1
|
Bergsten H, Nizet V. The intricate pathogenicity of Group A Streptococcus: A comprehensive update. Virulence 2024; 15:2412745. [PMID: 39370779 PMCID: PMC11542602 DOI: 10.1080/21505594.2024.2412745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 10/08/2024] Open
Abstract
Group A Streptococcus (GAS) is a versatile pathogen that targets human lymphoid, decidual, skin, and soft tissues. Recent advancements have shed light on its airborne transmission, lymphatic spread, and interactions with neuronal systems. GAS promotes severe inflammation through mechanisms involving inflammasomes, IL-1β, and T-cell hyperactivation. Additionally, it secretes factors that directly induce skin necrosis via Gasdermin activation and sustains survival and replication in human blood through sophisticated immune evasion strategies. These include lysis of erythrocytes, using red cell membranes for camouflage, resisting antimicrobial peptides, evading phagocytosis, escaping from neutrophil extracellular traps (NETs), inactivating chemokines, and cleaving targeted antibodies. GAS also employs molecular mimicry to traverse connective tissues undetected and exploits the host's fibrinolytic system, which contributes to its stealth and potential for causing autoimmune conditions after repeated infections. Secreted toxins disrupt host cell membranes, enhancing intracellular survival and directly activating nociceptor neurons to induce pain. Remarkably, GAS possesses mechanisms for precise genome editing to defend against phages, and its fibrinolytic capabilities have found applications in medicine. Immune responses to GAS are paradoxical: robust responses to its virulence factors correlate with more severe disease, whereas recurrent infections often show diminished immune reactions. This review focuses on the multifaceted virulence of GAS and introduces novel concepts in understanding its pathogenicity.
Collapse
Affiliation(s)
- Helena Bergsten
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Biomedicum, Stockholm, Sweden
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California, San Diego School of Medicine, La Jolla, CA, USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
2
|
Davis SE, Hart MT, Braza RED, Perry AA, Vega LA, Le Breton YS, McIver KS. The PdxR-PdxKU locus involved in vitamin B 6 salvage is important for group A streptococcal resistance to neutrophil killing and survival in human blood. Microbiol Spectr 2024; 12:e0160924. [PMID: 39530679 PMCID: PMC11619246 DOI: 10.1128/spectrum.01609-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is a Gram-positive bacterium that inflicts both superficial and life-threatening diseases on its human host. Analysis of fitness using a transposon mutant library revealed that genes predicted to be involved in vitamin B6 acquisition are associated with fitness in whole human blood. Vitamin B6 is essential for all life and is important for many cellular functions. In several streptococcal species, it has been shown that mutants in B6 acquisition exhibited reduced virulence phenotypes and were attenuated during infection. In GAS, B6 acquisition is believed to be controlled by the pdxR-pdxKU locus, where PdxR is a positive regulator of pdxKU, which encodes for a B6-substrate kinase and permease, respectively. Mutants in the regulator (ΔpdxR) and salvage machinery (ΔpdxKU) both exhibited modest growth defects when grown in oxygenated conditions with limited vitamin B6 precursors. ∆pdxR and ∆pdxKU mutants also exhibited an impaired ability to survive when challenged with whole human or mouse blood. This defect was characterized by reduced survival in the presence of human neutrophil-like HL60s, primary polymorphonuclear leukocytes, and antimicrobial peptide LL-37. Promoter analysis showed that PdxR is an autoregulator and activated pdxKU in the absence of B6. Interestingly, ∆pdxR and ∆pdxKU mutants were not attenuated in mouse models of infection, suggesting a species-specific impact on virulence. Overall, it appears that pdxR-pdxKU is associated with GAS vitamin B6 metabolism as well as pathogen survival during encounters with the human innate immune system.IMPORTANCEBacterial pathogens such as Streptococcus pyogenes (Group A Streptococcus, GAS) must be able to obtain needed nutrients in their human host. Vitamin B6 or pyridoxal 5' phosphate is essential for all life and is important for many cellular functions. In other streptococcal pathogens, B6 acquisition has been shown to be important for their ability to cause disease. Here, we show that loss of the putative vitamin B6 salvage pathway locus pdxR-pdxKU affects GAS pathogenesis when encountering innate immune responses from phagocytic neutrophils and antimicrobial peptides within the host. pdxR-pdxKU may contribute to oxygen tolerance through B6; however, there appear to be other mechanisms for salvaging vitamin B6. Overall, pdxR-pdxKU is associated with GAS resistance to the human innate immune response and oxygen tolerance and contributes modestly to B6 metabolism.
Collapse
Affiliation(s)
- Sarah E. Davis
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Meaghan T. Hart
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Rezia Era D. Braza
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Aolani A. Perry
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Luis A. Vega
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Yoann S. Le Breton
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| | - Kevin S. McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
3
|
Su MSW, Cheng YL, Lin YS, Wu JJ. Interplay between group A Streptococcus and host innate immune responses. Microbiol Mol Biol Rev 2024; 88:e0005222. [PMID: 38451081 PMCID: PMC10966951 DOI: 10.1128/mmbr.00052-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024] Open
Abstract
SUMMARYGroup A Streptococcus (GAS), also known as Streptococcus pyogenes, is a clinically well-adapted human pathogen that harbors rich virulence determinants contributing to a broad spectrum of diseases. GAS is capable of invading epithelial, endothelial, and professional phagocytic cells while evading host innate immune responses, including phagocytosis, selective autophagy, light chain 3-associated phagocytosis, and inflammation. However, without a more complete understanding of the different ways invasive GAS infections develop, it is difficult to appreciate how GAS survives and multiplies in host cells that have interactive immune networks. This review article attempts to provide an overview of the behaviors and mechanisms that allow pathogenic GAS to invade cells, along with the strategies that host cells practice to constrain GAS infection. We highlight the counteractions taken by GAS to apply virulence factors such as streptolysin O, nicotinamide-adenine dinucleotidase, and streptococcal pyrogenic exotoxin B as a hindrance to host innate immune responses.
