1
|
Wang X, Jia B, Lee K, Davis B, Wen C, Wang Y, Zheng H, Wang Y. Biomimetic Bacterial Capsule for Enhanced Aptamer Display and Cell Recognition. J Am Chem Soc 2024; 146:868-877. [PMID: 38153404 DOI: 10.1021/jacs.3c11208] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Great effort has been made to encapsulate or coat living mammalian cells for a variety of applications ranging from diabetes treatment to three-dimensional printing. However, no study has reported the synthesis of a biomimetic bacterial capsule to display high-affinity aptamers on the cell surface for enhanced cell recognition. Therefore, we synthesized an ultrathin alginate-polylysine coating to display aptamers on the surface of living cells with natural killer (NK) cells as a model. The results show that this coating-mediated aptamer display is more stable than direct cholesterol insertion into the lipid bilayer. The half-life of the aptamer on the cell surface can be increased from less than 1.5 to over 20 h. NK cells coated with the biomimetic bacterial capsule exhibit a high efficiency in recognizing and killing target cells. Therefore, this work has demonstrated a promising cell coating method for the display of aptamers for enhanced cell recognition.
Collapse
Affiliation(s)
- Xuelin Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Bei Jia
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Kyungsene Lee
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Brandon Davis
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Connie Wen
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Yixun Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hong Zheng
- Penn State Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033, United States
| | - Yong Wang
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Amemiya K, Rozak DA, Dankmeyer JL, Dorman WR, Marchand C, Fetterer DP, Worsham PL, Purcell BK. Shiga-Toxin-Producing Strains of Escherichia coli O104:H4 and a Strain of O157:H7, Which Can Cause Human Hemolytic Uremic Syndrome, Differ in Biofilm Formation in the Presence of CO 2 and in Their Ability to Grow in a Novel Cell Culture Medium. Microorganisms 2023; 11:1744. [PMID: 37512916 PMCID: PMC10384166 DOI: 10.3390/microorganisms11071744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/13/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
One pathogen that commonly causes gastrointestinal illnesses from the consumption of contaminated food is Escherichia coli O157:H7. In 2011 in Germany, however, there was a prominent outbreak of bloody diarrhea with a high incidence of hemolytic uremic syndrome (HUS) caused by an atypical, more virulent E. coli O104:H4 strain. To facilitate the identification of this lesser-known, atypical E. coli O104:H4 strain, we wanted to identify phenotypic differences between it and a strain of O157:H7 in different media and culture conditions. We found that E. coli O104:H4 strains produced considerably more biofilm than the strain of O157:H7 at 37 °C (p = 0.0470-0.0182) Biofilm production was significantly enhanced by the presence of 5% CO2 (p = 0.0348-0.0320). In our study on the innate immune response to the E. coli strains, we used HEK293 cells that express Toll-like receptors (TLRs) 2 or 4. We found that E. coli O104:H4 strains had the ability to grow in a novel HEK293 cell culture medium, while the E. coli O157:H7 strain could not. Thus, we uncovered previously unknown phenotypic properties of E. coli O104:H4 to further differentiate this pathogen from E. coli O157:H7.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David A Rozak
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - William R Dorman
- Diagnostic Systems Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Charles Marchand
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - David P Fetterer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
| | - Brett K Purcell
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA
- Department of Medicine, University of Florida, Orlando, FL 32816, USA
| |
Collapse
|
3
|
Otsuka N, Koide K, Goto M, Kamachi K, Kenri T. Fim3-dependent autoagglutination of Bordetella pertussis. Sci Rep 2023; 13:7629. [PMID: 37165008 PMCID: PMC10172299 DOI: 10.1038/s41598-023-34672-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 05/05/2023] [Indexed: 05/12/2023] Open
Abstract
Autoagglutination (Agg) of Bordetella pertussis is often observed in clinical laboratory. However, its causal factors and frequency in circulating strains are unknown. Repeated single colony isolation enabled us to detect an Agg- mutant in the supernatant of an Agg+ strain of B. pertussis. Whole-genome sequencing and immunoblot analysis disclosed that the Agg- mutant had a single C-deletion in its fim3 promoter region (Pfim3) which abolished Fim3 fimbriae production. A B. pertussis fim3-knock out mutant also lacked the Agg+ phenotype. Agg+ clinical isolates were detected a higher production of Fim3 than Fim3-producing Agg- isolates. B. pertussis is known to harbor multiple Pfim3 poly(C) lengths within a single strain culture and our newly developed PCR/LDR assay revealed that Agg+ isolates harbor the highest Pfim3 poly-14C abundance. We evaluated the frequency of autoagglutination in clinical B. pertussis isolates collected in Japan between 1994 and 2018 (n = 203). Fim3 production was confirmed for 190 isolates and 74.7% of them displayed the Agg+ phenotype. The Agg+ phenotype was strongly associated with Pfim3 poly-14C abundance. Taken together, our findings demonstrated that B. pertussis autoagglutination occurs in response to high Fim3 levels and the Agg+ strain has predominated in Japan over the past two decades.
Collapse
Affiliation(s)
- Nao Otsuka
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan.
| | - Kentaro Koide
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Masataka Goto
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Kazunari Kamachi
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| | - Tsuyoshi Kenri
- Department of Bacteriology II, National Institute of Infectious Diseases, 4-7-1 Gakuen, Musashimurayama, Tokyo, 208-0011, Japan
| |
Collapse
|
4
|
Kromann S, Baig S, Olsen RH, Edslev SM, Thøfner I, Bojesen AM, Jensen HE, Stegger M. Dramatic increase in slaughter condemnations due to Escherichia coli ST23 and ST101 within the Danish broiler production. Vet Microbiol 2023; 280:109696. [PMID: 36893553 DOI: 10.1016/j.vetmic.2023.109696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 01/15/2023] [Accepted: 02/15/2023] [Indexed: 02/21/2023]
Abstract
Escherichia coli constitutes a major challenge to poultry even when the prevalence of colibacillosis is low. Additionally, specific E. coli strains can severely enhance the detrimental effects on productivity, animal welfare and antimicrobial use. In 2019-2020, a dramatic increase in colibacillosis occurred among Danish broilers causing late-onset mortality and high slaughter condemnations. In the present study, the pathology and causative E. coli-types were characterised. Furthermore, the outbreak-related strains were compared to isolates from concurrent "background" colibacillosis. During the study, 1039 birds were subjected to a comprehensive post-mortem examination, and a total of 349 E. coli isolates were sequenced and characterised by multi-locus sequence typing, virulence and resistance gene presence, plasmid replicon content and phylogenetic analysis. Productivity data from outbreak flocks revealed a mortality of 6.34% ± 3.74 and a condemnation of 5.04% ± 3.67. Contrary, the numbers were 3.18% ± 1.57% and 1.02% ± 0.4 among non-outbreak flocks, respectively. Major lesions were cellulitis (46.82%), airsacculitis (67.63%), pericarditis (55.49%), perihepatitis (41.04%) and femoral head necrosis with physeal/metaphyseal involvement (44.51%). Among non-outbreak broilers, the prevalence was 4.46%, 7.64%, 7.01%, 3.82% and 8.28%, respectively. ST23 and ST101 dominated heavily in outbreak flocks, whereas non-outbreak related isolates consisted of various other STs. A low level of resistance markers was evident, except in few multidrug-resistant isolates. Within ST23 and ST101, 13 and 12 virulence genes were significantly over-represented compared to non-outbreak isolates. In conclusion, clonal lineages were documented as the cause of a devastating outbreak of colibacillosis with great prospects for future interventions.
Collapse
Affiliation(s)
- Sofie Kromann
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark; DanHatch Denmark A/S, Rugerivej 26, 9760 Vrå, Denmark.
| | - Sharmin Baig
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Rikke Heidemann Olsen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Sofie Marie Edslev
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Artillerivej 5, 2300 Copenhagen, Denmark
| | - Ida Thøfner
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Anders Miki Bojesen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Henrik Elvang Jensen
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 1870 Frederiksberg C, Denmark
| | - Marc Stegger
- Statens Serum Institut, Department of Bacteria, Parasites and Fungi, Artillerivej 5, 2300 Copenhagen, Denmark
| |
Collapse
|
5
|
Mussio P, Martínez I, Luzardo S, Navarro A, Leotta G, Varela G. Phenotypic and genotypic characterization of Shiga toxin-producing Escherichia coli strains recovered from bovine carcasses in Uruguay. Front Microbiol 2023; 14:1130170. [PMID: 36950166 PMCID: PMC10025531 DOI: 10.3389/fmicb.2023.1130170] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/08/2023] Open
Abstract
Introduction Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that cause food-borne diseases in humans. Cattle and derived foodstuffs play a known role as reservoir and vehicles, respectively. In Uruguay, information about the characteristics of circulating STEC in meat productive chain is scarce. The aim was to characterize STEC strains recovered from 800 bovine carcasses of different slaughterhouses. Methods To characterize STEC strains we use classical microbiological procedures, Whole Genome Sequencing (WGS) and FAO/WHO risk criteria. Results We analyzed 39 STEC isolated from 20 establishments. They belonged to 21 different O-groups and 13 different H-types. Only one O157:H7 strain was characterized and the serotypes O130:H11(6), O174:H28(5), and O22:H8(5) prevailed. One strain showed resistance in vitro to tetracycline and genes for doxycycline, sulfonamide, streptomycin and fosfomycin resistance were detected. Thirty-three strains (84.6%) carried the subtypes Stx2a, Stx2c, or Stx2d. The gene eae was detected only in two strains (O157:H7, O182:H25). The most prevalent virulence genes found were lpfA (n = 38), ompA (n = 39), ompT (n = 39), iss (n = 38), and terC (n = 39). Within the set of STEC analyzed, the majority (81.5%) belonged to FAO/WHO's risk classification levels 4 and 5 (lower risk). Besides, we detected STEC serotypes O22:H8, O113:H21, O130:H11, and O174:H21 belonged to level risk 2 associate with diarrhea, hemorrhagic colitis or Hemolytic-Uremic Syndrome (HUS). The only O157:H7 strain analyzed belonged to ST11. Thirty-eight isolates belonged to the Clermont type B1, while the O157:H7 was classified as E. Discussion The analyzed STEC showed high genomic diversity and harbor several genetic determinants associated with virulence, underlining the important role of WGS for a complete typing. In this set we did not detect non-O157 STEC previously isolated from local HUS cases. However, when interpreting this findings, the low number of isolates analyzed and some methodological limitations must be taken into account. Obtained data suggest that cattle constitute a local reservoir of non-O157 serotypes associated with severe diseases. Other studies are needed to assess the role of the local meat chain in the spread of STEC, especially those associated with severe diseases in humans.
