1
|
Li L, Cao L, Yang Q, Zhao Z, Yuan J, Liu S, Jin Q, Li J, Li X, Wang X, Zhang N, Jiang W, Gong P. Giardiavirus infection alleviates growth restriction and intestinal damage caused by the intestinal parasite Giardia duodenalis. Parasit Vectors 2025; 18:71. [PMID: 39994730 PMCID: PMC11853539 DOI: 10.1186/s13071-025-06692-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
BACKGROUND Giardia duodenalis is a prevalent intestinal pathogen causing giardiasis, a condition characterized by diarrhea and frequently linked to malnutrition and growth impairments in children. The virulence of Giardiavirus (GLV) may efficiently clear Giardia parasites from infected patients. However, we have a limited understanding of GLV transmission among Giardia species and GLV-infected Giardia's impact on pathogenicity. METHODS This study investigated extracellular vesicles (EVs) isolated via ultracentrifugation or exosome assay kit to detect the presence of GLV in EVs, the results were detected using ultrastructure and molecular methods, including transmission electron microscopy, scanning electron microscopy, quantitative polymerase chain reaction (qPCR), and dot blot. Transwell migration assays confirmed the spread of GLV-enveloped EVs among Giardia species using inhibitor experiments and immunofluorescence. Mice gavaged with Giardia, with or without GLV infection, were assessed for disease progression, including growth parameters (weight and size gains), intestinal permeability, and pathology. RESULTS Parts of GLV exploit the Giardia EVs pathway to reach the extracellular environment, allowing GLV to spread among Giardia species via these EVs. The uptake of GLV-containing EVs by Giardia results in rapid trophozoite infection, and GLV wrapped in EVs also offers protection against external interference. Importantly, EV-coated GLV-infected Giardia leads to divergent clinical symptoms in mice, posing less risk to mice and reducing symptoms, such as emaciation, stunted growth, and lesion damage, compared with GLV-free Giardia-infected mice. CONCLUSIONS Our studies show that GLV wrapped in EVs can spread among Giardia species, and GLV infection alleviates the lesions caused by Giardia. These findings reveal that GLV could be a target for the development of novel intervention strategies against Giardia.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Lili Cao
- Jilin Academy of Animal Husbandry and Veterinary Medicine, Changchun, 130062, China
| | - Qiankun Yang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Zhiteng Zhao
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianqi Yuan
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Shaoxiong Liu
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Qinqin Jin
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Jianhua Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xin Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Xiaocen Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Nan Zhang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China
| | - Weina Jiang
- Deparment of Pathology, Qingdao Municipal Hospital, Qingdao, 266071, Shandong, China.
| | - Pengtao Gong
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, and College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
2
|
VanKoten HW, Pence BC, Klinkenberg JR, Das S, Patterson SE. Synthesis and evaluation of anti-Giardia activity of oseltamivir analogs. Bioorg Med Chem Lett 2025; 116:130035. [PMID: 39577600 DOI: 10.1016/j.bmcl.2024.130035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/07/2024] [Accepted: 11/17/2024] [Indexed: 11/24/2024]
Abstract
We reported earlier that oseltamivir (Osm, Tamiflu®), an anti-viral agent, inhibits the attachment of trophozoites to intestinal epithelial cells and cyst production in culture. Osm also disassembles lipid rafts (LRs) and the biogenesis of extracellular vesicles (EVs) by Giardia. In the current study, we synthesized forty-one Osm analogs with the derivatization of oseltamivir phosphate. These compounds were tested on giardial growth, and cyst production. Of these, four analogs, i.e., compounds 3b, 2c, 11i, and 11d, were found to have superior activities against trophozoites and cysts compared to the parent oseltamivir. Investigation of the mechanism(s) of action of these agents are in progress and will be reported in due course.
Collapse
Affiliation(s)
- Harrison W VanKoten
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Breanna C Pence
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, United States
| | - James R Klinkenberg
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States
| | - Siddhartha Das
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968-0519, United States.
| | - Steven E Patterson
- Center for Drug Design, Academic Health Center, University of Minnesota, Minneapolis, MN 55455, United States.
| |
Collapse
|
3
|
Parikh A, Krogman W, Walker J. The impact of volatile anesthetics and propofol on phosphatidylinositol 4,5-bisphosphate signaling. Arch Biochem Biophys 2024; 757:110045. [PMID: 38801966 DOI: 10.1016/j.abb.2024.110045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/29/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
Phosphatidylinositol 4,5-bisphosphate (PIP2), as well as other anionic phospholipids, play a pivotal role in various cellular processes, including ion channel regulation, receptor trafficking, and intracellular signaling pathways. The binding of volatile anesthetics and propofol to PIP2 leads to alterations in PIP2-mediated signaling causing modulation of ion channels such as ɣ-aminobutyric acid type A (GABAA) receptors, voltage-gated calcium channels, and potassium channels through various mechanisms. Additionally, the interaction between anionic phospholipids and G protein-coupled receptors plays a critical role in various anesthetic pathways, with these anesthetic-induced changes impacting PIP2 levels which cause cascading effects on receptor trafficking, including GABAA receptor internalization. This comprehensive review of various mechanisms of interaction provides insights into the intricate interplay between PIP2 signaling and anesthetic-induced changes, shedding light on the molecular mechanisms underlying anesthesia.