Collapse
Affiliation(s)
- Marcia Shu-Wei Su
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Lin Cheng
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Medical Laboratory Science and Biotechnology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Yee-Shin Lin
- Department of Microbiology and Immunology, College of Medicine, National Cheng Kung University, Tainan, Taiwan
- Center of Infectious Disease and Signaling Research, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, College of Medical and Health Sciences, Asia University, Taichung, Taiwan
- Department of Biotechnology and Laboratory Science in Medicine, College of Biomedical Science and Engineering, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan
| |
Collapse
|
4
|
Henderson EA, Ivey A, Choi SJ, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A streptococcal collagen-like protein 1 restricts tumor growth in murine pancreatic adenocarcinoma and inhibits cancer-promoting neutrophil extracellular traps. Front Immunol 2024; 15:1363962. [PMID: 38515758 PMCID: PMC10955053 DOI: 10.3389/fimmu.2024.1363962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Introduction Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. Methods In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Mice harboring Panc02 or KPC subcutaneous tumors injected with three different M-type GAS strains. Tumors and spleens were harvested at the endpoint of the experiments to assess bacterial colonization and systemic spread, while sera were analyzed for humoral responses toward the streptococcal antigens, especially the M1 and Scl1 proteins. Role of the streptococcal collagen-like protein 1 (Scl1) in anti-PDAC activity was assessed in vivo after intratumoral injection with M1 GAS wild-type, an isogenic mutant strain devoid of Scl1, or a complemented mutant strain with restored scl1 expression. In addition, recombinant Scl1 proteins were tested for NET inhibition using in vitro and ex vivo assays assessing NET production and myeloperoxidase activity. Results Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on Scl1, as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were weakly immunogenic toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Discussion Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Abby Ivey
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Soo Jeon Choi
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Stell Santiago
- Department of Pathology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Tracy W. Liu
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, WV, United States
- West Virginia University Cancer Institute, School of Medicine, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
5
|
Baz AA, Hao H, Lan S, Li Z, Liu S, Chen S, Chu Y. Neutrophil extracellular traps in bacterial infections and evasion strategies. Front Immunol 2024; 15:1357967. [PMID: 38433838 PMCID: PMC10906519 DOI: 10.3389/fimmu.2024.1357967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/26/2024] [Indexed: 03/05/2024] Open
Abstract
Neutrophils are innate immune cells that have a vital role in host defense systems. Neutrophil extracellular traps (NETs) are one of neutrophils' defense mechanisms against pathogens. NETs comprise an ejected lattice of chromatin associated with histones, granular proteins, and cytosolic proteins. They are thought to be an efficient strategy to capture and/or kill bacteria and received intensive research interest in the recent years. However, soon after NETs were identified, it was observed that certain bacteria were able to evade NET entrapment through many different mechanisms. Here, we outline the recent progress of NETs in bacterial infections and the strategies employed by bacteria to evade or withstand NETs. Identifying the molecules and mechanisms that modulate NET release will improve our understanding of the functions of NETs in infections and provide new avenues for the prevention and treatment of bacterial diseases.
Collapse
Affiliation(s)
- Ahmed Adel Baz
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Botany and Microbiology Department, Faculty of Science, Al-Azhar University, Assiut, Egypt
| | - Huafang Hao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shimei Lan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Zhangcheng Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shuang Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Shengli Chen
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| | - Yuefeng Chu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
- Key Laboratory of Ruminant Disease Prevention and Control (West), Ministry of Agricultural and Rural Affairs, Lanzhou, China
- Key Laboratory of Veterinary Etiological Biology, Ministry of Agricultural and Rural Affairs, Lanzhou, China
| |
Collapse
|
6
|
Henderson EA, Ivey A, Choi S, Santiago S, McNitt D, Liu TW, Lukomski S, Boone BA. Group A Streptococcal Collagen-like Protein 1 Restricts Tumor Growth in Murine Pancreatic Adenocarcinoma and Inhibits Cancer-Promoting Neutrophil Extracellular Traps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576060. [PMID: 38293049 PMCID: PMC10827155 DOI: 10.1101/2024.01.17.576060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer associated with an immunosuppressive environment. Neutrophil extracellular traps (NETs) were initially described in the context of infection but have more recently been implicated in contributing to the tolerogenic immune response in PDAC. Thus, NETs are an attractive target for new therapeutic strategies. Group A Streptococcus (GAS) has developed defensive strategies to inhibit NETs. In the present work, we propose utilizing intra-tumoral GAS injection to stimulate anti-tumor activity by inhibiting cancer-promoting NETs. Injection of three different M-type GAS strains reduced subcutaneous pancreatic tumor volume compared to control in two different murine PDAC models. Limitation of tumor growth was dependent on streptococcal collagen-like protein 1 (Scl1), as isogenic mutant strain devoid of Scl1 did not reduce tumor size. We further show that Scl1 plays a role in localizing GAS to the tumor site, thereby limiting the systemic spread of bacteria and off-target effects. While mice did elicit a humoral immune response to GAS antigens, tested sera were negative toward Scl1 antigen following intra-tumoral treatment with Scl1-expressing GAS. M1 GAS inhibited NET formation when co-cultured with neutrophils while Scl1-devoid mutant strain did not. Recombinant Scl1 protein inhibited NETs ex vivo in a dose-dependent manner by suppressing myeloperoxidase activity. Altogether, we demonstrate that intra-tumoral GAS injections reduce PDAC growth, which is facilitated by Scl1, in part through inhibition of cancer promoting NETs. This work offers a novel strategy by which NETs can be targeted through Scl1 protein and potentiates its use as a cancer therapeutic.
Collapse
Affiliation(s)
- Emily A Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Abby Ivey
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Soo Choi
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Stell Santiago
- Department of Pathology, West Virginia University, Morgantown, WV
| | - Dudley McNitt
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
| | - Tracy W Liu
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
| | - Brian A Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV
- West Virginia University Cancer Institute, West Virginia University, Morgantown, WV
- Department of Surgery, West Virginia University, Morgantown, WV
| |
Collapse
|
7
|
Zhou X, Song H, Pan F, Yuan C, Jia L, Wu B, Fan H, Ma Z. The dual M protein systems have diverse biological characteristics, but both contribute to M18-type Group A Streptococcus pathogenicity. Microbes Infect 2023:105209. [PMID: 37597608 DOI: 10.1016/j.micinf.2023.105209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/21/2023]
Abstract
M protein is a key surface virulence factor in Group A Streptococcus (GAS), Group C Streptococcus (GCS), and other streptococcal species. GAS encodes M protein using the emm gene, while GCS employs the szm (or sem) gene. In M18-type GAS, dual M protein systems exist, comprising both GAS and GCS M proteins (encoded separately by emm18 and spa18). The spa18 gene in M18-type GAS shares a conserved region highly similar to GCS's szm gene. Our study reveals that spa18 exhibits higher transcription levels than emm18 in M18-type GAS strains. The dual M protein systems defective mutant (Δemm18Δspa18) displays a smooth surface, whereas wild-type and single M protein gene mutants remain rough. M18 and SPA18 proteins possess distinct characteristics, showing varied binding properties and cytotoxicity effects on macrophages (THP-1) and keratinocytes (HaCaT). Both emm18 and spa18 genes contribute to the skin pathogenicity of M18-type GAS. Transcriptome analysis suggests the potential involvement of the mga gene in spa18 transcription regulation, while SpyM18_2047 appears to be specific to spa18 regulation. In summary, this research offers a crucial understanding of the biological characteristics of dual M protein systems in M18-type GAS, highlighting their contributions to virulence and transcriptional regulation.