Collapse
Affiliation(s)
- Paula Mussio
- Departamento de Microbiología, Laboratorio Tecnológico del Uruguay, Montevideo, Uruguay
- *Correspondence: Paula Mussio,
| | | | - Santiago Luzardo
- Instituto Nacional de Investigación Agropecuaria, INIA, Tacuarembó, Uruguay
| | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gerardo Leotta
- Instituto de Ciencia y Tecnología de Sistemas Alimentarios Sustentables, UEDD INTA-CONICET, Buenos Aires, Argentina
| | - Gustavo Varela
- Departamento de Bacteriología y Virología, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- Gustavo Varela,
| |
Collapse
|
6
|
Mondal R, Saldaña-Ahuactzi Z, Soria-Bustos J, Schultz A, Yañez-Santos JA, Laguna YM, Cedillo-Ramírez ML, Girón JA. The EcpD Tip Adhesin of the Escherichia coli Common Pilus Mediates Binding of Enteropathogenic E. coli to Extracellular Matrix Proteins. Int J Mol Sci 2022; 23:ijms231810350. [PMID: 36142263 PMCID: PMC9499635 DOI: 10.3390/ijms231810350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/04/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
The attachment of enteropathogenic Escherichia coli (EPEC) to intestinal epithelial cells is facilitated by several adhesins; however, the individual host-cell receptors for pili-mediated adherence have not been fully characterized. In this study, we evaluated the hypothesis that the E. coli common pilus (ECP) tip adhesin protein EcpD mediates attachment of EPEC to several extracellular matrix (ECM) glycoproteins (fibronectin, laminin, collagens I and IV, and mucin). We found that the ΔecpA mutant, which lacks production of the EcpA filament but retains EcpD on the surface, adhered to these glycoproteins below the wild-type levels, while the ΔecpD mutant, which does not display EcpA or EcpD, bound significantly less to these host glycoproteins. In agreement, a purified recombinant EcpD subunit bound significantly more than EcpA to laminin, fibronectin, collagens I and IV, and mucin in a dose-dependent manner. These are compelling data that strongly suggest that ECP-producing EPEC may bind to host ECM glycoproteins and mucins through the tip adhesin protein EcpD. This study highlights the versatility of EPEC to bind to different host proteins and suggests that the interaction of ECP with the host’s ECM glycoproteins may facilitate colonization of the intestinal mucosal epithelium.
Collapse
Affiliation(s)
- Rajesh Mondal
- ICMR-Bhopal Memorial Hospital and Research Center, Bhopal 462038, India
| | - Zeus Saldaña-Ahuactzi
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - Jorge Soria-Bustos
- Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21100, Mexico
| | - Andrew Schultz
- Department of Microbiology and Molecular Genetics, University of Florida, Gainesville, FL 32611, USA
| | - Jorge A. Yañez-Santos
- Facultad de Estomatología, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Ygnacio Martínez Laguna
- Centro de Investigación en Ciencias Microbiológicas, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - María L. Cedillo-Ramírez
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
| | - Jorge A. Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla 72592, Mexico
- Correspondence:
| |
Collapse
|
7
|
Izquierdo M, Lopez J, Gallardo P, Vidal RM, Ossa JC, Farfan MJ. Bacteria from gut microbiota associated with diarrheal infections in children promote virulence of Shiga toxin-producing and enteroaggregative Escherichia coli pathotypes. Front Cell Infect Microbiol 2022; 12:867205. [PMID: 36017363 PMCID: PMC9396624 DOI: 10.3389/fcimb.2022.867205] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 07/07/2022] [Indexed: 11/26/2022] Open
Abstract
Background Diarrheagenic E. coli (DEC) pathogenicity relies on the interaction of bacteria with the host’s gut environment, which is regulated by the resident microbiota. Previously, we identified indicative bacterial species of gut microbiota in DEC-positive stool samples from children. Here, we evaluated the role of two indicative species, Citrobacter werkmanii (CW) and Escherichia albertii (EA), in the virulence of two DEC pathotypes, Shiga toxin-producing (STEC) and enteroaggregative (EAEC) Escherichia coli. Methods We determined the effect of supernatants obtained from CW and EA cultures on the gene expression of STEC strain 86-24 and EAEC strain 042 by RNA-seq analysis. We evaluated IL-8 secretion from T84 cells infected with these DEC strains in the presence or absence of the supernatant from EA. The effect of the supernatant from EA on the growth and adherence of STEC and EAEC to cells was also evaluated. Finally, we studied the effect of the EA supernatant on the STEC-induced inflammation mediated by the long polar fimbriae (Lpf) in T84 cells and the expression of plasmid-encoded toxin (Pet) in EAEC. Results RNA-seq analysis revealed that several virulence factors in STEC and EAEC were upregulated in the presence of supernatants from CW and EA. Interestingly, an increase in the secretion of IL-8 was observed in cells infected with STEC or EAEC in the presence of a supernatant from EA. Similar results were observed with the supernatants obtained from clinical strains of E. albertii. The supernatant from EA had no effect on the growth of STEC and EAEC, or on the ability of these DEC strains to adhere to cells. We found that Pet toxin in EAEC was upregulated in the presence of a supernatant from EA. In STEC, using mutant strains for Lpf fimbriae, our data suggested that these fimbriae might be participating in the increase in IL-8 induced by STEC in cells in the presence of a supernatant from EA. Conclusion Supernatant obtained from an indicative species of DEC-positive diarrhea could modulate gene expression in STEC and EAEC, and IL-8 secretion induced by these bacteria. These data provide new insights into the effect of gut microbiota species in the pathogenicity of STEC and EAEC.
Collapse
Affiliation(s)
- Mariana Izquierdo
- Departamento de Pediatría y Cirugía Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Joaquín Lopez
- Departamento de Pediatría y Cirugía Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Pablo Gallardo
- Departamento de Pediatría y Cirugía Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Roberto M. Vidal
- Programa de Microbiología y Micología, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Juan C. Ossa
- Departamento de Pediatría y Cirugía Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Mauricio J. Farfan
- Departamento de Pediatría y Cirugía Infantil, Facultad de Medicina, Universidad de Chile, Santiago, Chile
- *Correspondence: Mauricio J. Farfan,
| |
Collapse
|
8
|
Gelalcha BD, Brown SM, Crocker HE, Agga GE, Kerro Dego O. Regulation Mechanisms of Virulence Genes in Enterohemorrhagic Escherichia coli. Foodborne Pathog Dis 2022; 19:598-612. [PMID: 35921067 DOI: 10.1089/fpd.2021.0103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is one of the most common E. coli pathotypes reported to cause several outbreaks of foodborne illnesses. EHEC is a zoonotic pathogen, and ruminants, especially cattle, are considered important reservoirs for the most common EHEC serotype, E. coli O157:H7. Humans are infected indirectly through the consumption of food (milk, meat, leafy vegetables, and fruits) and water contaminated by animal feces or direct contact with carrier animals or humans. E. coli O157:H7 is one of the most frequently reported causes of foodborne illnesses in developed countries. It employs two essential virulence mechanisms to trigger damage to the host. These are the development of attaching and effacing (AE) phenotypes on the intestinal mucosa of the host and the production of Shiga toxin (Stx) that causes hemorrhagic colitis and hemolytic uremic syndrome. The AE phenotype is controlled by the pathogenicity island, the locus of enterocyte effacement (LEE). The induction of both AE and Stx is under strict and highly complex regulatory mechanisms. Thus, a good understanding of these mechanisms, major proteins expressed, and environmental cues involved in the regulation of the expression of the virulence genes is vital to finding a method to control the colonization of reservoir hosts, especially cattle, and disease development in humans. This review is a concise account of the current state of knowledge of virulence gene regulation in the LEE-positive EHEC.
Collapse
Affiliation(s)
- Benti D Gelalcha
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Selina M Brown
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Hannah E Crocker
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| | - Getahun E Agga
- Food Animal Environmental Systems Research Unit, Agricultural Research Service, United States Department of Agriculture, Bowling Green, Kentucky, USA
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee Institute of Agriculture, Knoxville, Tennessee, USA
| |
Collapse
|
9
|
Interaction of Bartonella henselae with Fibronectin Represents the Molecular Basis for Adhesion to Host Cells. Microbiol Spectr 2022; 10:e0059822. [PMID: 35435766 PMCID: PMC9241615 DOI: 10.1128/spectrum.00598-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Deciphering the mechanisms of bacterial host cell adhesion is a clue for preventing infections. We describe the underestimated role that the extracellular matrix protein fibronectin plays in the adhesion of human-pathogenic
Bartonella henselae
to host cells.
Collapse
|
10
|
Bagel A, Sergentet D. Shiga Toxin-Producing Escherichia coli and Milk Fat Globules. Microorganisms 2022; 10:496. [PMID: 35336072 PMCID: PMC8953591 DOI: 10.3390/microorganisms10030496] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic Gram-negative bacteria. While raw milk cheese consumption is healthful, contamination with pathogens such as STEC can occur due to poor hygiene practices at the farm level. STEC infections cause mild to serious symptoms in humans. The raw milk cheese-making process concentrates certain milk macromolecules such as proteins and milk fat globules (MFGs), allowing the intrinsic beneficial and pathogenic microflora to continue to thrive. MFGs are surrounded by a biological membrane, the milk fat globule membrane (MFGM), which has a globally positive health effect, including inhibition of pathogen adhesion. In this review, we provide an update on the adhesion between STEC and raw MFGs and highlight the consequences of this interaction in terms of food safety, pathogen detection, and therapeutic development.
