1
|
Fei X, Chen S, Li L, Xu X, Wang H, Ke H, He C, Xie C, Wu X, Liu J, Xie Y, Lu N, Zhu Y, Li N. Helicobacter pylori infection promotes M1 macrophage polarization and gastric inflammation by activation of NLRP3 inflammasome via TNF/TNFR1 axis. Cell Commun Signal 2025; 23:6. [PMID: 39762835 PMCID: PMC11705855 DOI: 10.1186/s12964-024-02017-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 12/27/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Macrophages play a crucial role in chronic gastritis induced by the pathogenic Helicobacter pylori (H. pylori) infection. NLRP3 inflammasome has emerged as an important component of inflammatory processes. However, the molecular mechanism by which H. pylori infection drives NLRP3 inflammasome and macrophages activation remains unclear. METHODS Human gastritis tissues were collected for clinical significance of NLRP3. Infection with H. pylori was performed using in vitro and in vivo models. Bone marrow-derived macrophages (BMDMs) from wild-type (WT), Nlrp3-knockout (KO) and Tnfr1-KO mice were infected with H. pylori. Western blotting, qRT-PCR, immunofluorescence, immunohistochemistry and ELISA were utilized for functional and mechanistic studies. RESULTS Single-cell RNA sequencing (ScRNA-seq) analysis of human gastric tissues, followed by validation, indicated that NLRP3 was primarily expressed in myeloid cells and was significantly increased in H. pylori-positive gastritis compared to H. pylori-negative gastritis. Infection with PMSS1 and NCTC11637 H. pylori strains induced NLRP3 inflammasome activation in vitro (THP1 cells) and in the insulin-gastrin (INS-GAS) transgenic mouse model. Deletion of NLRP3 in BMDMs showed marked inhibition of H. pylori-induced M1 macrophage polarization. Furthermore, NLRP3 inflammasome activation upon TNFα, or H. pylori stimulation, was partially blocked by TNFα/TNFR1 signaling inhibitors. Deletion of TNFR1 in BMDMs significantly impaired NLRP3 inflammasome activation and M1 macrophages induced by H. pylori. CONCLUSION This study revealed that the activation of NLRP3 inflammasome, regulated by the TNF/TNFR1 signaling axis, is a key regulator of H. pylori-induced M1 macrophage activation and gastritis.
Collapse
Affiliation(s)
- Xiao Fei
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Sihai Chen
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Leyan Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xinbo Xu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Huan Wang
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Postdoctoral Innovation Practice Base, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Huajing Ke
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Cong He
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Chuan Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xidong Wu
- Department of Drug Safety Evaluation, Jiangxi Testing Center of Medical Instruments, Nanchang, China
| | - Jianping Liu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yong Xie
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Nonghua Lu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yin Zhu
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| | - Nianshuang Li
- Department of Gastroenterology, Jiangxi Provincial Key Laboratory of Digestive Diseases, Jiangxi Clinical Research Center for Gastroenterology, Digestive Disease Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Khadka S, Dziadowicz SA, Xu X, Wang L, Hu G, Carrero JA, DiPaolo RJ, Busada JT. Endogenous glucocorticoids are required for normal macrophage activation and gastric Helicobacter pylori immunity. Am J Physiol Gastrointest Liver Physiol 2024; 327:G531-G544. [PMID: 39041676 PMCID: PMC11482275 DOI: 10.1152/ajpgi.00114.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/03/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Glucocorticoids are steroid hormones well known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori, the best-known risk factor of gastric cancer. Our results indicate that, compared with wild type (WT), glucocorticoid receptor knockout (GRKO) macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with H. pylori revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric H. pylori immunity.NEW & NOTEWORTHY Signaling by endogenous glucocorticoids primes macrophages toward more robust responses to pathogens. Disruption of glucocorticoid signaling caused dysregulation of the chromatin landscape, blunted proinflammatory gene activation upon bacterial challenge, and impaired the gastric inflammatory response to Helicobacter pylori infection.
Collapse
Affiliation(s)
- Stuti Khadka
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Sebastian A Dziadowicz
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Xiaojiang Xu
- Department of Pathology and Laboratory Medicine, Tulane University School of Medicine, New Orleans, Louisiana, United States
| | - Lei Wang
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Gangqing Hu
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| | - Javier A Carrero
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Richard J DiPaolo
- Department of Molecular Microbiology and Immunology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States
| | - Jonathan T Busada
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, West Virginia, United States
| |
Collapse
|
3
|
Ishikawa-Ankerhold H, Busch B, Bader A, Maier-Begandt D, Dionisio F, Namineni S, Vladymyrov M, Harrison U, van den Heuvel D, Tomas L, Walzog B, Massberg S, Schulz C, Haas R. Novel multiphoton intravital imaging enables real-time study of Helicobacter pylori interaction with neutrophils and macrophages in the mouse stomach. PLoS Pathog 2024; 20:e1012580. [PMID: 39348445 PMCID: PMC11478878 DOI: 10.1371/journal.ppat.1012580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 10/15/2024] [Accepted: 09/11/2024] [Indexed: 10/02/2024] Open
Abstract
Helicobacter pylori (H. pylori) is a bacterial pathogen that exclusively colonizes the human gastric mucosa and can cause persistent infection. In this process, H. pylori employs various strategies to avoid recognition by the human immune system. These range from passive defense strategies (e.g., altered LPS or flagellin structures) that prevent recognition by pattern recognition receptors (PRRs) to more active approaches, such as inhibition of IL-2 secretion and proliferation of T cells via VacA. Despite the growing evidence that H. pylori actively manipulates the human immune system for its own benefit, the direct interaction of H. pylori with immune cells in situ is poorly studied. Here, we present a novel intravital imaging model of the murine stomach gastric mucosa and show for the first time the in situ recruitment of neutrophils during infection and a direct H. pylori-macrophage interaction. For this purpose, we applied multiphoton intravital microscopy adapted with live drift correction software (VivoFollow) on LysM-eGFP and CX3CR1-eGFP reporter mice strains in which specific subsets of leukocytes are fluorescently labeled. Multiphoton microscopy is proving to be an excellent tool for characterizing interactions between immune cells and pathogens in vivo.
Collapse
Affiliation(s)
- Hellen Ishikawa-Ankerhold
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU University Hospital, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Benjamin Busch
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Almke Bader
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU University Hospital, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Daniela Maier-Begandt
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU University Hospital, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Flavio Dionisio
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
| | - Sukumar Namineni
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Mykhailo Vladymyrov
- Data Science Lab, Mathematical Institute, University of Bern, Bern, Switzerland
| | - Ute Harrison
- Chair of Medical Microbiology and Hospital Epidemiology, Max von Pettenkofer Institute, Faculty of Medicine, LMU Munich, Germany
| | - Dominic van den Heuvel
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU University Hospital, Munich, Germany
| | - Lukas Tomas
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Barbara Walzog
- Institute of Surgical Research at the Walter-Brendel-Centre of Experimental Medicine, LMU University Hospital, Munich, Germany
- Institute of Cardiovascular Physiology and Pathophysiology, Biomedical Center, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Steffen Massberg
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
| | - Christian Schulz
- Department of Internal Medicine I, LMU University Hospital, Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- Department of Immunopharmacology, Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Rainer Haas
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, Munich, Germany
- German Center for Infection Research (DZIF), LMU Munich, Germany
| |
Collapse
|
4
|
Wei YF, Li X, Zhao MR, Liu S, Min L, Zhu ST, Zhang ST, Xie SA. Helicobacter pylori disrupts gastric mucosal homeostasis by stimulating macrophages to secrete CCL3. Cell Commun Signal 2024; 22:263. [PMID: 38730482 PMCID: PMC11084090 DOI: 10.1186/s12964-024-01627-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Helicobacter pylori (H. pylori) is the predominant etiological agent of gastritis and disrupts the integrity of the gastric mucosal barrier through various pathogenic mechanisms. After H. pylori invades the gastric mucosa, it interacts with immune cells in the lamina propria. Macrophages are central players in the inflammatory response, and H. pylori stimulates them to secrete a variety of inflammatory factors, leading to the chronic damage of the gastric mucosa. Therefore, the study aims to explore the mechanism of gastric mucosal injury caused by inflammatory factors secreted by macrophages, which may provide a new mechanism for the development of H. pylori-related gastritis. METHODS The expression and secretion of CCL3 from H. pylori infected macrophages were detected by RT-qPCR, Western blot and ELISA. The effect of H. pylori-infected macrophage culture medium and CCL3 on gastric epithelial cells tight junctions were analyzed by Western blot, immunofluorescence and transepithelial electrical resistance. EdU and apoptotic flow cytometry assays were used to detect cell proliferation and apoptosis levels. Dual-luciferase reporter assays and chromatin immunoprecipitation assays were used to study CCL3 transcription factors. Finally, gastric mucosal tissue inflammation and CCL3 expression were analyzed by hematoxylin and eosin staining and immunohistochemistry. RESULTS After H. pylori infection, CCL3 expressed and secreted from macrophages were increased. H. pylori-infected macrophage culture medium and CCL3 disrupted gastric epithelial cells tight junctions, while CCL3 neutralizing antibody and receptor inhibitor of CCL3 improved the disruption of tight junctions between cells. In addition, H. pylori-infected macrophage culture medium and CCL3 recombinant proteins stimulated P38 phosphorylation, and P38 phosphorylation inhibitor improved the disruption of tight junctions between cells. Besides, it was identified that STAT1 was a transcription factor of CCL3 and H. pylori stimulated macrophage to secret CCL3 through the JAK1-STAT1 pathway. Finally, after mice were injected with murine CCL3 recombinant protein, the gastric mucosal injury and inflammation were aggravated, and the phosphorylation level of P38 was increased. CONCLUSIONS In summary, our findings demonstrate that H. pylori infection stimulates macrophages to secrete CCL3 via the JAK1-STAT1 pathway. Subsequently, CCL3 damages gastric epithelial tight junctions through the phosphorylation of P38. This may be a novel mechanism of gastric mucosal injury in H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Yan-Fei Wei
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Xue Li
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Meng-Ran Zhao
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Si Liu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Li Min
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Sheng-Tao Zhu
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
- National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China
| | - Shu-Tian Zhang
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
| | - Si-An Xie
- Department of Gastroenterology, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China.
- National Clinical Research Center for Digestive Disease, Beijing Digestive Disease Center, State Key Laboratory of Digestive Health, Beijing, 100050, China.
| |
Collapse
|
5
|
Yu B, de Vos D, Guo X, Peng S, Xie W, Peppelenbosch MP, Fu Y, Fuhler GM. IL-6 facilitates cross-talk between epithelial cells and tumor- associated macrophages in Helicobacter pylori-linked gastric carcinogenesis. Neoplasia 2024; 50:100981. [PMID: 38422751 PMCID: PMC10912637 DOI: 10.1016/j.neo.2024.100981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/20/2024] [Indexed: 03/02/2024]
Abstract
PURPOSE Helicobacter pylori (H. pylori) is a significant risk factor for development of gastric cancer (GC), one of the deadliest malignancies in the world. However, the mechanism by which H. pylori induces gastric oncogenesis remains unclear. Here, we investigated the function of IL-6 in gastric oncogenesis and macrophage-epithelial cell interactions. METHODS We analyzed publicly available datasets to investigate the expression of IL-6 and infiltration of M2 macrophages in GC tissues, and determine the inter-cellular communication in the context of IL-6. Human gastric epithelial and macrophage cell lines (GES-1 and THP-1-derived macrophages, respectively) were used in mono- and co-culture experiments to investigate autocrine-and paracrine induction of IL-6 expression in response to H. pylori or IL-6 stimulation. RESULTS We found that IL-6 is highly expressed in GC and modulates survival. M2 macrophage infiltration is predominant in GC and drives an IL-6 mediated communication with gastric epithelium cells. In vitro, IL-6 triggers its own expression in GES-1 and THP-1-derived macrophages cells. In addition, these cell lines are able to upregulate each other's IL-6 levels in an autocrine fashion, which is enhanced by H. pylori stimulation. CONCLUSION This study indicates that IL-6 in the tumor microenvironment is essential for intercellular communication. We show that H. pylori enhances an IL-6-driven autocrine and paracrine positive feedback loop between macrophages and gastric epithelial cells, which may contribute to gastric carcinogenesis.