Collapse
Affiliation(s)
- Xiaorui Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Haoshuai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Fei Pan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Chen Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Lu Jia
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Bing Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
8
|
Henderson EA, Lukomski S, Boone BA. Emerging applications of cancer bacteriotherapy towards treatment of pancreatic cancer. Front Oncol 2023; 13:1217095. [PMID: 37588093 PMCID: PMC10425600 DOI: 10.3389/fonc.2023.1217095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Pancreatic cancer is a highly aggressive form of cancer with a five-year survival rate of only ten percent. Pancreatic ductal adenocarcinoma (PDAC) accounts for ninety percent of those cases. PDAC is associated with a dense stroma that confers resistance to current treatment modalities. Increasing resistance to cancer treatments poses a challenge and a need for alternative therapies. Bacterial mediated cancer therapies were proposed in the late 1800s by Dr. William Coley when he injected osteosarcoma patients with live streptococci or a fabrication of heat-killed Streptococcus pyogenes and Serratia marcescens known as Coley's toxin. Since then, several bacteria have gained recognition for possible roles in potentiating treatment response, enhancing anti-tumor immunity, and alleviating adverse effects to standard treatment options. This review highlights key bacterial mechanisms and structures that promote anti-tumor immunity, challenges and risks associated with bacterial mediated cancer therapies, and applications and opportunities for use in PDAC management.
Collapse
Affiliation(s)
- Emily A. Henderson
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
| | - Slawomir Lukomski
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
| | - Brian A. Boone
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, WV, United States
- West Virginia Cancer Institute, West Virginia University, Morgantown, WV, United States
- Department of Surgery, West Virginia University, Morgantown, WV, United States
| |
Collapse
|
9
|
Li M, Gao Y, Wang Z, Wu B, Zhang J, Xu Y, Han X, Phouthapane V, Miao J. Taurine inhibits Streptococcus uberis-induced NADPH oxidase-dependent neutrophil extracellular traps via TAK1/MAPK signaling pathways. Front Immunol 2022; 13:927215. [PMID: 36148229 PMCID: PMC9488113 DOI: 10.3389/fimmu.2022.927215] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are produced by neutrophil activation and usually have both anti-infective and pro-damage effects. Streptococcus uberis (S. uberis), one of the common causative organisms of mastitis, can lead to the production of NETs. Taurine, a free amino acid abundant in the organism, has been shown to have immunomodulatory effects. In this study, we investigated the molecular mechanisms of S. uberis-induced NETs formation and the regulatory role of taurine. The results showed that NETs had a disruptive effect on mammary epithelial cells and barriers, but do not significantly inhibit the proliferation of S. uberis. S. uberis induced NADPH oxidase-dependent NETs. TLR2-mediated activation of the MAPK signaling pathway was involved in this process. Taurine could inhibit the activation of MAPK signaling pathway and NADPH oxidase by modulating the activity of TAK1, thereby inhibiting the production of ROS and NETs. The effects of taurine on NADPH oxidase and NETs in S. uberis infection were also demonstrated in vivo. These results suggest that taurine can protect mammary epithelial cells and barriers from damage by reducing S. uberis-induced NETs. These data provide new insights and strategies for the prevention and control of mastitis.
Collapse
Affiliation(s)
- Ming Li
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yabing Gao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhenglei Wang
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Binfeng Wu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jinqiu Zhang
- National Research Center for Veterinary Vaccine Engineering and Technology of China, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Yuanyuan Xu
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, China
| | - Vanhnaseng Phouthapane
- Department of Livestock and Fisheries, Ministry of Agriculture and Forestry, Vientiane, Laos
| | - Jinfeng Miao
- Ministry of Education Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Jinfeng Miao,
| |
Collapse
|
10
|
Hirose Y, Kolesinski P, Hiraoka M, Uchiyama S, Zurich RH, Kumaraswamy M, Bjanes E, Ghosh P, Kawabata S, Nizet V. Contribution of Streptococcus pyogenes M87 protein to innate immune resistance and virulence. Microb Pathog 2022; 169:105636. [PMID: 35724830 PMCID: PMC9878354 DOI: 10.1016/j.micpath.2022.105636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 05/16/2022] [Accepted: 06/10/2022] [Indexed: 01/29/2023]
Abstract
Streptococcus pyogenes is a pre-eminent human pathogen, and classified by the hypervariable sequence of the emm gene encoding the cell surface M protein. Among a diversity of M/emm types, the prevalence of the M/emm87 strain has been steadily increasing in invasive S. pyogenes infections. Although M protein is the major virulence factor for globally disseminated M/emm1 strain, it is unclear if or how the corresponding M protein of M/emm87 strain (M87 protein) functions as a virulence factor. Here, we use targeted mutagenesis to show that the M87 protein contributes to bacterial resistance to neutrophil and whole blood killing and promotes the release of mature IL-1β from macrophages. While deletion of emm87 did not influence epithelial cell adherence and nasal colonization, it significantly reduced S. pyogenes-induced mortality and bacterial loads in a murine systemic infection model. Our data suggest that emm87 is involved in pathogenesis by modulating the interaction between S. pyogenes and innate immune cells.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 5650871, Japan,Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Piotr Kolesinski
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Masanobu Hiraoka
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA,Department of Otorhinolaryngology-Head and Neck Surgery, Wakayama Medical University, Wakayama, Wakayama 6418509, Japan
| | - Satoshi Uchiyama
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Raymond H. Zurich
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Monika Kumaraswamy
- Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA,Infectious Diseases Section, VA San Diego Healthcare System, San Diego, CA 92161, USA
| | - Elisabet Bjanes
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA
| | - Partho Ghosh
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093, USA
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka 5650871, Japan,Correspondence: Victor Nizet, , TEL: +18585347408, Shigetada Kawabata, , TEL: +81668792896
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego, La Jolla, California 92093, USA,Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California 92093, USA,Correspondence: Victor Nizet, , TEL: +18585347408, Shigetada Kawabata, , TEL: +81668792896
| |
Collapse
|
11
|
Tabrizi ZA, Khosrojerdi A, Aslani S, Hemmatzadeh M, Babaie F, Bairami A, Shomali N, Hosseinzadeh R, Safari R, Mohammadi H. Multi-facets of neutrophil extracellular trap in infectious diseases: Moving beyond immunity. Microb Pathog 2021; 158:105066. [PMID: 34174356 DOI: 10.1016/j.micpath.2021.105066] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 06/19/2021] [Accepted: 06/21/2021] [Indexed: 02/06/2023]
Abstract
Neutrophil extracellular traps (NETs) are networks of extracellular chromosomal DNA fibers, histones, and cytoplasmic granule proteins. The release of NET components from neutrophils is involved in the suppression of pathogen diffusion. Development of NETs around target microbes leads to disruption of the cell membrane, eventuating in kind of cell death that is called as NETosis. The very first step in the process of NETosis is activation of Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase upon signaling by innate immune receptors. Afterwards, produced Reactive oxygen species (ROS) trigger protein-arginine deiminase type 4, neutrophil elastase, and myeloperoxidase to generate decondensed chromatin and disrupted integrity of nuclear membrane. Subsequently, decondensed chromatin is mixed with several enzymes in the cytoplasm released from granules, leading to release of DNA and histones, and finally formation of NET. Several reports have indicated that NETosis might contribute to the immune responses through limiting the dissemination of microbial organisms. In this review, we discuss recent advances on the role of neutrophils, NETs, and their implications in the pathogenesis of microbial infections. Additionally, the prospective of the NET modulation as a therapeutic strategy to treat infectious diseases are clarified.