Collapse
Affiliation(s)
- Arthur Bagel
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
| | - Delphine Sergentet
- ‘Bacterial Opportunistic Pathogens and Environment’ Research Team, Université de Lyon, UMR5557 Ecologie Microbienne Lyon, CNRS (National Center of Scientific Research), VetAgro Sup, Marcy-l’Etoile, 69280 Lyon, France;
- Laboratoire d’Etudes des Microorganismes Alimentaires Pathogènes-French National Reference Laboratory for Escherichia coli Including Shiga Toxin-Producing E. coli (NRL-STEC), VetAgro Sup—Campus Vétérinaire, Université de Lyon, Marcy-l’Etoile, 69280 Lyon, France
| |
Collapse
|
11
|
Liu B, Qian C, Wu P, Li X, Liu Y, Mu H, Huang M, Zhang Y, Jia T, Wang Y, Wang L, Zhang X, Huang D, Yang B, Feng L, Wang L. Attachment of Enterohemorrhagic Escherichia coli to Host Cells Reduces O Antigen Chain Length at the Infection Site That Promotes Infection. mBio 2021; 12:e0269221. [PMID: 34903041 PMCID: PMC8669466 DOI: 10.1128/mbio.02692-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/15/2021] [Indexed: 11/20/2022] Open
Abstract
Many enteropathogenic bacteria express a needle-like type III secretion system (T3SS) that translocates effectors into host cells promoting infection. O antigen (OAg) constitutes the outer layer of Gram-negative bacteria protecting bacteria from host immune responses. Shigella constitutively shortens the OAg molecule in its three-dimensional conformation by glucosylation, leading to enhanced T3SS function. However, whether and how other enteropathogenic bacteria shorten the OAg molecule that probably facilitates infection remain unknown. For the first time, we report a smart mechanism by which enterohemorrhagic Escherichia coli specifically reduces the size of the OAg molecule at the infection site upon sensing mechanical signals of intestinal epithelial cell attachment via the membrane protein YgjI. YgjI represses expression of the OAg chain length regulator gene fepE via the global regulator H-NS, leading to shortened OAg chains and injection of more T3SS effectors into host cells. However, bacteria express long-chain OAg in the intestinal lumen benefiting their survival. Animal experiments show that blocking this regulatory pathway significantly attenuates bacterial virulence. This finding enhances our understanding of interactions between the surfaces of bacterial and host cells and the way this interaction enhances bacterial pathogenesis. IMPORTANCE Little is known about the regulation of cell wall structure of enteropathogenic bacteria within the host. Here, we report that enterohemorrhagic Escherichia coli regulates its cell wall structure during the infection process, which balances its survival in the intestinal lumen and infection of intestinal epithelial cells. In the intestinal lumen, bacteria express long-chain OAg, which is located in the outer part of the cell wall, leading to enhanced resistance to antimicrobial peptides. However, upon epithelial cell attachment, bacteria sense this mechanical signal via a membrane protein and reduce the OAg chain length, resulting in enhanced injection into epithelial cells of T3SS effectors that mediate host cell infection. Similar regulation mechanisms of cell wall structure in response to host cell attachment may be widespread in pathogenic bacteria and closely related with bacterial pathogenesis.
Collapse
Affiliation(s)
- Bin Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Chengqian Qian
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Pan Wu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Xiaodan Li
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yutao Liu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Huiqian Mu
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Min Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yang Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Tianyuan Jia
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Yuanyuan Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Lu Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Xiao Zhang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Di Huang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Bin Yang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
| | - Lu Feng
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
| | - Lei Wang
- TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin, People’s Republic of China
- The Institute of Translational Medicine Research, Tianjin Union Medical Center, Nankai University Affiliated Hospital, Nankai University, Tianjin, People’s Republic of China
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Tianjin, People’s Republic of China
- Tianjin Key Laboratory of Microbial Functional Genomics, Tianjin, People’s Republic of China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, People’s Republic of China
| |
Collapse
|
12
|
Zhou M, Yang Y, Wu M, Ma F, Xu Y, Deng B, Zhang J, Zhu G, Lu Y. Role of long polar fimbriae type 1 and 2 in pathogenesis of mammary pathogenic Escherichia coli. J Dairy Sci 2021; 104:8243-8255. [PMID: 33814154 DOI: 10.3168/jds.2021-20122] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/22/2021] [Indexed: 01/17/2023]
Abstract
Escherichia coli is a leading cause of bovine mastitis worldwide. The bacteria can rapidly grow in milk and elicit a strong lipopolysaccharide (LPS)/toll-like receptor-4 (TLR4)-dependent inflammatory response. Recently, the long polar fimbriae (LPF) were identified as a promising virulence factor candidate widely distributed in mammary pathogenic E. coli (MPEC) strains. Mammary pathogenic E. coli possess 2 lpf loci encoding LPF1 and LPF2, respectively. By deleting the major fimbrial subunit gene, lpfA, we found that both LPF1 and LPF2 contribute to MPEC adhesion, invasion, and biofilm formation in vitro. The lpf1A and lpf2A mutants showed reduced cytotoxicity in our in vitro cell infection model. Furthermore, we observed that LPF2 induced a mild TLR4-independent proinflammatory response. The median lethal dose (LD50) of both ∆lpf2A and ∆lpf1A∆lpf2A mutants to BALB/c mice increased by 0.38 and 0.15 logs, respectively, whereas that of wild-type strain MPJS13 was 8.69 logs. In contrast, LPF1 deficiency significantly enhanced the LPS/TLR4-mediated inflammatory response in mammary epithelial cells, and the LD50 of the mutant decreased to 8.18 logs. In conclusion, our data suggested that LPF are important in MPEC colonization of mammary cells and may provide a benefit to bacterial intracellular survival that induces persistent bovine mastitis.
Collapse
Affiliation(s)
- Mingxu Zhou
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing 210014, China
| | - Yang Yang
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Miaomiao Wu
- College of Animal Science and Technology, Hunan Co-Innovation Center of Animal Production Safety, Hunan Agricultural University, Changsha 410128, China
| | - Fang Ma
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yue Xu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Bihua Deng
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China; College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yu Lu
- Institute of Veterinary Immunology & Engineering, National Research Center of Engineering and Technology for Veterinary Biologicals, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; School of Pharmacy, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
13
|
Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, Neira V, Martínez V, Johnson T, Fuentes-Castillo D, Sano E, Lincopan N. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals (Basel) 2021; 11:ani11071845. [PMID: 34206206 PMCID: PMC8300192 DOI: 10.3390/ani11071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that cause food-borne diseases in humans, where cattle and derived products play a key role as reservoirs and vehicles. We analyzed the genomic data of STEC strains circulating at the livestock-food-human interface in South America, extracting clinically and epidemiologically relevant information (serotypes, virulome, resistance genes, sequence types, and phylogenomics). This study included 130 STEC genomes obtained from cattle (n = 51), beef (n = 48), and human (n = 31) samples. The successful expansion of O157:H7 (ST11) and non-O157 (ST16, ST21, ST223, ST443, ST677, ST679, ST2388) clones is highlighted, suggesting common activities, such as multilateral trade and travel. Circulating STEC strains analyzed exhibit high genomic diversity and harbor several genetic determinants associated with severe illness in humans, highlighting the need to establish official surveillance of this pathogen that should be focused on detecting molecular determinants of virulence and clonal relatedness, in the whole beef production chain. Abstract Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens responsible for causing food-borne diseases in humans. While South America has the highest incidence of human STEC infections, information about the genomic characteristics of the circulating strains is scarce. The aim of this study was to analyze genomic data of STEC strains isolated in South America from cattle, beef, and humans; predicting the antibiotic resistome, serotypes, sequence types (STs), clonal complexes (CCs) and phylogenomic backgrounds. A total of 130 whole genome sequences of STEC strains were analyzed, where 39.2% were isolated from cattle, 36.9% from beef, and 23.8% from humans. The ST11 was the most predicted (20.8%) and included O-:H7 (10.8%) and O157:H7 (10%) serotypes. The successful expansion of non-O157 clones such as ST16/CC29-O111:H8 and ST21/CC29-O26:H11 is highlighted, suggesting multilateral trade and travel. Virulome analyses showed that the predominant stx subtype was stx2a (54.6%); most strains carried ehaA (96.2%), iha (91.5%) and lpfA (77.7%) genes. We present genomic data that can be used to support the surveillance of STEC strains circulating at the livestock-food-human interface in South America, in order to control the spread of critical clones “from farm to table”.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Correspondence:
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago 8370007, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Víctor Martínez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Danny Fuentes-Castillo
- Departamento de Patología, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil;
| | - Elder Sano
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| |
Collapse
|
14
|
Govindarajan DK, Viswalingam N, Meganathan Y, Kandaswamy K. Adherence patterns of Escherichia coli in the intestine and its role in pathogenesis. MEDICINE IN MICROECOLOGY 2020. [DOI: 10.1016/j.medmic.2020.100025] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
15
|
Deciphering Additional Roles for the EF-Tu, l-Asparaginase II and OmpT Proteins of Shiga Toxin-Producing Escherichia coli. Microorganisms 2020; 8:microorganisms8081184. [PMID: 32759661 PMCID: PMC7464798 DOI: 10.3390/microorganisms8081184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/01/2020] [Indexed: 12/14/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) causes outbreaks and sporadic cases of gastroenteritis. STEC O157:H7 is the most clinically relevant serotype in the world. The major virulence determinants of STEC O157:H7 are the Shiga toxins and the locus of enterocyte effacement. However, several accessory virulence factors, mainly outer membrane proteins (OMPs) that interact with the host cells may contribute to the virulence of this pathogen. Previously, the elongation factor thermo unstable (EF-Tu), l-asparaginase II and OmpT proteins were identified as antigens in OMP extracts of STEC. The known subcellular location of EF-Tu and l-asparaginase II are the cytoplasm and periplasm, respectively. Therefore, we investigate whether these two proteins may localize on the surface of STEC and, if so, what roles they have at this site. On the other hand, the OmpT protein, a well characterized protease, has been described as participating in the adhesion of extraintestinal pathogenic E. coli strains. Thus, we investigate whether OmpT has this role in STEC. Our results show that the EF-Tu and l-asparaginase II are secreted by O157:H7 and may also localize on the surface of this bacterium. EF-Tu was identified in outer membrane vesicles (OMVs), suggesting it as a possible export mechanism for this protein. Notably, we found that l-asparaginase II secreted by O157:H7 inhibits T-lymphocyte proliferation, but the role of EF-Tu at the surface of this bacterium remains to be elucidated. In the case of OmpT, we show its participation in the adhesion of O157:H7 to human epithelial cells. Thus, this study extends the knowledge of the pathogenic mechanisms of STEC.