Collapse
Affiliation(s)
- Bingting Yu
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Dr Molewaterplein 40, Rotterdam, GD 3015, the Netherlands
| | - Danny de Vos
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Dr Molewaterplein 40, Rotterdam, GD 3015, the Netherlands; Department of Infectious Diseases, Leiden University Medical Centre, the Netherlands; Department of Parasitology, Leiden University Medical Centre, the Netherlands
| | - Xiaopei Guo
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Dr Molewaterplein 40, Rotterdam, GD 3015, the Netherlands
| | - SanFei Peng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wenjie Xie
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Maikel P Peppelenbosch
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Dr Molewaterplein 40, Rotterdam, GD 3015, the Netherlands
| | - Yang Fu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Gwenny M Fuhler
- Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center Rotterdam, Dr Molewaterplein 40, Rotterdam, GD 3015, the Netherlands.
| |
Collapse
|
6
|
Nemidkanam V, Banlunara W, Chaichanawongsaroj N. Kaempferia parviflora Extracellular Vesicle Loaded with Clarithromycin for the Treatment of Helicobacter pylori Infection. Int J Nanomedicine 2024; 19:1967-1983. [PMID: 38435753 PMCID: PMC10908287 DOI: 10.2147/ijn.s444686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024] Open
Abstract
Purpose Kaempferia parviflora extracellular vesicles (KPEVs) have been reported as promising nanovesicles for drug delivery. This study aimed to load clarithromycin (CLA) into KPEVs (KPEVS-CLA) and determine the physical properties, drug-releasing efficiency, gastric cell uptake, anti-H. pylori activities, and anti-inflammatory responses in comparison with free CLA and KPEVs. Methods The size and surface charge of KPEVs-CLA were evaluated using dynamic light scattering and visualized using a transmission electron microscope. The encapsulation efficiency (EE%), loading capacity (LC%), and drug release of KPEVs-CLA were examined using HPLC. Anti-H. pylori growth and anti-adhesion were evaluated. IL-8 gene expression, NF-κB signaling proteins, and anti-inflammatory profiles were examined using qRT-PCR, Western blotting, and Bio-Plex immunoassay, respectively. Anti-chemotaxis was then examined using a Transwell assay. Results KPEVs-CLA were intact and showed a negative surface charge similar to that of KPEVs. However, slightly enlarged KPEVs were observed. CLA was successfully loaded into KPEVs with EE of 93.45% ± 2.43%, LC of 9.3% ± 3.02%. CLA release in the PBS and gastric mimic buffer with Fickian diffusion (n ≤ 0.43) according to Korsmeyer-Peppas kinetic model (R2=0.98). KPEVs-CLA was localized in the gastric cells' cytoplasm and perinuclear region. Anti-H. pylori growth and anti-H. pylori adhesion of KPEVs-CLA were compared with those of free CLA with no cytotoxicity to adenocarcinoma gastric cells. KPEVs-CLA significantly reduced IL-8, G-CSF, MIP-1α, and MIP-1β levels. Moreover, KPEVs-CLA showed a superior effect over CLA in reducing G-CSF, MIP-1α, and NF-κB phosphorylation and monocyte chemotactic activities. Conclusion KPEVs serve as potential carriers of CLA. They exhibited a higher efficiency in inhibiting gastric cell inflammation mediated by H. pylori infection than free CLA. The establishment of KPEVs-CLA as a nanodrug delivery model for H. pylori treatment could be applied to other plant extracellular vesicles or loaded with other cancer drugs for gastric cancer treatment.
Collapse
Affiliation(s)
- Variya Nemidkanam
- Department of Clinical Chemistry, Graduate Program in Clinical Biochemistry and Molecular Medicine, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wijit Banlunara
- Department of Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Nuntaree Chaichanawongsaroj
- Department of Transfusion Medicine and Clinical Microbiology, Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, 10330, Thailand
| |
Collapse
|
7
|
Khadka S, Dziadowicz SA, Xu X, Wang L, Hu G, Busada JT. Endogenous glucocorticoids are required for normal macrophage activation and gastric Helicobacter pylori immunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.14.575574. [PMID: 38293225 PMCID: PMC10827053 DOI: 10.1101/2024.01.14.575574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Glucocorticoids are steroid hormones well-known for their potent anti-inflammatory effects. However, their immunomodulatory properties are multifaceted. Increasing evidence suggests that glucocorticoid signaling promotes effective immunity and that disruption of glucocorticoid signaling impairs immune function. In this study, we conditionally deleted the glucocorticoid receptor (GR) in the myeloid lineage using the LysM-Cre driver (myGRKO). We examined the impact on macrophage activation and gastric immune responses to Helicobacter pylori , the best-known risk factor of gastric cancer. Our results indicate that compared to WT, GRKO macrophages exhibited higher expression of proinflammatory genes in steroid-free conditions. However, when challenged in vivo, GRKO macrophages exhibited aberrant chromatin landscapes and impaired proinflammatory gene expression profiles. Moreover, gastric colonization with Helicobacter revealed impaired gastric immune responses and reduced T cell recruitment in myGRKO mice. As a result, myGRKO mice were protected from atrophic gastritis and pyloric metaplasia development. These results demonstrate a dual role for glucocorticoid signaling in preparing macrophages to respond to bacterial infection but limiting their pathogenic activation. In addition, our results support that macrophages are critical for gastric anti- Helicobacter immunity.
Collapse
|
8
|
Meliț LE, Mărginean CO, Borka Balas R. The Most Recent Insights into the Roots of Gastric Cancer. Life (Basel) 2024; 14:95. [PMID: 38255710 PMCID: PMC10817233 DOI: 10.3390/life14010095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 01/01/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024] Open
Abstract
Helicobacter pylori (H. pylori) is the most common bacterial infection worldwide, usually being acquired during childhood, and its persistence into adulthood represents one of the main contributors of gastric carcinogenesis. Based on these statements, it would be of great importance to know if the most early premalignant transformation occurs in children or later since, this would enable the development of effective anti-tumorigenesis strategies. The interplay between H. pylori virulence factors, the host's responses modified by this infection, and the gastric microecology are complex and eventually lead to the development of gastric cancer in susceptible individuals. Several biomarkers were identified as major contributors of this long-lasting process, such as pepsinogens, gastrin 17, lipid-, glucose- and iron-metabolism parameters, immunity players, aberrant bacterial DNA methylation, H. pylori virulence factors, and hallmarks of gastric dysbiosis. Several of these biomarkers were also identified in children with H. pylori infection, independently of the presence of premalignant lesions, which were also proven to be present in a subgroup of H. pylori-infected children, especially those carrying extremely virulent strains. Therefore, the most incipient premalignant gastric changes might indeed occur early during childhood, opening a promising research gate for further studies to delineate the border between infection and cancer.
Collapse
Affiliation(s)
| | - Cristina Oana Mărginean
- Department of Pediatrics I, “George Emil Palade” University of Medicine, Pharmacy, Sciences and Technology, Târgu Mureș, Gheorghe Marinescu Street, No. 38, 540136 Târgu Mureș, Romania; (L.E.M.)
| | | |
Collapse
|
9
|
Skakic I, Francis JE, Dekiwadia C, Aibinu I, Huq M, Taki AC, Walduck A, Smooker PM. An Evaluation of Urease A Subunit Nanocapsules as a Vaccine in a Mouse Model of Helicobacter pylori Infection. Vaccines (Basel) 2023; 11:1652. [PMID: 38005984 PMCID: PMC10674275 DOI: 10.3390/vaccines11111652] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/18/2023] [Accepted: 10/24/2023] [Indexed: 11/26/2023] Open
Abstract
Using removable silica templates, protein nanocapsules comprising the A subunit of Helicobacter pylori urease (UreA) were synthesised. The templates were of two sizes, with solid core mesoporous shell (SC/MS) silica templates giving rise to nanocapsules of average diameter 510 nm and mesoporous (MS) silica templates giving rise to nanocapsules of average diameter 47 nm. Both were shown to be highly monodispersed and relatively homogenous in structure. Various combinations of the nanocapsules in formulation were assessed as vaccines in a mouse model of H. pylori infection. Immune responses were evaluated and protective efficacy assessed. It was demonstrated that vaccination of mice with the larger nanocapsules combined with an adjuvant was able to significantly reduce colonisation.
Collapse
Affiliation(s)
- Ivana Skakic
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Jasmine E. Francis
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, School of Science, RMIT University, Melbourne, VIC 3001, Australia;
| | - Ibukun Aibinu
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Health, Science and Community, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Mohsina Huq
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| | - Aya C. Taki
- Faculty of Science, Melbourne Veterinary School, The University of Melbourne, Parkville, VIC 3010, Australia;
| | - Anna Walduck
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
- Rural Health Research Institute, Charles Sturt University, Orange, NSW 2800, Australia
| | - Peter M. Smooker
- School of Science, RMIT University, 264 Plenty Road, Bundoora, VIC 3083, Australia; (I.S.); (J.E.F.); (I.A.); (M.H.); (A.W.)
| |
Collapse
|
10
|
Modi N, Chen Y, Dong X, Hu X, Lau GW, Wilson KT, Peek RM, Chen LF. BRD4 Regulates Glycolysis-Dependent Nos2 Expression in Macrophages Upon H pylori Infection. Cell Mol Gastroenterol Hepatol 2023; 17:292-308.e1. [PMID: 37820788 PMCID: PMC10829522 DOI: 10.1016/j.jcmgh.2023.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/13/2023]
Abstract
BACKGROUND & AIMS Metabolic reprogramming is essential for the activation and functions of macrophages, including bacterial killing and cytokine production. Bromodomain-containing protein 4 (BRD4) has emerged as a critical regulator of innate immune response. However, the potential role of BRD4 in the metabolic reprogramming of macrophage activation upon Helicobacter pylori infection remains unclear. METHODS Bone marrow-derived macrophages (BMDMs) from wild-type (WT) and Brd4-myeloid deletion conditional knockout (Brd4-CKO) mice were infected with H pylori. RNA sequencing was performed to evaluate the differential gene expression between WT and Brd4-deficient BMDMs upon infection. An in vivo model of H pylori infection using WT and Brd4-CKO mice was used to confirm the role of BRD4 in innate immune response to infection. RESULTS Depletion of Brd4 in BMDMs showed impaired H pylori-induced glycolysis. In addition, H pylori-induced expression of glycolytic genes, including Slc2a1 and Hk2, was decreased in Brd4-deficient BMDMs. BRD4 was recruited to the promoters of Slc2a1 and Hk2 via hypoxia-inducible factor-1α, facilitating their expression. BRD4-mediated glycolysis stabilized H pylori-induced nitric oxide synthase (Nos2) messenger RNA to produce nitric oxide. The NO-mediated killing of H pylori decreased in Brd4-deficient BMDMs, which was rescued by pyruvate. Furthermore, Brd4-CKO mice infected with H pylori showed reduced gastric inflammation and increased H pylori colonization with reduced inducible NO synthase expression in gastric macrophages. CONCLUSIONS Our study identified BRD4 as a key regulator of hypoxia-inducible factor-1α-dependent glycolysis and macrophage activation. Furthermore, we show a novel regulatory role of BRD4 in innate immunity through glycolysis to stabilize Nos2 messenger RNA for NO production to eliminate H pylori infection.
Collapse
Affiliation(s)
- Nikita Modi
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Yanheng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Xingchen Dong
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Xiangming Hu
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Gee W Lau
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee; Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lin-Feng Chen
- Department of Biochemistry, College of Liberal Arts & Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois; Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
11
|
Teng Y, Xie R, Xu J, Wang P, Chen W, Shan Z, Yan Z, Mao F, Cheng P, Peng L, Zhang J, Tian W, Yang S, Zhao Y, Chen W, Zou Q, Zhuang Y. Tubulointerstitial nephritis antigen-like 1 is a novel matricellular protein that promotes gastric bacterial colonization and gastritis in the setting of Helicobacter pylori infection. Cell Mol Immunol 2023; 20:924-940. [PMID: 37336990 PMCID: PMC10387474 DOI: 10.1038/s41423-023-01055-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/29/2023] [Indexed: 06/21/2023] Open
Abstract
The interaction between the gastric epithelium and immune cells plays key roles in H. pylori-associated pathology. Here, we demonstrate a procolonization and proinflammatory role of tubulointerstitial nephritis antigen-like 1 (TINAGL1), a newly discovered matricellular protein, in H. pylori infection. Increased TINAGL1 production by gastric epithelial cells (GECs) in the infected gastric mucosa was synergistically induced by H. pylori and IL-1β via the ERK-SP1 pathway in a cagA-dependent manner. Elevated human gastric TINAGL1 correlated with H. pylori colonization and the severity of gastritis, and mouse TINAGL1 derived from non-bone marrow-derived cells promoted bacterial colonization and inflammation. Importantly, H. pylori colonization and inflammation were attenuated in Tinagl1-/- and Tinagl1ΔGEC mice and were increased in mice injected with mouse TINAGL1. Mechanistically, TINAGL1 suppressed CCL21 expression and promoted CCL2 production in GECs by directly binding to integrin α5β1 to inhibit ERK and activate the NF-κB pathway, respectively, which not only led to decreased gastric influx of moDCs via CCL21-CCR7-dependent migration and, as a direct consequence, reduced the bacterial clearance capacity of the H. pylori-specific Th1 response, thereby promoting H. pylori colonization, but also resulted in increased gastric influx of Ly6Chigh monocytes via CCL2-CCR2-dependent migration. In turn, TINAGL1 induced the production of the proinflammatory protein S100A11 by Ly6Chigh monocytes, promoting H. pylori-associated gastritis. In summary, we identified a model in which TINAGL1 collectively ensures H. pylori persistence and promotes gastritis.