Collapse
Affiliation(s)
- Zahra Azimzadeh Tabrizi
- Department of Laboratory Sciences, School of Allied Medical Sciences, Alborz University of Medical Sciences, Karaj, Iran
| | - Arezou Khosrojerdi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Saeed Aslani
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Hemmatzadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farhad Babaie
- Department of Immunology and Genetic, School of Medicine, Urmia University of Medical Sciences, Urmia, Iran; Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| | - Amir Bairami
- Department of Medical Parasitology and Mycology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran
| | - Navid Shomali
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ramin Hosseinzadeh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Roghaiyeh Safari
- Molecular and Cellular Epigenetics, GIGA, University of Liege, Sart-Tilman Liège, Belgium; Molecular and Cellular Biology, TERRA, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - Hamed Mohammadi
- Non-Communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran; Department of Immunology, School of Medicine, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
12
|
Speziale P, Pietrocola G. Staphylococcus aureus induces neutrophil extracellular traps (NETs) and neutralizes their bactericidal potential. Comput Struct Biotechnol J 2021; 19:3451-3457. [PMID: 34194670 PMCID: PMC8220102 DOI: 10.1016/j.csbj.2021.06.012] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022] Open
Abstract
Neutrophil extracellular traps (NETs) are considered part of the innate human immune system because they are involved in host defense during bacterial infections. NETs are formed by activated neutrophils and consist of a DNA backbone combined with proteins with different biological functions. The activity of NETs can be significantly reduced by a Staphylococcus aureus DNase, which degrades the DNA backbone and enables the liberation of bacteria from NETs, and by Eap, a secreted protein which binds and aggregates linearized DNA, suppressing the formation of NETs. Furthermore, the pathogen can resist NET-mediated killing by expressing the surface protein FnBPB, which neutralizes the bactericidal activity of histones. Finally, the anti-staphylococcal activity of NETs is counteracted and blocked by S. aureus biofilm. Staphylococcal cells and several virulence factors such as protein A and phenol-soluble modulins can also elicit the formation of NETs which in turn can cause tissue injury, enhancing bacterial performance in host colonization. The identification of additional virulence factors involved in NET formation/neutralization could provide the basis for therapeutic interventions against this formidable pathogen.
Collapse
Affiliation(s)
- Pietro Speziale
- Department of Molecular Medicine, Biochemistry Unit, Viale Taramelli 3/b, 27100 Pavia, Italy
| | - Giampiero Pietrocola
- Department of Molecular Medicine, Biochemistry Unit, Viale Taramelli 3/b, 27100 Pavia, Italy
| |
Collapse
|
13
|
Jing C, Liu C, Liu Y, Feng R, Cao R, Guan Z, Xuan B, Gao Y, Wang Q, Yang N, Ma Y, Lan L, Feng J, Shen B, Wang H, Yu Y, Yang G. Antibodies Against Pseudomonas aeruginosa Alkaline Protease Directly Enhance Disruption of Neutrophil Extracellular Traps Mediated by This Enzyme. Front Immunol 2021; 12:654649. [PMID: 33868297 PMCID: PMC8044376 DOI: 10.3389/fimmu.2021.654649] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/17/2021] [Indexed: 12/20/2022] Open
Abstract
Extracellular traps released by neutrophils (NETs) are essential for the clearance of Pseudomonas aeruginosa. Alkaline protease (AprA) secreted by P. aeruginosa negatively correlates with clinical improvement. Moreover, anti-AprA in patients with cystic fibrosis (CF) can help identify patients with aggressive forms of chronic infection. However, the mechanism underlying the clinical outcomes remains unclear. We demonstrated that aprA deficiency in P. aeruginosa decreased the bacterial burden and reduced lung infection. AprA degraded NET components in vitro and in vivo but did not affect NET formation. Importantly, antibodies induced by AprA acted as an agonist and directly enhanced the degrading activities of AprA. Moreover, antisera from patients with P. aeruginosa infection exhibited antibody-dependent enhancement (ADE) similar to that of the antibodies we prepared. Our further investigations showed that the interaction between AprA and the specific antibodies might make the enzyme active sites better exposed, and subsequently enhance the recognition of substrates and accelerate the degradation. Our findings revealed that AprA secreted by P. aeruginosa may aggravate infection by destroying formed NETs, an effect that was further enhanced by its antibodies.
Collapse
Affiliation(s)
- Chendi Jing
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China.,Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Chenghua Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yu Liu
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Ruli Feng
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China
| | - Run Cao
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Zhangchun Guan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Bo Xuan
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Yaping Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Qi Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Nana Yang
- Department of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Yuanfang Ma
- Joint National Laboratory for Antibody Drug Engineering, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Lefu Lan
- Department of Molecular Pharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Beifen Shen
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Hui Wang
- Department of Clinical Laboratory, Peking University People's Hospital, Beijing, China
| | - Yanyan Yu
- Department of Infectious Diseases, Peking University First Hospital, Beijing, China
| | - Guang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| |
Collapse
|
14
|
Alves-Barroco C, Paquete-Ferreira J, Santos-Silva T, Fernandes AR. Singularities of Pyogenic Streptococcal Biofilms - From Formation to Health Implication. Front Microbiol 2021; 11:584947. [PMID: 33424785 PMCID: PMC7785724 DOI: 10.3389/fmicb.2020.584947] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Accepted: 11/20/2020] [Indexed: 01/09/2023] Open
Abstract
Biofilms are generally defined as communities of cells involved in a self-produced extracellular matrix adhered to a surface. In biofilms, the bacteria are less sensitive to host defense mechanisms and antimicrobial agents, due to multiple strategies, that involve modulation of gene expression, controlled metabolic rate, intercellular communication, composition, and 3D architecture of the extracellular matrix. These factors play a key role in streptococci pathogenesis, contributing to therapy failure and promoting persistent infections. The species of the pyogenic group together with Streptococcus pneumoniae are the major pathogens belonging the genus Streptococcus, and its biofilm growth has been investigated, but insights in the genetic origin of biofilm formation are limited. This review summarizes pyogenic streptococci biofilms with details on constitution, formation, and virulence factors associated with formation.