Collapse
Affiliation(s)
- Ayaan Parikh
- Wichita Collegiate School, Wichita, KS. 9115 E 13th St N, Wichita, KS, 67206, USA.
| | - William Krogman
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA; Department of Anesthesiology, 929 N St Francis, Room 8079, Wichita, KS, 67214, USA
| | - James Walker
- University of Kansas School of Medicine-Wichita, Wichita, KS, USA; Department of Anesthesiology, 929 N St Francis, Room 8079, Wichita, KS, 67214, USA
| |
Collapse
|
4
|
Manciu FS, Guerrero J, Pence BC, Martinez Lopez LV, Das S. Assessment of Drug Activities against Giardia Using Hyperspectral Raman Microscopy. Pathogens 2024; 13:358. [PMID: 38787210 PMCID: PMC11124377 DOI: 10.3390/pathogens13050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 04/19/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
This study demonstrates the capability of Raman microscopy for detecting structural differences in Giardia cells exposed to different drugs and incubation times. While metronidazole (MTZ) visibly affects the cells by inducing extracellular vesicle releases of toxic iron intermediates and modified triple-bond moieties, oseltamivir (OSM) alters the phenylalanine and lipid structures. Modifications in the heme protein environment and the transformation of iron from ferric to ferrous observed for both drug treatments are more notable for MTZ. Different contents and amounts of vesicle excretion are detected for 24 h or 48 h with MTZ incubation. At a shorter drug exposure, releases of altered proteins, glycogen, and phospholipids dominate. Agglomerates of transformed iron complexes from heme proteins and multiple-bond moieties prevail at 48 h of treatment. No such vesicle releases are present in the case of OSM usage. Drug incorporations into the cells and their impact on the plasma membrane and the dynamics of lipid raft confirmed by confocal fluorescence microscopy reveal a more destructive extent by OSM, corroborating the Raman results. Raman microscopy provides a broader understanding of the multifaceted factors and mechanisms responsible for giardiasis treatment or drug resistance by enabling a label-free, simultaneous monitoring of structural changes at the cellular and molecular levels.
Collapse
Affiliation(s)
- Felicia S. Manciu
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA; (J.G.); (L.V.M.L.)
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
| | - Jose Guerrero
- Department of Physics, University of Texas at El Paso, El Paso, TX 79968, USA; (J.G.); (L.V.M.L.)
| | - Breanna C. Pence
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;
| | | | - Siddhartha Das
- Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968, USA
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX 79968, USA;
| |
Collapse
|
5
|
Yarlett N, Jarroll EL, Morada M, Lloyd D. Protists: Eukaryotic single-celled organisms and the functioning of their organelles. Adv Microb Physiol 2024; 84:243-307. [PMID: 38821633 DOI: 10.1016/bs.ampbs.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Organelles are membrane bound structures that compartmentalize biochemical and molecular functions. With improved molecular, biochemical and microscopy tools the diversity and function of protistan organelles has increased in recent years, providing a complex panoply of structure/function relationships. This is particularly noticeable with the description of hydrogenosomes, and the diverse array of structures that followed, having hybrid hydrogenosome/mitochondria attributes. These diverse organelles have lost the major, at one time, definitive components of the mitochondrion (tricarboxylic cycle enzymes and cytochromes), however they all contain the machinery for the assembly of Fe-S clusters, which is the single unifying feature they share. The plasticity of organelles, like the mitochondrion, is therefore evident from its ability to lose its identity as an aerobic energy generating powerhouse while retaining key ancestral functions common to both aerobes and anaerobes. It is interesting to note that the apicoplast, a non-photosynthetic plastid that is present in all apicomplexan protozoa, apart from Cryptosporidium and possibly the gregarines, is also the site of Fe-S cluster assembly proteins. It turns out that in Cryptosporidium proteins involved in Fe-S cluster biosynthesis are localized in the mitochondrial remnant organelle termed the mitosome. Hence, different organisms have solved the same problem of packaging a life-requiring set of reactions in different ways, using different ancestral organelles, discarding what is not needed and keeping what is essential. Don't judge an organelle by its cover, more by the things it does, and always be prepared for surprises.
Collapse
Affiliation(s)
- Nigel Yarlett
- Haskins Laboratories, Pace University, New York, NY, United States; The Department of Chemistry and Physical Sciences, Pace University, New York, NY, United States.
| | - Edward L Jarroll
- Department of Biological Sciences, CUNY-Lehman College, Bronx, NY, United States
| | - Mary Morada
- Haskins Laboratories, Pace University, New York, NY, United States
| | - David Lloyd
- Schools of Biosciences and Engineering, Cardiff University, Wales, United Kingdom
| |
Collapse
|
6
|
Shih HW, Alas GCM, Paredez AR. Encystation stimuli sensing is mediated by adenylate cyclase AC2-dependent cAMP signaling in Giardia. Nat Commun 2023; 14:7245. [PMID: 37945557 PMCID: PMC10636121 DOI: 10.1038/s41467-023-43028-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
Protozoan parasites use cAMP signaling to precisely regulate the place and time of developmental differentiation, yet it is unclear how this signaling is initiated. Encystation of the intestinal parasite Giardia lamblia can be activated by multiple stimuli, which we hypothesize result in a common physiological change. We demonstrate that bile alters plasma membrane fluidity by reducing cholesterol-rich lipid microdomains, while alkaline pH enhances bile function. Through depletion of the cAMP producing enzyme Adenylate Cyclase 2 (AC2) and the use of a newly developed Giardia-specific cAMP sensor, we show that AC2 is necessary for encystation stimuli-induced cAMP upregulation and activation of downstream signaling. Conversely, over expression of AC2 or exogenous cAMP were sufficient to initiate encystation. Our findings indicate that encystation stimuli induce membrane reorganization, trigger AC2-dependent cAMP upregulation, and initiate encystation-specific gene expression, thereby advancing our understanding of a critical stage in the life cycle of a globally important parasite.