Collapse
Affiliation(s)
- Yongsheng Teng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Rui Xie
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Jingyu Xu
- The Collaborative Innovation Center of Tissue Damage Repair and Regeneration Medicine of Zunyi Medical University, Zunyi, Guizhou, China
| | - Pan Wang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- The 940th Hospital of Joint Logistics Support Force of PLA, Lanzhou, China
| | - Wanyan Chen
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Zhiguo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zongbao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fangyuan Mao
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liusheng Peng
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Jinyu Zhang
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Wenqing Tian
- Department of Gastroenterology, Chongqing University Cancer Hospital, Chongqing, China
| | - Shiming Yang
- Department of Gastroenterology, XinQiao Hospital, Third Military Medical University, Chongqing, China
| | - Yongliang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Weisan Chen
- La Trobe Institute of Molecular Science, La Trobe University, Bundoora, VIC, Australia
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China.
| | - Yuan Zhuang
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China.
- National Engineering Research Center of Immunological Products, Third Military Medical University, Chongqing, China.
| |
Collapse
|
12
|
Zheng Y, Wu S, Huang X, Luo L. Ferroptosis-Related lncRNAs Act as Novel Prognostic Biomarkers in the Gastric Adenocarcinoma Microenvironment, Immunotherapy, and Chemotherapy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9598783. [PMID: 37251440 PMCID: PMC10219779 DOI: 10.1155/2023/9598783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/01/2023] [Accepted: 04/21/2023] [Indexed: 05/31/2023]
Abstract
Ferroptosis, a form of programmed cell death akin to necrosis, is managed by iron and is distinguished by lipid peroxidation. Gastric cancer is a highly aggressive form of cancer, responsible for the third highest number of cancer-related deaths globally. Despite this, the potential of ferroptosis to predict the occurrence of this cancer is yet to be determined. In this research, a comprehensive examination was conducted to explore the link between long noncoding RNAs (lncRNAs) and ferroptosis, in order to uncover an lncRNA signature that can predict drug susceptibility and tumor mutational burden (TMB) in gastric adenocarcinoma. We conducted an in-depth analysis of the GC immune microenvironment and immunotherapy, with a particular focus on ferroptosis-related lncRNA prognostic biomarkers, and further explored the correlation between these factors and prognosis, immune infiltration, single nucleotide variation (SNV), and drug sensitivity for gastric adenocarcinoma patients. Through our investigations, we have discovered five lncRNA signatures related to ferroptosis that can accurately forecast the prognosis of gastric adenocarcinoma patients and also regulate the proliferation, migration, and occurrence of ferroptosis in gastric adenocarcinoma cells. In conclusion, this lncRNA signature associated with ferroptosis may be employed as a prognostic indicator for gastric adenocarcinoma, thus presenting a potential solution.
Collapse
Affiliation(s)
- Yushi Zheng
- The First Clinical College, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Shanshan Wu
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Xueshan Huang
- Department of Biology, School of Basic Medical Science, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute, Guangdong Medical University, Zhanjiang, Guangdong 524023, China
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, Zhanjiang, Guangdong 524023, China
| |
Collapse
|
13
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|
14
|
Deng R, Zheng H, Cai H, Li M, Shi Y, Ding S. Effects of helicobacter pylori on tumor microenvironment and immunotherapy responses. Front Immunol 2022; 13:923477. [PMID: 35967444 PMCID: PMC9371381 DOI: 10.3389/fimmu.2022.923477] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 07/04/2022] [Indexed: 12/13/2022] Open
Abstract
Helicobacter pylori is closely associated with gastric cancer. During persistent infection, Helicobacter pylori can form a microenvironment in gastric mucosa which facilitates the survival and colony formation of Helicobacter pylori. Tumor stromal cells are involved in this process, including tumor-associated macrophages, mesenchymal stem cells, cancer-associated fibroblasts, and myeloid-derived suppressor cells, and so on. The immune checkpoints are also regulated by Helicobacter pylori infection. Helicobacter pylori virulence factors can also act as immunogens or adjuvants to elicit or enhance immune responses, indicating their potential applications in vaccine development and tumor immunotherapy. This review highlights the effects of Helicobacter pylori on the immune microenvironment and its potential roles in tumor immunotherapy responses.
Collapse
Affiliation(s)
- Ruiyi Deng
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Huiling Zheng
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| | - Hongzhen Cai
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University First Medical School, Beijing, China
| | - Man Li
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
- Peking University Health Science Center, Peking University Third Medical School, Beijing, China
| | - Yanyan Shi
- Peking University Third Hospital, Research Center of Clinical Epidemiology, Beijing, China
| | - Shigang Ding
- Peking University Third Hospital, Department of Gastroenterology, Beijing, China
| |
Collapse
|
15
|
Cheok YY, Tan GMY, Lee CYQ, Abdullah S, Looi CY, Wong WF. Innate Immunity Crosstalk with Helicobacter pylori: Pattern Recognition Receptors and Cellular Responses. Int J Mol Sci 2022; 23:ijms23147561. [PMID: 35886908 PMCID: PMC9317022 DOI: 10.3390/ijms23147561] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/02/2022] [Accepted: 07/04/2022] [Indexed: 02/07/2023] Open
Abstract
Helicobacter pylori is one of the most successful gastric pathogens that has co-existed with human for centuries. H. pylori is recognized by the host immune system through human pattern recognition receptors (PRRs), such as toll-like receptors (TLRs), C-type lectin like receptors (CLRs), NOD-like receptors (NLRs), and RIG-I-like receptors (RLRs), which activate downstream signaling pathways. Following bacterial recognition, the first responders of the innate immune system, including neutrophils, macrophages, and dendritic cells, eradicate the bacteria through phagocytic and inflammatory reaction. This review provides current understanding of the interaction between the innate arm of host immunity and H. pylori, by summarizing H. pylori recognition by PRRs, and the subsequent signaling pathway activation in host innate immune cells.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, Subang Jaya 47500, Malaysia;
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia; (Y.Y.C.); (G.M.Y.T.); (C.Y.Q.L.)
- Correspondence:
| |
Collapse
|
16
|
Tang K, McLeod L, Livis T, West AC, Dawson R, Yu L, Balic JJ, Chonwerawong M, Wray-McCann G, Oshima H, Oshima M, Deswaerte V, Ferrero RL, Jenkins BJ. Toll-like Receptor 9 Promotes Initiation of Gastric Tumorigenesis by Augmenting Inflammation and Cellular Proliferation. Cell Mol Gastroenterol Hepatol 2022; 14:567-586. [PMID: 35716851 PMCID: PMC9307956 DOI: 10.1016/j.jcmgh.2022.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 06/03/2022] [Accepted: 06/06/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS Gastric cancer (GC) is strongly linked with chronic gastritis after Helicobacter pylori infection. Toll-like receptors (TLRs) are key innate immune pathogenic sensors that mediate chronic inflammatory and oncogenic responses. Here, we investigated the role of TLR9 in the pathogenesis of GC, including Helicobacter infection. METHODS TLR9 gene expression was profiled in gastric tissues from GC and gastritis patients and from the spontaneous gp130F/F GC mouse model and chronic H felis-infected wild-type (WT) mice. Gastric pathology was compared in gp130F/F and H felis infection models with or without genetic ablation of Tlr9. The impact of Tlr9 targeting on signaling cascades implicated in inflammation and tumorigenesis (eg, nuclear factor kappa B, extracellular signal-related kinase, and mitogen-activated protein kinase) was assessed in vivo. A direct growth-potentiating effect of TLR9 ligand stimulation on human GC cell lines and gp130F/F primary gastric epithelial cells was also evaluated. RESULTS TLR9 expression was up-regulated in Helicobacter-infected gastric tissues from GC and gastritis patients and gp130F/F and H felis-infected WT mice. Tlr9 ablation suppressed initiation of tumorigenesis in gp130F/F:Tlr9-/- mice by abrogating gastric inflammation and cellular proliferation. Tlr9-/- mice were also protected against H felis-induced gastric inflammation and hyperplasia. The suppressed gastric pathology upon Tlr9 ablation in both mouse models associated with attenuated nuclear factor kappa B and, to a lesser extent, extracellular signal-related kinase, mitogen-activated protein kinase signaling. TLR9 ligand stimulation of human GC cells and gp130F/F GECs augmented their proliferation and viability. CONCLUSIONS Our data reveal that TLR9 promotes the initiating stages of GC and facilitates Helicobacter-induced gastric inflammation and hyperplasia, thus providing in vivo evidence for TLR9 as a candidate therapeutic target in GC.
Collapse
Affiliation(s)
- Ke Tang
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Louise McLeod
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Thaleia Livis
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Alison C. West
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Ruby Dawson
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Liang Yu
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Jesse J. Balic
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Georgie Wray-McCann
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Hiroko Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Masanobu Oshima
- Division of Genetics, Cancer Research Institute, Kanazawa University, Kanazawa, Japan
| | - Virginie Deswaerte
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia
| | - Richard L. Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia,Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
| | - Brendan J. Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia,Department of Molecular Translational Science, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, Victoria, Australia,Correspondence Address correspondence to: Brendan J. Jenkins, PhD, Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, 27-31 Wright Street, Clayton, Victoria 3168, Australia.
| |
Collapse
|
17
|
Yang J, Liu X, Cheng Y, Zhang J, Ji F, Ling Z. Roles of Plasmacytoid Dendritic Cells in Gastric Cancer. Front Oncol 2022; 12:818314. [PMID: 35311157 PMCID: PMC8927765 DOI: 10.3389/fonc.2022.818314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is the fifth most common neoplasm and the third most deadly cancer in humans worldwide. Helicobacter pylori infection is the most important causative factor of gastric carcinogenesis, and activates host innate and adaptive immune responses. As key constituents of the tumor immune microenvironment, plasmacytoid dendritic cells (pDCs) are increasingly attracting attention owing to their potential roles in immunosuppression. We recently reported that pDCs have vital roles in the development of immunosuppression in GC. Clarifying the contribution of pDCs to the development and progression of GC may lead to improvements in cancer therapy. In this review, we summarize current knowledge regarding immune modulation in GC, especially the roles of pDCs in GC carcinogenesis and treatment strategies.
Collapse
Affiliation(s)
- Jinpu Yang
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xia Liu
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Cheng
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jingchen Zhang
- Department of Intensive Care Unit, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Feng Ji
- Department of Gastroenterology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| |
Collapse
|
18
|
Role of Gastric Microorganisms Other than Helicobacter pylori in the Development and Treatment of Gastric Diseases. BIOMED RESEARCH INTERNATIONAL 2022; 2022:6263423. [PMID: 35321071 PMCID: PMC8938066 DOI: 10.1155/2022/6263423] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/02/2021] [Accepted: 02/18/2022] [Indexed: 12/15/2022]
Abstract
The microenvironment in the stomach is different from other digestive tracts, mainly because of the secretion of gastric acid and digestive enzymes, bile reflux, special mucus barrier, gastric peristalsis, and so on, which all contribute to the formation of antibacterial environment. Microecological disorders can lead to gastric immune disorders or lead to the decrease of dominant bacteria and the increase of the abundance and virulence of pathogenic microorganisms and then promote the occurrence of diseases. The body performs its immune function through innate and adaptive immunity and maintains microbial balance through the mechanism of immune homeostasis. Microecological imbalance can lead to the invasion of pathogenic microorganisms and damage mucosal barrier and immune system. The coexistence of gastric microorganisms (including viruses and fungi) may play a synergistic or antagonistic role in the pathogenesis of gastric diseases. Probiotics have the ability to compete with intestinal pathogens, increase the secretion of immunoglobulin A (IgA), stimulate the production of mucin, bacteriocin, and lactic acid, regulate the expression and secretion of cytokines, and regulate the growth of microbiota, which all have beneficial effects on the host microbial environment. At present, most studies focused on Helicobacter pylori, ignoring other stomach microbes and the overall stomach microecology. So, in this article, we reviewed advances in human gastric microecology, the relationship between gastric microecology and immunity or gastric diseases, and the treatment of probiotics in gastric diseases, in order to explore new area for further study of gastric microorganisms and treatment of gastric diseases.