Collapse
Affiliation(s)
- Cinthia Alves-Barroco
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - João Paquete-Ferreira
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Teresa Santos-Silva
- UCIBIO, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| | - Alexandra R Fernandes
- UCIBIO, Departamento Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus de Caparica, Caparica, Portugal
| |
Collapse
|
15
|
Ríos-López AL, González GM, Hernández-Bello R, Sánchez-González A. Avoiding the trap: Mechanisms developed by pathogens to escape neutrophil extracellular traps. Microbiol Res 2020; 243:126644. [PMID: 33199088 DOI: 10.1016/j.micres.2020.126644] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/28/2020] [Accepted: 11/01/2020] [Indexed: 12/17/2022]
Abstract
Neutrophils are the first cells of the innate immune system that respond to infection by arriving at sites when pathogens have exceeded physical barriers. Among their response mechanisms against pathogens is the release of neutrophil extracellular traps (NETs), which are composed of deoxyribonucleic acid and antimicrobial proteins such as neutrophil elastase, myeloperoxidase, antimicrobial peptides, and other proteins in neutrophil granules. The formation of extracellular traps is considered an effective strategy to capture and, in some cases, neutralize pathogenic bacteria, fungi, parasites, or viruses. However, it is also known that pathogens can respond to NETs by expressing some virulence factors, thus evading the antimicrobial effect of these structures. These include the secretion of proteins to degrade the deoxyribonucleic acid scaffold, the formation of biofilms that impede the effect of NETs, or the modification of its membrane structure to avoid interaction with NETs. In this review, we discuss these mechanisms and summarize the different pathogens that employ one or more mechanisms to evade the NET-mediated neutrophil response.
Collapse
Affiliation(s)
- A L Ríos-López
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - G M González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - R Hernández-Bello
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico
| | - A Sánchez-González
- Departamento de Microbiología, Facultad de Medicina y Hospital Universitario "Dr. Jose Eleuterio Gonzalez", Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, 64460, Mexico.
| |
Collapse
|
16
|
Ellison AJ, Dempwolff F, Kearns DB, Raines RT. Role for Cell-Surface Collagen of Streptococcus pyogenes in Infections. ACS Infect Dis 2020; 6:1836-1843. [PMID: 32413256 DOI: 10.1021/acsinfecdis.0c00073] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Group A Streptococcus (GAS) displays cell-surface proteins that resemble human collagen. We find that a fluorophore-labeled collagen mimetic peptide (CMP) labels GAS cells but not Escherichia coli or Bacillus subtilis cells, which lack such proteins. The CMP likely engages in a heterotrimeric helix with endogenous collagen, as the nonnatural d enantiomer of the CMP does not label GAS cells. To identify a molecular target, we used reverse genetics to "knock-in" the GAS genes that encode two proteins with collagen-like domains, Scl1 and Scl2, into B. subtilis. The fluorescent CMP labels the cells of these B. subtilis strains. Moreover, these strains bind tightly to a surface of mammalian collagen. These data are consistent with streptococcal collagen forming triple helices with damaged collagen in a wound bed and thus have implications for microbial virulence.
Collapse
Affiliation(s)
| | - Felix Dempwolff
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Daniel B. Kearns
- Department of Biology, Indiana University, Bloomington, Indiana 47405, United States
| | - Ronald T. Raines
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Burgener SS, Schroder K. Neutrophil Extracellular Traps in Host Defense. Cold Spring Harb Perspect Biol 2020; 12:cshperspect.a037028. [PMID: 31767647 DOI: 10.1101/cshperspect.a037028] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Neutrophils are produced in the bone marrow and then patrol blood vessels from which they can be rapidly recruited to a site of infection. Neutrophils bind, engulf, and efficiently kill invading microbes via a suite of defense mechanisms. Diverse extracellular and intracellular microbes induce neutrophils to extrude neutrophil extracellular traps (NETs) through the process of NETosis. Here, we review the signaling mechanisms and cell biology underpinning the key NETosis pathways during infection and the antimicrobial functions of NETs in host defense.
Collapse
Affiliation(s)
- Sabrina Sofia Burgener
- Institute for Molecular Bioscience (IMB), and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia 4072, Australia
| | - Kate Schroder
- Institute for Molecular Bioscience (IMB), and IMB Centre for Inflammation and Disease Research, The University of Queensland, St Lucia 4072, Australia
| |
Collapse
|
18
|
McNitt DH, Van De Water L, Marasco D, Berisio R, Lukomski S. Streptococcal Collagen-like Protein 1 Binds Wound Fibronectin: Implications in Pathogen Targeting. Curr Med Chem 2019; 26:1933-1945. [PMID: 30182848 DOI: 10.2174/0929867325666180831165704] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/18/2018] [Accepted: 06/28/2018] [Indexed: 02/01/2023]
Abstract
Group A Streptococcus (GAS) infections are responsible for significant morbidity and mortality worldwide. The outlook for an effective global vaccine is reduced because of significant antigenic variation among GAS strains worldwide. Other challenges in GAS therapy include the lack of common access to antibiotics in developing countries, as well as allergy to and treatment failures with penicillin and increasing erythromycin resistance in the industrialized world. At the portal of entry, GAS binds to newly deposited extracellular matrix, which is rich in cellular fibronectin isoforms with extra domain A (EDA, also termed EIIIA) via the surface adhesin, the streptococcal collagen-like protein 1 (Scl1). Recombinant Scl1 constructs, derived from diverse GAS strains, bind the EDA loop segment situated between the C and C' β-strands. Despite the sequence diversity in Scl1 proteins, multiple sequence alignments and secondary structure predictions of Scl1 variants, as well as crystallography and homology modeling studies, point to a conserved mechanism of Scl1-EDA binding. We propose that targeting this interaction may prevent the progression of infection. A synthetic cyclic peptide, derived from the EDA C-C' loop, binds to recombinant Scl1 with a micromolar dissociation constant. This review highlights the current concept of EDA binding to Scl1 and provides incentives to exploit this binding to treat GAS infections and wound colonization.
