1
|
Liu CH, Pan YC, Lim SK, Mou CY, Hu CMJ, Mou KY. Combinatorial leaky probiotic for anticancer immunopotentiation and tumor eradication. Cell Rep Med 2024; 5:101793. [PMID: 39442515 PMCID: PMC11604515 DOI: 10.1016/j.xcrm.2024.101793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/12/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024]
Abstract
Combination therapies present a compelling therapeutic regimen against the immunosuppressive and heterogeneous microenvironment of solid tumors. However, incorporating separate therapeutic modalities in regimen designs can be encumbered by complex logistical, manufacturing, and pharmacokinetic considerations. Herein, we demonstrate a single-vector combinational anticancer therapy using an lpp gene knockout leaky probiotic for simultaneous secretion of immunotherapeutic and oncolytic effector molecules. Through fusion protein design and vector optimization, a Nissle1917 (EcN) bacteria vector is engineered to secrete Neoleukin-2/15 (Neo-2/15) cytokine-functionalized anti-PDL1 nanobody (aPDL1-Neo2/15) and anti-mesothelin-functionalized hemolysin E (HlyE-aMSLN). The multifunctional leaky probiotic enables synchronous immune activation and tumor-targeted cytolytic activity for effective tumor suppression, elevation of tumor immune cell infiltration, and establishment of anticancer immunological memory. lpp gene knockout is further shown to improve probiotic tolerability and intravenous applicability, offering a therapeutically viable approach for combination regimen development.
Collapse
Affiliation(s)
- Cheng-Hao Liu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Student Program, National Yang Ming Chao Tung University and Academia Sinica, Taipei 112304, Taiwan
| | - Yi-Chung Pan
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - See-Khai Lim
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| | - Chung-Yuan Mou
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Che-Ming Jack Hu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Student Program, National Yang Ming Chao Tung University and Academia Sinica, Taipei 112304, Taiwan; Biomedical Translation Research Center, Academia Sinica, Taipei 11529, Taiwan.
| | - Kurt Yun Mou
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
2
|
Kilgore PB, Sha J, Hendrix EK, Neil BH, Lawrence WS, Peel JE, Hittle L, Woolston J, Sulakvelidze A, Schwartz JA, Chopra AK. A bacteriophage cocktail targeting Yersinia pestis provides strong post-exposure protection in a rat pneumonic plague model. Microbiol Spectr 2024; 12:e0094224. [PMID: 39292000 PMCID: PMC11537065 DOI: 10.1128/spectrum.00942-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 08/04/2024] [Indexed: 09/19/2024] Open
Abstract
Yersinia pestis, one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug-resistant strains. Indeed, antibiotic-resistant strains (e.g., strains carrying multidrug-resistant or MDR plasmids) have been isolated in various countries and endemic areas. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines (none FDA approved yet) may not be effective and those that cannot be managed by currently available antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation effective against a panel of at least 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ~88% protection when delivered 18 h post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies provide proof-of-concept that YPP-401 could be an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed multidrug-resistant strains.IMPORTANCECurrently, there are no FDA-approved plague vaccines. Since antibiotic-resistant strains of Y. pestis have emerged or are being intentionally developed to be used as a biothreat agent, new treatment modalities are direly needed. Phage therapy provides a viable option against potentially antibiotic-resistant strains. Additionally, phages are nontoxic and have been approved by the FDA for use in the food industry. Our study provides the first evidence of the protective effect of a cocktail of four phages against pneumonic plague, the most severe form of disease. When treatment was initiated 18 h post infection by either the intranasal or intraperitoneal route in Brown Norway rats, up to 87.5% protection was observed. The phage cocktail had a minimal impact on a representative human microbiome panel, unlike antibiotics. This study provides strong proof-of-concept data for the further development of phage-based therapy to treat plague.
Collapse
Affiliation(s)
- Paul B. Kilgore
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Emily K. Hendrix
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Blake H. Neil
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - William S. Lawrence
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | - Jennifer E. Peel
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
| | | | | | | | | | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
- Institute for Human Infections & Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas, USA
- Sealy Institute for Vaccine Sciences, University of Texas Medical Branch, Galveston, Texas, USA
- Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
3
|
Lehman KM, May KL, Marotta J, Grabowicz M. Genetic analysis reveals a robust and hierarchical recruitment of the LolA chaperone to the LolCDE lipoprotein transporter. mBio 2024; 15:e0303923. [PMID: 38193657 PMCID: PMC10865981 DOI: 10.1128/mbio.03039-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 11/29/2023] [Indexed: 01/10/2024] Open
Abstract
The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.IMPORTANCEResistance to current antibiotics is increasingly common. New antibiotics that target essential processes are needed to expand clinical options. For Gram-negative bacteria, their cell surface-the outer membrane (OM)-is an essential organelle and antibiotic barrier that is an attractive target for new antibacterials. Lipoproteins are key to building the OM. The LolCDE transporter is needed to supply the OM with lipoproteins and has been a focus of recent antibiotic discovery. In vitro evidence recently proposed a two-part interaction of LolC with LolA lipoprotein chaperone (which traffics lipoproteins to the OM) via "Hook" and "Pad" regions. We show that this model does not reflect lipoprotein trafficking in vivo. Only the Hook is essential for lipoprotein trafficking and is remarkably robust to mutational changes. The Pad is non-essential for lipoprotein trafficking but plays an ancillary role, contributing to trafficking efficiency. These insights inform ongoing efforts to drug LolCDE.
Collapse
Affiliation(s)
- Kelly M. Lehman
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Kerrie L. May
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Julianna Marotta
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcin Grabowicz
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Kilgore PB, Sha J, Hendrix EK, Neil BH, Lawrence WS, Peel JE, Hittle L, Woolston J, Sulakvelidze A, Schwartz JA, Chopra AK. A Bacteriophage Cocktail Targeting Yersinia pestis Provides Strong Post-Exposure Protection in a Rat Pneumonic Plague Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576055. [PMID: 38293171 PMCID: PMC10827167 DOI: 10.1101/2024.01.17.576055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Yersinia pestis , one of the deadliest bacterial pathogens ever known, is responsible for three plague pandemics and several epidemics, with over 200 million deaths during recorded history. Due to high genomic plasticity, Y. pestis is amenable to genetic mutations as well as genetic engineering that can lead to the emergence or intentional development of pan-drug resistant strains. The dissemination of such Y. pestis strains could be catastrophic, with public health consequences far more daunting than those caused by the recent COVID-19 pandemic. Thus, there is an urgent need to develop novel, safe, and effective treatment approaches for managing Y. pestis infections. This includes infections by antigenically distinct strains for which vaccines, none FDA approved yet, may not be effective, and those that cannot be controlled by approved antibiotics. Lytic bacteriophages provide one such alternative approach. In this study, we examined post-exposure efficacy of a bacteriophage cocktail, YPP-401, to combat pneumonic plague caused by Y. pestis CO92. YPP-401 is a four-phage preparation with a 100% lytic activity against a panel of 68 genetically diverse Y. pestis strains. Using a pneumonic plague aerosol challenge model in gender-balanced Brown Norway rats, YPP-401 demonstrated ∼88% protection when delivered 18 hours post-exposure for each of two administration routes (i.e., intraperitoneal and intranasal) in a dose-dependent manner. Our studies suggest that YPP-401 could provide an innovative, safe, and effective approach for managing Y. pestis infections, including those caused by naturally occurring or intentionally developed strains that cannot be managed by vaccines in development and antibiotics.
Collapse
|
5
|
Lehman KM, May KL, Marotta J, Grabowicz M. Genetic analysis reveals a robust and hierarchical recruitment of the LolA chaperone to the LolCDE lipoprotein transporter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.08.566237. [PMID: 37986794 PMCID: PMC10659402 DOI: 10.1101/2023.11.08.566237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The outer membrane (OM) is an essential organelle of Gram-negative bacteria. Lipoproteins are key to building the OM, performing essential functions in several OM assembly machines. Lipoproteins mature in the inner membrane (IM) and are then trafficked to the OM. In Escherichia coli, the LolCDE transporter is needed to extract lipoproteins from the IM to begin trafficking. Lipoproteins are then transferred from LolCDE to the periplasmic chaperone LolA which ferries them to the OM for insertion by LolB. LolA recruitment by LolC is an essential trafficking step. Structural and biochemical studies suggested that two regions (termed Hook and Pad) within a periplasmic loop of LolC worked in tandem to recruit LolA, leading to a bipartite model for recruitment. Here, we genetically examine the LolC periplasmic loop in vivo using E. coli. Our findings challenge the bipartite interaction model. We show that while the Hook is essential for lipoprotein trafficking in vivo, lipoproteins are still efficiently trafficked when the Pad residues are inactivated. We show with AlphaFold2 multimer modeling that Hook:LolA interactions are likely universal among diverse Gram-negative bacteria. Conversely, Pad:LolA interactions vary across phyla. Our in vivo data redefine LolC:LolA recruitment into a hierarchical interaction model. We propose that the Hook is the major player in LolA recruitment, while the Pad plays an ancillary role that is important for efficiency but is ultimately dispensable. Our findings expand the understanding of a fundamental step in essential lipoprotein trafficking and have implications for efforts to develop new antibacterials that target LolCDE.
Collapse
Affiliation(s)
- Kelly M. Lehman
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Kelly M. Lehman and Kerrie L. May contributed equally to this work. Author order was determined alphabetically
| | - Kerrie L. May
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
- Kelly M. Lehman and Kerrie L. May contributed equally to this work. Author order was determined alphabetically
| | - Julianna Marotta
- Microbiology and Molecular Genetics Program, Graduate Division of Biological and Biomedical Sciences, Laney Graduate School, Emory University, Atlanta, Georgia, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Marcin Grabowicz
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
6
|
Zhu Q, Lin Q, Jiang Y, Chen S, Tian J, Yang S, Li Y, Li M, Wang Y, Shen C, Meng S, Yang L, Feng Y, Qu J. Construction and application of the conditionally essential gene knockdown library in Klebsiella pneumoniae to screen potential antimicrobial targets and virulence genes via Mobile-CRISPRi-seq. Appl Environ Microbiol 2023; 89:e0095623. [PMID: 37815340 PMCID: PMC10617577 DOI: 10.1128/aem.00956-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 08/09/2023] [Indexed: 10/11/2023] Open
Abstract
Klebsiella pneumoniae is a ubiquitous human pathogen, and its clinical treatment faces two major challenges: multidrug resistance and the pathogenesis of hypervirulent K. pneumoniae. The discovery and study of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern due to their restriction in the development of novel antibiotics. However, the lack of essential functional genomic data has hampered the study of the mechanisms of essential genes related to antimicrobial susceptibility. In this study, we developed a pooled CE genes mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference screening method (Mobile-CRISPRi-seq) for K. pneumoniae to identify genes that play critical roles in antimicrobial fitness in vitro and host immunity in vivo. Targeting 870 predicted CE genes in K. pneumoniae, Mobile-CRISPRi-seq uncovered the depletion of tetrahydrofolate synthesis pathway genes folB and folP under trimethoprim pressure. Our screening also identified genes waaE and fldA related to polymyxin and β-lactam susceptibility by applying a screening strategy based on Mobile-CRISPRi-seq and comparative genomics. Furthermore, using a mouse infection model and Mobile-CRISPRi-seq, multiple virulence genes were identified, and among these genes, pal, yciS, and ribB were demonstrated to contribute to the pathogenesis of K. pneumoniae. This study provides a simple, rapid, and effective platform for screening potential antimicrobial targets and virulence genes in K. pneumoniae, and this broadly applicable system can be expanded for high-throughput functional gene study in multiple pathogenic bacteria, especially in gram-negative bacteria. IMPORTANCE The discovery and investigation of conditionally essential (CE) genes that can function as potential antimicrobial targets has always been a research concern because of the restriction of antimicrobial targets in the development of novel antibiotics. In this study, we developed a pooled CE gene-wide mobile clustered regularly interspaced short palindromic repeat (CRISPR) interference sequencing (Mobile-CRISPRi-seq) strategy in Klebsiella pneumoniae to identify genes that play critical roles in the fitness of antimicrobials in vitro and host immunity in vivo. The data suggest a robust tool to screen for loss-of-function phenotypes in a pooled gene knockdown library in K. pneumoniae, and Mobile-CRISPRi-seq may be expanded to multiple bacteria for screening and identification of genes with crucial roles in the fitness of antimicrobials and hosts.