Collapse
Affiliation(s)
- Han-Wei Shih
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | - Germain C M Alas
- Department of Biology, University of Washington, Seattle, WA, 98195, USA
| | | |
Collapse
|
7
|
Grüttner J, van Rijn JM, Geiser P, Florbrant A, Webb DL, Hellström PM, Sundbom M, Sellin ME, Svärd SG. Trophozoite fitness dictates the intestinal epithelial cell response to Giardia intestinalis infection. PLoS Pathog 2023; 19:e1011372. [PMID: 37141303 DOI: 10.1371/journal.ppat.1011372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 05/16/2023] [Accepted: 04/18/2023] [Indexed: 05/06/2023] Open
Abstract
Giardia intestinalis is a non-invasive, protozoan parasite infecting the upper small intestine of most mammals. Symptomatic infections cause the diarrhoeal disease giardiasis in humans and animals, but at least half of the infections are asymptomatic. However, the molecular underpinnings of these different outcomes of the infection are still poorly defined. Here, we studied the early transcriptional response to G. intestinalis trophozoites, the disease-causing life-cycle stage, in human enteroid-derived, 2-dimensional intestinal epithelial cell (IEC) monolayers. Trophozoites preconditioned in media that maximise parasite fitness triggered only neglectable inflammatory transcription in the IECs during the first hours of co-incubation. By sharp contrast, "non-fit" or lysed trophozoites induced a vigorous IEC transcriptional response, including high up-regulation of many inflammatory cytokines and chemokines. Furthermore, "fit" trophozoites could even suppress the stimulatory effect of lysed trophozoites in mixed infections, suggesting active G. intestinalis suppression of the IEC response. By dual-species RNA-sequencing, we defined the IEC and G. intestinalis gene expression programs associated with these differential outcomes of the infection. Taken together, our results inform on how G. intestinalis infection can lead to such highly variable effects on the host, and pinpoints trophozoite fitness as a key determinant of the IEC response to this common parasite.
Collapse
Affiliation(s)
- Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jorik M van Rijn
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Petra Geiser
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Alexandra Florbrant
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Dominic-Luc Webb
- Department of Medical Sciences, Gastroenterology and Hepatology Unit, Uppsala University, Uppsala, Sweden
| | - Per M Hellström
- Department of Medical Sciences, Gastroenterology and Hepatology Unit, Uppsala University, Uppsala, Sweden
| | - Magnus Sundbom
- Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Mikael E Sellin
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Staffan G Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
8
|
Wallace RL, Dash KM, Araújo TQ, Walsh EJ, Das S, Hochberg R. Ultrastructural characterization of the putative defensive glands (warts) in the sessile, colonial rotifer Sinantherina socialis (Gnesiotrocha; Flosculariidae). ZOOL ANZ 2023; 304:10-20. [PMID: 37484813 PMCID: PMC10361403 DOI: 10.1016/j.jcz.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Female Sinantherina socialis are freshwater, sessile, colonial rotifers that possess two pairs of distinctive glands (warts) located below the corona. Previous studies demonstrated that colonies are unpalatable to many invertebrate and vertebrate predators; those authors suggested that the warts were a possible source of a chemical deterrent to predation. Here we explore wart ultrastructure and cytochemisty to determine whether the warts function as exocrine glands and if their contents display any allomone-like chemistry, respectively. Externally, the warts appear as elevated bulges without pores. Internally, the warts are specialized regions of the integumental syncytium and therefore acellular. The lipid stain Nile Red labels all four warts. Two lipid membrane probes (sphingomyelin and phosphatidylinositol) also bind the warts and may be staining internal secretion vesicle membranes. In fact, wart ultrastructure is defined by hundreds of membrane-bound secretion vesicles packed tightly together. The vesicles are mostly electron-lucent and crowded into a well-defined cytoplasmic space. The cytoplasm also contains abundant ribosomes, rough endoplasmic reticulum, mitochondria, and Golgi, but nuclei are generally positioned peripheral to the packed vesicles. Absence of muscles around the warts or any signs of direct innervation suggests expulsion of gland contents is forced by general body contraction. A single specimen with 'empty' warts implies that secretions are released en masse from all glands simultaneously. The identity of the chemical secretion remains to be determined, but the lack of osmium and uranyl acetate staining suggests a low abundance or absence of phenols, unsaturated lipids, or NH2 and -COOH groups. This absence, combined with the positive Nile Red staining, is interpreted as evidence that vesicles contain saturated fatty acids such as lactones that are unpalatable to predators.
Collapse
Affiliation(s)
| | | | | | | | | | - Rick Hochberg
- University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
9
|
Shih HW, Alas GCM, Paredez AR. Encystation stimuli sensing mediated by adenylate cyclase AC2-dependent cAMP signaling in Giardia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536239. [PMID: 37090513 PMCID: PMC10120678 DOI: 10.1101/2023.04.10.536239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Protozoan parasites use cAMP signaling to precisely regulate the place and time of developmental differentiation, yet it is unclear how this signaling is initiated. Encystation of the intestinal parasite Giardia lamblia can be activated by multiple stimuli, which we hypothesize result in a common physiological change. We demonstrate that bile alters plasma membrane fluidity by reducing cholesterol-rich lipid microdomains, while alkaline pH enhances bile function. Through depletion of the cAMP producing enzyme Adenylate Cyclase 2 (AC2) and the use of a newly developed Giardia-specific cAMP sensor, we show that AC2 is necessary for encystation stimuli-induced cAMP upregulation and activation of downstream signaling. Conversely, over expression of AC2 or exogenous cAMP were sufficient to initiate encystation. Our findings indicate that encystation stimuli induce membrane reorganization, trigger AC2-dependent cAMP upregulation, and initiate encystation-specific gene expression, thereby advancing our understanding of a critical stage in the life cycle of a globally important parasite.