Collapse
|
19
|
Yan ZB, Zhang JY, Lv YP, Tian WQ, Shan ZG, Mao FY, Liu YG, Chen WY, Wang P, Yang Y, Cheng P, Peng LS, Liao YL, Yue GY, Xu XL, Zhao YL, Lü MH, Zhuang Y. Helicobacter pylori-induced REDD1 modulates Th17 cell responses that contribute to gastritis. Clin Sci (Lond) 2021; 135:2541-2558. [PMID: 34730176 DOI: 10.1042/cs20210753] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 10/21/2021] [Accepted: 11/03/2021] [Indexed: 12/29/2022]
Abstract
OBJECTIVE Regulated in development and DNA damage responses-1 (REDD1) is a conserved and ubiquitous protein, which is induced in response to multiple stimuli. However, the regulation, function and clinical relevance of REDD1 in Helicobacter pylori-associated gastritis are presently unknown. APPROACH Immunohistochemistry, real-time PCR and Western blot analyses were performed to examine the levels of REDD1 in gastric samples from H. pylori-infected patients and mice. Gastric tissues from Redd1-/- and wildtype (WT, control) mice were examined for inflammation. Gastric epithelial cells (GECs), monocytes and T cells were isolated, stimulated and/or cultured for REDD1 regulation and functional assays. RESULTS REDD1 was increased in gastric mucosa of H. pylori-infected patients and mice. H. pylori induced GECs to express REDD1 via the phosphorylated cytotoxin associated gene A (cagA) that activated MAPKp38 pathway to mediate NF-κB directly binding to REDD1 promoter. Human gastric REDD1 increased with the severity of gastritis, and mouse REDD1 from non-marrow chimera-derived cells promoted gastric inflammation that was characterized by the influx of MHCII+ monocytes. Importantly, gastric inflammation, MHCII+ monocyte infiltration, IL-23 and IL-17A were attenuated in Redd1-/- mice. Mechanistically, REDD1 in GECs regulated CXCL1 production, which attracted MHCII+ monocytes migration by CXCL1-CXCR2 axis. Then H. pylori induced MHCII+ monocytes to secrete IL-23, which favored IL-17A-producing CD4+ cell (Th17 cell) polarization, thereby contributing to the development of H. pylori-associated gastritis. CONCLUSIONS The present study identifies a novel regulatory network involving REDD1, which collectively exert a pro-inflammatory effect within gastric microenvironment. Efforts to inhibit this REDD1-dependent pathway may prove valuable strategies in treating of H. pylori-associated gastritis.
Collapse
Affiliation(s)
- Zong-Bao Yan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Jin-Yu Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yi-Pin Lv
- Department of Digestive Diseases, General Hospital of Western Theater Command, Chengdu, Sichuan, China
| | - Wen-Qing Tian
- Department of Endocrinology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Zhi-Guo Shan
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Fang-Yuan Mao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yu-Gang Liu
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Wan-Yan Chen
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Pan Wang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ping Cheng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Liu-Sheng Peng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Ya-Ling Liao
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
| | - Geng-Yu Yue
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Xiao-Lin Xu
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yong-Liang Zhao
- Department of General Surgery and Center of Minimal Invasive Gastrointestinal Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | | | - Yuan Zhuang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, Chongqing, China
- Department of Gastroenterology, The Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
- Department of Gastroenterology, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Department of Gastroenterology, Southwest Hospital, Third Military Medical University, Chongqing, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, School of Medicine, Jiangsu University, Jiangsu, China
| |
Collapse
|
20
|
Cheok YY, Tan GMY, Fernandez KC, Chan YT, Lee CYQ, Cheong HC, Looi CY, Vadivelu J, Abdullah S, Wong WF. Podoplanin Drives Motility of Active Macrophage via Regulating Filamin C During Helicobacter pylori Infection. Front Immunol 2021; 12:702156. [PMID: 34707599 PMCID: PMC8543000 DOI: 10.3389/fimmu.2021.702156] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 09/10/2021] [Indexed: 01/12/2023] Open
Abstract
Podoplanin (Pdpn) is a mucin-type transmembrane protein that has been implicated in multiple physiological settings including lymphangiogenesis, platelet aggregation, and cancer metastasis. Here, we reported an absence of Pdpn transcript expression in the resting mouse monocytic macrophages, RAW264.7 cells; intriguingly, a substantial upregulation of Pdpn was observed in activated macrophages following Helicobacter pylori or lipopolysaccharide stimulation. Pdpn-knockout macrophages demonstrated intact phagocytic and intracellular bactericidal activities comparable to wild type but exhibited impaired migration due to attenuated filopodia formation. In contrast, an ectopic expression of Pdpn augmented filopodia protrusion in activated macrophages. NanoString analysis uncovered a close dependency of Filamin C gene on the presence of Pdpn, highlighting an involvement of Filamin C in modulation of actin polymerization activity, which controls cell filopodia formation and migration. In addition, interleukin-1β production was significantly declined in the absence of Pdpn, suggesting a role of Pdpn in orchestrating inflammation during H. pylori infection besides cellular migration. Together, our findings unravel the Pdpn network that modulates movement of active macrophages.
Collapse
Affiliation(s)
- Yi Ying Cheok
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Grace Min Yi Tan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Keith Conrad Fernandez
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yee Teng Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chalystha Yie Qin Lee
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Heng Choon Cheong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Chung Yeng Looi
- School of Bioscience, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Jamuna Vadivelu
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Suhailah Abdullah
- Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
21
|
Golubinskaya EP, Sataieva TP, Fomochkina II, Kubyshkin AV, Makalish TP, Shkolyar NA, Galyshevskaya AA, Varghese DV. Predictive potential of macrophage population phenotyping in malignization of H. pylori-associated chronic gastritis. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2021. [DOI: 10.24075/brsmu.2021.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tumor-associated macrophages are able to regulate the tumor cell proliferation and to affect the tumor cell dissemination. The study was aimed to assess the predictive potential of the macrophage population immunohistochemical phenotyping in early malignization of H. pylori-associated chronic gastritis. Gastic biopsy samples of male and female patients aged 48 ± 7.2 infected with Helicobacter pylori were used as the research material. The patients were divided into three groups: non-atrophic chronic gastritis (NACG, n = 10), atrophic chronic gastritis (ACG, n = 10), G1/G2 gastric adenocarcinoma (GAC, n = 10). The macrophage population was visualized using the CD68 pan-macrophage marker and the type 2 monocyte/macrophage marker CD163. Intensity of neoangiogenesis was defined using the CD31 endothelial marker by assessing the total cross sectional area of blood vessels. It was found that chronic gastritis was accompanied by the dynamic increase in the size of the general macrophage population with the progression of atrophic and metaplastic processes. According to immunohistochemical study of biopsies obtained from patients with NCG, the CD163 : CD68 ratio was 0.67 ± 0.02, and the total cross sectional area of blood vessels was 3590.92 ± 356.27 µm2. Atrophic gastritis and adenocarcinoma were characterized by vector redistribution of monocytes/macrophages into the 2nd functional phenotype. The CD163 : CD68 expression index in the group with ACG was 0.81 ± 0.04, and in the group with GAC it was 0.88 ± 0.03. Microvascular area was significantly increased in the groups with ACG and GAC, which reflected tumor neoangiogenesis intensification under the influence of М2 monocytes/macrophages. The increased expression of CD163 can serve as a predictor of chronic gastritis malignization together with evaluation of the glandular epithelium atrophy and metaplasia degree.
Collapse
Affiliation(s)
- EP Golubinskaya
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - TP Sataieva
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - II Fomochkina
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - AV Kubyshkin
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | - TP Makalish
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| | | | | | - DV Varghese
- V.I. Vernadsky Crimean Federal University, Simferopol, Russia
| |
Collapse
|
22
|
Gastric Microenvironment-A Partnership between Innate Immunity and Gastric Microbiota Tricks Helicobacter pylori. J Clin Med 2021; 10:jcm10153258. [PMID: 34362042 PMCID: PMC8347153 DOI: 10.3390/jcm10153258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/17/2021] [Accepted: 07/21/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) carcinogenicity depends on three major factors: bacterial virulence constituents, environmental factors and host's genetic susceptibility. The relationship between microenvironmental factors and H. pylori virulence factors are incontestable. H. pylori infection has a major impact on both gastric and colonic microbiota. The presence of non-H. pylori bacteria within the gastric ecosystem is particularly important since they might persistently act as an antigenic stimulus or establish a partnership with H. pylori in order to augment the subsequent inflammatory responses. The gastric ecosystem, i.e., microbiota composition in children with H. pylori infection is dominated by Streptoccocus, Neisseria, Rothia and Staphylococcus. The impairment of this ecosystem enhances growth and invasion of different pathogenic bacteria, further impairing the balance between the immune system and mucosal barrier. Moreover, altered microbiota due to H. pylori infection is involved in increasing the gastric T regulatory cells response in children. Since gastric homeostasis is defined by the partnership between commensal bacteria and host's immune system, this review is focused on how pathogen recognition through toll-like receptors (TLRs-an essential class of pathogen recognition receptors-PRRs) on the surface of macrophages and dendritic cells impact the immune response in the setting of H. pylori infection. Further studies are required for delineate precise role of bacterial community features and of immune system components.
Collapse
|
23
|
Wen J, Chen C, Luo M, Liu X, Guo J, Wei T, Gu X, Gu S, Ning Y, Li Y. Notch Signaling Ligand Jagged1 Enhances Macrophage-Mediated Response to Helicobacter pylori. Front Microbiol 2021; 12:692832. [PMID: 34305857 PMCID: PMC8297740 DOI: 10.3389/fmicb.2021.692832] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/04/2021] [Indexed: 12/11/2022] Open
Abstract
Helicobacter pylori (H. pylori) is one of the gram-negative bacteria that mainly colonize the stomach mucosa and cause many gastrointestinal diseases, such as gastritis, peptic ulcer, and gastric cancer. Macrophages play a key role in eradicating H. pylori. Recent data have shown that Notch signaling could modulate the activation and bactericidal activities of macrophages. However, the role of Notch signaling in macrophages against H. pylori remains unclear. In the present study, in the co-culture model of macrophages with H. pylori, the inhibition of Notch signaling using γ-secretase decreased the expression of inducible nitric oxide synthase (iNOS) and its product, nitric oxide (NO), and downregulated the secretion of pro-inflammatory cytokine and attenuated phagocytosis and bactericidal activities of macrophages to H. pylori. Furthermore, we identified that Jagged1, one of Notch signaling ligands, was both upregulated in mRNA and protein level in activated macrophages induced by H. pylori. Clinical specimens showed that the number of Jagged1+ macrophages in the stomach mucosa from H. pylori-infected patients was significantly higher than that in healthy control. The overexpression of Jagged1 promoted bactericidal activities of macrophages against H. pylori and siRNA-Jagged1 presented the opposite effect. Besides, the addition of exogenous rJagged1 facilitated the pro-inflammatory mediators of macrophages against H. pylori, but the treatment of anti-Jagged1 neutralizing antibody attenuated it. Taken together, these results suggest that Jagged1 is a promoting molecule for macrophages against H. pylori, which will provide insight for exploring Jagged1 as a novel therapeutic target for the control of H. pylori infection.
Collapse
Affiliation(s)
- Junjie Wen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Chuxi Chen
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Meiqun Luo
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Xiaocong Liu
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Jiading Guo
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Tingting Wei
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Xinyi Gu
- The First Clinical Medical School, Southern Medical University, Guangzhou, China
| | - Sinan Gu
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yunshan Ning
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Yan Li
- School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| |
Collapse
|
24
|
Sun J, Wang X, Zhang Z, Zeng Z, Ouyang S, Kang W. The Sensitivity Prediction of Neoadjuvant Chemotherapy for Gastric Cancer. Front Oncol 2021; 11:641304. [PMID: 33937042 PMCID: PMC8085495 DOI: 10.3389/fonc.2021.641304] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/22/2021] [Indexed: 12/24/2022] Open
Abstract
The overall efficacy of neoadjuvant chemoradiotherapy (NACT) for locally advanced gastric cancer (LAGC) has been recognized. However, the response rate of NACT is limited due to tumor heterogeneity. For patients who are resistant to NACT, not only the operation timing will be postponed, patients will also suffer from the side effects of it. Thus, it is important to develop a comprehensive strategy and screen out patients who may be sensitive to NACT. This article summarizes the related research progress on the sensitivity prediction of NACT for GC in the following aspects: microRNAs, metabolic enzymes, exosomes, other biomarkers; inflammatory indicators, and imageological assessments. The results showed that there were many studies on biomarkers, but no unified conclusion has been drawn. The inflammatory indicators are related to the survival and prognosis of patients under NACT. For imageological assessments such as CT, MRI, and PET, with careful integration and optimization, they will have unique advantages in early screening for patients who are sensitive to NACT.