Collapse
Affiliation(s)
- Qing Zhu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Qiang Lin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong Province, China
| | - Yushan Jiang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shuyan Chen
- Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Junxuan Tian
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Shijin Yang
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Yuanchun Li
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Mengjun Li
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yuelin Wang
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Chenguang Shen
- BSL-3 Laboratory (Guangdong), Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Center for Biosafety Mega-Science, Chinese Academy of Sciences (CAS), Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liang Yang
- Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| | - Youjun Feng
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
- Departments of Microbiology and General Intensive Care Unit of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, China
| | - Jiuxin Qu
- Department of Clinical Laboratory, Shenzhen Third People’s Hospital, National Clinical Research Center for Infectious Diseases, The Second Affiliated Hospital of Southern University of Science and Technology, Shenzhen, Guangdong Province, China
| |
Collapse
|
7
|
Abstract
The outer membrane (OM) of Gram-negative bacteria is an essential organelle that acts as a formidable barrier to antibiotics. Increasingly prevalent resistance to existing drugs has exacerbated the need for antibiotic discovery efforts targeting the OM. Acylated proteins, known as lipoproteins, are essential in every pathway needed to build the OM. The central role of OM lipoproteins makes their biogenesis a uniquely attractive therapeutic target, but it also complicates in vivo identification of on-pathway inhibitors, as inhibition of OM lipoprotein biogenesis broadly disrupts OM assembly. Here, we use genetics to probe the eight essential proteins involved in OM lipoprotein maturation and trafficking. We define a biological signature consisting of three simple assays that can characteristically identify OM lipoprotein biogenesis defects in vivo. We find that several known chemical inhibitors of OM lipoprotein biogenesis conform to the biological signature. We also examine MAC13243, a proposed inhibitor of OM lipoprotein biogenesis, and find that it fails to conform to the biological signature. Indeed, we demonstrate that MAC13243 activity relies entirely on a target outside of the OM lipoprotein biogenesis pathway. Hence, our signature offers simple tools to easily assess whether antibiotic lead compounds target an essential pathway that is the hub of OM assembly.
Collapse
|
8
|
Combinatorial Viral Vector-Based and Live Attenuated Vaccines without an Adjuvant to Generate Broader Immune Responses to Effectively Combat Pneumonic Plague. mBio 2021; 12:e0322321. [PMID: 34872353 PMCID: PMC8649767 DOI: 10.1128/mbio.03223-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Mice immunized with a combination of an adenovirus vector (Ad5-YFV) and live-attenuated (LMA)-based vaccines were evaluated for protective efficacy against pneumonic plague. While the Ad5-YFV vaccine harbors a fusion cassette of three genes encoding YscF, F1, and LcrV, LMA represents a mutant of parental Yersinia pestis CO92 deleted for genes encoding Lpp, MsbB, and Ail. Ad5-YFV and LMA were either administered simultaneously (1-dose regimen) or 21 days apart in various orders and route of administration combinations (2-dose regimen). The 2-dose regimen induced robust immune responses to provide full protection to animals against parental CO92 and its isogenic F1 deletion mutant (CAF−) challenges during both short- and long-term studies. Mice intranasally (i.n.) immunized with Ad5-YFV first followed by LMA (i.n. or intramuscularly [i.m.]) had higher T- and B-cell proliferative responses and LcrV antibody titers than those in mice vaccinated with LMA (i.n. or i.m.) first ahead of Ad5-YFV (i.n.) during the long-term study. Specifically, the needle- and adjuvant-free vaccine combination (i.n.) is ideal for use in plague regions of endemicity. Conversely, with a 1-dose regimen, mice vaccinated with Ad5-YFV i.n. and LMA by the i.m. route provided complete protection to animals against CO92 and its CAF− mutant challenges and elicited Th1/Th2, as well as Th17 responses, making it suitable for emergency vaccination during a plague outbreak or bioterrorist attack. This is a first study in which a viral vector-based and live-attenuated vaccines were effectively used in combination, representing adjuvant- and/or needle-free immunization, with each vaccine triggering a distinct cellular immune response.
Collapse
|
9
|
Bruchmann S, Feltwell T, Parkhill J, Short FL. Identifying virulence determinants of multidrug-resistant Klebsiella pneumoniae in Galleria mellonella. Pathog Dis 2021; 79:6123718. [PMID: 33512418 PMCID: PMC7981267 DOI: 10.1093/femspd/ftab009] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/26/2021] [Indexed: 12/30/2022] Open
Abstract
Infections caused by Klebsiella pneumoniae are a major public health threat. Extensively drug-resistant and even pan-resistant strains have been reported. Understanding K. pneumoniae pathogenesis is hampered by the fact that murine models of infection offer limited resolution for non-hypervirulent strains which cause the majority of infections. The insect Galleria mellonella larva is a widely used alternative model organism for bacterial pathogens. We have performed genome-scale fitness profiling of a multidrug-resistant K. pneumoniae ST258 strain during infection of G. mellonella, to determine if this model is suitable for large-scale virulence factor discovery in this pathogen. Our results demonstrated a dominant role for surface polysaccharides in infection, with contributions from siderophores, cell envelope proteins, purine biosynthesis genes and additional genes of unknown function. Comparison with a hypervirulent strain, ATCC 43816, revealed substantial overlap in important infection-related genes, as well as additional putative virulence factors specific to ST258, reflecting strain-dependent fitness effects. Our analysis also identified a role for the metalloregulatory protein NfeR (YqjI) in virulence. Overall, this study offers new insight into the infection fitness landscape of K. pneumoniae, and provides a framework for using the highly flexible and easily scalable G. mellonella infection model to dissect molecular virulence mechanisms of bacterial pathogens.
Collapse
Affiliation(s)
- Sebastian Bruchmann
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK.,Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK
| | - Theresa Feltwell
- Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Department of Medicine, University of Cambridge, The Old Schools, Cambridge, CB2 3PU, UK
| | - Julian Parkhill
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, CB3 0ES, UK
| | - Francesca L Short
- Pathogen Genomics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, CB10 1SA, UK.,Department of Medicine, University of Cambridge, The Old Schools, Cambridge, CB2 3PU, UK.,Department of Molecular Sciences, Macquarie University, North Ryde, NSW 2113, Australia
| |
Collapse
|
10
|
Demeure C, Dussurget O, Fiol GM, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination and diagnostics. Microbes Infect 2019; 21:202-212. [DOI: 10.1016/j.micinf.2019.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 01/08/2023]
|
11
|
Demeure CE, Dussurget O, Mas Fiol G, Le Guern AS, Savin C, Pizarro-Cerdá J. Yersinia pestis and plague: an updated view on evolution, virulence determinants, immune subversion, vaccination, and diagnostics. Genes Immun 2019; 20:357-370. [PMID: 30940874 PMCID: PMC6760536 DOI: 10.1038/s41435-019-0065-0] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022]
Abstract
Plague is a vector-borne disease caused by Yersinia pestis. Transmitted by fleas from rodent reservoirs, Y. pestis emerged <6000 years ago from an enteric bacterial ancestor through events of gene gain and genome reduction. It is a highly remarkable model for the understanding of pathogenic bacteria evolution, and a major concern for public health as highlighted by recent human outbreaks. A complex set of virulence determinants, including the Yersinia outer-membrane proteins (Yops), the broad-range protease Pla, pathogen-associated molecular patterns (PAMPs), and iron capture systems play critical roles in the molecular strategies that Y. pestis employs to subvert the human immune system, allowing unrestricted bacterial replication in lymph nodes (bubonic plague) and in lungs (pneumonic plague). Some of these immunogenic proteins as well as the capsular antigen F1 are exploited for diagnostic purposes, which are critical in the context of the rapid onset of death in the absence of antibiotic treatment (less than a week for bubonic plague and <48 h for pneumonic plague). Here, we review recent research advances on Y. pestis evolution, virulence factor function, bacterial strategies to subvert mammalian innate immune responses, vaccination, and problems associated with pneumonic plague diagnosis.
Collapse
Affiliation(s)
| | - Olivier Dussurget
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Guillem Mas Fiol
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- Université Paris-Diderot, Sorbonne Paris Cité, F-75013, Paris, France
| | - Anne-Sophie Le Guern
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Cyril Savin
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France
| | - Javier Pizarro-Cerdá
- Yersinia Research Unit, Institut Pasteur, F-75724, Paris, France.
- National Reference Laboratory 'Plague & Other Yersiniosis', Institut Pasteur, F-75724, Paris, France.
- World Health Organization Collaborating Research & Reference Centre for Yersinia, Institut Pasteur, F-75724, Paris, France.
| |
Collapse
|
12
|
Juan C, Torrens G, Barceló IM, Oliver A. Interplay between Peptidoglycan Biology and Virulence in Gram-Negative Pathogens. Microbiol Mol Biol Rev 2018; 82:e00033-18. [PMID: 30209071 PMCID: PMC6298613 DOI: 10.1128/mmbr.00033-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The clinical and epidemiological threat of the growing antimicrobial resistance in Gram-negative pathogens, particularly for β-lactams, the most frequently used and relevant antibiotics, urges research to find new therapeutic weapons to combat the infections caused by these microorganisms. An essential previous step in the development of these therapeutic solutions is to identify their potential targets in the biology of the pathogen. This is precisely what we sought to do in this review specifically regarding the barely exploited field analyzing the interplay among the biology of the peptidoglycan and related processes, such as β-lactamase regulation and virulence. Hence, here we gather, analyze, and integrate the knowledge derived from published works that provide information on the topic, starting with those dealing with the historically neglected essential role of the Gram-negative peptidoglycan in virulence, including structural, biogenesis, remodeling, and recycling aspects, in addition to proinflammatory and other interactions with the host. We also review the complex link between intrinsic β-lactamase production and peptidoglycan metabolism, as well as the biological costs potentially associated with the expression of horizontally acquired β-lactamases. Finally, we analyze the existing evidence from multiple perspectives to provide useful clues for identifying targets enabling the future development of therapeutic options attacking the peptidoglycan-virulence interconnection as a key weak point of the Gram-negative pathogens to be used, if not to kill the bacteria, to mitigate their capacity to produce severe infections.