Collapse
Affiliation(s)
- Han-Wei Shih
- Department of Biology, University of Washington, Seattle, Washington 98195
| | - Germain C M Alas
- Department of Biology, University of Washington, Seattle, Washington 98195
| | | |
Collapse
|
10
|
Jain V, Harper SL, Versace AM, Fingerman D, Brown GS, Bhardwaj M, Crissey MAS, Goldman AR, Ruthel G, Liu Q, Zivkovic A, Stark H, Herlyn M, Gimotty PA, Speicher DW, Amaravadi RK. Targeting UGCG Overcomes Resistance to Lysosomal Autophagy Inhibition. Cancer Discov 2023; 13:454-473. [PMID: 36331284 PMCID: PMC9905280 DOI: 10.1158/2159-8290.cd-22-0535] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/10/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Lysosomal autophagy inhibition (LAI) with hydroxychloroquine or DC661 can enhance cancer therapy, but tumor regrowth is common. To elucidate LAI resistance, proteomics and immunoblotting demonstrated that LAI induced lipid metabolism enzymes in multiple cancer cell lines. Lipidomics showed that LAI increased cholesterol, sphingolipids, and glycosphingolipids. These changes were associated with striking levels of GM1+ membrane microdomains (GMM) in plasma membranes and lysosomes. Inhibition of cholesterol/sphingolipid metabolism proteins enhanced LAI cytotoxicity. Targeting UDP-glucose ceramide glucosyltransferase (UGCG) synergistically augmented LAI cytotoxicity. Although UGCG inhibition decreased LAI-induced GMM and augmented cell death, UGCG overexpression led to LAI resistance. Melanoma patients with high UGCG expression had significantly shorter disease-specific survival. The FDA-approved UGCG inhibitor eliglustat combined with LAI significantly inhibited tumor growth and improved survival in syngeneic tumors and a therapy-resistant patient-derived xenograft. These findings nominate UGCG as a new cancer target, and clinical trials testing UGCG inhibition in combination with LAI are warranted. SIGNIFICANCE We discovered UGCG-dependent lipid remodeling drives resistance to LAI. Targeting UGCG with a drug approved for a lysosomal storage disorder enhanced LAI antitumor activity without toxicity. LAI and UGCG inhibition could be tested clinically in multiple cancers. This article is highlighted in the In This Issue feature, p. 247.
Collapse
Affiliation(s)
- Vaibhav Jain
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Amanda M. Versace
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | | - Monika Bhardwaj
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mary Ann S. Crissey
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Gordon Ruthel
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Qin Liu
- The Wistar Institute, Philadelphia, PA 19104, USA
| | - Aleksandra Zivkovic
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | - Holgar Stark
- Institute of Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Universitaetsstr. 1, 40225, Düsseldorf, Germany
| | | | - Phyllis A. Gimotty
- Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David W. Speicher
- The Wistar Institute, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| | - Ravi K. Amaravadi
- Abramson Cancer Center and Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Corresponding authors: Ravi K. Amaravadi, MD, University of Pennsylvania, 852 BRB 2/3, 421 Curie Blvd, Philadelphia, PA 19104, Tel: 215-796-5159, ; David W. Speicher, The Wistar Institute, 3601 Spruce Street, Philadelphia, PA 19104, Tel: 215-898-3972,
| |
Collapse
|
11
|
Grajeda BI, De Chatterjee A, Villalobos CM, Pence BC, Ellis CC, Enriquez V, Roy S, Roychowdhury S, Neumann AK, Almeida IC, Patterson SE, Das S. Giardial lipid rafts share virulence factors with secreted vesicles and participate in parasitic infection in mice. Front Cell Infect Microbiol 2022; 12:974200. [PMID: 36081774 PMCID: PMC9445159 DOI: 10.3389/fcimb.2022.974200] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Giardia lamblia, a protozoan parasite, is a major cause of waterborne infection, worldwide. While the trophozoite form of this parasite induces pathological symptoms in the gut, the cyst form transmits the infection. Since Giardia is a noninvasive parasite, the actual mechanism by which it causes disease remains elusive. We have previously reported that Giardia assembles cholesterol and GM1 glycosphingolipid-enriched lipid rafts (LRs) that participate in encystation and cyst production. To further delineate the role of LRs in pathogenesis, we isolated LRs from Giardia and subjected them to proteomic analysis. Various cellular proteins including potential virulence factors-e.g., giardins, variant surface proteins, arginine deaminases, elongation factors, ornithine carbomyltransferases, and high cysteine-rich membrane proteins-were found to be present in LRs. Since Giardia secretes virulence factors encapsulated in extracellular vesicles (EVs) that induce proinflammatory responses in hosts, EVs released by the parasite were isolated and subjected to nanoparticle tracking and proteomic analysis. Two types of EV-i.e., small vesicles (SVs; <100 nm, exosome-like particles) and large vesicles (LVs; 100-400 nm, microvesicle-like particles)-were identified and found to contain a diverse group of proteins including above potential virulence factors. Although pretreatment of the parasite with two giardial lipid raft (gLR) disruptors, nystatin (27 μM) and oseltamivir (20 μM), altered the expression profiles of virulence factors in LVs and SVs, the effects were more robust in the case of SVs. To examine the potential role of rafts and vesicles in pathogenicity, Giardia-infected mice were treated with oseltamivir (1.5 and 3.0 mg/kg), and the shedding of cysts were monitored. We observed that this drug significantly reduced the parasite load in mice. Taken together, our results suggest that virulence factors partitioning in gLRs, released into the extracellular milieu via SVs and LVs, participate in spread of giardiasis and could be targeted for future drug development.