Collapse
Affiliation(s)
- Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Xianze Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Peking Union Medical College Hospital (CAMS), Beijing, China
| | - Weiming Kang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.,Department of General Surgery, Peking Union Medical College Hospital (CAMS), Beijing, China
| |
Collapse
|
25
|
Yang T, Wang R, Liu H, Wang L, Li J, Wu S, Chen X, Yang X, Zhao Y. Berberine regulates macrophage polarization through IL-4-STAT6 signaling pathway in Helicobacter pylori-induced chronic atrophic gastritis. Life Sci 2020; 266:118903. [PMID: 33340526 DOI: 10.1016/j.lfs.2020.118903] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/01/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
AIMS We will investigate the anti-inflammatory activities of berberine (BBR) in treating chronic atrophic gastritis (CAG) induced by Helicobacter pylori (H. pylori). Furthermore, the underlying molecular mechanisms of BBR also will be explored systematically. MATERIALS AND METHODS Rats were infected by H. pylori. Lipopolysaccharide (LPS) and H. pylori were applied to induce M1 Mφs polarization, interleukin 4 (IL-4) and BBR were used to induce M2 Mφs polarization. Supernatants of polarized Mφs were collected as conditioned media (CM) for investigating the impact of Mφs and its' secreted cytokine on gastric epithelial cells (GES-1). Cell viability, morphology, proliferation, and quantitative analysis of RAW 264.7 cells and GES-1 cells were detected by high-content screening (HCS) imaging assay. To further investigate the potential mechanisms of BBR, relative mRNA, immunohistochemistry and protein expression were measured. KEY FINDINGS BBR inhibited M1-polarized Mφs, which was induced by H. pylori and LPS, and advocated M2-polarized Mφs. The M1-specific markers (TNF-α and IFN-γ) in supernatants were reduced significantly and M2 specific markers (TGF-β and IL-10) were increased obviously under BBR intervention. In addition, BBR significantly protected GES-1 from M1-polarized Mφs injury. The mRNA expression of M1-polarized Mφs, including TNF-α, NOS2, CCR7, and IRF-8, were suppressed by BBR administration and the mRNA expression of M2-polarized Mφs, including IL-4, STAT6, IL-10 and Chil3, were increased by BBR intervention. Meanwhile, BBR activated IL-4-STAT6 signaling pathway in vivo and in vitro when H. pylori infection and presented anti-inflammatory activities. SIGNIFICANCE BBR promotes M2-polarized Mφs when H. pylori infection. The anti-inflammatory properties of BBR tightly related to M1-polarized Mφs inhibition and M2-polarized Mφs promotion. BBR activates IL-4-STAT6 signaling pathway, which is crucial exceedingly in M2 Mφs activation and anti-inflammatory response.
Collapse
Affiliation(s)
- Tao Yang
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, PR China
| | - Ruilin Wang
- Integrative Medical Center, Chinese PLA General Hospital, Beijing 100039, PR China
| | - Honghong Liu
- Department of Policlinic, Chinese PLA General Hospital, Beijing 100039, PR China
| | - Lifu Wang
- Integrative Medical Center, Chinese PLA General Hospital, Beijing 100039, PR China; College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Jianyu Li
- Integrative Medical Center, Chinese PLA General Hospital, Beijing 100039, PR China; Colorectal and Anal Surgery, Chengdu Anorectal Hospital, No 152 Daqiang East Street, Taisheng South Road, Chengdu 610075, PR China
| | - Shihua Wu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xing Chen
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, PR China
| | - Xiangdong Yang
- Colorectal and Anal Surgery, Chengdu Anorectal Hospital, No 152 Daqiang East Street, Taisheng South Road, Chengdu 610075, PR China.
| | - Yanling Zhao
- Department of Pharmacy, Chinese PLA General Hospital, Beijing 100039, PR China.
| |
Collapse
|
26
|
Oya Y, Hayakawa Y, Koike K. Tumor microenvironment in gastric cancers. Cancer Sci 2020; 111:2696-2707. [PMID: 32519436 PMCID: PMC7419059 DOI: 10.1111/cas.14521] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 05/25/2020] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
The tumor microenvironment favors the growth and expansion of cancer cells. Many cell types are involved in the tumor microenvironment such as inflammatory cells, fibroblasts, nerves, and vascular endothelial cells. These stromal cells contribute to tumor growth by releasing various molecules to either directly activate the growth signaling in cancer cells or remodel surrounding areas. This review introduces recent advances in findings on the interactions within the tumor microenvironment such as in cancer-associated fibroblasts (CAFs), immune cells, and endothelial cells, in particular those established in mouse gastric cancer models. In mice, myofibroblasts in the gastric stroma secrete R-spondin and support normal gastric stem cells. Most CAFs promote tumor growth in a paracrine manner, but CAF population appears to be heterogeneous in terms of their function and origin, and include both tumor-promoting and tumor-restraining populations. Among immune cell populations, tumor-associated macrophages, including M1 and M2 macrophages, and myeloid-derived suppressor cells (MDSCs), are reported to directly or indirectly promote gastric tumorigenesis by secreting soluble factors or modulating immune responses. Endothelial cells or blood vessels not only fuel tumors with nutrients, but also interact with cancer stem cells and immune cells by secreting chemokines or cytokines, and act as a cancer niche. Understanding these interactions within the tumor microenvironment would contribute to unraveling new therapeutic targets.
Collapse
Affiliation(s)
- Yukiko Oya
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| | - Yoku Hayakawa
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| | - Kazuhiko Koike
- Department of GastroenterologyGraduate school of Medicinethe University of TokyoTokyoJapan
| |
Collapse
|
27
|
The Role of Gastric Mucosal Immunity in Gastric Diseases. J Immunol Res 2020; 2020:7927054. [PMID: 32775468 PMCID: PMC7396052 DOI: 10.1155/2020/7927054] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/30/2020] [Indexed: 12/17/2022] Open
Abstract
Gastric mucosa plays its immune function through innate and adaptive immunity by recruiting immune cells and releasing corresponding cytokines, which have an inseparable relationship with gastric diseases. Whether infective gastric diseases caused by Helicobacter pylori, Epstein-Barr virus or other microbe, noninfective gastric diseases, or gastric cancer, gastric mucosal immunity plays an important role in the occurrence and development of the disease. Understanding the unique immune-related tissue structure of the gastric mucosa and its role in immune responses can help prevent gastric diseases or treat them through immunotherapy. In this review, we summarize the basic feature of gastric mucosal immunity and its relationship with gastric diseases to track the latest progress of gastric mucosal immunity, update relevant knowledge and provide theoretical reference for the prevention and treatment of gastric diseases based on the gastric mucosal immunity.
Collapse
|
28
|
Chonwerawong M, Ferrand J, Chaudhry HM, Higgins C, Tran LS, Lim SS, Walker MM, Bhathal PS, Dev A, Moore GT, Sievert W, Jenkins BJ, D'Elios MM, Philpott DJ, Kufer TA, Ferrero RL. Innate Immune Molecule NLRC5 Protects Mice From Helicobacter-induced Formation of Gastric Lymphoid Tissue. Gastroenterology 2020; 159:169-182.e8. [PMID: 32169428 DOI: 10.1053/j.gastro.2020.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 02/05/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS Helicobacter pylori induces strong inflammatory responses that are directed at clearing the infection, but if not controlled, these responses can be harmful to the host. We investigated the immune-regulatory effects of the innate immune molecule, nucleotide-binding oligomerization domain-like receptors (NLR) family CARD domain-containing 5 (NLRC5), in patients and mice with Helicobacter infection. METHODS We obtained gastric biopsies from 30 patients in Australia. We performed studies with mice that lack NLRC5 in the myeloid linage (Nlrc5møKO) and mice without Nlrc5 gene disruption (controls). Some mice were gavaged with H pylori SS1 or Helicobacter felis; 3 months later, stomachs, spleens, and sera were collected, along with macrophages derived from bone marrow. Human and mouse gastric tissues and mouse macrophages were analyzed by histology, immunohistochemistry, immunoblots, and quantitative polymerase chain reaction. THP-1 cells (human macrophages, controls) and NLRC5-/- THP-1 cells (generated by CRISPR-Cas9 gene editing) were incubated with Helicobacter and gene expression and production of cytokines were analyzed. RESULTS Levels of NLRC5 messenger RNA were significantly increased in gastric tissues from patients with H pylori infection, compared with patients without infection (P < .01), and correlated with gastritis severity (P < .05). H pylori bacteria induced significantly higher levels of chemokine and cytokine production by NLRC5-/- THP-1 macrophages than by control THP-1 cells (P < .05). After 3 months of infection with H felis, Nlrc5mø-KO mice developed gastric hyperplasia (P < .0001), splenomegaly (P < .0001), and increased serum antibody titers (P < .01), whereas control mice did not. Nlrc5mø-KO mice with chronic H felis infection had increased numbers of gastric B-cell follicles expressing CD19 (P < .0001); these follicles had features of mucosa-associated lymphoid tissue lymphoma. We identified B-cell-activating factor as a protein that promoted B-cell hyperproliferation in Nlrc5mø-KO mice. CONCLUSIONS NLRC5 is a negative regulator of gastric inflammation and mucosal lymphoid formation in response to Helicobacter infection. Aberrant NLRC5 signaling in macrophages can promote B-cell lymphomagenesis during chronic Helicobacter infection.
Collapse
Affiliation(s)
- Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Victoria, Australia
| | - Jonathan Ferrand
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Hassan Mohammad Chaudhry
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Chloe Higgins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Le Son Tran
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - San Sui Lim
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia
| | - Marjorie M Walker
- School of Medicine and Public Health, Faculty of Health and Medicine, The University of Newcastle, New South Wales, Australia; Department of Pathology, University of Melbourne, Victoria, Australia
| | - Prithi S Bhathal
- Department of Pathology, University of Melbourne, Victoria, Australia
| | - Anouk Dev
- Department of Medicine, Monash University, Monash Medical Centre, Victoria, Australia
| | - Gregory T Moore
- Department of Medicine, Monash University, Monash Medical Centre, Victoria, Australia
| | - William Sievert
- Department of Medicine, Monash University, Monash Medical Centre, Victoria, Australia; Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Brendan J Jenkins
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Victoria, Australia
| | - Mario M D'Elios
- Dipartimento di Medicina Sperimentale e Clinica, University of Florence, Florence, Italy
| | - Dana J Philpott
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Thomas A Kufer
- University of Hohenheim, Institute of Nutritional Medicine, Department of Immunology, Stuttgart, Germany
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Victoria, Australia; Department of Molecular and Translational Science, Monash University, Victoria, Australia; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Victoria, Australia.
| |
Collapse
|
29
|
Holland RL, Bosi KD, Harpring GH, Luo J, Wallig M, Phillips H, Blanke SR. Chronic in vivo exposure to Helicobacter pylori VacA: Assessing the efficacy of automated and long-term intragastric toxin infusion. Sci Rep 2020; 10:9307. [PMID: 32518315 PMCID: PMC7283276 DOI: 10.1038/s41598-020-65787-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 12/24/2022] Open
Abstract
Helicobacter pylori (Hp) secrete VacA, a diffusible pore-forming exotoxin that is epidemiologically linked to gastric disease in humans. In vitro studies indicate that VacA modulates gastric epithelial and immune cells, but the in vivo contributions of VacA as an important determinant of Hp colonization and chronic infection remain poorly understood. To identify perturbations in the stomachs of C57BL/6 or BALB/C mice that result specifically from extended VacA exposure, we evaluated the efficacy of administering purified toxin using automated infusion via surgically-implanted, intragastric catheters. At 3 and 30 days of interrupted infusion, VacA was detected in association with gastric glands. In contrast to previously-reported tissue damage resulting from short term exposure to Hp extracts administered by oral gavage, extended infusion of VacA did not damage stomach, esophageal, intestinal, or liver tissue. However, several alterations previously reported during Hp infection were detected in animals infused with VacA, including reduction of the gastric mucus layer, and increased vacuolation of parietal cells. VacA infusion invoked an immune response, as indicated by the detection of circulating VacA antibodies. These foundational studies support the use of VacA infusion for identifying gastric alterations that are unambiguously attributable to long-term exposure to toxin.
Collapse
Affiliation(s)
- Robin L Holland
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Kristopher D Bosi
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Gregory H Harpring
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Jiayi Luo
- Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Matthew Wallig
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Heidi Phillips
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Steven R Blanke
- Department of Pathobiology, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Department of Microbiology, School of Molecular and Cellular Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA. .,Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA.
| |
Collapse
|
30
|
Latour YL, Gobert AP, Wilson KT. The role of polyamines in the regulation of macrophage polarization and function. Amino Acids 2020; 52:151-160. [PMID: 31016375 PMCID: PMC6812587 DOI: 10.1007/s00726-019-02719-0] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 03/04/2019] [Indexed: 01/18/2023]
Abstract
Naturally occurring polyamines are ubiquitously distributed and play important roles in cell development, amino acid and protein synthesis, oxidative DNA damage, proliferation, and cellular differentiation. Macrophages are essential in the innate immune response, and contribute to tissue remodeling. Naïve macrophages have two major potential fates: polarization to (1) the classical pro-inflammatory M1 defense response to bacterial pathogens and tumor cells, and (2) the alternatively activated M2 response, induced in the presence of parasites and wounding, and also implicated in the development of tumor-associated macrophages. ODC, the rate-limiting enzyme in polyamine synthesis, leads to an increase in putrescine levels, which impairs M1 gene transcription. Additionally, spermidine and spermine can regulate translation of pro-inflammatory mediators in activated macrophages. In this review, we focus on polyamines in macrophage activation patterns in the context of gastrointestinal inflammation and carcinogenesis. We seek to clarify mechanisms of innate immune regulation by polyamine metabolism and potential novel therapeutic targets.