Collapse
|
16
|
Elpers L, Hensel M. Expression and Functional Characterization of Various Chaperon-Usher Fimbriae, Curli Fimbriae, and Type 4 Pili of Enterohemorrhagic Escherichia coli O157:H7 Sakai. Front Microbiol 2020; 11:378. [PMID: 32265855 PMCID: PMC7098969 DOI: 10.3389/fmicb.2020.00378] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 02/20/2020] [Indexed: 11/25/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a highly pathogenic strain leading to hemorrhagic colitis and to the hemolytic-uremic syndrome (HUS) in humans. The mechanisms by which pathogenic E. coli infect and colonize humans leading to the typical disease pattern are in focus of many investigations. The adhesion of EHEC to epithelial cells by the coordinated translocation of receptor Tir and surface expression of corresponding adhesin intimin is a key event in host–pathogen-interaction. However, less is known about other adhesins encoded by EHEC, especially about the complex set of fimbrial adhesins varying among various serotypes. Here, we investigate EHEC serotype O157:H7 strain Sakai possessing at least 16 putative fimbrial gene clusters. Using a synthetic heterologous expression system in a non-pathogenic E. coli strain, a subset of 6 gene clusters for fimbrial adhesins was analyzed. We were able to visualize surface expression of two γ1 class fimbriae (Fim and Ycb), two γ4 class fimbriae (Yad and Yeh), and two fimbrial adhesins which are assembled by the nucleation/precipitation pathway (Curli fimbriae), and by a type 2 secretion system (type 4 pili). Further, we elucidated the impact of these fimbrial adhesins in adhesion to various epithelial cells lines (HeLa, MDCK, and CaCo2), and the contribution on biofilm formation. We demonstrate the ultrastructure of Fim fimbriae and Yad fimbriae of EHEC Sakai, and Yeh fimbriae of E. coli in general. The involvement of Fim fimbriae of EHEC Sakai to adhesion to various epithelial cell lines, and contribution to biofilm formation is reported here. Our approach provides first ultrastructural and functional data for novel EHEC adhesins, and enables further understanding of the involvement of fimbrial adhesins in pathogenesis of EHEC Sakai.
Collapse
Affiliation(s)
- Laura Elpers
- Abteilung Mikrobiologie, Osnabrück University, Osnabrück, Germany
| | - Michael Hensel
- Abteilung Mikrobiologie, Osnabrück University, Osnabrück, Germany.,CellNanOs - Center of Cellular Nanoanalytics Osnabrück, Osnabrück University, Osnabrück, Germany
| |
Collapse
|
17
|
Vaca DJ, Thibau A, Schütz M, Kraiczy P, Happonen L, Malmström J, Kempf VAJ. Interaction with the host: the role of fibronectin and extracellular matrix proteins in the adhesion of Gram-negative bacteria. Med Microbiol Immunol 2019; 209:277-299. [PMID: 31784893 PMCID: PMC7248048 DOI: 10.1007/s00430-019-00644-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 11/14/2019] [Indexed: 01/03/2023]
Abstract
The capacity of pathogenic microorganisms to adhere to host cells and avoid clearance by the host immune system is the initial and most decisive step leading to infections. Bacteria have developed different strategies to attach to diverse host surface structures. One important strategy is the adhesion to extracellular matrix (ECM) proteins (e.g., collagen, fibronectin, laminin) that are highly abundant in connective tissue and basement membranes. Gram-negative bacteria express variable outer membrane proteins (adhesins) to attach to the host and to initiate the process of infection. Understanding the underlying molecular mechanisms of bacterial adhesion is a prerequisite for targeting this interaction by “anti-ligands” to prevent colonization or infection of the host. Future development of such “anti-ligands” (specifically interfering with bacteria-host matrix interactions) might result in the development of a new class of anti-infective drugs for the therapy of infections caused by multidrug-resistant Gram-negative bacteria. This review summarizes our current knowledge about the manifold interactions of adhesins expressed by Gram-negative bacteria with ECM proteins and the use of this information for the generation of novel therapeutic antivirulence strategies.
Collapse
Affiliation(s)
- Diana J Vaca
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Arno Thibau
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Monika Schütz
- Institute for Medical Microbiology and Infection Control, University Hospital, Eberhard Karls-University, Tübingen, Germany
| | - Peter Kraiczy
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Johan Malmström
- Division of Infection Medicine, Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Volkhard A J Kempf
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University Frankfurt am Main, Paul-Ehrlich-Str. 40, 60596, Frankfurt, Germany.
| |
Collapse
|
18
|
Galarce N, Escobar B, Sánchez F, Paredes-Osses E, Alegría-Morán R, Borie C. Virulence Genes, Shiga Toxin Subtypes, Serogroups, and Clonal Relationship of Shiga Toxin-Producing Escherichia Coli Strains Isolated from Livestock and Companion Animals. Animals (Basel) 2019; 9:E733. [PMID: 31569618 PMCID: PMC6826562 DOI: 10.3390/ani9100733] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/15/2019] [Accepted: 09/25/2019] [Indexed: 01/09/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a zoonotic pathogen that causes severe illness in humans and is an important cause of foodborne disease. In Chile, there is limited information on the virulence characteristics of this pathogen in livestock, and none in companion animals. The aim of this study was to characterize STEC strains isolated from cattle, swine, dogs, and cats, in Chile, in terms of the presence of Shiga toxin types and subtypes, virulence genes, serogroups, and clonality. One-thousand two-hundred samples were collected, isolating 54 strains (4.5%), where stx1a (68.5%) and ehxA (74.1%) were the most frequently detected virulence genes. Only one strain belonging to the most clinically relevant serogroups was identified. Pulsed field gel electrophoresis analysis showed high clonal diversity among strains isolated from cattle, while those from swine showed the same pattern. This study provides further evidence regarding cattle and swine in Chile as a potential source of a wide variety of STEC strains that could potentially cause severe illness in humans, and that companion animals do not seem to represent a relevant reservoir. It also argues that preventive and control strategies should not be focused on detecting serogroups, but instead, on detecting their determinants of virulence.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
| | - Esteban Paredes-Osses
- Instituto de Salud Pública de Chile, Departamento de Salud Ambiental, 7780050 Santiago, Chile.
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
- Facultad de Ciencias Agropecuarias, Universidad Pedro de Valdivia, 7500908 Santiago, Chile.
| | - Consuelo Borie
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, 8820808 Santiago, Chile.
| |
Collapse
|
19
|
Zhou M, Ding X, Ma F, Xu Y, Zhang J, Zhu G, Lu Y. Long polar fimbriae contribute to pathogenic Escherichia coli infection to host cells. Appl Microbiol Biotechnol 2019; 103:7317-7324. [PMID: 31359104 DOI: 10.1007/s00253-019-10014-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/07/2019] [Accepted: 07/11/2019] [Indexed: 01/01/2023]
Abstract
Long polar fimbria (LPF) is one of the few fimbrial adhesins of enterohemorrhagic Escherichia coli (E. coli) O157:H7 associated with colonization on host intestine, and both two types of LPF (including LPF1 and LPF2) play essential roles during the bacterial infection process. Though the fimbriae had been well studied in intestinal pathogenic E. coli strains, new evidences from our research revealed that it might be the key virulence for bovine mastitis pathogenic E. coli (MPEC) as well. This article summarizes the current knowledge on the LPF in E. coli, focusing on its genetic characteristics, prevalence, expression regulation, and adherence mechanism in different pathotypes of E. coli strains.
Collapse
Affiliation(s)
- Mingxu Zhou
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.,Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China
| | - Xueyan Ding
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 50 Zhongling Street, Nanjing, 210014, China
| | - Fang Ma
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Yue Xu
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Jinqiu Zhang
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China
| | - Guoqiang Zhu
- Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, 12 East Wenhui Road, Yangzhou, 225009, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, 50 Zhongling Street, Nanjing, 210014, China.
| | - Yu Lu
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 50 Zhongling Street, Nanjing, 210014, China.
| |
Collapse
|
20
|
Quan G, Xia P, Zhao J, Zhu C, Meng X, Yang Y, Wang Y, Tian Y, Ding X, Zhu G. Fimbriae and related receptors for Salmonella Enteritidis. Microb Pathog 2018; 126:357-362. [PMID: 30347261 DOI: 10.1016/j.micpath.2018.10.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/09/2018] [Accepted: 10/19/2018] [Indexed: 01/05/2023]
Abstract
Infection with Salmonella Enteritidis (SE) is one of the main causes for food- and water-borne diseases, and is a major concern to public health for both humans and animals worldwide. Some fimbrial antigens expressed by SE strains have been described and characterized, containing SEF14, SEF17, SEF21, long polar fimbriae and plasmid-encoded fimbriae, they play a role in bacterial survival in the host or external environment. However, their functions remain to be well elucidated, with the initial attachment and binding for fimbriae-mediated SE infections only minimally understood. Meanwhile, host-pathogen interactions provide insights into receptor modulation of the host innate immune system. Therefore, to well understand the pathogenicity of SE bacteria and to comprehend the host response to infection, the host cell-SE interactions need to be characterized. This review describes SE fimbriae receptors with an emphasis on the interaction between the receptor and SE fimbriae.