Collapse
Affiliation(s)
- Carlos Juan
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Gabriel Torrens
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Isabel Maria Barceló
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| | - Antonio Oliver
- Servicio de Microbiología and Unidad de Investigación, Hospital Son Espases, Instituto de Investigación Sanitaria de Baleares (IdISBa), Palma, Spain
| |
Collapse
|
13
|
Asmar AT, Collet JF. Lpp, the Braun lipoprotein, turns 50—major achievements and remaining issues. FEMS Microbiol Lett 2018; 365:5071948. [DOI: 10.1093/femsle/fny199] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 08/10/2018] [Indexed: 12/14/2022] Open
Affiliation(s)
- Abir T Asmar
- WELBIO, Université catholique de Louvain, avenue Hippocrate 75, Brussels 1200, Belgium
- De Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| | - Jean-François Collet
- WELBIO, Université catholique de Louvain, avenue Hippocrate 75, Brussels 1200, Belgium
- De Duve Institute, Université catholique de Louvain, Avenue Hippocrate 75, Brussels 1200, Belgium
| |
Collapse
|
14
|
Affiliation(s)
- Marcin Grabowicz
- Department of Microbiology and Immunology; Emory University School of Medicine; Atlanta GA 30322 USA
- Division of Infectious Disease; Department of Medicine; Emory University School of Medicine; Atlanta GA 30322 USA
| |
Collapse
|
15
|
Andersson JA, Sha J, Erova TE, Fitts EC, Ponnusamy D, Kozlova EV, Kirtley ML, Chopra AK. Identification of New Virulence Factors and Vaccine Candidates for Yersinia pestis. Front Cell Infect Microbiol 2017; 7:448. [PMID: 29090192 PMCID: PMC5650977 DOI: 10.3389/fcimb.2017.00448] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 09/29/2017] [Indexed: 11/13/2022] Open
Abstract
Earlier, we reported the identification of new virulence factors/mechanisms of Yersinia pestis using an in vivo signature-tagged mutagenesis (STM) screening approach. From this screen, the role of rbsA, which encodes an ATP-binding protein of ribose transport system, and vasK, an essential component of the type VI secretion system (T6SS), were evaluated in mouse models of plague and confirmed to be important during Y. pestis infection. However, many of the identified genes from the screen remained uncharacterized. In this study, in-frame deletion mutants of ypo0815, ypo2884, ypo3614-3168 (cyoABCDE), and ypo1119-1120, identified from the STM screen, were generated. While ypo0815 codes for a general secretion pathway protein E (GspE) of the T2SS, the ypo2884-encoded protein has homology to the βγ crystallin superfamily, cyoABCDE codes for the cytochrome o oxidase operon, and the ypo1119-1120 genes are within the Tol-Pal system which has multiple functions. Additionally, as our STM screen identified three T6SS-associated genes, and, based on in silico analysis, six T6SS clusters and multiple homologs of the T6SS effector hemolysin-coregulated protein (Hcp) exist in Y. pestis CO92, we also targeted these T6SS clusters and effectors for generating deletion mutants. These deletion mutant strains exhibited varying levels of attenuation (up to 100%), in bubonic or pneumonic murine infection models. The attenuation could be further augmented by generation of combinatorial deletion mutants, namely ΔlppΔypo0815, ΔlppΔypo2884, ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3. We earlier showed that deletion of the lpp gene, which encodes Braun lipoprotein (Lpp) and activates Toll-like receptor-2, reduced virulence of Y. pestis CO92 in murine models of bubonic and pneumonic plague. The surviving mice infected with ΔlppΔcyoABCDE, ΔvasKΔhcp6, and Δypo2720-2733Δhcp3 mutant strains were 55-100% protected upon subsequent re-challenge with wild-type CO92 in a pneumonic model. Further, evaluation of the attenuated T6SS mutant strains in vitro revealed significant alterations in phagocytosis, intracellular survival in murine macrophages, and their ability to induce cytotoxic effects on macrophages. The results reported here provide further evidence of the utility of the STM screening approach for the identification of novel virulence factors and to possibly target such genes for the development of novel live-attenuated vaccine candidates for plague.
Collapse
Affiliation(s)
- Jourdan A Andersson
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States
| | - Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States
| | - Ashok K Chopra
- Institute for Translational Sciences, University of Texas Medical Branch, Galveston, TX, United States.,Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, United States.,Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, United States.,WHO Collaborating Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, United States.,Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX, United States
| |
Collapse
|
16
|
Characterization of Yersinia species by protein profiling using automated microfluidic capillary electrophoresis. Forensic Sci Med Pathol 2016; 13:10-19. [DOI: 10.1007/s12024-016-9824-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2016] [Indexed: 10/20/2022]
|
17
|
New Insights into Autoinducer-2 Signaling as a Virulence Regulator in a Mouse Model of Pneumonic Plague. mSphere 2016; 1:mSphere00342-16. [PMID: 27981238 PMCID: PMC5156673 DOI: 10.1128/msphere.00342-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Accepted: 11/19/2016] [Indexed: 01/23/2023] Open
Abstract
Yersinia pestis is the bacterial agent that causes the highly fatal disease plague. The organism represents a significant concern because of its potential use as a bioterror agent, beyond the several thousand naturally occurring human infection cases occurring globally each year. While there has been development of effective antibiotics, the narrow therapeutic window and challenges posed by the existence of antibiotic-resistant strains represent serious concerns. We sought to identify novel virulence factors that could potentially be incorporated into an attenuated vaccine platform or be targeted by novel therapeutics. We show here that a highly conserved quorum-sensing system, autoinducer-2, significantly affected the virulence of Y. pestis in a mouse model of pneumonic plague. We also identified steps in autoinducer-2 signaling which had confounded previous studies and demonstrated the potential for intervention in the virulence mechanism(s) of autoinducer-2. Our findings may have an impact on bacterial pathogenesis research in many other organisms and could result in identifying potential broad-spectrum therapeutic targets to combat antibiotic-resistant bacteria, which represent a global crisis of the 21st century. The Enterobacteriaceae family members, including the infamous Yersinia pestis, the causative agent of plague, have a highly conserved interbacterial signaling system that is mediated by the autoinducer-2 (AI-2) quorum-sensing molecule. The AI-2 system is implicated in regulating various bacterial virulence genes in diverse environmental niches. Deletion of the gene encoding the synthetic enzyme for the AI-2 substrate, luxS, leads to either no significant change or, paradoxically, an increase in in vivo bacterial virulence. We showed that deletion of the rbsA and lsrA genes, components of ABC transport systems that interact with AI-2, synergistically disrupted AI-2 signaling patterns and resulted in a more-than-50-fold decrease in Y. pestis strain CO92 virulence in a stringent pneumonic plague mouse model. Deletion of luxS or lsrK (encoding AI-2 kinase) from the ΔrbsA ΔlsrA background strain or complementation of the ΔrbsA ΔlsrA mutant with the corresponding gene(s) reverted the virulence phenotype to that of the wild-type Y. pestis CO92. Furthermore, the administration of synthetic AI-2 in mice infected with the ΔrbsA ΔlsrA ΔluxS mutant strain attenuated this triple mutant to a virulence phenotype similar to that of the ΔrbsA ΔlsrA strain in a pneumonic plague model. Conversely, the administration of AI-2 to mice infected with the ΔrbsA ΔlsrA ΔluxS ΔlsrK mutant did not rescue animals from lethality, indicating the importance of the AI-2–LsrK axis in regulating bacterial virulence. By performing high-throughput RNA sequencing, the potential role of some AI-2-signaling-regulated genes that modulated bacterial virulence was determined. We anticipate that the characterization of AI-2 signaling in Y. pestis will lead to reexamination of AI-2 systems in other pathogens and that AI-2 signaling may represent a broad-spectrum therapeutic target to combat antibiotic-resistant bacteria, which represent a global crisis of the 21st century. IMPORTANCEYersinia pestis is the bacterial agent that causes the highly fatal disease plague. The organism represents a significant concern because of its potential use as a bioterror agent, beyond the several thousand naturally occurring human infection cases occurring globally each year. While there has been development of effective antibiotics, the narrow therapeutic window and challenges posed by the existence of antibiotic-resistant strains represent serious concerns. We sought to identify novel virulence factors that could potentially be incorporated into an attenuated vaccine platform or be targeted by novel therapeutics. We show here that a highly conserved quorum-sensing system, autoinducer-2, significantly affected the virulence of Y. pestis in a mouse model of pneumonic plague. We also identified steps in autoinducer-2 signaling which had confounded previous studies and demonstrated the potential for intervention in the virulence mechanism(s) of autoinducer-2. Our findings may have an impact on bacterial pathogenesis research in many other organisms and could result in identifying potential broad-spectrum therapeutic targets to combat antibiotic-resistant bacteria, which represent a global crisis of the 21st century.
Collapse
|
18
|
Verma SK, Tuteja U. Plague Vaccine Development: Current Research and Future Trends. Front Immunol 2016; 7:602. [PMID: 28018363 PMCID: PMC5155008 DOI: 10.3389/fimmu.2016.00602] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/30/2016] [Indexed: 02/05/2023] Open
Abstract
Plague is one of the world’s most lethal human diseases caused by Yersinia pestis, a Gram-negative bacterium. Despite overwhelming studies for many years worldwide, there is no safe and effective vaccine against this fatal disease. Inhalation of Y. pestis bacilli causes pneumonic plague, a fast growing and deadly dangerous disease. F1/LcrV-based vaccines failed to provide adequate protection in African green monkey model in spite of providing protection in mice and cynomolgus macaques. There is still no explanation for this inconsistent efficacy, and scientists leg behind to search reliable correlate assays for immune protection. These paucities are the main barriers to improve the effectiveness of plague vaccine. In the present scenario, one has to pay special attention to elicit strong cellular immune response in developing a next-generation vaccine against plague. Here, we review the scientific contributions and existing progress in developing subunit vaccines, the role of molecular adjuvants; DNA vaccines; live delivery platforms; and attenuated vaccines developed to counteract virulent strains of Y. pestis.
Collapse
Affiliation(s)
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment , Gwalior , India
| |
Collapse
|
19
|
Erova TE, Kirtley ML, Fitts EC, Ponnusamy D, Baze WB, Andersson JA, Cong Y, Tiner BL, Sha J, Chopra AK. Protective Immunity Elicited by Oral Immunization of Mice with Salmonella enterica Serovar Typhimurium Braun Lipoprotein (Lpp) and Acetyltransferase (MsbB) Mutants. Front Cell Infect Microbiol 2016; 6:148. [PMID: 27891321 PMCID: PMC5103298 DOI: 10.3389/fcimb.2016.00148] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 10/27/2016] [Indexed: 12/12/2022] Open
Abstract
We evaluated the extent of attenuation and immunogenicity of the ΔlppAB and ΔlppAB ΔmsbB mutants of Salmonella enterica serovar Typhimurium when delivered to mice by the oral route. These mutants were deleted either for the Braun lipoprotein genes (lppA and lppB) or in combination with the msbB gene, which encodes an acetyltransferase required for lipid A modification of lipopolysaccharide. Both the mutants were attenuated (100% animal survival) and triggered robust innate and adaptive immune responses. Comparable levels of IgG and its isotypes were produced in mice infected with wild-type (WT) S. typhimurium or its aforementioned mutant strains. The ΔlppAB ΔmsbB mutant-immunized animals resulted in the production of higher levels of fecal IgA and serum cytokines during later stages of vaccination (adaptive response). A significant production of interleukin-6 from T-cells was also noted in the ΔlppAB ΔmsbB mutant-immunized mice when compared to that of the ΔlppAB mutant. On the other hand, IL-17A production was significantly more in the serum of ΔlppAB mutant-immunized mice (innate response) with a stronger splenic T-cell proliferative and tumor-necrosis factor-α production. Based on 2-dimensional gel analysis, alterations in the levels of several proteins were observed in both the mutant strains when compared to that in WT S. typhimurium and could be associated with the higher immunogenicity of the mutants. Finally, both ΔlppAB and ΔlppAB ΔmsbB mutants provided complete protection to immunized mice against a lethal oral challenge dose of WT S. typhimurium. Thus, these mutants may serve as excellent vaccine candidates and also provide a platform for delivering heterologous antigens.
