER, Plano GV, Shembade N. An Essential Role for Perforin-2 in Type I IFN Signaling. THE JOURNAL OF IMMUNOLOGY 2020; 204:2242-2256. [PMID: 32161097 DOI: 10.4049/jimmunol.1901013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/12/2020] [Indexed: 01/14/2023]
Abstract
Type I IFNs play a complex role in determining the fate of microbial pathogens and may also be deleterious to the host during bacterial and viral infections. Upon ligand binding, a receptor proximal complex consisting of IFN-α and -β receptors 1 and 2 (IFNAR1, IFNAR2, respectively), tyrosine kinase 2 (Tyk2), Jak1, and STAT2 are assembled and promote the phosphorylation of STAT1 and STAT2. However, how the IFNARs proximal complex is assembled upon binding to IFN is poorly understood. In this study, we show that the membrane-associated pore-forming protein Perforin-2 (P2) is critical for LPS-induced endotoxic shock in wild-type mice. Type I IFN-mediated JAK-STAT signaling is severely impaired, and activation of MAPKs and PI3K signaling pathways are delayed in P2-deficient mouse bone marrow-derived macrophages, mouse embryonic fibroblasts (MEFs), and human HeLa cells upon IFN stimulation. The P2 N-glycosylated extracellular membrane attack complex/perforin domain and the P2 domain independently associate with the extracellular regions of IFNAR1 and IFNAR2, respectively, in resting MEFs. In addition, the P2 cytoplasmic tail domain mediated the constitutive interaction between STAT2 and IFNAR2 in resting MEFs, an interaction that is dependent on the association of the extracellular regions of P2 and IFNAR2. Finally, the constitutive association of P2 with both receptors and STAT2 is critical for the receptor proximal complex assembly and reciprocal transphosphorylation of Jak1 and Tyk2 as well as the phosphorylation and activation of STAT1 and STAT2 upon IFN-β stimulation.
Collapse
Affiliation(s)
- Ryan McCormack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Richard Hunte
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136.,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| | - Gregory V Plano
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136
| | - Noula Shembade
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136 .,Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33136
| |
Collapse
|
16
|
Ni T, Jiao F, Yu X, Aden S, Ginger L, Williams SI, Bai F, Pražák V, Karia D, Stansfeld P, Zhang P, Munson G, Anderluh G, Scheuring S, Gilbert RJC. Structure and mechanism of bactericidal mammalian perforin-2, an ancient agent of innate immunity. SCIENCE ADVANCES 2020; 6:eaax8286. [PMID: 32064340 PMCID: PMC6989145 DOI: 10.1126/sciadv.aax8286] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 11/21/2019] [Indexed: 05/21/2023]
Abstract
Perforin-2 (MPEG1) is thought to enable the killing of invading microbes engulfed by macrophages and other phagocytes, forming pores in their membranes. Loss of perforin-2 renders individual phagocytes and whole organisms significantly more susceptible to bacterial pathogens. Here, we reveal the mechanism of perforin-2 activation and activity using atomic structures of pre-pore and pore assemblies, high-speed atomic force microscopy, and functional assays. Perforin-2 forms a pre-pore assembly in which its pore-forming domain points in the opposite direction to its membrane-targeting domain. Acidification then triggers pore formation, via a 180° conformational change. This novel and unexpected mechanism prevents premature bactericidal attack and may have played a key role in the evolution of all perforin family proteins.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Fang Jiao
- Department of Anesthesiology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA
| | - Xiulian Yu
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford OX1 4AU, UK
| | - Saša Aden
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Lucy Ginger
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Sophie I. Williams
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Fangfang Bai
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Vojtěch Pražák
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Dimple Karia
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Phillip Stansfeld
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Peijun Zhang
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - George Munson
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Gregor Anderluh
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Simon Scheuring
- Department of Anesthesiology, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA
- Department of Physiology and Biophysics, Weill Cornell Medical College, 1300 York Ave., New York, NY 10065, USA
- Corresponding author. (S.S.); (R.J.C.G.)