Collapse
Affiliation(s)
- Yvonne L Latour
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Room 1030C Medical Research Building IV, Nashville, TN, 37232, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Alain P Gobert
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Room 1030C Medical Research Building IV, Nashville, TN, 37232, USA
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, USA
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, Vanderbilt University Medical Center, Vanderbilt University School of Medicine, 2215 Garland Avenue, Room 1030C Medical Research Building IV, Nashville, TN, 37232, USA.
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.
- Center for Mucosal Inflammation and Cancer, Vanderbilt University Medical Center, Nashville, USA.
- Program in Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN, USA.
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN, USA.
| |
Collapse
|
31
|
Gebremariam HG, Qazi KR, Somiah T, Pathak SK, Sjölinder H, Sverremark Ekström E, Jonsson AB. Lactobacillus gasseri Suppresses the Production of Proinflammatory Cytokines in Helicobacter pylori-Infected Macrophages by Inhibiting the Expression of ADAM17. Front Immunol 2019; 10:2326. [PMID: 31636639 PMCID: PMC6788455 DOI: 10.3389/fimmu.2019.02326] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Accepted: 09/16/2019] [Indexed: 12/19/2022] Open
Abstract
The ability of Helicobacter pylori to evade the host immune system allows the bacterium to colonize the host for a lifetime. Long-term infection with H. pylori causes chronic inflammation, which is the major risk factor for the development of gastric ulcers and gastric cancer. Lactobacilli are part of the human microbiota and have been studied as an adjunct treatment in H. pylori eradication therapy. However, the molecular mechanisms by which lactobacilli act against H. pylori infection have not been fully characterized. In this study, we investigated the anti-inflammatory effects of Lactobacillus strains upon coincubation of host macrophages with H. pylori. We found that Lactobacillus gasseri Kx110A1 (L. gas), a strain isolated from a human stomach, but not other tested Lactobacillus species, blocked the production of the proinflammatory cytokines TNF and IL-6 in H. pylori-infected macrophages. Interestingly, L. gas also inhibited the release of these cytokines in LPS or LTA stimulated macrophages, demonstrating a general anti-inflammatory property. The inhibition of these cytokines did not occur through the polarization of macrophages from the M1 (proinflammatory) to M2 (anti-inflammatory) phenotype or through the altered viability of H. pylori or host cells. Instead, we show that L. gas suppressed the release of TNF and IL-6 by reducing the expression of ADAM17 (also known as TNF-alpha-converting enzyme, TACE) on host cells. Our findings reveal a novel mechanism by which L. gas prevents the production of the proinflammatory cytokines TNF and IL-6 in host macrophages.
Collapse
Affiliation(s)
- Hanna G Gebremariam
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Khaleda Rahman Qazi
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Tanvi Somiah
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Sushil Kumar Pathak
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Department of Bioscience and Bioinformatics, Khallikote University, Berhampur, India
| | - Hong Sjölinder
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden.,Center for Clinical Research Sörmland, Uppsala University, Eskilstuna, Sweden
| | - Eva Sverremark Ekström
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ann-Beth Jonsson
- Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| |
Collapse
|
32
|
CD177 Expression and Inflammation Grade in Helicobacter pylori-Infected Wild-Type and CD177 -/- C57BL/6 Mice. Anal Cell Pathol (Amst) 2019; 2019:9506863. [PMID: 31093484 PMCID: PMC6476150 DOI: 10.1155/2019/9506863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 03/11/2019] [Indexed: 01/30/2023] Open
Abstract
This study was undertaken to further investigate the CD177 expression in Helicobacter pylori- (Hp-) infected wild-type and CD177-/- C57BL/6 mice, which may be helpful to elucidate the relationship between CD177 and Hp-related gastritis. 20 WT mice were randomly assigned into the Hpss1 WT group (n = 10) and Hp49503 WT group (n = 10); 20 KO mice were randomly assigned into the Hpss1 KO group (n = 10) and Hp49503 KO group (n = 10). The remaining mice served as controls. Mice in the HpSS1 groups and Hp49503 groups were independently infected with corresponding strains. Results showed that the Hp colonization score was related to the grade of mucosal inflammation (P < 0.05). The inflammation grade was comparable between the HpSS1 group and Hp49503 group as well as between the WT group and KO group. In addition, the Hp colonization score was related to the CD177 expression score (P < 0.05). The CD177 expression in the Hp colonization group was higher than that in the non-Hp colonization group (P < 0.05). CD177 expression was positively related to the inflammation grade (P < 0.01). In conclusion, CD177 expression was similar between HP49503- and HPss1-infected WT C57BL/6 mice, and CD177 expression was undetectable in CD177-/- mice. CD177 expression in the gastric mucosa increases with the elevation of inflammation grade. In Hp-infected mice, the inflammation grade had no relationship with the type of Hp strain and the CD177 expression, but the mucosal inflammation score in Hp-infected mice was higher than that in non-Hp infected mice.
Collapse
|
33
|
Zou D, Xu L, Li H, Ma Y, Gong Y, Guo T, Jing Z, Xu X, Zhang Y. Role of abnormal microRNA expression in Helicobacter pylori associated gastric cancer. Crit Rev Microbiol 2019; 45:239-251. [PMID: 30776938 DOI: 10.1080/1040841x.2019.1575793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Epidemiological studies have shown that Helicobacter pylori (HP) infection is a risk factor for gastric cancer (GC). HP infection may induce the release of pro-inflammatory mediators, and abnormally increase the level of reactive oxygen species (ROS), nitric oxide (NO), and cytokines in mucosal epithelial cells of the stomach. However, the specific mechanism underlying the pathogenesis of HP-associated GC is still poorly understood. Recent studies have revealed that abnormal microRNA expression may affect the proliferation, differentiation, and apoptosis of mucosal epithelial cells of the stomach to further influence GC occurrence, development, and metastasis. Herein, we summarize the role of abnormal microRNAs in the regulation of HP-associated GC progression. Abnormal microRNA expression in HP-positive GC may be a biomarker for GC diagnosis, occurrence, and development as well as its targeted treatment and prognosis.
Collapse
Affiliation(s)
- Dan Zou
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| | - Ling Xu
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Heming Li
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,c Department of Oncology , Affiliated Zhongshan Hospital of Dalian University , Dalian , China
| | - Yanju Ma
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China.,d Department of Medical Oncology , Cancer Hospital of China Medical University , Shenyang , China
| | - Yuehua Gong
- e Department of Tumor Etiology and Screening Department of Cancer Institute and General Surgery, First Hospital of China Medical University , Key Laboratory of Cancer Etiology and Prevention (China Medical University), Liaoning Provincial Education Department , Shenyang , China
| | - Tianshu Guo
- b Department of Medical Oncology , First Hospital of China Medical University , Shenyang , China
| | - Zhitao Jing
- f Department of Neurosurgery , First Hospital of China Medical University , Shenyang , China
| | - Xiuying Xu
- g Department of Gastroenterology , First Hospital of China Medical University , Shenyang , China
| | - Ye Zhang
- a The First laboratory of cancer institute , First Hospital of China Medical University , Shenyang , China
| |
Collapse
|
34
|
Decreased IL-17RB expression impairs CD11b +CD11c - myeloid cell accumulation in gastric mucosa and host defense during the early-phase of Helicobacter pylori infection. Cell Death Dis 2019; 10:79. [PMID: 30692510 PMCID: PMC6349840 DOI: 10.1038/s41419-019-1312-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 12/21/2018] [Accepted: 01/04/2019] [Indexed: 12/26/2022]
Abstract
Interleukin-17 receptor B (IL-17RB), a member of the IL-17 receptor family activated by IL-17B/IL-17E, has been shown to be involved in inflammatory diseases. However, the regulation and function of IL-17RB in Helicobacter pylori (H. pylori) infection, especially in the early-phase is still unknown. Here, we found that gastric IL-17RB mRNA and protein were decreased in gastric mucosa of both patients and mice infected with H. pylori. In vitro experiments show that IL-17RB expression was down regulated via PI3K/AKT pathway on gastric epithelial cells (GECs) stimulated with H. pylori in a cagA-involved manner, while in vivo studies showed that the effect was partially dependent on cagA expression. IL-17E was also decreased during the early-phase of H. pylori infection, and provision of exogenous IL-17E resulted in increased CD11b+CD11c- myeloid cells accumulation and decreased bacteria colonization within the gastric mucosa. In the early-phase of H. pylori infection, IL-17E-IL-17RB promoted gastric epithelial cell-derived CXCL1/2/5/6 to attract CD11b+CD11c- myeloid cells, and also contributed to host defense by promoting the production of antibacterial protein Reg3a. This study defines a negative regulatory network involving IL-17E, GECs, IL-17RB, CD11b+CD11c- myeloid cells, and Reg3a in the early-phase of H. pylori infection, which results in an impaired host defense within the gastric microenvironment, suggesting IL-17RB as a potential early intervening target in H. pylori infection.
Collapse
|
35
|
Surawut S, Panpetch W, Makjaroen J, Tangtanatakul P, Thim-Uam A, Wongphoom J, Tumwasorn S, Leelahavanichkul A. Helicobacter pylori Infection Increased Anti-dsDNA and Enhanced Lupus Severity in Symptomatic FcγRIIb-Deficient Lupus Mice. Front Microbiol 2018; 9:1488. [PMID: 30034379 PMCID: PMC6043646 DOI: 10.3389/fmicb.2018.01488] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 06/14/2018] [Indexed: 12/17/2022] Open
Abstract
The defect on Fc gamma receptor IIb (FcγRIIb), the only inhibitory FcγR, has been identified as one of the genetic factors increasing susceptibility to lupus. The prevalence of Helicobacter pylori (HP) and FcγRIIb dysfunction-polymorphisms are high among Asians, and their co-existence is possible. Unfortunately, the influence of HP against lupus progression in patients with lupus is still controversial. In this study, the interactions between these conditions were tested with HP infection in 24-week-old FcγRIIb-/- mice (symptomatic lupus). HP induced failure to thrive, increased stomach bacterial burdens and stomach injury (histology and cytokines) in both wild-type and FcγRIIb-/- mice. While the severity of HP infection, as determined by these parameters, was not different between both strains, antibodies production (anti-HP, anti-dsDNA and serum gammaglobulin) were higher in FcγRIIb-/- mice compared to wild-type. Accordingly, HP infection also accelerated the severity of lupus as determined by proteinuria, serum creatinine, serum cytokines, renal histology, and renal immune complex deposition. Although HP increased serum cytokines in both wild-type and FcγRIIb-/- mice, the levels were higher in FcγRIIb-/- mice. As such, HP also increased spleen weight and induced several splenic immune cells responsible for antibody productions (activated B cell, plasma cell and follicular helper T cell) in FcγRIIb-/- mice, but not in wild-type. These data describe the different systemic responses against localized HP infection from diverse host genetic background. In conclusion, the mutual interactions between HP and lupus manifestations of FcγRIIb-/-mice were demonstrated in this study. With the prominent immune responses from the loss of inhibitory signaling in FcγRIIb-/- mice, HP infection in these mice induced intense chronic inflammation, increased antibody production, and enhanced lupus severity. Thus, the increased systemic inflammatory responses due to localized HP inducing gastritis in some patients with lupus may enhance lupus progression. More studies are needed.