Collapse
Affiliation(s)
- Guomei Quan
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Pengpeng Xia
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Jing Zhao
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Science, Yangzhou 225125, China.
| | - Xia Meng
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yuqian Yang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yiting Wang
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Yan Tian
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Xiuyan Ding
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| | - Guoqiang Zhu
- College of Veterinary Medicine (Institute of Comparative Medicine), Yangzhou University, Yangzhou 225009, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China.
| |
Collapse
|
21
|
Tomlin H, Piccinini AM. A complex interplay between the extracellular matrix and the innate immune response to microbial pathogens. Immunology 2018; 155:186-201. [PMID: 29908065 PMCID: PMC6142291 DOI: 10.1111/imm.12972] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 04/26/2018] [Accepted: 06/01/2018] [Indexed: 12/18/2022] Open
Abstract
The role of the host extracellular matrix (ECM) in infection tends to be neglected. However, the complex interactions between invading pathogens, host tissues and immune cells occur in the context of the ECM. On the pathogen side, a variety of surface and secreted molecules, including microbial surface components recognizing adhesive matrix molecules and tissue-degrading enzymes, are employed that interact with different ECM proteins to effectively establish an infection at specific sites. Microbial pathogens can also hijack or misuse host proteolytic systems to modify the ECM, evade immune responses or process biologically active molecules such as cell surface receptors and cytokines that direct cell behaviour and immune defence. On the host side, the ECM composition and three-dimensional ultrastructure undergo significant modifications, which have a profound impact on the specific signals that the ECM conveys to immune cells at the forefront of infection. Unexpectedly, activated immune cells participate in the remodelling of the local ECM by synthesizing ECM glycoproteins, proteoglycans and collagen molecules. The close interplay between the ECM and the innate immune response to microbial pathogens ultimately affects the outcome of infection. This review explores and discusses recent data that implicate an active role for the ECM in the immune response to infection, encompassing antimicrobial activities, microbial recognition, macrophage activation, phagocytosis, leucocyte population balance, and transcriptional and post-transcriptional regulation of inflammatory networks, and may foster novel antimicrobial approaches.
Collapse
Affiliation(s)
- Hannah Tomlin
- School of PharmacyUniversity of NottinghamNottinghamUK
| | | |
Collapse
|
22
|
Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA, Mancabelli L, van Sinderen D, Ventura M. Bifidobacteria and the infant gut: an example of co-evolution and natural selection. Cell Mol Life Sci 2018; 75:103-118. [PMID: 28983638 PMCID: PMC11105234 DOI: 10.1007/s00018-017-2672-0] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 09/29/2017] [Indexed: 12/16/2022]
Abstract
Throughout the human life, the gut microbiota interacts with us in a number of different ways, thereby influencing our health status. The acquisition of such an interactive gut microbiota commences at birth. Medical and environmental factors including diet, antibiotic exposure and mode of delivery are major factors that shape the composition of the microbial communities in the infant gut. Among the most abundant members of the infant microbiota are species belonging to the Bifidobacterium genus, which are believed to confer beneficial effects upon their host. Bifidobacteria may be acquired directly from the mother by vertical transmission and their persistence in the infant gut is associated with their saccharolytic activity toward glycans that are abundant in the infant gut. Here, we discuss the establishment of the infant gut microbiota and the contribution of bifidobacteria to this early life microbial consortium.
Collapse
Affiliation(s)
- Francesca Turroni
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Microbiome Research Hub, University of Parma, Parma, Italy
| | - Christian Milani
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Chiara Ferrario
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Mancabelli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Douwe van Sinderen
- APC Microbiome Institute and School of Microbiology, National University of Ireland, Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.
- Microbiome Research Hub, University of Parma, Parma, Italy.
| |
Collapse
|
23
|
Patel S, Mathivanan N, Goyal A. Bacterial adhesins, the pathogenic weapons to trick host defense arsenal. Biomed Pharmacother 2017; 93:763-771. [DOI: 10.1016/j.biopha.2017.06.102] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 06/23/2017] [Accepted: 06/29/2017] [Indexed: 12/18/2022] Open
|
24
|
Kc R, Shukla SD, Walters EH, O'Toole RF. Temporal upregulation of host surface receptors provides a window of opportunity for bacterial adhesion and disease. MICROBIOLOGY-SGM 2017; 163:421-430. [PMID: 28113047 DOI: 10.1099/mic.0.000434] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Host surface receptors provide bacteria with a foothold from which to attach, colonize and, in some cases, invade tissue and elicit human disease. In this review, we discuss several key host receptors and cognate adhesins that function in bacterial pathogenesis. In particular, we examine the elevated expression of host surface receptors such as CEACAM-1, CEACAM-6, ICAM-1 and PAFR in response to specific stimuli. We explore how upregulated receptors, in turn, expose the host to a range of bacterial infections in the respiratory tract. It is apparent that exploitation of receptor induction for bacterial adherence is not unique to one body system, but is also observed in the central nervous, gastrointestinal and urogenital systems. Prokaryotic pathogens which utilize this mechanism for their infectivity include Streptococcus pneumoniae, Haemophilus influenzae, Neisseria meningitidis and Escherichia coli. A number of approaches have been used, in both in vitro and in vivo experimental models, to inhibit bacterial attachment to temporally expressed host receptors. Some of these novel strategies may advance future targeted interventions for the prevention and treatment of bacterial disease.
Collapse
Affiliation(s)
- Rajendra Kc
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| | - Shakti D Shukla
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Newcastle, NSW 2308, Australia.,Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, New Lambton Heights, Newcastle, NSW 2305, Australia
| | - Eugene H Walters
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| | - Ronan F O'Toole
- School of Medicine, Faculty of Health, University of Tasmania, Hobart, TAS 7000, Australia
| |
Collapse
|
25
|
Enterohemorrhagic Escherichia coli pathogenesis: role of Long polar fimbriae in Peyer's patches interactions. Sci Rep 2017; 7:44655. [PMID: 28317910 PMCID: PMC5357955 DOI: 10.1038/srep44655] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 02/13/2017] [Indexed: 11/14/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) are major food-borne pathogens whose survival and virulence in the human digestive tract remain unclear owing to paucity of relevant models. EHEC interact with the follicle-associated epithelium of Peyer’s patches of the distal ileum and translocate across the intestinal epithelium via M-cells, but the underlying molecular mechanisms are still unknown. Here, we investigated the involvement of Long polar fimbriae (Lpf) in EHEC pathogenesis. Of the 236 strains tested, a significant association was observed between the presence of lpf operons and pathogenicity. In sophisticated in vitro models of the human gastro-intestinal tract, lpf expression was induced during transit through the simulated stomach and small intestine, but not in the colonic compartment. To investigate the involvement of Lpf in EHEC pathogenesis, lpf isogenic mutants and their relative trans-complemented strains were generated. Translocation across M-cells, interactions with murine ileal biopsies containing Peyer’s patches and the number of hemorrhagic lesions were significantly reduced with the lpf mutants compared to the wild-type strain. Complementation of lpf mutants fully restored the wild-type phenotypes. Our results indicate that (i) EHEC might colonize the terminal ileum at the early stages of infection, (ii) Lpf are an important player in the interactions with Peyer’s patches and M-cells, and could contribute to intestinal colonization.
Collapse
|
26
|
Tran THT, Everaert N, Bindelle J. Review on the effects of potential prebiotics on controlling intestinal enteropathogens Salmonella and Escherichia coli in pig production. J Anim Physiol Anim Nutr (Berl) 2016; 102:17-32. [PMID: 28028851 DOI: 10.1111/jpn.12666] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 12/04/2016] [Indexed: 12/15/2022]
Abstract
Salmonella enterica serotypes (Salmonella sp.) are the second cause of bacterial foodborne zoonoses in humans after campylobacteriosis. Pork is the third most important cause for outbreak-associated salmonellosis, and colibacillosis is the most important disease in piglets and swine. Attachment to host cells, translocation of effector proteins into host cells, invasion and replication in tissues are the vital virulence steps of these pathogens that help them to thrive in the intestinal environment and invade tissues. Feed contamination is an important source for Salmonella infection in pig production. Many on-farm feeding strategies intervene to avoid the introduction of pathogens onto the farm by contaminated feeds or to reduce infection pressure when pathogens are present. Among the latter, prebiotics could be effective at protecting against these enteric bacterial pathogens. Nowadays, a wide range of molecules can potentially serve as prebiotics. Here, we summarize the prevalence of Salmonella sp. and Escherichia coli in pigs, understanding of the mechanisms by which pathogens can cause disease, the feed related to pathogen contamination in pigs and detail the mechanisms on which prebiotics are likely to act in order to fulfil their protective action against these pathogens in pig production. Many different mechanisms involve the inhibition of Salmonella and E. coli by prebiotics such as coating the host surface, modulation of intestinal ecology, downregulating the expression of adhesin factors or virulence genes, reinforcing the host immune system.