| | - Robert J. C. Gilbert
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
- Calleva Research Centre for Evolution and Human Sciences, Magdalen College, University of Oxford, Oxford OX1 4AU, UK
- Corresponding author. (S.S.); (R.J.C.G.)
| |
Collapse
|
17
|
Ni LY, Han Q, Chen HP, Luo XC, Li AX, Dan XM, Li YW. Grouper (Epinephelus coioides) Mpeg1s: Molecular identification, expression analysis, and antimicrobial activity. FISH & SHELLFISH IMMUNOLOGY 2019; 92:690-697. [PMID: 31276788 DOI: 10.1016/j.fsi.2019.06.060] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 06/24/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Macrophage expressed gene 1 (Mpeg1) is a molecule that can form pores and destroy the cell membrane of invading pathogens. In this study, we identified two Mpeg1 isoforms from the orange-spotted grouper (Epinephelus coioides) and named them EcMpeg1a and EcMpeg1b. Predicted proteins of the two EcMpeg1s contained a signal peptide, a conserved membrane attack complex/perforin (MACPF) domain, a transmembrane segment, and an intracellular region. Sequence alignment demonstrated that two EcMpeg1 proteins share a high sequence identity with that of other teleosts. Tissue distribution analysis showed that EcMpeg1s were expressed in all tissues tested in healthy grouper, with the highest expression in the head kidney and spleen. After infection with the ciliate parasite Cryptocaryon irritans, expression of the two EcMpeg1s was significantly upregulated in the spleen and gills. Furthermore, the recombinant EcMpeg1a showed antiparasitic and antibacterial activity against Gram-negative and -positive bacteria, whereas EcMpeg1b had an inhibitory effect only against Gram-positive bacteria. These results indicated that EcMpeg1s play an important role in the host response against invading pathogens.
Collapse
Affiliation(s)
- Lu-Yun Ni
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qing Han
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Hong-Ping Chen
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Xiao-Chun Luo
- School of Bioscience and Bioengineering, South China University of Technology, Guangzhou, 510006, China
| | - An-Xing Li
- State Key Laboratory of Biocontrol/Guangdong Provincial Key Lab for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, Guangdong Province, China
| | - Xue-Ming Dan
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| | - Yan-Wei Li
- Joint Laboratory of Guangdong Province and Hong Kong Regions on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
18
|
Strbo N, Pastar I, Romero L, Chen V, Vujanac M, Sawaya AP, Jozic I, Ferreira ADF, Wong LL, Head C, Stojadinovic O, Garcia D, O'Neill K, Drakulich S, Taller S, Kirsner RS, Tomic-Canic M. Single cell analyses reveal specific distribution of anti-bacterial molecule Perforin-2 in human skin and its modulation by wounding and Staphylococcus aureus infection. Exp Dermatol 2019; 28:225-232. [PMID: 30609079 DOI: 10.1111/exd.13870] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 12/03/2018] [Accepted: 01/02/2019] [Indexed: 01/13/2023]
Abstract
Perforin-2 (P-2) is a recently described antimicrobial protein with unique properties to kill intracellular bacteria. We investigated P-2 expression pattern and cellular distribution in human skin and its importance in restoration of barrier function during wound healing process and infection with the common wound pathogen Staphylococcus aureus. We describe a novel approach for the measurement of P-2 mRNA within individual skin cells using an amplified fluorescence in situ hybridization (FISH) technique. The unique aspect of this approach is simultaneous detection of P-2 mRNA in combination with immune-phenotyping for cell surface proteins using fluorochrome-conjugated antibodies. We detected P-2 transcript in both hematopoietic (CD45+ ) and non-hematopoietic (CD45- ) cutaneous cell populations, confirming the P-2 expression in both professional and non-professional phagocytes. Furthermore, we found an induction of P-2 during wound healing. P-2 overexpression resulted in a reduction of intracellular S. aureus, while infection of human wounds by this pathogen resulted in P-2 suppression, revealing a novel mechanism by which S. aureus may escape cutaneous immunity to cause persistent wound infections.