Collapse
Affiliation(s)
- Saowapha Surawut
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Wimonrat Panpetch
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Jiradej Makjaroen
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Pattarin Tangtanatakul
- Medical Microbiology Interdisciplinary Program, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Arthid Thim-Uam
- Inter-Department Program of Biomedical Sciences, Faculty of Graduate, Chulalongkorn University, Bangkok, Thailand
| | - Jutamas Wongphoom
- Division of Pathology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Somying Tumwasorn
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Asada Leelahavanichkul
- Department of Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.,Center of Excellence in Immunology and Immune-mediated Diseases, Department of Microbiology, Faculty of Medicine Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
36
|
Poh AR, Ernst M. Targeting Macrophages in Cancer: From Bench to Bedside. Front Oncol 2018; 8:49. [PMID: 29594035 PMCID: PMC5858529 DOI: 10.3389/fonc.2018.00049] [Citation(s) in RCA: 372] [Impact Index Per Article: 53.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Accepted: 02/19/2018] [Indexed: 12/29/2022] Open
Abstract
Macrophages are a major component of the tumor microenvironment and orchestrate various aspects of immunity. Within tumors, macrophages can reversibly alter their endotype in response to environmental cues, including hypoxia and stimuli derived from other immune cells, as well as the extracellular matrix. Depending on their activation status, macrophages can exert dual influences on tumorigenesis by either antagonizing the cytotoxic activity immune cells or by enhancing antitumor responses. In most solid cancers, increased infiltration with tumor-associated macrophages (TAMs) has long been associated with poor patient prognosis, highlighting their value as potential diagnostic and prognostic biomarkers in cancer. A number of macrophage-centered approaches to anticancer therapy have been investigated, and include strategies to block their tumor-promoting activities or exploit their antitumor effector functions. Integrating therapeutic strategies to target TAMs to complement conventional therapies has yielded promising results in preclinical trials and warrants further investigation to determine its translational benefit in human cancer patients. In this review, we discuss the molecular mechanisms underlying the pro-tumorigenic programming of macrophages and provide a comprehensive update of macrophage-targeted therapies for the treatment of solid cancers.
Collapse
Affiliation(s)
- Ashleigh R Poh
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| | - Matthias Ernst
- Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Heidelberg, VIC, Australia
| |
Collapse
|
37
|
Tran LS, Chonwerawong M, Ferrero RL. Regulation and functions of inflammasome-mediated cytokines in Helicobacter pylori infection. Microbes Infect 2017; 19:449-458. [PMID: 28690082 DOI: 10.1016/j.micinf.2017.06.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Accepted: 06/22/2017] [Indexed: 02/08/2023]
Abstract
Persistent stomach infection with Helicobacter pylori causes chronic mucosal inflammation (gastritis), which is widely recognized as an essential precursor to gastric cancer. The IL-1 interleukin family cytokines IL-1β and IL-18 have emerged as central mediators of mucosal inflammation. Here, we review the regulation and functions of these cytokines in H. pylori-induced inflammation and carcinogenesis.
Collapse
Affiliation(s)
- Le Son Tran
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Michelle Chonwerawong
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia
| | - Richard L Ferrero
- Centre for Innate Immunity and Infectious Diseases, The Hudson Institute of Medical Research, Monash University, 27-31 Wright Street, Clayton, Victoria, Australia; Biomedicine Discovery Institute, Department of Microbiology, Monash University, Wellington Road, Clayton, Victoria, Australia.
| |
Collapse
|
38
|
Wessler S, Krisch LM, Elmer DP, Aberger F. From inflammation to gastric cancer - the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. Cell Commun Signal 2017; 15:15. [PMID: 28427431 PMCID: PMC5397778 DOI: 10.1186/s12964-017-0171-4] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Accepted: 04/07/2017] [Indexed: 02/07/2023] Open
Abstract
Infections with the human pathogen Helicobacter pylori (H. pylori) are closely associated with the development of inflammatory disorders and neoplastic transformation of the gastric epithelium. Drastic changes in the micromilieu involve a complex network of H. pylori-regulated signal transduction pathways leading to the release of proinflammatory cytokines, gut hormones and a wide range of signaling molecules. Besides controlling embryonic development, the Hedgehog/GLI signaling pathway also plays important roles in epithelial proliferation, differentiation, and regeneration of the gastric physiology, but also in the induction and progression of inflammation and neoplastic transformation in H. pylori infections. Here, we summarize recent findings of H. pylori-associated Hedgehog/GLI signaling in gastric homeostasis, malignant development and the modulation of the gastric tumor microenvironment.
Collapse
Affiliation(s)
- Silja Wessler
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria.
| | - Linda M Krisch
- Division of Microbiology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Billroth Strasse 11, A-5020, Salzburg, Austria
| | - Dominik P Elmer
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria
| | - Fritz Aberger
- Division of Molecular Tumor Biology, Cancer Cluster Salzburg, Department of Molecular Biology, Paris-Lodron University of Salzburg, Hellbrunner Strasse 34, A-5020, Salzburg, Austria.
| |
Collapse
|
39
|
Ornithine decarboxylase regulates M1 macrophage activation and mucosal inflammation via histone modifications. Proc Natl Acad Sci U S A 2017; 114:E751-E760. [PMID: 28096401 DOI: 10.1073/pnas.1614958114] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Macrophage activation is a critical step in host responses during bacterial infections. Ornithine decarboxylase (ODC), the rate-limiting enzyme in polyamine metabolism, has been well studied in epithelial cells and is known to have essential roles in many different cellular functions. However, its role in regulating macrophage function during bacterial infections is not well characterized. We demonstrate that macrophage-derived ODC is a critical regulator of M1 macrophage activation during both Helicobacter pylori and Citrobacter rodentium infection. Myeloid-specific Odc deletion significantly increased gastric and colonic inflammation, respectively, and enhanced M1 activation. Add-back of putrescine, the product of ODC, reversed the increased macrophage activation, indicating that ODC and putrescine are regulators of macrophage function. Odc-deficient macrophages had increased histone 3, lysine 4 (H3K4) monomethylation, and H3K9 acetylation, accompanied by decreased H3K9 di/trimethylation both in vivo and ex vivo in primary macrophages. These alterations in chromatin structure directly resulted in up-regulated gene transcription, especially M1 gene expression. Thus, ODC in macrophages tempers antimicrobial, M1 macrophage responses during bacterial infections through histone modifications and altered euchromatin formation, leading to the persistence and pathogenesis of these organisms.
Collapse
|
40
|
Lin N, Simon MC. Hypoxia-inducible factors: key regulators of myeloid cells during inflammation. J Clin Invest 2016; 126:3661-3671. [PMID: 27599290 DOI: 10.1172/jci84426] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Hypoxia is a prominent characteristic of many acute or chronic inflammatory diseases, and exerts significant influence on their progression. Macrophages and neutrophils are major cellular components of innate immunity and contribute not only to O2 deprivation at the site of inflammation, but also alter many of their functions in response to hypoxia to either facilitate or suppress inflammation. Hypoxia stabilizes HIF-αs in macrophages and neutrophils, and these O2-sensitive transcription factors are key regulators of inflammatory responses in myeloid cells. In this review, we will summarize our current understanding of the role of HIF-αs in shaping macrophage and neutrophil functions in the pathogenesis and progression of multiple inflammatory diseases.
Collapse
|
41
|
Velin D, Straubinger K, Gerhard M. Inflammation, immunity, and vaccines for Helicobacter pylori infection. Helicobacter 2016; 21 Suppl 1:26-9. [PMID: 27531535 DOI: 10.1111/hel.12336] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The tight control of the innate and adaptive immune responses in the stomach mucosa during chronic Helicobacter pylori infection is of prime importance for the bacteria to persist and for the host to prevent inflammation-driven diseases. This review summarizes recent data on the roles of innate and adaptive immune responses during H. pylori/host interactions. In addition, the latest preclinical developments of H. pylori vaccines are discussed with a special focus on the clinical trial reported by Zeng et al., who provided evidence that oral vaccination significantly reduces the acquisition of natural H. pylori infection in children.
Collapse
Affiliation(s)
- Dominique Velin
- Service of Gastroenterology and Hepatology, Department of Medicine, Lausanne University Hospital, Lausanne, Switzerland
| | | | - Markus Gerhard
- ImevaX GmbH, Munich, Germany.,Institute of Medical Microbiology, Immunology and Hygiene, Technische Universität München, Munich, Germany
| |
Collapse
|
42
|
Hardbower DM, Singh K, Asim M, Verriere TG, Olivares-Villagómez D, Barry DP, Allaman MM, Washington MK, Peek RM, Piazuelo MB, Wilson KT. EGFR regulates macrophage activation and function in bacterial infection. J Clin Invest 2016; 126:3296-312. [PMID: 27482886 DOI: 10.1172/jci83585] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 06/02/2016] [Indexed: 12/17/2022] Open
Abstract
EGFR signaling regulates macrophage function, but its role in bacterial infection has not been investigated. Here, we assessed the role of macrophage EGFR signaling during infection with Helicobacter pylori, a bacterial pathogen that causes persistent inflammation and gastric cancer. EGFR was phosphorylated in murine and human macrophages during H. pylori infection. In human gastric tissues, elevated levels of phosphorylated EGFR were observed throughout the histologic cascade from gastritis to carcinoma. Deleting Egfr in myeloid cells attenuated gastritis and increased H. pylori burden in infected mice. EGFR deficiency also led to a global defect in macrophage activation that was associated with decreased cytokine, chemokine, and NO production. We observed similar alterations in macrophage activation and disease phenotype in the Citrobacter rodentium model of murine infectious colitis. Mechanistically, EGFR signaling activated NF-κB and MAPK1/3 pathways to induce cytokine production and macrophage activation. Although deletion of Egfr had no effect on DC function, EGFR-deficient macrophages displayed impaired Th1 and Th17 adaptive immune responses to H. pylori, which contributed to decreased chronic inflammation in infected mice. Together, these results indicate that EGFR signaling is central to macrophage function in response to enteric bacterial pathogens and is a potential therapeutic target for infection-induced inflammation and associated carcinogenesis.
Collapse
|
43
|
Raghavan S, Quiding-Järbrink M. Vaccination Against Helicobacter pylori Infection. HELICOBACTER PYLORI RESEARCH 2016:575-601. [DOI: 10.1007/978-4-431-55936-8_25] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
44
|
White JR, Winter JA, Robinson K. Differential inflammatory response to Helicobacter pylori infection: etiology and clinical outcomes. J Inflamm Res 2015; 8:137-47. [PMID: 26316793 PMCID: PMC4540215 DOI: 10.2147/jir.s64888] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The bacterial pathogen Helicobacter pylori commonly colonizes the human gastric mucosa during early childhood and persists throughout life. The organism has evolved multiple mechanisms for evading clearance by the immune system and, despite inducing inflammation in the stomach, the majority of infections are asymptomatic. H. pylori is the leading cause of peptic ulcer disease and gastric cancer. However, disease outcomes are related to the pattern and severity of chronic inflammation in the gastric mucosa, which in turn is influenced by both bacterial and host factors. Despite over 2 decades of intensive research, there remains an incomplete understanding of the circumstances leading to disease development, due to the fascinating complexity of the host-pathogen interactions. There is accumulating data concerning the virulence factors associated with increased risk of disease, and the majority of these have pro-inflammatory activities. Despite this, only a small proportion of those infected with virulent strains develop disease. Several H. pylori virulence factors have multiple effects on different cell types, including the induction of pro- and anti-inflammatory, immune stimulatory, and immune modulatory responses. The expression of multiple virulence factors is also often linked, making it difficult to assess the meaning of their effects in isolation. Overall, H. pylori is thought to usually modulate inflammation and limit acute damage to the mucosa, enabling the bacteria to persist. If this delicate balance is disturbed, disease may then develop.
Collapse
Affiliation(s)
- Jonathan Richard White
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| | - Jody Anne Winter
- Interdisciplinary Biomedical Research Centre, School of Science and Technology, Nottingham Trent University, Nottingham, UK
| | - Karen Robinson
- NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust and The University of Nottingham, Nottingham, UK
| |
Collapse
|
45
|
Sjökvist Ottsjö L, Flach CF, Nilsson S, de Waal Malefyt R, Walduck AK, Raghavan S. Defining the Roles of IFN-γ and IL-17A in Inflammation and Protection against Helicobacter pylori Infection. PLoS One 2015; 10:e0131444. [PMID: 26168305 PMCID: PMC4500503 DOI: 10.1371/journal.pone.0131444] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 06/02/2015] [Indexed: 01/13/2023] Open
Abstract
CD4+ T cells have been shown to be essential for vaccine-induced protection against Helicobacter pylori infection. However, the effector mechanisms leading to reductions in the gastric bacterial loads of vaccinated mice remain unclear. We have investigated the function of IFN-γ and IL-17A for vaccine-induced protection and inflammation (gastritis) using IFN-γ-gene-knockout (IFN-γ-/-) mice, after sublingual or intragastric immunization with H. pylori lysate antigens and cholera toxin. Bacteria were enumerated in the stomachs of mice and related to the gastritis score and cellular immune responses. We report that sublingually and intragastrically immunized IFN-γ-/- mice had significantly reduced bacterial loads similar to immunized wild-type mice compared to respective unimmunized infection controls. The reduction in bacterial loads in sublingually and intragastrically immunized IFN-γ-/- mice was associated with significantly higher levels of IL-17A in stomach extracts and lower gastritis scores compared with immunized wild-type mice. To study the role of IL-17A for vaccine-induced protection in sublingually immunized IFN-γ-/- mice, IL-17A was neutralized in vivo at the time of infection. Remarkably, the neutralization of IL-17A in sublingually immunized IFN-γ-/- mice completely abolished protection against H. pylori infection and the mild gastritis. In summary, our results suggest that IFN-γ responses in the stomach of sublingually immunized mice promote vaccine-induced gastritis, after infection with H. pylori but that IL-17A primarily functions to reduce the bacterial load.