Collapse
Affiliation(s)
- Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| | - Livingston Van De Water
- Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY 12208, United States
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II, Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, via Mezzocannone, 16, 80134, Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, 2095 Health Sciences North, Morgantown, WV 26506, United States
| |
Collapse
|
19
|
McNitt DH, Choi SJ, Allen JL, Hames RA, Weed SA, Van De Water L, Berisio R, Lukomski S. Adaptation of the group A Streptococcus adhesin Scl1 to bind fibronectin type III repeats within wound-associated extracellular matrix: implications for cancer therapy. Mol Microbiol 2019; 112:800-819. [PMID: 31145503 PMCID: PMC6736723 DOI: 10.1111/mmi.14317] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The human‐adapted pathogen group A Streptococcus (GAS) utilizes wounds as portals of entry into host tissue, wherein surface adhesins interact with the extracellular matrix, enabling bacterial colonization. The streptococcal collagen‐like protein 1 (Scl1) is a major adhesin of GAS that selectively binds to two fibronectin type III (FnIII) repeats within cellular fibronectin, specifically the alternatively spliced extra domains A and B, and the FnIII repeats within tenascin‐C. Binding to FnIII repeats was mediated through conserved structural determinants present within the Scl1 globular domain and facilitated GAS adherence and biofilm formation. Isoforms of cellular fibronectin that contain extra domains A and B, as well as tenascin‐C, are present for several days in the wound extracellular matrix. Scl1‐FnIII binding is therefore an example of GAS adaptation to the host's wound environment. Similarly, cellular fibronectin isoforms and tenascin‐C are present in the tumor microenvironment. Consistent with this, FnIII repeats mediate GAS attachment to and enhancement of biofilm formation on matrices deposited by cancer‐associated fibroblasts and osteosarcoma cells. These data collectively support the premise for utilization of the Scl1‐FnIII interaction as a novel method of anti‐neoplastic targeting in the tumor microenvironment.
Collapse
Affiliation(s)
- Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Soo Jeon Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Jessica L Allen
- Department of Biochemistry, Program in Cancer Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - River A Hames
- Department of Biochemistry, Program in Cancer Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Scott A Weed
- Department of Biochemistry, Program in Cancer Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| | - Livingston Van De Water
- Departments of Surgery and Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, USA
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, USA
| |
Collapse
|
20
|
Pancholi V. Group A Streptococcus-Mediated Host Cell Signaling. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0021-2018. [PMID: 30767846 PMCID: PMC11590744 DOI: 10.1128/microbiolspec.gpp3-0021-2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Indexed: 12/14/2022] Open
Abstract
In the past decade, the field of the cellular microbiology of group A Streptococcus (S. pyogenes) infection has made tremendous advances and touched upon several important aspects of pathogenesis, including receptor biology, invasive and evasive phenomena, inflammasome activation, strain-specific autophagic bacterial killing, and virulence factor-mediated programmed cell death. The noteworthy aspect of S. pyogenes-mediated cell signaling is the recognition of the role of M protein in a variety of signaling events, starting with the targeting of specific receptors on the cell surface and on through the induction and evasion of NETosis, inflammasome, and autophagy/xenophagy to pyroptosis and apoptosis. Variations in reports on S. pyogenes-mediated signaling events highlight the complex mechanism of pathogenesis and underscore the importance of the host cell and S. pyogenes strain specificity, as well as in vitro/in vivo experimental parameters. The severity of S. pyogenes infection is, therefore, dependent on the virulence gene expression repertoire in the host environment and on host-specific dynamic signaling events in response to infection. Commonly known as an extracellular pathogen, S. pyogenes finds host macrophages as safe havens wherein it survives and even multiplies. The fact that endothelial cells are inherently deficient in autophagic machinery compared to epithelial cells and macrophages underscores the invasive nature of S. pyogenes and its ability to cause severe systemic diseases. S. pyogenes is still one of the top 10 causes of infectious mortality. Understanding the orchestration of dynamic host signaling networks will provide a better understanding of the increasingly complex mechanism of S. pyogenes diseases and novel ways of therapeutically intervening to thwart severe and often fatal infections.
Collapse
Affiliation(s)
- Vijay Pancholi
- Department of Pathology, The Ohio State University College of Medicine, Columbus, OH 43210
| |
Collapse
|
21
|
Clark M, Kim J, Etesami N, Shimamoto J, Whalen RV, Martin G, Okumura CYM. Group A Streptococcus Prevents Mast Cell Degranulation to Promote Extracellular Trap Formation. Front Immunol 2018; 9:327. [PMID: 29535718 PMCID: PMC5835080 DOI: 10.3389/fimmu.2018.00327] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 02/06/2018] [Indexed: 12/30/2022] Open
Abstract
The resurgence of Group A Streptococcus (GAS) infections in the past two decades has been a rising major public health concern. Due to a large number of GAS infections occurring in the skin, mast cells (MCs), innate immune cells known to localize to the dermis, could play an important role in controlling infection. MCs can exert their antimicrobial activities either early during infection, by degranulation and release of antimicrobial proteases and the cathelicidin-derived antimicrobial peptide LL-37, or by forming antibacterial MC extracellular traps (MCETs) in later stages of infection. We demonstrate that MCs do not directly degranulate in response to GAS, reducing their ability to control bacterial growth in early stages of infection. However, MC granule components are highly cytotoxic to GAS due to the pore-forming activity of LL-37, while MC granule proteases do not significantly affect GAS viability. We therefore confirmed the importance of MCETs by demonstrating their capacity to reduce GAS survival. The data therefore suggests that LL-37 from MC granules become embedded in MCETs, and are the primary effector molecule by which MCs control GAS infection. Our work underscores the importance of a non-traditional immune effector cell, utilizing a non-conventional mechanism, in the defense against an important human pathogen.