Collapse
Affiliation(s)
- Natasa Strbo
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Irena Pastar
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Laura Romero
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Vivien Chen
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Milos Vujanac
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrew P Sawaya
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Ivan Jozic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Andrea D F Ferreira
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Lulu L Wong
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Cheyanne Head
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Olivera Stojadinovic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Denisse Garcia
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Katelyn O'Neill
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, Florida
| | - Stefan Drakulich
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Seth Taller
- Plastic Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - Robert S Kirsner
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| | - Marjana Tomic-Canic
- Department of Dermatology and Cutaneous Surgery, Wound Healing and Regenerative Medicine Research Program, University of Miami Miller School of Medicine, Miami, Florida
| |
Collapse
|
19
|
Bai F, McCormack RM, Hower S, Plano GV, Lichtenheld MG, Munson GP. Perforin-2 Breaches the Envelope of Phagocytosed Bacteria Allowing Antimicrobial Effectors Access to Intracellular Targets. THE JOURNAL OF IMMUNOLOGY 2018; 201:2710-2720. [PMID: 30249808 DOI: 10.4049/jimmunol.1800365] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 08/28/2018] [Indexed: 01/24/2023]
Abstract
Perforin-2, the product of the MPEG1 gene, limits the spread and dissemination of bacterial pathogens in vivo. It is highly expressed in murine and human phagocytes, and macrophages lacking Perforin-2 are compromised in their ability to kill phagocytosed bacteria. In this study, we used Salmonella enterica serovar Typhimurium as a model intracellular pathogen to elucidate the mechanism of Perforin-2's bactericidal activity. In vitro Perforin-2 was found to facilitate the degradation of Ags contained within the envelope of phagocytosed bacteria. In contrast, degradation of a representative surface Ag was found to be independent of Perforin-2. Consistent with our in vitro results, a protease-sensitive, periplasmic superoxide dismutase (SodCII) contributed to the virulence of S. Typhimurium in Perforin-2 knockout but not wild-type mice. In aggregate, our studies indicate that Perforin-2 breaches the envelope of phagocytosed bacteria, facilitating the delivery of proteases and other antimicrobial effectors to sites within the bacterial cell.
Collapse
Affiliation(s)
- Fangfang Bai
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Ryan M McCormack
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Suzanne Hower
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Gregory V Plano
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - Mathias G Lichtenheld
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| | - George P Munson
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, Miami, FL 33136
| |
Collapse
|
20
|
Hiroyasu A, DeWitt DC, Goodman AG. Extraction of Hemocytes from Drosophila melanogaster Larvae for Microbial Infection and Analysis. J Vis Exp 2018. [PMID: 29889203 DOI: 10.3791/57077] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
During the pathogenic infection of Drosophila melanogaster, hemocytes play an important role in the immune response throughout the infection. Thus, the goal of this protocol is to develop a method to visualize the pathogen invasion in a specific immune compartment of flies, namely hemocytes. Using the method presented here, up to 3 × 106 live hemocytes can be obtained from 200 Drosophila 3rd instar larvae in 30 min for ex vivo infection. Alternatively, hemocytes can be infected in vivo through injection of 3rd instar larvae followed by hemocyte extraction up to 24 h post-infection. These infected primary cells were fixed, stained, and imaged using confocal microscopy. Then, 3D representations were generated from the images to definitively show pathogen invasion. Additionally, high-quality RNA for qRT-PCR can be obtained for the detection of pathogen mRNA following infection, and sufficient protein can be extracted from these cells for Western blot analysis. Taken together, we present a method for definite reconciliation of pathogen invasion and confirmation of infection using bacterial and viral pathogen types and an efficient method for hemocyte extraction to obtain enough live hemocytes from Drosophila larvae for ex vivo and in vivo infection experiments.