Collapse
Affiliation(s)
- Tatiana E Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Michelle L Kirtley
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Wallace B Baze
- Department of Veterinary Sciences, University of Texas M. D. Anderson Cancer Center Bastrop, TX, USA
| | - Jourdan A Andersson
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Yingzi Cong
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development and World Health Organisation Collaborating Center for Vaccine Research, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA
| | - Bethany L Tiner
- Department of Microbiology and Immunology, University of Texas Medical Branch Galveston, TX, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical BranchGalveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical BranchGalveston, TX, USA; Sealy Center for Vaccine Development and World Health Organisation Collaborating Center for Vaccine Research, University of Texas Medical BranchGalveston, TX, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical BranchGalveston, TX, USA
| |
Collapse
|
20
|
Du Z, Wang X. Pathology and Pathogenesis of Yersinia pestis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 918:193-222. [DOI: 10.1007/978-94-024-0890-4_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
21
|
Lakshmikanth CL, Jacob SP, Kudva AK, Latchoumycandane C, Yashaswini PSM, Sumanth MS, Goncalves-de-Albuquerque CF, Silva AR, Singh SA, Castro-Faria-Neto HC, Prabhu SK, McIntyre TM, Marathe GK. Escherichia coli Braun Lipoprotein (BLP) exhibits endotoxemia - like pathology in Swiss albino mice. Sci Rep 2016; 6:34666. [PMID: 27698491 PMCID: PMC5048175 DOI: 10.1038/srep34666] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 09/15/2016] [Indexed: 02/08/2023] Open
Abstract
The endotoxin lipopolysaccharide (LPS) promotes sepsis, but bacterial peptides also promote inflammation leading to sepsis. We found, intraperitoneal administration of live or heat inactivated E. coli JE5505 lacking the abundant outer membrane protein, Braun lipoprotein (BLP), was less toxic than E. coli DH5α possessing BLP in Swiss albino mice. Injection of BLP free of LPS purified from E. coli DH5α induced massive infiltration of leukocytes in lungs and liver. BLP activated human polymorphonuclear cells (PMNs) ex vivo to adhere to denatured collagen in serum and polymyxin B independent fashion, a property distinct from LPS. Both LPS and BLP stimulated the synthesis of platelet activating factor (PAF), a potent lipid mediator, in human PMNs. In mouse macrophage cell line, RAW264.7, while both BLP and LPS similarly upregulated TNF-α and IL-1β mRNA; BLP was more potent in inducing cyclooxygenase-2 (COX-2) mRNA and protein expression. Peritoneal macrophages from TLR2−/− mice significantly reduced the production of TNF-α in response to BLP in contrast to macrophages from wild type mice. We conclude, BLP acting through TLR2, is a potent inducer of inflammation with a response profile both common and distinct from LPS. Hence, BLP mediated pathway may also be considered as an effective target against sepsis.
Collapse
Affiliation(s)
| | - Shancy Petsel Jacob
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| | - Avinash Kundadka Kudva
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Calivarathan Latchoumycandane
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | | | - Mosale Seetharam Sumanth
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| | | | - Adriana R Silva
- Laboratótio de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sridevi Annapurna Singh
- Department of Protein Chemistry &Technology, Central Food Technological Research Institute/CSIR, Mysore - 570 020, Karnataka, India
| | - Hugo C Castro-Faria-Neto
- Laboratótio de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, 21045-900, Brazil
| | - Sandeep Kumble Prabhu
- Department of Veterinary and Biomedical Sciences, Center for Molecular Immunology and Infectious Disease and Center for Molecular Toxicology and Carcinogenesis, 115 Henning Building, The Pennsylvania State University, University Park, PA 16802, USA
| | - Thomas M McIntyre
- Department of Cellular and Molecular Medicine, Cleveland Clinic Lerner Research Institute, 9500 Euclid Avenue, Cleveland, Ohio 44195, USA
| | - Gopal Kedihithlu Marathe
- Department of Studies in Biochemistry, University of Mysore, Manasagangothri, Mysore - 570 006, Karnataka, India
| |
Collapse
|
22
|
A Replication-Defective Human Type 5 Adenovirus-Based Trivalent Vaccine Confers Complete Protection against Plague in Mice and Nonhuman Primates. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:586-600. [PMID: 27170642 DOI: 10.1128/cvi.00150-16] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022]
Abstract
Currently, no plague vaccine exists in the United States for human use. The capsular antigen (Caf1 or F1) and two type 3 secretion system (T3SS) components, the low-calcium-response V antigen (LcrV) and the needle protein YscF, represent protective antigens of Yersinia pestis We used a replication-defective human type 5 adenovirus (Ad5) vector and constructed recombinant monovalent and trivalent vaccines (rAd5-LcrV and rAd5-YFV) that expressed either the codon-optimized lcrV or the fusion gene designated YFV (consisting of ycsF, caf1, and lcrV). Immunization of mice with the trivalent rAd5-YFV vaccine by either the intramuscular (i.m.) or the intranasal (i.n.) route provided protection superior to that with the monovalent rAd5-LcrV vaccine against bubonic and pneumonic plague when animals were challenged with Y. pestis CO92. Preexisting adenoviral immunity did not diminish the protective response, and the protection was always higher when mice were administered one i.n. dose of the trivalent vaccine (priming) followed by a single i.m. booster dose of the purified YFV antigen. Immunization of cynomolgus macaques with the trivalent rAd5-YFV vaccine by the prime-boost strategy provided 100% protection against a stringent aerosol challenge dose of CO92 to animals that had preexisting adenoviral immunity. The vaccinated and challenged macaques had no signs of disease, and the invading pathogen rapidly cleared with no histopathological lesions. This is the first report showing the efficacy of an adenovirus-vectored trivalent vaccine against pneumonic plague in mouse and nonhuman primate (NHP) models.
Collapse
|
23
|
New Role for FDA-Approved Drugs in Combating Antibiotic-Resistant Bacteria. Antimicrob Agents Chemother 2016; 60:3717-29. [PMID: 27067323 DOI: 10.1128/aac.00326-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 03/31/2016] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in medically relevant bacterial pathogens, coupled with a paucity of novel antimicrobial discoveries, represents a pressing global crisis. Traditional drug discovery is an inefficient and costly process; however, systematic screening of Food and Drug Administration (FDA)-approved therapeutics for other indications in humans offers a rapid alternative approach. In this study, we screened a library of 780 FDA-approved drugs to identify molecules that rendered RAW 264.7 murine macrophages resistant to cytotoxicity induced by the highly virulent Yersinia pestis CO92 strain. Of these compounds, we identified 94 not classified as antibiotics as being effective at preventing Y. pestis-induced cytotoxicity. A total of 17 prioritized drugs, based on efficacy in in vitro screens, were chosen for further evaluation in a murine model of pneumonic plague to delineate if in vitro efficacy could be translated in vivo Three drugs, doxapram (DXP), amoxapine (AXPN), and trifluoperazine (TFP), increased animal survivability despite not exhibiting any direct bacteriostatic or bactericidal effect on Y. pestis and having no modulating effect on crucial Y. pestis virulence factors. These findings suggested that DXP, AXPN, and TFP may modulate host cell pathways necessary for disease pathogenesis. Finally, to further assess the broad applicability of drugs identified from in vitro screens, the therapeutic potential of TFP, the most efficacious drug in vivo, was evaluated in murine models of Salmonella enterica serovar Typhimurium and Clostridium difficile infections. In both models, TFP treatment resulted in increased survivability of infected animals. Taken together, these results demonstrate the broad applicability and potential use of nonantibiotic FDA-approved drugs to combat respiratory and gastrointestinal bacterial pathogens.
Collapse
|
24
|
Méndez-Gómez M, Castro-Mercado E, Alexandre G, García-Pineda E. Oxidative and antioxidative responses in the wheat-Azospirillum brasilense interaction. PROTOPLASMA 2016; 253:477-486. [PMID: 25952083 DOI: 10.1007/s00709-015-0826-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 04/30/2015] [Indexed: 06/04/2023]
Abstract
Azospirillum is a plant growth-promoting rhizobacteria (PGPR) able to enhance the growth of wheat. The aim of this study was to test the effect of Azospirillum brasilense cell wall components on superoxide (O2·(-)) production in wheat roots and the effect of oxidative stress on A. brasilense viability. We found that inoculation with A. brasilense reduced O2·(-) levels by approx. 30 % in wheat roots. Inoculation of wheat with papain-treated A. brasilense, a Cys protease, notably increased O2·(-) production in all root tissues, as was observed by the nitro blue tetrazolium (NBT) reduction. However, a 24-h treatment with rhizobacteria lipopolysaccharides (50 and 100 μg/mL) alone did not affect the pattern of O2·(-) production. Analysis of the effect of plant cell wall components on A. brasilense oxidative enzyme activity showed no changes in catalase activity but a decrease in superoxide dismutase activity in response to polygalacturonic acid treatment. Furthermore, A. brasilense growth was only affected by high concentrations of H2O2 or paraquat, but not by sodium nitroprusside. Our results suggest that rhizobacterial cell wall components play an important role in controlling plant cell responses and developing tolerance of A. brasilense to oxidative stress produced by the plant.
Collapse
Affiliation(s)
- Manuel Méndez-Gómez
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico
| | - Elda Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico
| | - Gladys Alexandre
- Department of Biology and Cellular and Molecular Biology, University of Tennessee, Knoxville, TN, 37996-0840, USA
| | - Ernesto García-Pineda
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. A1', Morelia, Michoacán, CP 58040, Mexico.
| |
Collapse
|
25
|
Intramuscular Immunization of Mice with a Live-Attenuated Triple Mutant of Yersinia pestis CO92 Induces Robust Humoral and Cell-Mediated Immunity To Completely Protect Animals against Pneumonic Plague. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1255-68. [PMID: 26446423 DOI: 10.1128/cvi.00499-15] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 10/03/2015] [Indexed: 12/12/2022]
Abstract
Earlier, we showed that the Δlpp ΔmsbB Δail triple mutant of Yersinia pestis CO92 with deleted genes encoding Braun lipoprotein (Lpp), an acyltransferase (MsbB), and the attachment invasion locus (Ail), respectively, was avirulent in a mouse model of pneumonic plague. In this study, we further evaluated the immunogenic potential of the Δlpp ΔmsbB Δail triple mutant and its derivative by different routes of vaccination. Mice were immunized via the subcutaneous (s.c.) or the intramuscular (i.m.) route with two doses (2 × 10(6) CFU/dose) of the above-mentioned triple mutant with 100% survivability of the animals. Upon subsequent pneumonic challenge with 70 to 92 50% lethal doses (LD(50)) of wild-type (WT) strain CO92, all of the mice survived when immunization occurred by the i.m. route. Since Ail has virulence and immunogenic potential, a mutated version of Ail devoid of its virulence properties was created, and the genetically modified ail replaced the native ail gene on the chromosome of the Δlpp ΔmsbB double mutant, creating a Δlpp ΔmsbB::ailL2 vaccine strain. This newly generated mutant was attenuated similarly to the Δlpp ΔmsbB Δail triple mutant when administered by the i.m. route and provided 100% protection to animals against subsequent pneumonic challenge. Not only were the two above-mentioned mutants cleared rapidly from the initial i.m. site of injection in animals with no histopathological lesions, the immunized mice did not exhibit any disease symptoms during immunization or after subsequent exposure to WT CO92. These two mutants triggered balanced Th1- and Th2-based antibody responses and cell-mediated immunity. A substantial increase in interleukin-17 (IL-17) from the T cells of vaccinated mice, a cytokine of the Th17 cells, further augmented their vaccine potential. Thus, the Δlpp ΔmsbB Δail and Δlpp ΔmsbB::ailL2 mutants represent excellent vaccine candidates for plague, with the latter mutant still retaining Ail immunogenicity but with a much diminished virulence potential.