Collapse
Affiliation(s)
- Mary Clark
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | - Jessica Kim
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | - Neelou Etesami
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | | | - Ryan V. Whalen
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | - Gary Martin
- Department of Biology, Occidental College, Los Angeles, CA, United States
| | | |
Collapse
|
22
|
Le Breton Y, Belew AT, Freiberg JA, Sundar GS, Islam E, Lieberman J, Shirtliff ME, Tettelin H, El-Sayed NM, McIver KS. Genome-wide discovery of novel M1T1 group A streptococcal determinants important for fitness and virulence during soft-tissue infection. PLoS Pathog 2017; 13:e1006584. [PMID: 28832676 PMCID: PMC5584981 DOI: 10.1371/journal.ppat.1006584] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 09/05/2017] [Accepted: 08/15/2017] [Indexed: 01/08/2023] Open
Abstract
The Group A Streptococcus remains a significant human pathogen causing a wide array of disease ranging from self-limiting to life-threatening invasive infections. Epithelium (skin or throat) colonization with progression to the subepithelial tissues is the common step in all GAS infections. Here, we used transposon-sequencing (Tn-seq) to define the GAS 5448 genetic requirements for in vivo fitness in subepithelial tissue. A near-saturation transposon library of the M1T1 GAS 5448 strain was injected subcutaneously into mice, producing suppurative inflammation at 24 h that progressed to prominent abscesses with tissue necrosis at 48 h. The library composition was monitored en masse by Tn-seq and ratios of mutant abundance comparing the output (12, 24 and 48 h) versus input (T0) mutant pools were calculated for each gene. We identified a total of 273 subcutaneous fitness (scf) genes with 147 genes (55 of unknown function) critical for the M1T1 GAS 5448 fitness in vivo; and 126 genes (53 of unknown function) potentially linked to in vivo fitness advantage. Selected scf genes were validated in competitive subcutaneous infection with parental 5448. Two uncharacterized genes, scfA and scfB, encoding putative membrane-associated proteins and conserved among Gram-positive pathogens, were further characterized. Defined scfAB mutants in GAS were outcompeted by wild type 5448 in vivo, attenuated for lesion formation in the soft tissue infection model and dissemination to the bloodstream. We hypothesize that scfAB play an integral role in enhancing adaptation and fitness of GAS during localized skin infection, and potentially in propagation to other deeper host environments. The WHO ranks the Group A Streptococcus (GAS) in the top 10 leading causes of morbidity and mortality from infectious diseases worldwide. GAS is a strict human pathogen causing both benign superficial infections as well as life-threatening invasive diseases. All GAS infections begin by colonization of an epithelium (throat or skin) followed by propagation into subepithelial tissues. The genetic requirements for M1T1 GAS 5448 within this niche were interrogated by in vivo transposon sequencing (Tn-seq), identifying 273 subcutaneous fitness (scf) genes with 108 of those previously of “unknown function”. Two yet uncharacterized genes, scfA and scfB, were shown to be critical during GAS 5448 soft tissue infection and dissemination into the bloodstream. Thus, this study improves the functional annotation of the GAS genome, providing new insights into GAS pathophysiology and enhancing the development of novel GAS therapeutics.
Collapse
Affiliation(s)
- Yoann Le Breton
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| | - Ashton T. Belew
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Jeffrey A. Freiberg
- Graduate Program in Life Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Ganesh S. Sundar
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Emrul Islam
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
| | - Joshua Lieberman
- Division of Infectious Diseases, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark E. Shirtliff
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Microbial Pathogenesis, Dental School, University of Maryland, Baltimore, Maryland, United States of America
| | - Hervé Tettelin
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, United States of America
| | - Kevin S. McIver
- Department of Cell Biology & Molecular Genetics and Maryland Pathogen Research Institute, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (YLB); (KSM)
| |
Collapse
|
23
|
Lukomski S, Bachert BA, Squeglia F, Berisio R. Collagen-like proteins of pathogenic streptococci. Mol Microbiol 2017; 103:919-930. [PMID: 27997716 DOI: 10.1111/mmi.13604] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2016] [Indexed: 12/19/2022]
Abstract
The collagen domain, which is defined by the presence of the Gly-X-Y triplet repeats, is amongst the most versatile and widespread known structures found in proteins from organisms representing all three domains of life. The streptococcal collagen-like (Scl) proteins are widely present in pathogenic streptococci, including Streptococcus pyogenes, S. agalactiae, S. pneumoniae, and S. equi. Experiments and bioinformatic analyses support the hypothesis that all Scl proteins are homotrimeric and cell wall-anchored. These proteins contain the rod-shaped collagenous domain proximal to cell surface, as well as a variety of outermost non-collagenous domains that generally lack predicted functions but can be grouped into one of six clusters based on sequence similarity. The well-characterized Scl1 proteins of S. pyogenes show a dichotomous switch in ligand binding between human tissue and blood environments. In tissue, Scl1 adhesin specifically recognizes the wound microenvironment, promotes adhesion and biofilm formation, decreases bacterial killing by neutrophil extracellular traps, and modulates S. pyogenes virulence. In blood, ligands include components of complement and coagulation-fibrinolytic systems, as well as plasma lipoproteins. In all, the Scl proteins signify a large family of structurally related surface proteins, which contribute to the ability of streptococci to colonize and cause diseases in humans and animals.
Collapse
Affiliation(s)
- Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council, Naples, I-80134, Italy
| |
Collapse
|
24
|
Bachert BA, Choi SJ, LaSala PR, Harper TI, McNitt DH, Boehm DT, Caswell CC, Ciborowski P, Keene DR, Flores AR, Musser JM, Squeglia F, Marasco D, Berisio R, Lukomski S. Unique Footprint in the scl1.3 Locus Affects Adhesion and Biofilm Formation of the Invasive M3-Type Group A Streptococcus. Front Cell Infect Microbiol 2016; 6:90. [PMID: 27630827 PMCID: PMC5005324 DOI: 10.3389/fcimb.2016.00090] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/15/2016] [Indexed: 12/04/2022] Open
Abstract
The streptococcal collagen-like proteins 1 and 2 (Scl1 and Scl2) are major surface adhesins that are ubiquitous among group A Streptococcus (GAS). Invasive M3-type strains, however, have evolved two unique conserved features in the scl1 locus: (i) an IS1548 element insertion in the scl1 promoter region and (ii) a nonsense mutation within the scl1 coding sequence. The scl1 transcript is drastically reduced in M3-type GAS, contrasting with a high transcription level of scl1 allele in invasive M1-type GAS. This leads to a lack of Scl1 expression in M3 strains. In contrast, while scl2 transcription and Scl2 production are elevated in M3 strains, M1 GAS lack Scl2 surface expression. M3-type strains were shown to have reduced biofilm formation on inanimate surfaces coated with cellular fibronectin and laminin, and in human skin equivalents. Repair of the nonsense mutation and restoration of Scl1 expression on M3-GAS cells, restores biofilm formation on cellular fibronectin and laminin coatings. Inactivation of scl1 in biofilm-capable M28 and M41 strains results in larger skin lesions in a mouse model, indicating that lack of Scl1 adhesin promotes bacterial spread over localized infection. These studies suggest the uniquely evolved scl1 locus in the M3-type strains, which prevents surface expression of the major Scl1 adhesin, contributed to the emergence of the invasive M3-type strains. Furthermore these studies provide insight into the molecular mechanisms mediating colonization, biofilm formation, and pathogenesis of group A streptococci.