Collapse
Affiliation(s)
- Aoi Hiroyasu
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University
| | - David C DeWitt
- Integrative Physiology and Neuroscience, College of Veterinary Medicine, Washington State University
| | - Alan G Goodman
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University;
| |
Collapse
|
21
|
The eIF2α Kinase Heme-Regulated Inhibitor Protects the Host from Infection by Regulating Intracellular Pathogen Trafficking. Infect Immun 2018; 86:IAI.00707-17. [PMID: 29311243 DOI: 10.1128/iai.00707-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 12/19/2017] [Indexed: 12/20/2022] Open
Abstract
The host employs both cell-autonomous and system-level responses to limit pathogen replication in the initial stages of infection. Previously, we reported that the eukaryotic initiation factor 2α (eIF2α) kinases heme-regulated inhibitor (HRI) and protein kinase R (PKR) control distinct cellular and immune-related activities in response to diverse bacterial pathogens. Specifically for Listeria monocytogenes, there was reduced translocation of the pathogen to the cytosolic compartment in HRI-deficient cells and consequently reduced loading of pathogen-derived antigens on major histocompatibility complex class I (MHC-I) complexes. Here we show that Hri-/- mice, as well as wild-type mice treated with an HRI inhibitor, are more susceptible to listeriosis. In the first few hours of L. monocytogenes infection, there was much greater pathogen proliferation in the liver of Hri-/- mice than in the liver of Hri+/+ mice. Further, there was a rapid increase of serum interleukin-6 (IL-6) levels in Hri+/+ mice in the first few hours of infection whereas the increase in IL-6 levels in Hri-/- mice was notably delayed. Consistent with these in vivo findings, the rate of listeriolysin O (LLO)-dependent pathogen efflux from infected Hri-/- macrophages and fibroblasts was significantly higher than the rate seen with infected Hri+/+ cells. Treatment of cells with an eIF2α kinase activator enhanced both the HRI-dependent and PKR-dependent infection phenotypes, further indicating the pharmacologically malleability of this signaling pathway. Collectively, these results suggest that HRI mediates the cellular confinement and killing of virulent L. monocytogenes in addition to promoting a system-level cytokine response and that both are required to limit pathogen replication during the first few hours of infection.
Collapse
|
22
|
Xiong P, Shiratsuchi M, Matsushima T, Liao J, Tanaka E, Nakashima Y, Takayanagi R, Ogawa Y. Regulation of expression and trafficking of perforin-2 by LPS and TNF-α. Cell Immunol 2017; 320:1-10. [DOI: 10.1016/j.cellimm.2017.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/07/2017] [Accepted: 07/07/2017] [Indexed: 10/19/2022]
|
23
|
Ni T, Gilbert RJC. Repurposing a pore: highly conserved perforin-like proteins with alternative mechanisms. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160212. [PMID: 28630152 PMCID: PMC5483515 DOI: 10.1098/rstb.2016.0212] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2017] [Indexed: 12/02/2022] Open
Abstract
Pore-forming proteins play critical roles in pathogenic attack and immunological defence. The membrane attack complex/perforin (MACPF) group of homologues represents, with cholesterol-dependent cytolysins, the largest family of such proteins. In this review, we begin by describing briefly the structure of MACPF proteins, outlining their common mechanism of pore formation. We subsequently discuss some examples of MACPF proteins likely implicated in pore formation or other membrane-remodelling processes. Finally, we focus on astrotactin and bone morphogenetic protein and retinoic acid-induced neural-specific proteins, highly conserved MACPF family members involved in developmental processes, which have not been well studied to date or observed to form a pore-and which data suggest may act by alternative mechanisms.This article is part of the themed issue 'Membrane pores: from structure and assembly, to medicine and technology'.