Collapse
Affiliation(s)
- Brian I. Grajeda
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Carmen M. Villalobos
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Breanna C. Pence
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C. Ellis
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Vanessa Enriquez
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sourav Roy
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Sukla Roychowdhury
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Aaron K. Neumann
- Department of Pathology, School of Medicine, University of New Mexico, Albuquerque, NM, United States
| | - Igor C. Almeida
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| | - Steven E. Patterson
- Center for Drug Design, University of Minnesota, Minneapolis, MN, United States
| | - Siddhartha Das
- Infectious Disease and Immunology, Border Biomedical Research Center and the Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
12
|
Roncato R, Angelini J, Pani A, Talotta R. Lipid rafts as viral entry routes and immune platforms: A double-edged sword in SARS-CoV-2 infection? Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159140. [PMID: 35248801 PMCID: PMC8894694 DOI: 10.1016/j.bbalip.2022.159140] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 02/13/2022] [Accepted: 02/25/2022] [Indexed: 12/15/2022]
Abstract
Lipid rafts are nanoscopic compartments of cell membranes that serve a variety of biological functions. They play a crucial role in viral infections, as enveloped viruses such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can exploit rafts to enter or quit target cells. On the other hand, lipid rafts contribute to the formation of immune synapses and their proper functioning is a prerequisite for adequate immune response and viral clearance. In this narrative review we dissect the panorama focusing on this singular aspect of cell biology in the context of SARS-CoV-2 infection and therapy. A lipid raft-mediated mechanism can be hypothesized for many drugs recommended or considered for the treatment of SARS-CoV-2 infection, such as glucocorticoids, antimalarials, immunosuppressants and antiviral agents. Furthermore, the additional use of lipid-lowering agents, like statins, may affect the lipid composition of membrane rafts and thus influence the processes occurring in these compartments. The combination of drugs acting on lipid rafts may be successful in the treatment of more severe forms of the disease and should be reserved for further investigation.
Collapse
Affiliation(s)
- Rossana Roncato
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO), Istituto di Ricovero e Cura a carattere Scientifico (IRCCS), via Gallini, 33081 Aviano (PN), Italy
| | - Jacopo Angelini
- Clinical Pharmacology Institute, Azienda Sanitaria Universitaria Friuli Centrale (ASU FC), via Pozzuolo, 33100 Udine, Italy
| | - Arianna Pani
- Toxicology Department of Oncology and Hemato-Oncology, University of Milan, via Vanvitelli, 20133 Milan, Italy
| | - Rossella Talotta
- Department of Clinical and Experimental Medicine, Rheumatology Unit, AOU "Gaetano Martino", University of Messina, 98100 Messina, Italy
| |
Collapse
|
13
|
Rojas L, Grüttner J, Ma’ayeh S, Xu F, Svärd SG. Dual RNA Sequencing Reveals Key Events When Different Giardia Life Cycle Stages Interact With Human Intestinal Epithelial Cells In Vitro. Front Cell Infect Microbiol 2022; 12:862211. [PMID: 35573800 PMCID: PMC9094438 DOI: 10.3389/fcimb.2022.862211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/31/2022] [Indexed: 12/02/2022] Open
Abstract
Giardia intestinalis is a protozoan parasite causing diarrheal disease, giardiasis, after extracellular infection of humans and other mammals’ intestinal epithelial cells (IECs) of the upper small intestine. The parasite has two main life cycle stages: replicative trophozoites and transmissive cysts. Differentiating parasites (encysting cells) and trophozoites have recently been shown to be present in the same regions of the upper small intestine, whereas most mature cysts are found further down in the intestinal system. To learn more about host-parasite interactions during Giardia infections, we used an in vitro model of the parasite’s interaction with host IECs (differentiated Caco-2 cells) and Giardia WB trophozoites, early encysting cells (7 h), and cysts. Dual RNA sequencing (Dual RNAseq) was used to identify differentially expressed genes (DEGs) in both Giardia and the IECs, which might relate to establishing infection and disease induction. In the human cells, the largest gene expression changes were found in immune and MAPK signaling, transcriptional regulation, apoptosis, cholesterol metabolism and oxidative stress. The different life cycle stages of Giardia induced a core of similar DEGs but at different levels and there are many life cycle stage-specific DEGs. The metabolic protein PCK1, the transcription factors HES7, HEY1 and JUN, the peptide hormone CCK and the mucins MUC2 and MUC5A are up-regulated in the IECs by trophozoites but not cysts. Cysts specifically induce the chemokines CCL4L2, CCL5 and CXCL5, the signaling protein TRKA and the anti-bacterial protein WFDC12. The parasite, in turn, up-regulated a large number of hypothetical genes, high cysteine membrane proteins (HCMPs) and oxidative stress response genes. Early encysting cells have unique DEGs compared to trophozoites (e.g. several uniquely up-regulated HCMPs) and interaction of these cells with IECs affected the encystation process. Our data show that different life cycle stages of Giardia induce different gene expression responses in the host cells and that the IECs in turn differentially affect the gene expression in trophozoites and early encysting cells. This life cycle stage-specific host-parasite cross-talk is an important aspect to consider during further studies of Giardia’s molecular pathogenesis.