Collapse
|
26
|
High-throughput, signature-tagged mutagenic approach to identify novel virulence factors of Yersinia pestis CO92 in a mouse model of infection. Infect Immun 2015; 83:2065-81. [PMID: 25754198 DOI: 10.1128/iai.02913-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 02/26/2015] [Indexed: 12/18/2022] Open
Abstract
The identification of new virulence factors in Yersinia pestis and understanding their molecular mechanisms during an infection process are necessary in designing a better vaccine or to formulate an appropriate therapeutic intervention. By using a high-throughput, signature-tagged mutagenic approach, we created 5,088 mutants of Y. pestis strain CO92 and screened them in a mouse model of pneumonic plague at a dose equivalent to 5 50% lethal doses (LD50) of wild-type (WT) CO92. From this screen, we obtained 118 clones showing impairment in disseminating to the spleen, based on hybridization of input versus output DNA from mutant pools with 53 unique signature tags. In the subsequent screen, 20/118 mutants exhibited attenuation at 8 LD50 when tested in a mouse model of bubonic plague, with infection by 10/20 of the aforementioned mutants resulting in 40% or higher survival rates at an infectious dose of 40 LD50. Upon sequencing, six of the attenuated mutants were found to carry interruptions in genes encoding hypothetical proteins or proteins with putative functions. Mutants with in-frame deletion mutations of two of the genes identified from the screen, namely, rbsA, which codes for a putative sugar transport system ATP-binding protein, and vasK, a component of the type VI secretion system, were also found to exhibit some attenuation at 11 or 12 LD50 in a mouse model of pneumonic plague. Likewise, among the remaining 18 signature-tagged mutants, 9 were also attenuated (40 to 100%) at 12 LD50 in a pneumonic plague mouse model. Previously, we found that deleting genes encoding Braun lipoprotein (Lpp) and acyltransferase (MsbB), the latter of which modifies lipopolysaccharide function, reduced the virulence of Y. pestis CO92 in mouse models of bubonic and pneumonic plague. Deletion of rbsA and vasK genes from either the Δlpp single or the Δlpp ΔmsbB double mutant augmented the attenuation to provide 90 to 100% survivability to mice in a pneumonic plague model at 20 to 50 LD50. The mice infected with the Δlpp ΔmsbB ΔrbsA triple mutant at 50 LD50 were 90% protected upon subsequent challenge with 12 LD50 of WT CO92, suggesting that this mutant or others carrying combinational deletions of genes identified through our screen could potentially be further tested and developed into a live attenuated plague vaccine(s).
Collapse
|
27
|
van Lier CJ, Tiner BL, Chauhan S, Motin VL, Fitts EC, Huante MB, Endsley JJ, Ponnusamy D, Sha J, Chopra AK. Further characterization of a highly attenuated Yersinia pestis CO92 mutant deleted for the genes encoding Braun lipoprotein and plasminogen activator protease in murine alveolar and primary human macrophages. Microb Pathog 2015; 80:27-38. [PMID: 25697665 PMCID: PMC4363157 DOI: 10.1016/j.micpath.2015.02.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 02/10/2015] [Accepted: 02/13/2015] [Indexed: 01/31/2023]
Abstract
We recently characterized the Δlpp Δpla double in-frame deletion mutant of Yersinia pestis CO92 molecularly, biologically, and immunologically. While Braun lipoprotein (Lpp) activates toll-like receptor-2 to initiate an inflammatory cascade, plasminogen activator (Pla) protease facilitates bacterial dissemination in the host. The Δlpp Δpla double mutant was highly attenuated in evoking bubonic and pneumonic plague, was rapidly cleared from mouse organs, and generated humoral and cell-mediated immune responses to provide subsequent protection to mice against a lethal challenge dose of wild-type (WT) CO92. Here, we further characterized the Δlpp Δpla double mutant in two murine macrophage cell lines as well as in primary human monocyte-derived macrophages to gauge its potential as a live-attenuated vaccine candidate. We first demonstrated that the Δpla single and the Δlpp Δpla double mutant were unable to survive efficiently in murine and human macrophages, unlike WT CO92. We observed that the levels of Pla and its associated protease activity were not affected in the Δlpp single mutant, and, likewise, deletion of the pla gene from WT CO92 did not alter Lpp levels. Further, our study revealed that both Lpp and Pla contributed to the intracellular survival of WT CO92 via different mechanisms. Importantly, the ability of the Δlpp Δpla double mutant to be phagocytized by macrophages, to stimulate production of tumor necrosis factor-α and interleukin-6, and to activate the nitric oxide killing pathways of the host cells remained unaltered when compared to the WT CO92-infected macrophages. Finally, macrophages infected with either the WT CO92 or the Δlpp Δpla double mutant were equally efficient in their uptake of zymosan particles as determined by flow cytometric analysis. Overall, our data indicated that although the Δlpp Δpla double mutant of Y. pestis CO92 was highly attenuated, it retained the ability to elicit innate and subsequent acquired immune responses in the host similar to that of WT CO92, which are highly desirable in a live-attenuated vaccine candidate.
Collapse
Affiliation(s)
- Christina J van Lier
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bethany L Tiner
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Sadhana Chauhan
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Vladimir L Motin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA; Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Eric C Fitts
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Duraisamy Ponnusamy
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | - Ashok K Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA; Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 77555, USA; Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch, Galveston, TX 77555, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX 77555, USA.
| |
Collapse
|
28
|
Combinational deletion of three membrane protein-encoding genes highly attenuates yersinia pestis while retaining immunogenicity in a mouse model of pneumonic plague. Infect Immun 2015; 83:1318-38. [PMID: 25605764 DOI: 10.1128/iai.02778-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previously, we showed that deletion of genes encoding Braun lipoprotein (Lpp) and MsbB attenuated Yersinia pestis CO92 in mouse and rat models of bubonic and pneumonic plague. While Lpp activates Toll-like receptor 2, the MsbB acyltransferase modifies lipopolysaccharide. Here, we deleted the ail gene (encoding the attachment-invasion locus) from wild-type (WT) strain CO92 or its lpp single and Δlpp ΔmsbB double mutants. While the Δail single mutant was minimally attenuated compared to the WT bacterium in a mouse model of pneumonic plague, the Δlpp Δail double mutant and the Δlpp ΔmsbB Δail triple mutant were increasingly attenuated, with the latter being unable to kill mice at a 50% lethal dose (LD50) equivalent to 6,800 LD50s of WT CO92. The mutant-infected animals developed balanced TH1- and TH2-based immune responses based on antibody isotyping. The triple mutant was cleared from mouse organs rapidly, with concurrent decreases in the production of various cytokines and histopathological lesions. When surviving animals infected with increasing doses of the triple mutant were subsequently challenged on day 24 with the bioluminescent WT CO92 strain (20 to 28 LD50s), 40 to 70% of the mice survived, with efficient clearing of the invading pathogen, as visualized in real time by in vivo imaging. The rapid clearance of the triple mutant, compared to that of WT CO92, from animals was related to the decreased adherence and invasion of human-derived HeLa and A549 alveolar epithelial cells and to its inability to survive intracellularly in these cells as well as in MH-S murine alveolar and primary human macrophages. An early burst of cytokine production in macrophages elicited by the triple mutant compared to WT CO92 and the mutant's sensitivity to the bactericidal effect of human serum would further augment bacterial clearance. Together, deletion of the ail gene from the Δlpp ΔmsbB double mutant severely attenuated Y. pestis CO92 to evoke pneumonic plague in a mouse model while retaining the required immunogenicity needed for subsequent protection against infection.
Collapse
|
29
|
Dentovskaya SV, Ivanov SA, Kopylov PK, Shaikhutdinova RZ, Platonov ME, Kombarova TI, Gapel’chenkova TV, Balakhonov SV, Anisimov AP. Selective Protective Potency of Yersinia pestis ΔnlpD Mutants. Acta Naturae 2015; 7:102-8. [PMID: 25927007 PMCID: PMC4410401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It has recently been shown that the NlpD lipoprotein is essential to Yersinia pestis virulence and that subcutaneous administration of the nlpD mutant could protect mice against bubonic and pneumonic plague better than the EV vaccine strain [PLoS One 2009. V. 4. № 9. e7023]. In this study, similar ΔnlpD mutants were generated on the basis of other Y. pestis parent strains, including strains from the subspecies microtus, which is avirulent to guinea pigs and humans. Comparative testing confirmed that immunization of mice with ΔnlpD mutants induces immunity 105 times more potent than the one induced by the administration of the EV vaccine strain. At the same time, NlpD- bacteria failed to protect guinea pigs in the case of a subcutaneous challenge with Y. pestis, inducing a 106 times less potent protection compared with that conferred by immunization with the EV vaccine strain. The possible causes of the observed phenomena are discussed.
Collapse
Affiliation(s)
- S. V. Dentovskaya
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, 142279, Russia
| | - S. A. Ivanov
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, 142279, Russia
| | - P. Kh. Kopylov
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, 142279, Russia
| | - R. Z. Shaikhutdinova
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, 142279, Russia
| | - M. E. Platonov
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, 142279, Russia
| | - T. I. Kombarova
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, 142279, Russia
| | - T. V. Gapel’chenkova
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, 142279, Russia
| | - S. V. Balakhonov
- Irkutsk Antiplague Research Institute of Siberia and Far East, Trilissera Str., 78, 664047, Irkutsk, Russia
| | - A. P. Anisimov
- State Research Center for Applied Microbiology, Obolensk, Moscow Region, 142279, Russia
| |
Collapse
|
30
|
Deletion of Braun lipoprotein and plasminogen-activating protease-encoding genes attenuates Yersinia pestis in mouse models of bubonic and pneumonic plague. Infect Immun 2014; 82:2485-503. [PMID: 24686064 DOI: 10.1128/iai.01595-13] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Currently, there is no FDA-approved vaccine against Yersinia pestis, the causative agent of bubonic and pneumonic plague. Since both humoral immunity and cell-mediated immunity are essential in providing the host with protection against plague, we developed a live-attenuated vaccine strain by deleting the Braun lipoprotein (lpp) and plasminogen-activating protease (pla) genes from Y. pestis CO92. The Δlpp Δpla double isogenic mutant was highly attenuated in evoking both bubonic and pneumonic plague in a mouse model. Further, animals immunized with the mutant by either the intranasal or the subcutaneous route were significantly protected from developing subsequent pneumonic plague. In mice, the mutant poorly disseminated to peripheral organs and the production of proinflammatory cytokines concurrently decreased. Histopathologically, reduced damage to the lungs and livers of mice infected with the Δlpp Δpla double mutant compared to the level of damage in wild-type (WT) CO92-challenged animals was observed. The Δlpp Δpla mutant-immunized mice elicited a humoral immune response to the WT bacterium, as well as to CO92-specific antigens. Moreover, T cells from mutant-immunized animals exhibited significantly higher proliferative responses, when stimulated ex vivo with heat-killed WT CO92 antigens, than mice immunized with the same sublethal dose of WT CO92. Likewise, T cells from the mutant-immunized mice produced more gamma interferon (IFN-γ) and interleukin-4. These animals had an increasing number of tumor necrosis factor alpha (TNF-α)-producing CD4(+) and CD8(+) T cells than WT CO92-infected mice. These data emphasize the role of TNF-α and IFN-γ in protecting mice against pneumonic plague. Overall, our studies provide evidence that deletion of the lpp and pla genes acts synergistically in protecting animals against pneumonic plague, and we have demonstrated an immunological basis for this protection.