Collapse
Affiliation(s)
- T H T Tran
- Precision Livestock and Nutrition Unit, University of Liege, Gembloux, Belgium.,AgricultureIsLife, TERRA, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - N Everaert
- Precision Livestock and Nutrition Unit, University of Liege, Gembloux, Belgium.,AgricultureIsLife, TERRA, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| | - J Bindelle
- Precision Livestock and Nutrition Unit, University of Liege, Gembloux, Belgium.,AgricultureIsLife, TERRA, Gembloux Agro-Bio Tech, University of Liege, Gembloux, Belgium
| |
Collapse
|
27
|
Monteiro R, Ageorges V, Rojas-Lopez M, Schmidt H, Weiss A, Bertin Y, Forano E, Jubelin G, Henderson IR, Livrelli V, Gobert AP, Rosini R, Soriani M, Desvaux M. A secretome view of colonisation factors in Shiga toxin-encodingEscherichia coli(STEC): from enterohaemorrhagicE. coli(EHEC) to related enteropathotypes. FEMS Microbiol Lett 2016; 363:fnw179. [DOI: 10.1093/femsle/fnw179] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2016] [Indexed: 12/25/2022] Open
|
28
|
Pilatti L, Boldrin de Paiva J, Rojas TCG, Leite JL, Conceição RA, Nakazato G, Dias da Silveira W. The virulence factor ychO has a pleiotropic action in an Avian Pathogenic Escherichia coli (APEC) strain. BMC Microbiol 2016; 16:35. [PMID: 26965678 PMCID: PMC4787180 DOI: 10.1186/s12866-016-0654-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 03/02/2016] [Indexed: 02/04/2023] Open
Abstract
Background Avian pathogenic Escherichia coli strains cause extraintestinal diseases in birds, leading to substantial economic losses to the poultry industry worldwide. Bacteria that invade cells can overcome the host humoral immune response, resulting in a higher pathogenicity potential. Invasins are members of a large family of outer membrane proteins that allow pathogen invasion into host cells by interacting with specific receptors on the cell surface. Results An in silico analysis of the genome of a septicemic APEC strain (SEPT362) demonstrated the presence of a putative invasin homologous to the ychO gene from E. coli str. K-12 substr. MG1655. In vitro and in vivo assays comparing a mutant strain carrying a null mutation of this gene, a complemented strain, and its counterpart wild-type strain showed that ychO plays a role in the pathogenicity of APEC strain SEPT362. In vitro assays demonstrated that the mutant strain exhibited significant decreases in bacterial adhesiveness and invasiveness in chicken cells and biofilm formation. In vivo assay indicated a decrease in pathogenicity of the mutant strain. Moreover, transcriptome analysis demonstrated that the ychO deletion affected the expression of 426 genes. Among the altered genes, 93.66 % were downregulated in the mutant, including membrane proteins and metabolism genes. Conclusion The results led us to propose that gene ychO contributes to the pathogenicity of APEC strain SEPT362 influencing, in a pleiotropic manner, many biological characteristics, such as adhesion and invasion of in vitro cultured cells, biofilm formation and motility, which could be due to the possible membrane location of this protein. All of these results suggest that the absence of gene ychO would influence the virulence of the APEC strain herein studied.
Collapse
Affiliation(s)
- Livia Pilatti
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Jacqueline Boldrin de Paiva
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Thaís Cabrera Galvão Rojas
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Janaína Luisa Leite
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Rogério Arcuri Conceição
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil
| | - Gerson Nakazato
- Department of Microbiology, Center of Biological Sciences, State University of Londrina (UEL), Londrina, Paraná, Brazil
| | - Wanderley Dias da Silveira
- Department of Genetics, Evolution and Bioagents, Institute of Biology (P.O.Box: 6109), State University of Campinas - UNICAMP (ZIP Code 13083-970), Campinas, São Paulo, Brazil.
| |
Collapse
|
29
|
Escherichia coli O104:H4 Pathogenesis: an Enteroaggregative E. coli/Shiga Toxin-Producing E. coli Explosive Cocktail of High Virulence. Microbiol Spectr 2016; 2. [PMID: 26104460 DOI: 10.1128/microbiolspec.ehec-0008-2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
A major outbreak caused by Escherichia coli of serotype O104:H4 spread throughout Europe in 2011. This large outbreak was caused by an unusual strain that is most similar to enteroaggregative E. coli (EAEC) of serotype O104:H4. A significant difference, however, is the presence of a prophage encoding the Shiga toxin, which is characteristic of enterohemorrhagic E. coli (EHEC) strains. This combination of genomic features, associating characteristics from both EAEC and EHEC, represents a new pathotype. The 2011 E. coli O104:H4 outbreak of hemorrhagic diarrhea in Germany is an example of the explosive cocktail of high virulence and resistance that can emerge in this species. A total of 46 deaths, 782 cases of hemolytic-uremic syndrome, and 3,128 cases of acute gastroenteritis were attributed to this new clone of EAEC/EHEC. In addition, recent identification in France of similar O104:H4 clones exhibiting the same virulence factors suggests that the EHEC O104:H4 pathogen has become endemically established in Europe after the end of the outbreak. EAEC strains of serotype O104:H4 contain a large set of virulence-associated genes regulated by the AggR transcription factor. They include, among other factors, the pAA plasmid genes encoding the aggregative adherence fimbriae, which anchor the bacterium to the intestinal mucosa (stacked-brick adherence pattern on epithelial cells). Furthermore, sequencing studies showed that horizontal genetic exchange allowed for the emergence of the highly virulent Shiga toxin-producing EAEC O104:H4 strain that caused the German outbreak. This article discusses the role these virulence factors could have in EAEC/EHEC O104:H4 pathogenesis.
Collapse
|
30
|
Moraes CTP, Polatto JM, Rossato SS, Izquierdo M, Munhoz DD, Martins FH, Pimenta DC, Farfan MJ, Elias WP, Barbosa ÂS, Piazza RMF. Flagellin and GroEL mediates in vitro binding of an atypical enteropathogenic Escherichia coli to cellular fibronectin. BMC Microbiol 2015; 15:278. [PMID: 26679711 PMCID: PMC4683701 DOI: 10.1186/s12866-015-0612-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 12/03/2015] [Indexed: 11/22/2022] Open
Abstract
Background Enteropathogenic Escherichia coli (EPEC) is distinguished mainly by the presence of EPEC adherence factor plasmid (pEAF) in typical EPEC (tEPEC) and its absence in atypical EPEC (aEPEC). The initial adherence to the intestinal mucosa is complex and mediated by adhesins other than bundle-forming pilus, which is not produced by aEPEC. Extracellular matrix (ECM) proteins of eukaryotic cells are commonly recognized by bacterial adhesins. Therefore, binding to ECM proteins may facilitate colonization, invasion and/or signaling by intestinal pathogens. Previous studies from our group demonstrated that aEPEC O26:H11 (strain BA2103) showed high binding activity to fibronectin, not shared by its counterpart, aEPEC O26:HNM. Results In the present study, using mass spectrometry after fibronectin-associated immunoprecipitation, two proteins, flagellin (50 kDa) and GroEL (52 kDa), were identified and BA2103 binding ability to fibronectin was inhibited in the presence of anti-H11 and anti-GroEL sera, but not by either naïve rabbit or other unrelated sera. It was also observed that the presence of purified flagellin inhibits adhesion of BA2103 to cellular fibronectin in a dose-dependent manner. Additionally, BA2103 GroEL is similar to the same protein of uropathogenic E. coli. Conclusions Our results suggest that flagellin may play a role in the in vitro interaction of BA2103 with cellular fibronectin, and GroEL can be an accessory protein in this process. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0612-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Claudia T P Moraes
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500 - 05503-900, São Paulo, SP, Brazil
| | - Juliana M Polatto
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500 - 05503-900, São Paulo, SP, Brazil
| | - Sarita S Rossato
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500 - 05503-900, São Paulo, SP, Brazil
| | - Mariana Izquierdo
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Danielle D Munhoz
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500 - 05503-900, São Paulo, SP, Brazil
| | - Fernando H Martins
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500 - 05503-900, São Paulo, SP, Brazil
| | - Daniel C Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, São Paulo, SP, Brazil
| | - Mauricio J Farfan
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Universidad de Chile, Santiago, Chile
| | - Waldir P Elias
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500 - 05503-900, São Paulo, SP, Brazil
| | - Ângela S Barbosa
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500 - 05503-900, São Paulo, SP, Brazil
| | - Roxane M F Piazza
- Laboratório de Bacteriologia, Instituto Butantan, Av. Vital Brazil, 1500 - 05503-900, São Paulo, SP, Brazil.
| |
Collapse
|
31
|
Coppens F, Iyyathurai J, Ruer S, Fioravanti A, Taganna J, Vereecke L, De Greve H, Remaut H. Structural and adhesive properties of the long polar fimbriae protein LpfD from adherent-invasive Escherichia coli. ACTA ACUST UNITED AC 2015; 71:1615-26. [PMID: 26249343 DOI: 10.1107/s1399004715009803] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 05/20/2015] [Indexed: 01/13/2023]
Abstract
Crohn's disease (CD) is an inflammatory bowel disease characterized by an exaggerated immune response to commensal microbiota in the intestines of patients. Metagenomic studies have identified specific bacterial species and strains with increased prevalence in CD patients, amongst which is the adherent-invasive Escherichia coli (AIEC) strain LF82. AIEC strains express long polar fimbriae (LPF), which are known to target Peyer's patches in a mouse CD model. Here, the recombinant production of a soluble, self-complemented construct of the LpfD protein of E. coli LF82 is reported and it is demonstrated that it forms the adhesive tip subunit of LPF. The LpfD crystal reveals an N-terminal adhesin domain and a C-terminal pilin domain that connects the adhesin to the minor pilus subunit LpfE. Surface topology and sequence conservation in the adhesin domain hint at a putative receptor-binding pocket as found in the Klebsiella pneumoniae MrkD and E. coli F17-G (GafD) adhesins. Immunohistostaining of murine intestinal tissue sections revealed that LpfD specifically binds to the intestinal mucosa and submucosa. LpfD binding was found to be resistant to treatment with O- or N-glycosidases, but was lost in collagenase-treated tissue sections, indicating the possible involvement of an intestinal matrix-associated protein as the LpfD receptor. LpfD strongly adhered to isolated fibronectin in an in vitro assay, and showed lower levels of binding to collagen V and laminin and no binding to collagens I, III and IV.
Collapse
Affiliation(s)
- Fanny Coppens
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Jegan Iyyathurai
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Ségolène Ruer
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Antonella Fioravanti
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Joemar Taganna
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Lars Vereecke
- Inflammation Research Center, Unit of Molecular Signal Transduction in Inflammation, VIB, 9052 Ghent, Belgium
| | - Henri De Greve
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| | - Han Remaut
- Structural and Molecular Microbiology, Structural Biology Research Center, VIB, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
32
|
Host attachment and fluid shear are integrated into a mechanical signal regulating virulence in Escherichia coli O157:H7. Proc Natl Acad Sci U S A 2015; 112:5503-8. [PMID: 25870295 DOI: 10.1073/pnas.1422986112] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) is a foodborne pathogen causing hemorrhagic colitis and hemolytic uremic syndrome. EHEC colonizes the intestinal tract through a range of virulence factors encoded by the locus of enterocyte effacement (LEE), as well as Shiga toxin. Although the factors involved in colonization and disease are well characterized, how EHEC regulates its expression in response to a host encounter is not well understood. Here, we report that EHEC perceives attachment to host cells as a mechanical cue that leads to expression of LEE-encoded virulence genes. This signal is transduced via the LEE-encoded global regulator of LEE-encoded regulator (Ler) and global regulator of Ler and is further enhanced by levels of shear force similar to peristaltic forces in the intestinal tract. Our data suggest that, in addition to a range of chemical environmental signals, EHEC is capable of sensing and responding to mechanical cues to adapt to its host's physiology.