Collapse
Affiliation(s)
- Beth A Bachert
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Soo J Choi
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Paul R LaSala
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Tiffany I Harper
- Department of Pathology, West Virginia University Morgantown, WV, USA
| | - Dudley H McNitt
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Dylan T Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Clayton C Caswell
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| | - Pawel Ciborowski
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center Omaha, NE, USA
| | | | - Anthony R Flores
- Section of Infectious Diseases, Department of Pediatrics, Baylor College of Medicine, Texas Children's HospitalHouston, TX, USA; Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital SystemHouston, TX, USA
| | - James M Musser
- Department of Pathology and Genomic Medicine, Center for Molecular and Translational Human Infectious Diseases Research, Houston Methodist Research Institute and Hospital System Houston, TX, USA
| | - Flavia Squeglia
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples Frederico II Naples, Italy
| | - Rita Berisio
- Institute of Biostructures and Bioimaging, National Research Council Naples, Italy
| | - Slawomir Lukomski
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University Morgantown, WV, USA
| |
Collapse
|
25
|
Affiliation(s)
- Simon Döhrmann
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, UC San Diego, La Jolla, California, United States of America
| | - Jason N. Cole
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, UC San Diego, La Jolla, California, United States of America
- The School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, Queensland, Australia
| | - Victor Nizet
- Department of Pediatrics, Division of Host-Microbe Systems and Therapeutics, UC San Diego, La Jolla, California, United States of America
- Skaggs School of Pharmacy and Pharmaceutical Sciences, UC San Diego, La Jolla, California, United States of America
| |
Collapse
|
26
|
LaRock CN, Nizet V. Cationic antimicrobial peptide resistance mechanisms of streptococcal pathogens. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:3047-54. [PMID: 25701232 DOI: 10.1016/j.bbamem.2015.02.010] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Revised: 02/04/2015] [Accepted: 02/07/2015] [Indexed: 02/06/2023]
Abstract
Cationic antimicrobial peptides (CAMPs) are critical front line contributors to host defense against invasive bacterial infection. These immune factors have direct killing activity toward microbes, but many pathogens are able to resist their effects. Group A Streptococcus, group B Streptococcus and Streptococcus pneumoniae are among the most common pathogens of humans and display a variety of phenotypic adaptations to resist CAMPs. Common themes of CAMP resistance mechanisms among the pathogenic streptococci are repulsion, sequestration, export, and destruction. Each pathogen has a different array of CAMP-resistant mechanisms, with invasive disease potential reflecting the utilization of several mechanisms that may act in synergy. Here we discuss recent progress in identifying the sources of CAMP resistance in the medically important Streptococcus genus. Further study of these mechanisms can contribute to our understanding of streptococcal pathogenesis, and may provide new therapeutic targets for therapy and disease prevention. This article is part of a Special Issue entitled: Bacterial Resistance to Antimicrobial Peptides.
Collapse
Affiliation(s)
- Christopher N LaRock
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA.
| | - Victor Nizet
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA; Skaggs School of Medicine and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA; Rady Children's Hospital, San Diego, CA, USA.
| |
Collapse
|
27
|
Natural variant of collagen-like protein a in serotype M3 group a Streptococcus increases adherence and decreases invasive potential. Infect Immun 2015; 83:1122-9. [PMID: 25561712 DOI: 10.1128/iai.02860-14] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Group A Streptococcus (GAS) predominantly exists as a colonizer of the human oropharynx that occasionally breaches epithelial barriers to cause invasive diseases. Despite the frequency of GAS carriage, few investigations into the contributory molecular mechanisms exist. To this end, we identified a naturally occurring polymorphism in the gene encoding the streptococcal collagen-like protein A (SclA) in GAS carrier strains. All previously sequenced invasive serotype M3 GAS possess a premature stop codon in the sclA gene truncating the protein. The carrier polymorphism is predicted to restore SclA function and was infrequently identified by targeted DNA sequencing in invasive strains of the same serotype. We demonstrate that a strain with the carrier sclA allele expressed a full-length SclA protein, while the strain with the invasive sclA allele expressed a truncated variant. An isoallelic mutant invasive strain with the carrier sclA allele exhibited decreased virulence in a mouse model of invasive disease and decreased multiplication in human blood. Further, the isoallelic invasive strain with the carrier sclA allele persisted in the mouse nasopharynx and had increased adherence to cultured epithelial cells. Repair of the premature stop codon in the invasive sclA allele restored the ability to bind the extracellular matrix proteins laminin and cellular fibronectin. These data demonstrate that a mutation in GAS carrier strains increases adherence and decreases virulence and suggest selection against increased adherence in GAS invasive isolates.
Collapse
|
28
|
HAMADA S, KAWABATA S, NAKAGAWA I. Molecular and genomic characterization of pathogenic traits of group A Streptococcus pyogenes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2015; 91:539-59. [PMID: 26666305 PMCID: PMC4773581 DOI: 10.2183/pjab.91.539] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Group A streptococcus (GAS) or Streptococcus pyogenes causes various diseases ranging from self-limiting sore throat to deadly invasive diseases. The genome size of GAS is 1.85-1.9 Mb, and genomic rearrangement has been demonstrated. GAS possesses various surface-associated substances such as hyaluronic capsule, M proteins, and fibronectin/laminin/immunoglobulin-binding proteins. These are related to the virulence and play multifaceted and mutually reflected roles in the pathogenesis of GAS infections. Invasion of GAS into epithelial cells and deeper tissues provokes immune and non-immune defense or inflammatory responses including the recruitment of neutrophils, macrophages, and dendritic cells in hosts. GAS frequently evades host defense mechanisms by using its virulence factors. Extracellular products of GAS may perturb cellular and subcellular functions and degrade tissues enzymatically, which leads to the aggravation of local and/or systemic disorders in the host. In this review, we summarize some important cellular and extracellular substances that may affect pathogenic processes during GAS infections, and the host responses to these.
Collapse
Affiliation(s)
- Shigeyuki HAMADA
- Research Institute for Microbial Diseases, Japan-Thailand Collaboration Center for Emerging and Reemerging Infections, Osaka University, Osaka, Japan
- Correspondence should be addressed: S. Hamada, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan (e-mail: )
| | - Shigetada KAWABATA
- Department of Oral and Molecular Microbiology, Graduate School of Dentistry, Osaka University, Osaka, Japan
| | - Ichiro NAKAGAWA
- Department of Microbiology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|