Collapse
Affiliation(s)
| | - Carl-Fredrik Flach
- Department of Microbiology & Immunology, University of Gothenburg, Gothenburg, Sweden
| | - Staffan Nilsson
- Department of Mathematical Sciences, Chalmers University of Technology, Gothenburg, Sweden
| | - Rene de Waal Malefyt
- Department of Immunology, Merck Research Laboratories, Palo Alto, California, United States of America
| | - Anna K. Walduck
- School of Applied Sciences, RMIT University, Bundoora, Victoria, Australia
| | - Sukanya Raghavan
- Department of Microbiology & Immunology, University of Gothenburg, Gothenburg, Sweden
- * E-mail:
| |
Collapse
|
46
|
Suppression of cell division-associated genes by Helicobacter pylori attenuates proliferation of RAW264.7 monocytic macrophage cells. Sci Rep 2015; 5:11046. [PMID: 26078204 PMCID: PMC4468580 DOI: 10.1038/srep11046] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Accepted: 05/07/2015] [Indexed: 02/06/2023] Open
Abstract
Helicobacter pylori at multiplicity of infection (MOI ≥ 50) have been shown to cause apoptosis in RAW264.7 monocytic macrophage cells. Because chronic gastric infection by H. pylori results in the persistence of macrophages in the host's gut, it is likely that H. pylori is present at low to moderate, rather than high numbers in the infected host. At present, the effect of low-MOI H. pylori infection on macrophage has not been fully elucidated. In this study, we investigated the genome-wide transcriptional regulation of H. pylori-infected RAW264.7 cells at MOI 1, 5 and 10 in the absence of cellular apoptosis. Microarray data revealed up- and down-regulation of 1341 and 1591 genes, respectively. The expression of genes encoding for DNA replication and cell cycle-associated molecules, including Aurora-B kinase (AurkB) were down-regulated. Immunoblot analysis verified the decreased expression of AurkB and downstream phosphorylation of Cdk1 caused by H. pylori infection. Consistently, we observed that H. pylori infection inhibited cell proliferation and progression through the G1/S and G2/M checkpoints. In summary, we suggest that H. pylori disrupts expression of cell cycle-associated genes, thereby impeding proliferation of RAW264.7 cells, and such disruption may be an immunoevasive strategy utilized by H. pylori.
Collapse
|
47
|
Matak P, Heinis M, Mathieu JRR, Corriden R, Cuvellier S, Delga S, Mounier R, Rouquette A, Raymond J, Lamarque D, Emile JF, Nizet V, Touati E, Peyssonnaux C. Myeloid HIF-1 is protective in Helicobacter pylori-mediated gastritis. THE JOURNAL OF IMMUNOLOGY 2015; 194:3259-66. [PMID: 25710915 DOI: 10.4049/jimmunol.1401260] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Helicobacter pylori infection triggers chronic inflammation of the gastric mucosa that may progress to gastric cancer. The hypoxia-inducible factors (HIFs) are the central mediators of cellular adaptation to low oxygen levels (hypoxia), but they have emerged recently as major transcriptional regulators of immunity and inflammation. No studies have investigated whether H. pylori affects HIF signaling in immune cells and a potential role for HIF in H. pylori-mediated gastritis. HIF-1 and HIF-2 expression was examined in human H. pylori-positive gastritis biopsies. Subsequent experiments were performed in naive and polarized bone marrow-derived macrophages from wild-type (WT) and myeloid HIF-1α-null mice (HIF-1(Δmyel)). WT and HIF-1(Δmyel) mice were inoculated with H. pylori by oral gavage and sacrificed 6 mo postinfection. HIF-1 was specifically expressed in macrophages of human H. pylori-positive gastritis biopsies. Macrophage HIF-1 strongly contributed to the induction of proinflammatory genes (IL-6, IL-1β) and inducible NO synthase in response to H. pylori. HIF-2 expression and markers of M2 macrophage differentiation were decreased in response to H. pylori. HIF-1(Δmyel) mice inoculated with H. pylori for 6 mo presented with a similar bacterial colonization than WT mice but, surprisingly, a global increase of inflammation, leading to a worsening of the gastritis, measured by an increased epithelial cell proliferation. In conclusion, myeloid HIF-1 is protective in H. pylori-mediated gastritis, pointing to the complex counterbalancing roles of innate immune and inflammatory phenotypes in driving this pathology.
Collapse
Affiliation(s)
- Pavle Matak
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Mylène Heinis
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Jacques R R Mathieu
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Ross Corriden
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | - Sylvain Cuvellier
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Stéphanie Delga
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France
| | - Rémi Mounier
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France; Centre de Génétique et de Physiologie Moléculaire et Cellulaire, Unité Mixte de Recherche Centre National de la Recherche Scientifique 5534, Université Claude Bernard Lyon 1, Lyon, 69622 Villeurbanne Cedex, France
| | | | | | - Dominique Lamarque
- Equipe d'Accueil 4340, Université de Versailles, and Hôpital Ambroise Paré, Assistance Publique des Hôpitaux de Paris, 92104 Boulogne, France; and
| | - Jean-François Emile
- Equipe d'Accueil 4340, Université de Versailles, and Hôpital Ambroise Paré, Assistance Publique des Hôpitaux de Paris, 92104 Boulogne, France; and
| | - Victor Nizet
- Department of Pediatrics, University of California San Diego, La Jolla, CA 92093
| | | | - Carole Peyssonnaux
- INSERM, U1016, Institut Cochin, 75014 Paris, France; Centre National de la Recherche Scientifique, Unité Mixte de Recherche 8104, 75014 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, 75014 Paris, France;
| |
Collapse
|
48
|
Protease-activated receptor 1 suppresses Helicobacter pylori gastritis via the inhibition of macrophage cytokine secretion and interferon regulatory factor 5. Mucosal Immunol 2015; 8:68-79. [PMID: 24866378 DOI: 10.1038/mi.2014.43] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Accepted: 04/28/2014] [Indexed: 02/08/2023]
Abstract
Chronic gastritis from Helicobacter pylori infection is a major factor in the development of gastric adenocarcinoma. Factors that regulate gastritis severity are important in determining which individuals are susceptible to H. pylori-associated disease. Although protease-activated receptor 1 (PAR1) has been identified as one such host factor, its mechanism of action is unknown. Using chimeric mice, we demonstrated that PAR1-mediated protection against H. pylori gastritis requires bone marrow-derived cells. Analyses of the gastric mucosa revealed that PAR1 suppresses cellular infiltration and both T helper type 1 (Th1) and T helper type 17 (Th17) responses to infection. Moreover, PAR1 expression was associated with reduced vaccine-mediated protection against H. pylori. Analyses of H. pylori-stimulated macrophages revealed that PAR1 activation suppressed secretion of interleukin (IL)-12 and IL-23, key drivers of Th1 and Th17 immunity, respectively. Furthermore, PAR1 suppressed interferon regulatory factor 5 (IRF5), an important transcription factor for IL-12 and IL-23, both in the infected mucosa and following bacterial stimulation. PAR1 suppression of IRF5 and IL-12/23 secretion by macrophages provides a novel mechanism by which the host suppresses the mucosal Th1 and Th17 response to H. pylori infection. Dysregulation of this process is likely an important factor in the susceptibility of some individuals to H. pylori-associated disease.
Collapse
|
49
|
Gobert AP, Verriere T, Asim M, Barry DP, Piazuelo MB, de Sablet T, Delgado AG, Bravo LE, Correa P, Peek RM, Chaturvedi R, Wilson KT. Heme oxygenase-1 dysregulates macrophage polarization and the immune response to Helicobacter pylori. THE JOURNAL OF IMMUNOLOGY 2014; 193:3013-22. [PMID: 25108023 DOI: 10.4049/jimmunol.1401075] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Helicobacter pylori incites a futile inflammatory response, which is the key feature of its immunopathogenesis. This leads to the ability of this bacterial pathogen to survive in the stomach and cause peptic ulcers and gastric cancer. Myeloid cells recruited to the gastric mucosa during H. pylori infection have been directly implicated in the modulation of host defense against the bacterium and gastric inflammation. Heme oxygenase-1 (HO-1) is an inducible enzyme that exhibits anti-inflammatory functions. Our aim was to analyze the induction and role of HO-1 in macrophages during H. pylori infection. We now show that phosphorylation of the H. pylori virulence factor cytotoxin-associated gene A (CagA) in macrophages results in expression of hmox-1, the gene encoding HO-1, through p38/NF (erythroid-derived 2)-like 2 signaling. Blocking phagocytosis prevented CagA phosphorylation and HO-1 induction. The expression of HO-1 was also increased in gastric mononuclear cells of human patients and macrophages of mice infected with cagA(+) H. pylori strains. Genetic ablation of hmox-1 in H. pylori-infected mice increased histologic gastritis, which was associated with enhanced M1/Th1/Th17 responses, decreased regulatory macrophage (Mreg) response, and reduced H. pylori colonization. Gastric macrophages of H. pylori-infected mice and macrophages infected in vitro with this bacterium showed an M1/Mreg mixed polarization type; deletion of hmox-1 or inhibition of HO-1 in macrophages caused an increased M1 and a decrease of Mreg phenotype. These data highlight a mechanism by which H. pylori impairs the immune response and favors its own survival via activation of macrophage HO-1.
Collapse
Affiliation(s)
- Alain P Gobert
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; Institut National de la Recherche Agronomique, Unité de Recherche Microbiologie (UR454), 63122 Saint-Genès-Champanelle, France
| | - Thomas Verriere
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Mohammad Asim
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Daniel P Barry
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - M Blanca Piazuelo
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Thibaut de Sablet
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Alberto G Delgado
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Luis E Bravo
- Departamento de Patología, Escuela de Medicina, Universidad del Valle, Cali, Colombia
| | - Pelayo Correa
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Richard M Peek
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212; and
| | - Rupesh Chaturvedi
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Keith T Wilson
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232; Department of Cancer Biology, Vanderbilt University School of Medicine, Nashville, TN 37232; Veterans Affairs Tennessee Valley Healthcare System, Nashville, TN 37212; and Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
50
|
Helicobacter pylori VacA suppresses Lactobacillus acidophilus-induced interferon beta signaling in macrophages via alterations in the endocytic pathway. mBio 2013; 4:e00609-12. [PMID: 23760466 PMCID: PMC3685213 DOI: 10.1128/mbio.00609-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Helicobacter pylori causes chronic gastritis and avoids elimination by the immune system of the infected host. The commensal bacterium Lactobacillus acidophilus has been suggested to exert beneficial effects as a supplement during H. pylori eradication therapy. In the present study, we applied whole-genome microarray analysis to compare the immune responses induced in murine bone marrow-derived macrophages (BMDMs) stimulated with L. acidophilus, H. pylori, or both bacteria in combination. While L. acidophilus induced a Th1-polarizing response characterized by high expression of interferon beta (IFN-β) and interleukin 12 (IL-12), H. pylori strongly induced the innate cytokines IL-1β and IL-1α. In BMDMs prestimulated with L. acidophilus, H. pylori blocked the expression of L. acidophilus-induced IFN-β and IL-12 and suppressed the expression of key regulators of the Rho, Rac, and Cdc42 GTPases. The inhibition of L. acidophilus-induced IFN-β was independent of H. pylori viability and the virulence factor CagPAI; however, a vacuolating cytotoxin (vacA) mutant was unable to block IFN-β. Confocal microscopy demonstrated that the addition of H. pylori to L. acidophilus-stimulated BMDMs redirects intracellular processing, leading to an accumulation of L. acidophilus in the endosomal and lysosomal compartments. Thus, our findings indicate that H. pylori inhibits the development of a strong Th1-polarizing response in BMDMs stimulated with L. acidophilus by blocking the production of IFN-β in a VacA-dependent manner. We suggest that this abrogation is caused by a redirection of the endocytotic pathway in the processing of L. acidophilus. Approximately half of the world’s population is infected with Helicobacter pylori. The factors that allow this pathogen to persist in the stomach and cause chronic infections have not yet been fully elucidated. In particular, how H. pylori avoids killing by macrophages, one of the main types of immune cell underlying the epithelium, remains elusive. Here we have shown that the H. pylori virulence factor VacA plays a key role by blocking the activation of innate cytokines induced by the probiotic Lactobacillus acidophilus in macrophages and suppresses the expression of key regulators required for the organization and dynamics of the intracellular cytoskeleton. Our results identify potential targets for the treatment of H. pylori infection and vaccination, since specific inhibition of the toxin VacA possibly allows the activation of an efficient immune response and thereby eradication of H. pylori in the host.
Collapse
|