Collapse
|
31
|
Wang X, Zhang X, Zhou D, Yang R. Live-attenuatedYersinia pestisvaccines. Expert Rev Vaccines 2014; 12:677-86. [DOI: 10.1586/erv.13.42] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
32
|
Lawal A, Kirtley ML, van Lier CJ, Erova TE, Kozlova EV, Sha J, Chopra AK, Rosenzweig JA. The effects of modeled microgravity on growth kinetics, antibiotic susceptibility, cold growth, and the virulence potential of a Yersinia pestis ymoA-deficient mutant and its isogenic parental strain. ASTROBIOLOGY 2013; 13:821-32. [PMID: 23988036 PMCID: PMC3779001 DOI: 10.1089/ast.2013.0968] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 06/09/2013] [Indexed: 06/02/2023]
Abstract
Previously, we reported that there was no enhancement in the virulence potential (as measured by cell culture infections) of the bacterial pathogen Yersinia pestis (YP) following modeled microgravity/clinorotation growth. We have now further characterized the effects of clinorotation (CR) on YP growth kinetics, antibiotic sensitivity, cold growth, and YP's virulence potential in a murine model of infection. Surprisingly, none of the aforementioned phenotypes were altered. To better understand why CR did not enhance YP's virulence potential as it did for other bacterial pathogens, a YP ΔymoA isogenic mutant in the KIM/D27 background strain that is unable to produce the histone-like YmoA protein and influences DNA topography was used in both cell culture and murine models of infection. YmoA represses type three secretion system (T3SS) virulence gene expression in the yersiniae. Similar to our CR-grown parental YP strain data, the CR-grown ΔymoA mutant induced reduced HeLa cell cytotoxicity with concomitantly decreased Yersinia outer protein E (YopE) and low calcium response V (LcrV) antigen production and secretion. Important, however, were our findings that, although no significant differences were observed in survival of mice infected intraperitoneally with either normal gravity (NG)- or CR-grown parental YP, the ΔymoA mutant induced significantly more mortality in infected mice than did the parental strain following CR growth. Taken together, our data demonstrate that CR did enhance the virulence potential of the YP ΔymoA mutant in a murine infection model (relative to the CR-grown parental strain), despite inducing less HeLa cell rounding in our cell culture infection assay due to reduced T3SS activity. Therefore, CR, which induces a unique type of bacterial stress, might be enhancing YP's virulence potential in vivo through a T3SS-independent mechanism when the histone-like YmoA protein is absent.
Collapse
Affiliation(s)
- Abidat Lawal
- Department of Biology, Department of Environmental and Interdisciplinary Sciences, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, Houston, Texas
| | - Michelle L. Kirtley
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Christina J. van Lier
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Tatiana E. Erova
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Elena V. Kozlova
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Jian Sha
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, Sealy Center for Vaccine Development, Institute of Human Infections and Immunity, and the Galveston National Laboratory, University of Texas Medical Branch, Galveston, Texas
| | - Jason A. Rosenzweig
- Department of Biology, Department of Environmental and Interdisciplinary Sciences, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, Houston, Texas
| |
Collapse
|
33
|
Sha J, Rosenzweig JA, Kozlova EV, Wang S, Erova TE, Kirtley ML, van Lier CJ, Chopra AK. Evaluation of the roles played by Hcp and VgrG type 6 secretion system effectors in Aeromonas hydrophila SSU pathogenesis. MICROBIOLOGY-SGM 2013; 159:1120-1135. [PMID: 23519162 DOI: 10.1099/mic.0.063495-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Aeromonas hydrophila, a Gram-negative bacterium, is an emerging human pathogen equipped with both a type 3 and a type 6 secretion system (T6SS). In this study, we evaluated the roles played by paralogous T6SS effector proteins, hemolysin co-regulated proteins (Hcp-1 and -2) and valine glycine repeat G (VgrG-1, -2 and -3) protein family members in A. hydrophila SSU pathogenesis by generating various combinations of deletion mutants of the their genes. In addition to their predicted roles as structural components and effector proteins of the T6SS, our data clearly demonstrated that paralogues of Hcp and VgrG also influenced bacterial motility, protease production and biofilm formation. Surprisingly, there was limited to no observed functional redundancy among and/or between the aforementioned T6SS effector paralogues in multiple assays. Our data indicated that Hcp and VgrG paralogues located within the T6SS cluster were more involved in forming T6SS structures, while the primary roles of Hcp-1 and VgrG-1, located outside of the T6SS cluster, were as T6SS effectors. In terms of influence on bacterial physiology, Hcp-1, but not Hcp-2, influenced bacterial motility and protease production, and in its absence, increases in both of the aforementioned activities were observed. Likewise, VgrG-1 played a major role in regulating bacterial protease production, while VgrG-2 and VgrG-3 were critical in regulating bacterial motility and biofilm formation. In an intraperitoneal murine model of infection, all Hcp and VgrG paralogues were required for optimal bacterial virulence and dissemination to mouse peripheral organs. Importantly, the observed phenotypic alterations of the T6SS mutants could be fully complemented. Taking these results together, we have further established the roles played by the two known T6SS effectors of A. hydrophila by defining their contributions to T6SS function and virulence in both in vitro and in vivo models of infection.
Collapse
Affiliation(s)
- Jian Sha
- Institute of Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, Houston, TX 77004, USA
| | - Elena V Kozlova
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Shaofei Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Tatiana E Erova
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Michelle L Kirtley
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Christina J van Lier
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ashok K Chopra
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX, USA.,Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX 77555, USA.,Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA.,Institute of Human Infections & Immunity, University of Texas Medical Branch, Galveston, TX, USA
| |
Collapse
|
34
|
|
35
|
Deletion of the Braun lipoprotein-encoding gene and altering the function of lipopolysaccharide attenuate the plague bacterium. Infect Immun 2012; 81:815-28. [PMID: 23275092 DOI: 10.1128/iai.01067-12] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Braun (murein) lipoprotein (Lpp) and lipopolysaccharide (LPS) are major components of the outer membranes of Enterobacteriaceae family members that are capable of triggering inflammatory immune responses by activating Toll-like receptors 2 and 4, respectively. Expanding on earlier studies that demonstrated a role played by Lpp in Yersinia pestis virulence in mouse models of bubonic and pneumonic plague, we characterized an msbB in-frame deletion mutant incapable of producing an acyltransferase that is responsible for the addition of lauric acid to the lipid A moiety of LPS, as well as a Δlpp ΔmsbB double mutant of the highly virulent Y. pestis CO92 strain. Although the ΔmsbB single mutant was minimally attenuated, the Δlpp single mutant and the Δlpp ΔmsbB double mutant were significantly more attenuated than the isogenic wild-type (WT) bacterium in bubonic and pneumonic animal models (mouse and rat) of plague. These data correlated with greatly reduced survivability of the aforementioned mutants in murine macrophages. Furthermore, the Δlpp ΔmsbB double mutant was grossly compromised in its ability to disseminate to distal organs in mice and in evoking cytokines/chemokines in infected animal tissues. Importantly, mice that survived challenge with the Δlpp ΔmsbB double mutant, but not the Δlpp or ΔmsbB single mutant, in a pneumonic plague model were significantly protected against a subsequent lethal WT CO92 rechallenge. These data were substantiated by the fact that the Δlpp ΔmsbB double mutant maintained an immunogenicity comparable to that of the WT strain and induced long-lasting T-cell responses against heat-killed WT CO92 antigens. Taken together, the data indicate that deletion of the msbB gene augmented the attenuation of the Δlpp mutant by crippling the spread of the double mutant to the peripheral organs of animals and by inducing cytokine/chemokine responses. Thus, the Δlpp ΔmsbB double mutant could provide a new live-attenuated background vaccine candidate strain, and this should be explored in the future.
Collapse
|
36
|
Mellado-Sanchez G, Ramirez K, Drachenberg CB, Diaz-McNair J, Rodriguez AL, Galen JE, Nataro JP, Pasetti MF. Characterization of systemic and pneumonic murine models of plague infection using a conditionally virulent strain. Comp Immunol Microbiol Infect Dis 2012. [PMID: 23195858 DOI: 10.1016/j.cimid.2012.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Yersinia pestis causes bubonic and pneumonic plague in humans. The pneumonic infection is the most severe and invariably fatal if untreated. Because of its high virulence, ease of delivery and precedent of use in warfare, Y. pestis is considered as a potential bioterror agent. No licensed plague vaccine is currently available in the US. Laboratory research with virulent strains requires appropriate biocontainment (i.e., Biosafety Level 3 (BSL-3) for procedures that generate aerosol/droplets) and secure facilities that comply with federal select agent regulations. To assist in the identification of promising vaccine candidates during the early phases of development, we characterized mouse models of systemic and pneumonic plague infection using the Y. pestis strain EV76, an attenuated human vaccine strain that can be rendered virulent in mice under in vivo iron supplementation. Mice inoculated intranasally or intravenously with Y. pestis EV76 in the presence of iron developed a systemic and pneumonic plague infection that resulted in disease and lethality. Bacteria replicated and severely compromised the spleen, liver and lungs. Susceptibility was age dependent, with younger mice being more vulnerable to pneumonic infection. We used these models of infection to assess the protective capacity of newly developed Salmonella-based plague vaccines. The protective outcome varied depending on the route and dose of infection. Protection was associated with the induction of specific immunological effectors in systemic/mucosal compartments. The models of infection described could serve as safe and practical tools for identifying promising vaccine candidates that warrant further potency evaluation using fully virulent strains in BSL-3 settings.
Collapse
Affiliation(s)
- Gabriela Mellado-Sanchez
- Department of Pediatrics, Center for Vaccine Development, University of Maryland School of Medicine, 685 West Baltimore St., Room 480, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Plague vaccines: current developments and future perspectives. Emerg Microbes Infect 2012; 1:e36. [PMID: 26038406 PMCID: PMC3630923 DOI: 10.1038/emi.2012.34] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 12/21/2022]
Abstract
Despite many decades of intensive studies of Yersinia pestis, the causative agent of plague, there is no safe and efficient vaccine against this devastating disease. A recently developed F1/V subunit vaccine candidate, which relies mainly on humoral immunity, showed promising results in animal studies; however, its efficacy in humans still has to be carefully evaluated. In addition, those developing next-generation plague vaccines need to pay particular attention to the importance of eliciting cell-mediated immunity. In this review, we analyzed the current progress in developing subunit, DNA and live carrier platforms of delivery by bacterial and viral vectors, as well as approaches for controlled attenuation of virulent strains of Y. pestis.