Collapse
Affiliation(s)
- Laura Rojas
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jana Grüttner
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | | | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Staffan G. Svärd
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- SciLifeLab, Uppsala University, Uppsala, Sweden
- *Correspondence: Staffan G. Svärd,
| |
Collapse
|
14
|
Palomo-Ligas L, Estrada-Camacho J, Garza-Ontiveros M, Vargas-Villanueva JR, Gutiérrez-Gutiérrez F, Nery-Flores SD, Cañas Montoya JA, Ascacio-Valdés J, Campos-Muzquiz LG, Rodriguez-Herrera R. Polyphenolic extract from Punica granatum peel causes cytoskeleton-related damage on Giardia lamblia trophozoites in vitro. PeerJ 2022; 10:e13350. [PMID: 35502204 PMCID: PMC9055998 DOI: 10.7717/peerj.13350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 04/07/2022] [Indexed: 01/13/2023] Open
Abstract
Background Diarrheal diseases caused by protozoa have a great impact on human health around the world. Giardia lamblia is one of the most common flagellates in the intestinal tract. Factors such as adverse effects to first-line drugs or the appearance of drug-resistant strains, make it necessary to identify new treatment alternatives. Agroindustry waste, like pomegranate peel, are a source of phenolic compounds, which possess antiparasitic activities. In vivo studies demonstrated antigiardiasic potential by reducing cyst shedding and protecting intestinal cells; however, they did not identify the compounds or elucidate any mechanism of action in the parasite. The objective of this study is to identify potential molecular targets and to test the in vitro effects of polyphenols from Punica granatum on Giardia lamblia. Methods The in vitro antigiardial potential of polyphenolic extract from pomegranate peel (Punica granatum L.) obtained using microwave-ultrasound methodology was evaluated on Giardia lamblia trophozoites. Extract phytochemical identification was performed by HPLC/MS analysis. The effect of polyphenolic extract on growth and adhesion capacity was determined by parasite kinetics; morphological damage was evaluated by SEM, alteration on α-tubulin expression and distribution were analyzed by western blot and immunofluorescence, respectively. Results The pomegranate peel extract showed the presence of ellagitannins (punicalin and punicalagin, galloyl-dihexahydroxydiphenoyl-hexoside), flavones (luteolin), and ellagic acid, that caused an inhibitory effect on growth and adhesion capacity, particularly on cells treated with 200 µg/mL, where growth inhibition of 74.36%, trophozoite adherence inhibition of 46.8% and IC50 of 179 µg/mL at 48 h were demonstrated. The most important findings were that the extract alters α-tubulin expression and distribution in Giardia trophozoites in a concentration-independent manner. Also, an increase in α-tubulin expression at 200 µg/mL was observed in western blot and diffuse or incomplete immunolabeling pattern, especially in ventral disk. In addition, the extract caused elongation, disturbance of normal shape, irregularities in the membrane, and flagella abnormalities. Discussion The pomegranate peel extract affects Giardia trophozoites in vitro. The damage is related to the cytoskeleton, due to expression and distribution alterations in α-tubulin, particularly in the ventral disk, a primordial structure for adhesion and pathogenesis. Microtubule impairment could explain morphological changes, and inhibition of adhesion capacity and growth. Besides, this is the first report that suggests that ellagic acid, punicalin, punicalagin and luteolin could be interactioning with the rich-tubulin cytoskeleton of Giardia. Further investigations are needed in order to elucidate the mechanisms of action of the isolated compounds and propose a potential drug alternative for the giardiasis treatment.
Collapse
Affiliation(s)
- Lissethe Palomo-Ligas
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Job Estrada-Camacho
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Mariana Garza-Ontiveros
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - José Roberto Vargas-Villanueva
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Filiberto Gutiérrez-Gutiérrez
- Departamento de Química, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Guadalajara, Jalisco, Mexico
| | - Sendar Daniel Nery-Flores
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Jorge Arturo Cañas Montoya
- Departamento de Polímeros, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Juan Ascacio-Valdés
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Lizeth Guadalupe Campos-Muzquiz
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| | - Raul Rodriguez-Herrera
- Departamento de Investigación en Alimentos, Facultad de Ciencias Químicas, Universidad Autónoma de Coahuila, Saltillo, Coahuila, Mexico
| |
Collapse
|
15
|
Benchimol M, de Souza W. Giardia intestinalis and its Endomembrane System. J Eukaryot Microbiol 2022; 69:e12893. [PMID: 35148450 DOI: 10.1111/jeu.12893] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 02/08/2022] [Accepted: 02/08/2022] [Indexed: 11/29/2022]
Abstract
Giardia intestinalis has unique characteristics, even in the absence of certain organelles. For instance, Golgi and mitochondria are not found. On the other hand, there is a network of peripheral vacuoles (PVs) and mitosomes. The endoplasmic reticulum (ER), nuclear membrane, peroxisomes, and lipid bodies are present. The peripheral vacuole system seems to play several simultaneous roles. It is involved in the endocytic activity of the trophozoite but also has characteristics of early and late endosomes and even lysosomes, establishing a connection with the ER. Some of the PVs contain small vesicles, acting as multivesicular bodies, including the release of exosomes. The mitosomes are surrounded by two membranes, divide during mitosis, and are distributed throughout the cell. They do not contain DNA, enzymes involved in the citric acid cycle, respiratory chain, or ATP synthesis. However, they contain the iron-sulfur complex and transporters as TOM and TIM. Some mitosomes are linked to flagellar axonemes through a fibrillar connection. During encystation, two types of larger cytoplasmic vesicles appear. One originating from the ER contains the cyst wall proteins. Another contains carbohydrates. Both migrate to the cell periphery and fuse with plasma membrane secreting their contents to give rise to the cell wall.