Collapse
|
33
|
TleA, a Tsh-like autotransporter identified in a human enterotoxigenic Escherichia coli strain. Infect Immun 2015; 83:1893-903. [PMID: 25712927 DOI: 10.1128/iai.02976-14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 02/15/2015] [Indexed: 12/13/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC), a leading cause of acute diarrhea, colonizes the intestine by means of adhesins. However, 15 to 50% of clinical isolates are negative for known adhesins, making it difficult to identify antigens for broad-coverage vaccines. The ETEC strain 1766a, obtained from a child with watery diarrhea in Chile, harbors the colonization factor CS23 but is negative for other known adhesins. One clone, derived from an ETEC 1766a genomic library (clone G10), did not produce CS23 yet was capable of adhering to Caco-2 cells. The goal of this study was to identify the gene responsible for this capacity. Random transposon-based mutagenesis allowed the identification of a 4,110-bp gene that codes for a homologue of the temperature-sensitive hemagglutinin (Tsh) autotransporter described in avian E. coli strains (97% identity, 90% coverage) and that is called TleA (Tsh-like ETEC autotransporter) herein. An isogenic ETEC 1766a strain with a tleA mutation showed an adhesion level similar to that of the wild-type strain, suggesting that the gene does not direct attachment to Caco-2 cells. However, expression of tleA conferred the capacity for adherence to nonadherent E. coli HB101. This effect coincided with the detection of TleA on the surface of nonpermeabilized bacteria, while, conversely, ETEC 1766a seems to secrete most of the produced autotransporter to the medium. On the other hand, TleA was capable of degrading bovine submaxillary mucin and leukocyte surface glycoproteins CD45 and P-selectin glycoprotein ligand 1 (PSGL-1). These results suggest that TleA promotes colonization of the intestinal epithelium and that it may modulate the host immune response.
Collapse
|
34
|
Abstract
Adhesins are a group of proteins in enterohemorrhagic Escherichia coli (EHEC) that are involved in the attachment or colonization of this pathogen to abiotic (plastic or steel) and biological surfaces, such as those found in bovine and human intestines. This review provides the most up-to-date information on these essential adhesion factors, summarizing important historical discoveries and analyzing the current and future state of this research. In doing so, the proteins intimin and Tir are discussed in depth, especially regarding their role in the development of attaching and effacing lesions and in EHEC virulence. Further, a series of fimbrial proteins (Lpf1, Lpf2, curli, ECP, F9, ELF, Sfp, HCP, and type 1 fimbriae) are also described, emphasizing their various contributions to adherence and colonization of different surfaces and their potential use as genetic markers in detection and classification of different EHEC serotypes. This review also discusses the role of several autotransporter proteins (EhaA-D, EspP, Saa and Sab, and Cah), as well as other proteins associated with adherence, such as flagella, EibG, Iha, and OmpA. While these proteins have all been studied to varying degrees, all of the adhesins summarized in this chapter have been linked to different stages of the EHEC life cycle, making them good targets for the development of more effective diagnostics and therapeutics.
Collapse
Affiliation(s)
- Brian D. McWilliams
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555. USA
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, 77555. USA
- Department of Pathology and Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas, 77555. USA
| |
Collapse
|
35
|
Kato K, Ishiwa A. The role of carbohydrates in infection strategies of enteric pathogens. Trop Med Health 2014; 43:41-52. [PMID: 25859152 PMCID: PMC4361345 DOI: 10.2149/tmh.2014-25] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Accepted: 11/04/2014] [Indexed: 01/08/2023] Open
Abstract
Enteric pathogens cause considerable public health concerns worldwide including tropical regions. Here, we review the roles of carbohydrates in the infection strategies of various enteric pathogens including viruses, bacteria and protozoa, which infect the epithelial lining of the human and animal intestine. At host cell entry, enteric viruses, including norovirus, recognize mainly histo-blood group antigens. At the initial step of bacterial infections, carbohydrates also function as receptors for attachment. Here, we describe the function of carbohydrates in infection by Salmonella enterica and several bacterial species that produce a variety of fimbrial adhesions. During invasion by enteropathogenic protozoa, apicomplexan parasites utilize sialic acids or sulfated glycans. Carbohydrates serve as receptors for infection by these microbes; however, their usage of carbohydrates varies depending on the microbe. On the surface of the mucosal tissues of the gastrointestinal tract, various carbohydrate moieties are present and play a crucial role in infection, representing the site of infection or route of access for most microbes. During the infection and/or invasion process of the microbes, carbohydrates function as receptors for various microbes, but they can also function as a barrier to infection. One approach to develop effective prophylactic and therapeutic antimicrobial agents is to modify the drug structure. Another approach is to modify the mode of inhibition of infection depending on the individual pathogen by using and mimicking the interactions with carbohydrates. In addition, similarities in mode of infection may also be utilized. Our findings will be useful in the development of new drugs for the treatment of enteric pathogens.
Collapse
Affiliation(s)
- Kentaro Kato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine , Inada-cho, Obihiro, Hokkaido 080-8555, Japan ; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Akiko Ishiwa
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine , Inada-cho, Obihiro, Hokkaido 080-8555, Japan ; Department of Veterinary Microbiology, Graduate School of Agricultural and Life Sciences, The University of Tokyo , 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
36
|
Jaglic Z, Desvaux M, Weiss A, Nesse LL, Meyer RL, Demnerova K, Schmidt H, Giaouris E, Sipailiene A, Teixeira P, Kačániová M, Riedel CU, Knøchel S. Surface adhesins and exopolymers of selected foodborne pathogens. MICROBIOLOGY-SGM 2014; 160:2561-2582. [PMID: 25217529 DOI: 10.1099/mic.0.075887-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ability of bacteria to bind different compounds and to adhere to biotic and abiotic surfaces provides them with a range of advantages, such as colonization of various tissues, internalization, avoidance of an immune response, and survival and persistence in the environment. A variety of bacterial surface structures are involved in this process and these promote bacterial adhesion in a more or less specific manner. In this review, we will focus on those surface adhesins and exopolymers in selected foodborne pathogens that are involved mainly in primary adhesion. Their role in biofilm development will also be considered when appropriate. Both the clinical impact and the implications for food safety of such adhesion will be discussed.
Collapse
Affiliation(s)
- Zoran Jaglic
- Veterinary Research Institute, Brno, Czech Republic
| | - Mickaël Desvaux
- INRA, UR454 Microbiologie, F-63122 Saint-Genès Champanelle, France
| | - Agnes Weiss
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | | | - Rikke L Meyer
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, DK-8000 Aarhus C, Denmark
| | - Katerina Demnerova
- Institute of Chemical Technology, Faculty of Food and Biochemical Technology, Department of Biochemistry and Microbiology, Technicka 5, Prague, 166 28, Czech Republic
| | - Herbert Schmidt
- Department of Food Microbiology, Institute of Food Science and Biotechnology, University of Hohenheim, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Efstathios Giaouris
- Department of Food Science and Nutrition, Faculty of the Environment, University of the Aegean, 81400 Myrina, Lemnos Island, Greece
| | | | - Pilar Teixeira
- CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | | | - Christian U Riedel
- Institute of Microbiology and Biotechnology, University of Ulm, Ulm, Germany
| | - Susanne Knøchel
- Department of Food Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C 1958, Denmark
| |
Collapse
|
37
|
Turroni F, Duranti S, Bottacini F, Guglielmetti S, Van Sinderen D, Ventura M. Bifidobacterium bifidum as an example of a specialized human gut commensal. Front Microbiol 2014; 5:437. [PMID: 25191315 PMCID: PMC4140077 DOI: 10.3389/fmicb.2014.00437] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 08/01/2014] [Indexed: 12/12/2022] Open
Abstract
Bifidobacteria are considered dominant and for this reason key members of the human gut microbiota, particularly during the first one to two years following birth. A substantial proportion of the bifidobacterial population in the intestine of infants belong to the Bifidobacterium bifidum taxon, whose members have been shown to display remarkable physiological and genetic features involving adhesion to epithelia, as well as utilization of host-derived glycans. Here, we reviewed the current knowledge on the genetic features and associated adaptations of B. bifidum to the human gut.
Collapse
Affiliation(s)
- Francesca Turroni
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland Cork, Ireland
| | - Sabrina Duranti
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| | - Francesca Bottacini
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland Cork, Ireland
| | - Simone Guglielmetti
- Department of Food, Environmental and Nutritional Sciences, University of Milan Milan, Italy
| | - Douwe Van Sinderen
- Alimentary Pharmabiotic Centre and Department of Microbiology, Bioscience Institute, National University of Ireland Cork, Ireland
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Life Sciences, University of Parma Parma, Italy
| |
Collapse
|
38
|
Abstract
ABSTRACT
Coordinated expression of enterohemorrhagic
Escherichia coli
virulence genes enables the bacterium to cause hemorrhagic colitis and the complication known as hemolytic-uremic syndrome. Horizontally acquired genes and those common to
E. coli
contribute to the disease process, and increased virulence gene expression is correlated with more severe disease in humans. Researchers have gained considerable knowledge about how the type III secretion system, secreted effectors, adhesin molecules, and the Shiga toxins are regulated by environmental signals and multiple genetic pathways. Also emergent from the data is an understanding of how enterohemorrhagic
E. coli
regulates response to acid stress, the role of flagellar motility, and how passage through the human host and bovine intestinal tract causes disease and supports carriage in the cattle reservoir, respectively. Particularly exciting areas of discovery include data suggesting how expression of the myriad effectors is coordinately regulated with their cognate type III secretion system and how virulence is correlated with bacterial metabolism and gut physiology.