Collapse
|
38
|
Fellows P, Lin W, Detrisac C, Hu SC, Rajendran N, Gingras B, Holland L, Price J, Bolanowski M, House RV. Establishment of a Swiss Webster mouse model of pneumonic plague to meet essential data elements under the animal rule. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2012; 19:468-76. [PMID: 22336286 PMCID: PMC3318273 DOI: 10.1128/cvi.05591-11] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 02/03/2012] [Indexed: 11/20/2022]
Abstract
A recombinant vaccine (rF1V) is being developed for protection against pneumonic plague. This study was performed to address essential data elements to establish a well-characterized Swiss Webster mouse model for licensing the rF1V vaccine using the FDA's Animal Rule. These elements include the documentation of challenge material characteristics, aerosol exposure parameters, details of the onset and severity of clinical signs, pathophysiological response to disease, and relevance to human disease. Prior to animal exposures, an evaluation of the aerosol system was performed to determine and understand the variability of the aerosol exposure system. Standardized procedures for the preparation of Yersinia pestis challenge material also were developed. The 50% lethal dose (LD(50)) was estimated to be 1,966 CFU using Probit analysis. Following the LD(50) determination, pathology was evaluated by exposing mice to a target LD(99) (42,890 CFU). Mice were euthanized at 12, 24, 36, 48, 60, and 72 h postexposure. At each time point, samples were collected for clinical pathology, detection of bacteria in blood and tissues, and pathology evaluations. A general increase in incidence and severity of microscopic findings was observed in the lung, lymph nodes, spleen, and liver from 36 to 72 h postchallenge. Similarly, the incidence and severity of pneumonia increased throughout the study; however, some mice died in the absence of pneumonia, suggesting that disease progression does not require the development of pneumonia. Disease pathology in the Swiss Webster mouse is similar to that observed in humans, demonstrating the utility of this pneumonic plague model that can be used by researchers investigating plague countermeasures.
Collapse
Affiliation(s)
- Patricia Fellows
- DynPort Vaccine Company LLC, A CSC Company, Frederick, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Sun W, Roland KL, Curtiss R. Developing live vaccines against plague. J Infect Dev Ctries 2011; 5:614-27. [PMID: 21918302 PMCID: PMC3932668 DOI: 10.3855/jidc.2030] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 05/20/2011] [Accepted: 05/22/2011] [Indexed: 12/13/2022] Open
Abstract
Three great plague pandemics caused by the gram-negative bacterium Yersinia pestis have killed nearly 200 million people and it has been linked to biowarfare in the past. Plague is endemic in many parts of the world. In addition, the risk of plague as a bioweapon has prompted increased research to develop plague vaccines against this disease. Injectable subunit vaccines are being developed in the United States and United Kingdom. However, the live attenuated Y. pestis-EV NIIEG strain has been used as a vaccine for more than 70 years in the former Soviet Union and in some parts of Asia and provides a high degree of efficacy against plague. This vaccine has not gained general acceptance because of safety concerns. In recent years, modern molecular biological techniques have been applied to Y. pestis to construct strains with specific defined mutations designed to create safe, immunogenic vaccines with potential for use in humans and as bait vaccines to reduce the load of Y. pestis in the environment. In addition, a number of live, vectored vaccines have been reported using attenuated viral vectors or attenuated Salmonella strains to deliver plague antigens. Here we summarize the progress of live attenuated vaccines against plagu.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ 85287-5401 , USA
| | | | | |
Collapse
|
40
|
Cethromycin-mediated protection against the plague pathogen Yersinia pestis in a rat model of infection and comparison with levofloxacin. Antimicrob Agents Chemother 2011; 55:5034-42. [PMID: 21859946 DOI: 10.1128/aac.00632-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Gram-negative plague bacterium, Yersinia pestis, has historically been regarded as one of the deadliest pathogens known to mankind, having caused three major pandemics. After being transmitted by the bite of an infected flea arthropod vector, Y. pestis can cause three forms of human plague: bubonic, septicemic, and pneumonic, with the latter two having very high mortality rates. With increased threats of bioterrorism, it is likely that a multidrug-resistant Y. pestis strain would be employed, and, as such, conventional antibiotics typically used to treat Y. pestis (e.g., streptomycin, tetracycline, and gentamicin) would be ineffective. In this study, cethromycin (a ketolide antibiotic which inhibits bacterial protein synthesis and is currently in clinical trials for respiratory tract infections) was evaluated for antiplague activity in a rat model of pneumonic infection and compared with levofloxacin, which operates via inhibition of bacterial topoisomerase and DNA gyrase. Following a respiratory challenge of 24 to 30 times the 50% lethal dose of the highly virulent Y. pestis CO92 strain, 70 mg of cethromycin per kg of body weight (orally administered twice daily 24 h postinfection for a period of 7 days) provided complete protection to animals against mortality without any toxic effects. Further, no detectable plague bacilli were cultured from infected animals' blood and spleens following cethromycin treatment. The antibiotic was most effective when administered to rats 24 h postinfection, as the animals succumbed to infection if treatment was further delayed. All cethromycin-treated survivors tolerated 2 subsequent exposures to even higher lethal Y. pestis doses without further antibiotic treatment, which was related, in part, to the development of specific antibodies to the capsular and low-calcium-response V antigens of Y. pestis. These data demonstrate that cethromycin is a potent antiplague drug that can be used to treat pneumonic plague.
Collapse
|
41
|
Rosenzweig JA, Jejelowo O, Sha J, Erova TE, Brackman SM, Kirtley ML, van Lier CJ, Chopra AK. Progress on plague vaccine development. Appl Microbiol Biotechnol 2011; 91:265-86. [PMID: 21670978 DOI: 10.1007/s00253-011-3380-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2011] [Revised: 05/11/2011] [Accepted: 05/11/2011] [Indexed: 12/15/2022]
Abstract
Yersinia pestis (YP), the gram-negative plague bacterium, has shaped human history unlike any other pathogen known to mankind. YP (transmitted by the bite of an infected flea) diverged only recently from the related enteric pathogen Yersinia pseudotuberculosis but causes radically different diseases. Three forms of plague exist in humans: bubonic (swollen lymph nodes or bubos), septicemic (spread of YP through the lymphatics or bloodstream from the bubos to other organs), and contagious, pneumonic plague which can be communicated via YP-charged respiratory droplets resulting in person-person transmission and rapid death if left untreated (50-90% mortality). Despite the potential threat of weaponized YP being employed in bioterrorism and YP infections remaining prevalent in endemic regions of the world where rodent populations are high (including the four corner regions of the USA), an efficacious vaccine that confers immunoprotection has yet to be developed. This review article will describe the current vaccine candidates being evaluated in various model systems and provide an overall summary on the progress of this important endeavor.
Collapse
Affiliation(s)
- Jason A Rosenzweig
- Department of Biology, Center for Bionanotechnology and Environmental Research (CBER), Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Immunomodulatory and protective roles of quorum-sensing signaling molecules N-acyl homoserine lactones during infection of mice with Aeromonas hydrophila. Infect Immun 2011; 79:2646-57. [PMID: 21536794 DOI: 10.1128/iai.00096-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Aeromonas hydrophila leads to both intestinal and extraintestinal infections in animals and humans, and the underlying mechanisms leading to mortality are largely unknown. By using a septicemic mouse model of infection, we showed that animals challenged with A. hydrophila die because of kidney and liver damage, hypoglycemia, and thrombocytopenia. Pretreatment of animals with quorum-sensing-associated signaling molecules N-acyl homoserine lactones (AHLs), such as butanoyl and hexanoyl homoserine lactones (C(4)- and C(6)-HSLs), as well as N-3-oxododecanoyl (3-oxo-C(12))-HSL, prevented clinical sequelae, resulting in increased survivability of mice. Since little is known as to how different AHLs modulate the immune response during infection, we treated mice with the above AHLs prior to lethal A. hydrophila infection. When we compared results in such animals to those in controls, the treated animals exhibited a significantly reduced bacterial load in the blood and other mouse organs, as well as various levels of cytokines/chemokines. Importantly, neutrophil numbers were significantly elevated in the blood of C(6)-HSL-treated mice compared to those in animals given phosphate-buffered saline and then infected with the bacteria. These findings coincided with the fact that neutropenic animals were more susceptible to A. hydrophila infection than normal mice. Our data suggested that neutrophils quickly cleared bacteria by either phagocytosis or possibly another mechanism(s) during infection. In a parallel study, we indeed showed that other predominant immune cells inflicted during A. hydrophila infections, such as murine macrophages, when they were pretreated with AHLs, rapidly phagocytosed bacteria, whereas untreated cells phagocytosed fewer bacteria. This study is the first to report that AHL pretreatment modulates the innate immune response in mice and enhances their survivability during A. hydrophila infection.
Collapse
|
43
|
Sun W, Six D, Kuang X, Roland KL, Raetz CR, Curtiss R. A live attenuated strain of Yersinia pestis KIM as a vaccine against plague. Vaccine 2011; 29:2986-98. [PMID: 21320544 PMCID: PMC3073832 DOI: 10.1016/j.vaccine.2011.01.099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Revised: 01/15/2011] [Accepted: 01/30/2011] [Indexed: 10/18/2022]
Abstract
Yersinia pestis, the causative agent of plague, is a potential weapon of bioterrorism. Y. pestis evades the innate immune system by synthesizing tetra-acylated lipid A with poor Toll-like receptor 4 (TLR4)-stimulating activity at 37°C, whereas hexa-acylated lipid A, a potent TLR4 agonist, is made at lower temperatures. Synthesis of Escherichia coli LpxL, which transfers the secondary laurate chain to the 2'-position of lipid A, in Y. pestis results in production of hexa-acylated lipid A at 37°C, leading to significant attenuation of virulence. Previously, we described a Y. pestis vaccine strain in which crp expression is under the control of the arabinose-regulated araC P(BAD) promoter, resulting in a 4-5 log reduction in virulence. To reduce the virulence of the crp promoter mutant further, we introduced E. coli lpxL into the Y. pestis chromosome. The χ10030(pCD1Ap) (ΔlpxP32::P(lpxL)lpxL ΔP(crp21)::TT araC P(BAD)crp) construct likewise produced hexa-acylated lipid A at 37°C and was significantly more attenuated than strains harboring each individual mutation. The LD(50) of the mutant in mice, when administered subcutaneously or intranasally was >10(7)-times and >10(4)-times greater than wild type, respectively. Mice immunized subcutaneously with a single dose of the mutant were completely protected against a subcutaneous challenge of 3.6×10(7) wild-type Y. pestis and significantly protected (80% survival) against a pulmonary challenge of 1.2×10(4) live cells. Intranasal immunization also provided significant protection against challenges by both routes. This mutant is an immunogenic, highly attenuated live Y. pestis construct that merits further development as a vaccine candidate.