Collapse
Affiliation(s)
- Marlene Benchimol
- Universidade do Grande Rio (UNIGRANRIO), Rio de Janeiro Duque de Caxias, RJ, Brazil.,Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Wanderley de Souza
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.,Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagens, Centro Nacional de Biologia Estrutural e Bioimagens, CENABIO-Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
16
|
Matsuura K, Hisamoto K, Tanaka T, Sakamoto R, Okazaki M, Inaba H. Turn-On Fluorescent Probe Based on a Dansyl Triarginine Peptide for Ganglioside Imaging. ACS ORGANIC & INORGANIC AU 2021; 1:60-67. [PMID: 36855753 PMCID: PMC9954261 DOI: 10.1021/acsorginorgau.1c00013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Gangliosides play pivotal biological roles in the animal cell membranes, and it is vital to develop fluorescent probes for imaging them. To date, various artificial receptors for ganglioside imaging have been developed; however, turn-on fluorescence imaging for gangliosides with high contrast has not been achieved. We developed a simple fluorescent probe on the basis of a dansyl triarginine peptide for turn-on ganglioside imaging on the liposome membrane. The probe bound to monosialyl gangliosides and other anionic lipids with association constants was 105 M-1, which enhanced from 6-fold to 7-fold the fluorescence intensity. Upon binding to monosialyl ganglioside-containing giant liposomes, the turn-on probe selectively enhanced the fluorescence intensity compared with the other anionic lipids. This simple peptide probe for turn-on fluorescence imaging of gangliosides would provide a novel molecular tool for chemical biology.
Collapse
Affiliation(s)
- Kazunori Matsuura
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan,Centre
for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan,E-mail:
| | - Koichi Hisamoto
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Tomoya Tanaka
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Ryota Sakamoto
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Mizuki Okazaki
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Hiroshi Inaba
- Department
of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan,Centre
for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
17
|
Multimodal regulation of encystation in Giardia duodenalis revealed by deep proteomics. Int J Parasitol 2021; 51:809-824. [PMID: 34331939 DOI: 10.1016/j.ijpara.2021.01.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/24/2020] [Accepted: 01/07/2021] [Indexed: 12/21/2022]
Abstract
Cyst formation in the parasitic protist Giardia duodenalis is critical to its transmission. Existing proteomic data quantifies only 17% of coding genes transcribed during encystation and does not cover the complete process from trophozoite to mature cyst. Using high-resolution mass spectrometry, we have quantified proteomic changes across encystation and compared this with published transcriptomic data. We reproducibly identified 3863 (64.5% of Giardia proteins) and quantified 3382 proteins (56.5% of Giardia proteins) over standard trophozoite growth (TY), during low-bile encystation priming (LB), 16 h into encystation (EC), and at cyst maturation (C). This work provides the first known expanded observation of encystation at the proteomic level and triples the coverage of previous encystation proteomes. One-third (1169 proteins) of the quantified proteome is differentially expressed in the mature cyst relative to the trophozoite, including proteasomal machinery, metabolic pathways, and secretory proteins. Changes in lipid metabolism indicated a shift in lipid species dependency during encystation. Consistent with this, we identified the first, putative lipid transporters in this species, representing the steroidogenic acute regulatory protein-related lipid transfer (StARkin), oxysterol binding protein related protein (ORP/Osh) and glycosphingolipid transfer protein (GLTP) families, and follow their differential expression over cyst formation. Lastly, we undertook correlation analyses of the transcriptome and proteome of trophozoites and cysts, and found evidence of post-transcriptional regulation of key protein classes (RNA binding proteins) and stage-specific genes (encystation markers) implicating translation-repression in encystation. We provide the most extensive proteomic analysis of encystation in Giardia to date and the first known exploration across its complete duration. This work identifies encystation as highly coordinated, involving major changes in proteostasis, metabolism and membrane dynamics, and indicates a potential role for post-transcriptional regulation, mediated through RNA-binding proteins. Together our work provides a valuable resource for Giardia research and the development of transmission-blocking anti-giardials.
Collapse
|
18
|
Duarte TT, Ellis CC, Grajeda BI, De Chatterjee A, Almeida IC, Das S. A Targeted Mass Spectrometric Analysis Reveals the Presence of a Reduced but Dynamic Sphingolipid Metabolic Pathway in an Ancient Protozoan, Giardia lamblia. Front Cell Infect Microbiol 2019; 9:245. [PMID: 31396488 PMCID: PMC6668603 DOI: 10.3389/fcimb.2019.00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Accepted: 06/24/2019] [Indexed: 12/11/2022] Open
Abstract
Giardia lamblia, a single-celled eukaryote, colonizes and thrives in the small intestine of humans. Because of its compact and reduced genome, Giardia has adapted a “minimalistic” life style, as it becomes dependent on available resources of the small intestine. Because Giardia expresses fewer sphingolipid (SL) genes—and glycosphingolipids are critical for encystation—we investigated the SL metabolic cycle in this parasite. A tandem mass spectrometry (MS/MS) analysis reveals that major SLs in Giardia include sphingomyelins, sphingoid bases, ceramides, and glycosylceramides. Many of these lipids are obtained by Giardia from the growth medium, remodeled at their fatty acyl chains and end up in the spent medium. For instance, ceramide-1-phosphate, a proinflammatory molecule that is not present in the culture medium, is generated from sphingosine (abundant in the culture medium) possibly by remodeling reactions. It is then subsequently released into the spent medium. Thus, the secretion of ceramide-1-phospate and other SL derivatives by Giardia could be associated with inflammatory bowel disease observed in acute giardiasis. Additionally, we found that the levels of SLs increase in encysting Giardia and are differentially regulated throughout the encystation cycle. We propose that SL metabolism is important for this parasite and, could serve as potential targets for developing novel anti-giardial agents.