Collapse
Affiliation(s)
- Tao Ni
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| | - Robert J C Gilbert
- Division of Structural Biology, Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford OX3 7BN, UK
| |
Collapse
|
24
|
McCormack RM, Szymanski EP, Hsu AP, Perez E, Olivier KN, Fisher E, Goodhew EB, Podack ER, Holland SM. MPEG1/perforin-2 mutations in human pulmonary nontuberculous mycobacterial infections. JCI Insight 2017; 2:89635. [PMID: 28422754 PMCID: PMC5396519 DOI: 10.1172/jci.insight.89635] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 03/09/2017] [Indexed: 12/15/2022] Open
Abstract
Perforin-2 is a highly conserved pore-forming protein encoded by macrophage expressed gene 1 (MPEG1). A number of studies have shown that Perforin-2-deficient mice are unable to survive following a bacterial challenge that is nonlethal in WT mice. There is also recent evidence that Mpeg1+/- heterozygous mice display an intermediate killing ability compared with Mpeg1 WT and Mpeg1-/- mice. Despite these in vivo findings, to date, no perforin-2 deficiencies have been associated with human disease. Here, we report four patients with persistent nontuberculous mycobacterial infection who had heterozygous MPEG1 mutations. In vitro, neutrophils, macrophages, and B cells from these patients were unable to kill Mycobacterium avium as efficiently as normal controls. CRISPR mutagenesis validated the deleterious antibacterial activity of these mutations. These data suggest that perforin-2 haploinsufficiency may contribute to human susceptibility to infections with intracellular bacteria.
Collapse
Affiliation(s)
- Ryan M. McCormack
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | | | - Amy P. Hsu
- Laboratory of Clinical Infectious Diseases, NIAID, NIH
| | - Elena Perez
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Kenneth N. Olivier
- Cardiovascular and Pulmonary Branch, NHLBI, NIH, Bethesda, Maryland, USA
| | - Eva Fisher
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - E. Brook Goodhew
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | - Eckhard R. Podack
- Department of Microbiology and Immunology, University of Miami School of Medicine, Miami, Florida, USA
| | | |
Collapse
|
25
|
Li SA, Liu L, Guo XL, Zhang YY, Xiang Y, Wang QQ, Lee WH, Zhang Y. Host Pore-Forming Protein Complex Neutralizes the Acidification of Endocytic Organelles to Counteract Intracellular Pathogens. J Infect Dis 2017; 215:1753-1763. [DOI: 10.1093/infdis/jix183] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/10/2017] [Indexed: 12/12/2022] Open
|
26
|
Podack ER, Munson GP. Killing of Microbes and Cancer by the Immune System with Three Mammalian Pore-Forming Killer Proteins. Front Immunol 2016; 7:464. [PMID: 27857713 PMCID: PMC5093134 DOI: 10.3389/fimmu.2016.00464] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2016] [Accepted: 10/17/2016] [Indexed: 12/12/2022] Open
Abstract
Immunology is the science of biological warfare between the defenses of our immune systems and offensive pathogenic microbes and cancers. Over the course of his scientific career, Eckhard R. Podack made several seminal discoveries that elucidated key aspects of this warfare at a molecular level. When Eckhard joined the complement laboratory of Müller-Eberhard in 1974, he was fascinated by two questions: (1) what is the molecular mechanism by which complement kills invasive bacteria? and (2) which one of the complement components is the killer molecule? Eckhard’s quest to answer these questions would lead to the discovery C9 and later, two additional pore-forming killer molecules of the immune system. Here is a brief account of how he discovered poly-C9, the pore-forming protein of complement in blood and interstitial fluids: Perforin-1, expressed by natural killer cells and cytotoxic T lymphocytes; and Perforin-2 (MPEG1), expressed by all cell types examined to date. All the three killing systems are crucial for our survival and health.
Collapse
Affiliation(s)
- Eckhard R Podack
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| | - George P Munson
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami , Miami, FL , USA
| |
Collapse
|