Collapse
Affiliation(s)
- Wei Sun
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University. Tempe, AZ, 85287, USA
| | - David Six
- Department of Biochemistry, Duke University Medical Center, Box 3711 DUMC, Durham, NC 27710, USA
| | - Xiaoying Kuang
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University. Tempe, AZ, 85287, USA
| | - Kenneth L Roland
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University. Tempe, AZ, 85287, USA
| | - Christian R.H. Raetz
- Department of Biochemistry, Duke University Medical Center, Box 3711 DUMC, Durham, NC 27710, USA
| | - Roy Curtiss
- Center for Infectious Disease and Vaccinology, The Biodesign Institute, Arizona State University. Tempe, AZ, 85287, USA
| |
Collapse
|
44
|
Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks. J Clin Microbiol 2011; 49:1708-15. [PMID: 21367990 DOI: 10.1128/jcm.00064-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule. The growth rate of the Δcaf mutant generally was similar to that of the wild-type (WT) bacterium at both 26 and 37 °C, although the mutant's growth dropped slightly during the late phase at 37 °C. The Δcaf mutant was as virulent as WT CO92 in the pneumonic plague mouse model; however, it was attenuated in developing bubonic plague. Both dipsticks had similar sensitivities, requiring a minimum of 0.5 μg/ml of purified F1 antigen or 1 × 10(5) to 5 × 10(5) CFU/ml of WT CO92 for positive results, while the blood samples were negative for up to 1 × 10(8) CFU/ml of the Δcaf mutant. Our studies demonstrated the diagnostic potential of two plague dipsticks in detecting capsular-positive strains of Y. pestis in bubonic and pneumonic plague.
Collapse
|
45
|
Lawrenz MB. Model systems to study plague pathogenesis and develop new therapeutics. Front Microbiol 2010; 1:119. [PMID: 21687720 PMCID: PMC3109633 DOI: 10.3389/fmicb.2010.00119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2010] [Accepted: 10/11/2010] [Indexed: 11/30/2022] Open
Abstract
The Gram negative bacterium Yersinia pestis can infect humans by multiple routes to cause plague. Three plague pandemics have occurred and Y. pestis has been linked to biowarfare in the past. The continued risk of plague as a bioweapon has prompted increased research to understand Y. pestis pathogenesis and develop new plague therapeutics. Several in vivo models have been developed for this research and are reviewed here.
Collapse
Affiliation(s)
- Matthew B Lawrenz
- Center for Predictive Medicine for Biodefense and Emerging Infectious Diseases, Department of Microbiology and Immunology, University of Louisville School of Medicine Louisville, KY, USA
| |
Collapse
|
46
|
Peterson JW, Moen ST, Healy D, Pawlik JE, Taormina J, Hardcastle J, Thomas JM, Lawrence WS, Ponce C, Chatuev BM, Gnade BT, Foltz SM, Agar SL, Sha J, Klimpel GR, Kirtley ML, Eaves-Pyles T, Chopra AK. Protection Afforded by Fluoroquinolones in Animal Models of Respiratory Infections with Bacillus anthracis, Yersinia pestis, and Francisella tularensis. Open Microbiol J 2010; 4:34-46. [PMID: 21127743 PMCID: PMC2995158 DOI: 10.2174/1874285801004010034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Revised: 04/19/2010] [Accepted: 04/23/2010] [Indexed: 11/28/2022] Open
Abstract
Successful treatment of inhalation anthrax, pneumonic plague and tularemia can be achieved with fluoroquinolone antibiotics, such as ciprofloxacin and levofloxacin, and initiation of treatment is most effective when administered as soon as possible following exposure. Bacillus anthracis Ames, Yersinia pestis CO92, and Francisella tularensis SCHU S4 have equivalent susceptibility in vitro to ciprofloxacin and levofloxacin (minimal inhibitory concentration is 0.03 μg/ml); however, limited information is available regarding in vivo susceptibility of these infectious agents to the fluoroquinolone antibiotics in small animal models. Mice, guinea pig, and rabbit models have been developed to evaluate the protective efficacy of antibiotic therapy against these life-threatening infections. Our results indicated that doses of ciprofloxacin and levofloxacin required to protect mice against inhalation anthrax were approximately 18-fold higher than the doses of levofloxacin required to protect against pneumonic plague and tularemia. Further, the critical period following aerosol exposure of mice to either B. anthracis spores or Y. pestis was 24 h, while mice challenged with F. tularensis could be effectively protected when treatment was delayed for as long as 72 h postchallenge. In addition, it was apparent that prolonged antibiotic treatment was important in the effective treatment of inhalation anthrax in mice, but short-term treatment of mice with pneumonic plague or tularemia infections were usually successful. These results provide effective antibiotic dosages in mice, guinea pigs, and rabbits and lay the foundation for the development and evaluation of combinational treatment modalities.
Collapse
Affiliation(s)
- Johnny W Peterson
- Department of Microbiology and Immunology, Galveston National Laboratory, University of Texas Medical Branch, 301 University Blvd. Galveston, Texas 77555-0610
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Galindo CL, Sha J, Moen ST, Agar SL, Kirtley ML, Foltz SM, McIver LJ, Kozlova EV, Garner HR, Chopra AK. Comparative Global Gene Expression Profiles of Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant at Flea and Human Body Temperatures. Comp Funct Genomics 2010; 2010:342168. [PMID: 20508723 PMCID: PMC2873655 DOI: 10.1155/2010/342168] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Accepted: 02/22/2010] [Indexed: 02/04/2023] Open
Abstract
Braun/murein lipoprotein (Lpp) is involved in inflammatory responses and septic shock. We previously characterized a Deltalpp mutant of Yersinia pestis CO92 and found that this mutant was defective in surviving in macrophages and was attenuated in a mouse inhalation model of plague when compared to the highly virulent wild-type (WT) bacterium. We performed global transcriptional profiling of WT Y. pestis and its Deltalpp mutant using microarrays. The organisms were cultured at 26 and 37 degrees Celsius to simulate the flea vector and mammalian host environments, respectively. Our data revealed vastly different effects of lpp mutation on the transcriptomes of Y. pestis grown at 37 versus 26 degrees C. While the absence of Lpp resulted mainly in the downregulation of metabolic genes at 26 degrees C, the Y. pestis Deltalpp mutant cultured at 37 degrees C exhibited profound alterations in stress response and virulence genes, compared to WT bacteria. We investigated one of the stress-related genes (htrA) downregulated in the Deltalpp mutant relative to WT Y. pestis. Indeed, complementation of the Deltalpp mutant with the htrA gene restored intracellular survival of the Y. pestis Deltalpp mutant. Our results support a role for Lpp in Y. pestis adaptation to the host environment, possibly via transcriptional activation of htrA.
Collapse
Affiliation(s)
- Cristi L. Galindo
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 02461-0477, USA
| | - Jian Sha
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Scott T. Moen
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Stacy L. Agar
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Michelle L. Kirtley
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Sheri M. Foltz
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Lauren J. McIver
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 02461-0477, USA
| | - E. V. Kozlova
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Harold R. Garner
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 02461-0477, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, The University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| |
Collapse
|
48
|
Abstract
The potential application of Yersinia pestis for bioterrorism emphasizes the urgent need to develop more effective vaccines against airborne infection. The current status of plague vaccines has been reviewed. The present emphasis is on subunit vaccines based on the F1 and LcrV antigens. These provide good protection in animal models but may not protect against F1 strains with modifications to the type III secretion system. The duration of protection against pneumonic infection is also uncertain. Other strategies under investigation include defined live-attenuated vaccines, DNA vaccines, mucosal delivery systems and heterologous immunization. The live-attenuated strain Y. pestis EV NIIEG protects against aerosol challenge in animal models and, with further modification to reduce residual virulence and to optimize respiratory protection, it could provide a shortcut to improved vaccines. The regulatory problems inherent in licensing vaccines for which efficacy data are unavailable and their possible solutions are discussed herein.
Collapse
Affiliation(s)
- Valentina A Feodorova
- Scientific and Research Institute for Medical and Veterinary Biotechnologies, Russia-Switzerland, Branch in Saratov, 9 Proviantskaya Street, Box 1580, Saratov 410028, Russia.
| | | |
Collapse
|
49
|
Comparative Analyses of Transcriptional Profiles in Mouse Organs Using a Pneumonic Plague Model after Infection with Wild-Type Yersinia pestis CO92 and Its Braun Lipoprotein Mutant. Comp Funct Genomics 2010; 2009:914762. [PMID: 20145715 PMCID: PMC2817383 DOI: 10.1155/2009/914762] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2009] [Revised: 09/28/2009] [Accepted: 10/18/2009] [Indexed: 01/03/2023] Open
Abstract
We employed Murine GeneChips to delineate the global transcriptional profiles of the livers, lungs, and spleens in a mouse pneumonic plague infection model with wild-type (WT) Y. pestis CO92 and its Braun lipoprotein (Δlpp) mutant with reduced virulence. These organs showed differential transcriptional responses to infection with WT Y. pestis, but the overall host functional processes affected were similar across all three tissues. Gene expression alterations were found in inflammation, cytokine signaling, and apoptotic cell death-associated genes. Comparison of WT and Δlpp mutant-infected mice indicated significant overlap in lipopolysaccharide- (LPS-) associated gene expression, but the absence of Lpp perturbed host cell signaling at critical regulatory junctions resulting in altered immune response and possibly host cell apoptosis. We generated a putative signaling pathway including major inflammatory components that could account for the synergistic action of LPS and Lpp and provided the mechanistic basis of attenuation caused by deletion of the lpp gene from Y. pestis in a mouse model of pneumonic plague.
Collapse
|
50
|
Tidhar A, Flashner Y, Cohen S, Levi Y, Zauberman A, Gur D, Aftalion M, Elhanany E, Zvi A, Shafferman A, Mamroud E. The NlpD lipoprotein is a novel Yersinia pestis virulence factor essential for the development of plague. PLoS One 2009; 4:e7023. [PMID: 19759820 PMCID: PMC2736372 DOI: 10.1371/journal.pone.0007023] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2009] [Accepted: 08/13/2009] [Indexed: 12/22/2022] Open
Abstract
Yersinia pestis is the causative agent of plague. Previously we have isolated an attenuated Y. pestis transposon insertion mutant in which the pcm gene was disrupted. In the present study, we investigated the expression and the role of pcm locus genes in Y. pestis pathogenesis using a set of isogenic surE, pcm, nlpD and rpoS mutants of the fully virulent Kimberley53 strain. We show that in Y. pestis, nlpD expression is controlled from elements residing within the upstream genes surE and pcm. The NlpD lipoprotein is the only factor encoded from the pcm locus that is essential for Y. pestis virulence. A chromosomal deletion of the nlpD gene sequence resulted in a drastic reduction in virulence to an LD(50) of at least 10(7) cfu for subcutaneous and airway routes of infection. The mutant was unable to colonize mouse organs following infection. The filamented morphology of the nlpD mutant indicates that NlpD is involved in cell separation; however, deletion of nlpD did not affect in vitro growth rate. Trans-complementation experiments with the Y. pestis nlpD gene restored virulence and all other phenotypic defects. Finally, we demonstrated that subcutaneous administration of the nlpD mutant could protect animals against bubonic and primary pneumonic plague. Taken together, these results demonstrate that Y. pestis NlpD is a novel virulence factor essential for the development of bubonic and pneumonic plague. Further, the nlpD mutant is superior to the EV76 prototype live vaccine strain in immunogenicity and in conferring effective protective immunity. Thus it could serve as a basis for a very potent live vaccine against bubonic and pneumonic plague.
Collapse
Affiliation(s)
- Avital Tidhar
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yehuda Flashner
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Sara Cohen
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Yinon Levi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Ayelet Zauberman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - David Gur
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Moshe Aftalion
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Eytan Elhanany
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Anat Zvi
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Avigdor Shafferman
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
| | - Emanuelle Mamroud
- Department of Biochemistry and Molecular Genetics, Israel Institute for Biological Research, Ness-Ziona, Israel
- * E-mail:
| |
Collapse
|