Collapse
Affiliation(s)
- Trevor T Duarte
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Cameron C Ellis
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Brian I Grajeda
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Atasi De Chatterjee
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Igor C Almeida
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Infectious Disease and Immunology Cluster, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| | - Siddhartha Das
- Department of Biological Sciences, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States.,Infectious Disease and Immunology Cluster, Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX, United States
| |
Collapse
|
19
|
Soran H, Ho JH, Durrington PN. Acquired low cholesterol: diagnosis and relevance to safety of low LDL therapeutic targets. Curr Opin Lipidol 2018; 29:318-326. [PMID: 29746303 DOI: 10.1097/mol.0000000000000526] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Acquired hypocholesterolaemia occurs more commonly than inherited hypocholesterolaemia but has received little attention in the literature. In this review, we discuss the causes and underlying mechanisms of acquired hypocholesterolaemia and its relevance to safety of therapeutically induced decreased LDL cholesterol levels. RECENT FINDINGS Hypocholesterolaemia is increasingly identified as cholesterol testing becomes more widespread in the assessment of cardiovascular risk. Lower therapeutic targets for LDL cholesterol are also being achieved more regularly with the introduction of more intensive cholesterol-lowering regimens. Acquired hypocholesterolaemia may be the presenting feature of treatable diseases. Understanding its mechanisms may also provide new treatment approaches for neoplastic disease, such as breast cancer, and infections, such as tuberculosis. SUMMARY When hypocholesterolaemia is discovered, it is important to identify its cause. Further research into the pathogenesis of hypocholesterolaemia may provide new therapies for primary diseases underlying it.
Collapse
Affiliation(s)
- Handrean Soran
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- Department of Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Jan Hoong Ho
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
- Department of Medicine, Manchester University NHS Foundation Trust, Manchester, UK
| | - Paul N Durrington
- Lipoprotein Research Group, Division of Cardiovascular Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester
| |
Collapse
|
20
|
Chatterjee AD, Roy D, Guevara P, Pal R, Naryan M, Roychowdhury S, Das S. Arachidonic Acid Induces the Migration of MDA-MB-231 Cells by Activating Raft-associated Leukotriene B4 Receptors. CLINICAL CANCER DRUGS 2018; 5:28-41. [PMID: 30443489 PMCID: PMC6233886 DOI: 10.2174/2212697x05666180418145601] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND The migration of tumor cells is critical in spreading cancers through the lymphatic nodes and circulatory systems. Although arachidonic acid (AA) and its soluble metabolites have been shown to induce the migration of breast and colon cancer cells, the mechanism by which it induces such migration has not been fully understood. OBJECTIVE The effect of AA on migratory responses of the MDA-MB-231 cell line (a triple-negative breast cancer cell) was examined and compared with MCF-7 (estrogen-receptor positive) breast cancer cells to elucidate the mechanism of AA-induced migration. METHODS Migrations of breast cancer cells were examined with the help of wound-healing assays. AA-induced eicosanoid synthesis was monitored by RP-HPLC. Cellular localizations of lipoxygenase and lipid rafts were assessed by immunoblot and confocal microscopy. RESULTS AA treatment stimulated the synthesis of leukotriene B4 (LTB4) and HETE-8, but lowered the levels of prostaglandin E2 (PGE2), prostaglandin D2 (PGD2), and HETE-5 in MDA-MB-231 cells. Further analysis indicated that AA increased the expression of 5-lipoxygenase (5-LOX) in this cell line and inhibiting its expression by small molecule inhibitors lowered the production of LTB4 and reduced migration. In contrast, MCF-7 cells did not show any appreciable changes in eicosanoid synthesis, 5-LOX expression, or cellular migration. CONCLUSION Our results suggest that AA treatment activates the BLT1 receptor (present in membrane microdomains) and stimulates the synthesis of LTB4 production, which is likely to be associated with the migration of MDA-MB-231 cells.
Collapse
Affiliation(s)
- Atasi De Chatterjee
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Debarshi Roy
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Priscilla Guevara
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Rituraj Pal
- Department of Chemistry, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Mahesh Naryan
- Department of Chemistry, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Sukla Roychowdhury
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| | - Siddhartha Das
- Department of Biological Sciences, Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
- The Border Biomedical Research Center, University of Texas at El Paso, El Paso, TX 79968-0519, USA
| |
Collapse
|
21
|
Evans-Osses I, Mojoli A, Monguió-Tortajada M, Marcilla A, Aran V, Amorim M, Inal J, Borràs FE, Ramirez MI. Microvesicles released from Giardia intestinalis disturb host-pathogen response in vitro. Eur J Cell Biol 2017; 96:131-142. [DOI: 10.1016/j.ejcb.2017.01.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/23/2016] [Accepted: 01/11/2017] [Indexed: 11/17/2022] Open
|
22
|
Sphingolipids, Lipid Rafts, and Giardial Encystation: The Show Must Go On. CURRENT TROPICAL MEDICINE REPORTS 2015; 2:136-143. [PMID: 26587369 DOI: 10.1007/s40475-015-0052-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Sphingolipids are sphingosine-based phospholipids, which are present in the plasma and endomembranes of many eukaryotic cells. These lipids are involved in various cellular functions, including cell growth, differentiation, and apoptosis. In addition, sphingolipid and cholesterol-enriched membrane microdomains (also called "lipid rafts") contain a set of proteins and lipids, which take part in the signaling process in response to intra- or extracellular stimuli. Recent findings suggest that sphingolipids, especially glucosylceramide, play a critical role in inducing encystation and maintaining the cyst viability in Giardia. Similarly, the assembly/disassembly of lipid rafts modulates the encystation and cyst production of this ubiquitous enteric parasite. In this review article, we discuss the overall progress in the field and examine whether sphingolipids and lipid rafts can be used as novel targets for designing therapies to control infection by Giardia, which is rampant in developing countries, where children are especially vulnerable.
Collapse
|
23
|
Einarsson E, Svärd SG. Encystation of Giardia intestinalis—a Journey from the Duodenum to the Colon. CURRENT TROPICAL MEDICINE REPORTS 2015. [DOI: 10.1007/s40475-015-0048-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|