Collapse
|
39
|
Wang C, Xiao R, Dong P, Wu X, Rong Z, Xin L, Tang J, Wang S. Ultra-sensitive, high-throughput detection of infectious diarrheal diseases by portable chemiluminescence imaging. Biosens Bioelectron 2014; 57:36-40. [DOI: 10.1016/j.bios.2014.01.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/07/2014] [Accepted: 01/08/2014] [Indexed: 01/25/2023]
|
40
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 876] [Impact Index Per Article: 73.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
41
|
Pritchard DI, Brown AP. Degradation of MSCRAMM target macromolecules in VLU slough by Lucilia sericata chymotrypsin 1 (ISP) persists in the presence of tissue gelatinase activity. Int Wound J 2013; 12:414-21. [PMID: 23834475 DOI: 10.1111/iwj.12124] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Accepted: 06/01/2013] [Indexed: 12/01/2022] Open
Abstract
Venous leg ulcer slough is unpleasant to the patient and difficult to manage clinically. It harbours infection, also preventing wound management materials and dressings from supporting the underlying viable tissues. In other words, slough has significant nuisance value in the tissue viability clinic. In this study, we have sought to increase our knowledge of slough by building upon a previous but limited analysis of this necrotic tissue. In particular, slough has been probed using Western blotting for the presence of proteins with the capacity to engage microbial surface components recognising adhesive matrix macromolecules. Although the samples were difficult to resolve, we detected fibrinogen, fibronectin, IgG, collagen, human serum albumin and matrix metalloproteinase-9. Furthermore, the effect of a maggot-derived debridement enzyme, chymotrypsin 1 on macromolecules in slough was confirmed across seven patient samples. The effect of chymotrypsin 1 on slough confirms our thesis that this potential debridement enzyme could be effective in removing slough along with its associated bacteria, given its observed resistance to intrinsic gelatinase activity. In summary, we believe that the data provide scientists and clinicians with further insights into the potential molecular interactions between bacteria, wound tissue and Lucilia sericata in a clinically problematic yet scientifically interesting wound ecosystem.
Collapse
Affiliation(s)
- David I Pritchard
- Immune Modulation Research Group, School of Pharmacy, Nottingham, UK
| | - Alan P Brown
- Immune Modulation Research Group, School of Pharmacy, Nottingham, UK
| |
Collapse
|
42
|
Role of sortase-dependent pili of Bifidobacterium bifidum PRL2010 in modulating bacterium-host interactions. Proc Natl Acad Sci U S A 2013; 110:11151-6. [PMID: 23776216 DOI: 10.1073/pnas.1303897110] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Bifidobacteria represent one of the dominant groups of microorganisms colonizing the human infant intestine. Commensal bacteria that interact with a eukaryotic host are believed to express adhesive molecules on their cell surface that bind to specific host cell receptors or soluble macromolecules. Whole-genome transcription profiling of Bifidobacterium bifidum PRL2010, a strain isolated from infant stool, revealed a small number of commonly expressed extracellular proteins, among which were genes that specify sortase-dependent pili. Expression of the coding sequences of these B. bifidum PRL2010 appendages in nonpiliated Lactococcus lactis enhanced adherence to human enterocytes through extracellular matrix protein and bacterial aggregation. Furthermore, such piliated L. lactis cells evoked a higher TNF-α response during murine colonization compared with their nonpiliated parent, suggesting that bifidobacterial sortase-dependent pili not only contribute to adherence but also display immunomodulatory activity.
Collapse
|
43
|
Adhesion of Diarrheagenic Escherichia coli and Inhibition by Glycocompounds Engaged in the Mucosal Innate Immunity. BIOLOGY 2013; 2:810-31. [PMID: 24832810 PMCID: PMC3960885 DOI: 10.3390/biology2020810] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/18/2013] [Accepted: 05/22/2013] [Indexed: 11/17/2022]
Abstract
Escherichia coli colonizes the human intestine shortly after birth, with most strains engaging in a commensal relationship. However, some E. coli strains have evolved toward acquiring genetic traits associated with virulence. Currently, five categories of enteroadherent E. coli strains are well-recognized, and are classified in regard to expressed adhesins and the strategy used during the colonization. The high morbidity associated with diarrhea has motivated investigations focusing on E. coli adhesins, as well on factors that inhibit bacterial adherence. Breastfeeding has proved to be the most effective strategy for preventing diarrhea in children. Aside from the immunoglobulin content, glycocompounds and oligosaccharides in breast milk play a critical role in the innate immunity against diarrheagenic E. coli strains. This review summarizes the colonization factors and virulence strategies exploited by diarrheagenic E. coli strains, addressing the inhibitory effects that oligosaccharides and glycocompounds, such as lactoferrin and free secretory components, exert on the adherence and virulence of these strains. This review thus provides an overview of experimental data indicating that human milk glycocompounds are responsible for the universal protective effect of breastfeeding against diarrheagenic E. coli pathotypes.
Collapse
|
44
|
Sváb D, Galli L, Horváth B, Maróti G, Dobrindt U, Torres AG, Rivas M, Tóth I. The long polar fimbriae operon and its flanking regions in bovine Escherichia coli O157:H43 and STEC O136:H12 strains. Pathog Dis 2013; 68:1-7. [PMID: 23620202 DOI: 10.1111/2049-632x.12038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 12/07/2012] [Accepted: 02/23/2013] [Indexed: 11/30/2022] Open
Abstract
Long polar fimbriae (Lpf) are intestinal adhesins and important virulence factors of pathogenic Escherichia coli strains. We cloned and sequenced the lpf2-1 operon (lpf2ABCD) and its flanking regions of an intimin- and Shiga toxin-negative atypical E. coli O157:H43 strain of bovine origin and also sequenced the lpf2-1 operon of six additional atypical O157 bovine E. coli strains of various serotypes. Nucleotide sequence comparison of these lpf operons showed sequence conservation as they contained only four polymorphic nucleotide positions. Investigation of these O157 strains as well as 13 E. coli Reference Collection (ECOR) strains carrying the lpf2-1 allele revealed high degree of sequence conservation in the lpf2 flanking regions. The lpf2-1 allele is also present in a bovine Shiga toxin-producing E. coli STEC O136:H12 strain, and in vitro adherence assays revealed that the absence of lpf2-1 in this strain did not affect its host cell-binding properties. Our data indicate that lpf2 loci are highly conserved in E. coli isolates; however, its role in adherence might be masked by other uncharacterized adhesins.
Collapse
Affiliation(s)
- Domonkos Sváb
- Centre for Agricultural Research, Institute for Veterinary Medical Research, Hungarian Academy of Sciences, Budapest, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Serafini F, Strati F, Ruas-Madiedo P, Turroni F, Foroni E, Duranti S, Milano F, Perotti A, Viappiani A, Guglielmetti S, Buschini A, Margolles A, van Sinderen D, Ventura M. Evaluation of adhesion properties and antibacterial activities of the infant gut commensal Bifidobacterium bifidum PRL2010. Anaerobe 2013; 21:9-17. [PMID: 23523946 DOI: 10.1016/j.anaerobe.2013.03.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Revised: 02/28/2013] [Accepted: 03/04/2013] [Indexed: 01/10/2023]
Abstract
Bifidobacteria are extensively exploited by the food industry as health-promoting microorganisms. However, very little is known about the molecular mechanisms responsible for these beneficial activities, or the molecular players that sustain their ability to colonize and persist within the human gut. Here, we have investigated the enteric adaptation features of the gut commensal Bifidobacterium bifidum PRL2010, originally isolated from infant feces. This strain was able to survive under gastrointestinal challenges, while it was shown to adhere to human epithelial intestinal cell monolayers (Caco 2 and HT-29), thereby inhibiting adhesion of pathogenic bacteria such as Escherichia coli and Cronobacter sakazakii.
Collapse
Affiliation(s)
- Fausta Serafini
- Department of Genetics, Biology of Microorganisms, Anthropology and Evolution, University of Parma, Parma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Chagnot C, Agus A, Renier S, Peyrin F, Talon R, Astruc T, Desvaux M. In vitro colonization of the muscle extracellular matrix components by Escherichia coli O157:H7: the influence of growth medium, temperature and pH on initial adhesion and induction of biofilm formation by collagens I and III. PLoS One 2013; 8:e59386. [PMID: 23516631 PMCID: PMC3596346 DOI: 10.1371/journal.pone.0059386] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/14/2013] [Indexed: 11/18/2022] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) O157:H7 are responsible for repeated food-poisoning cases often caused by contaminated burgers. EHEC infection is predominantly a pediatric illness, which can lead to life-threatening diseases. Ruminants are the main natural reservoir for EHEC and food contamination almost always originates from faecal contamination. In beef meat products, primary bacterial contamination occurs at the dehiding stage of slaughtering. The extracellular matrix (ECM) is the most exposed part of the skeletal muscles in beef carcasses. Investigating the adhesion to the main muscle fibrous ECM proteins, insoluble fibronectin, collagen I, III and IV, laminin-α2 and elastin, results demonstrated that the preceding growth conditions had a great influence on subsequent bacterial attachment. In the tested experimental conditions, maximal adhesion to fibril-forming collagens I or III occurred at 25°C and pH 7. Once initially adhered, exposure to lower temperatures, as applied to meat during cutting and storage, or acidification, as in the course of post-mortem physiological modifications of muscle, had no effect on detachment, except at pHu. In addition, dense biofilm formation occurred on immobilized collagen I or III and was induced in growth medium supplemented with collagen I in solution. From this first comprehensive investigation of EHEC adhesion to ECM proteins with respect to muscle biology and meat processing, new research directions for the development of innovative practices to minimize the risk of meat contamination are further discussed.
Collapse
Affiliation(s)
- Caroline Chagnot
- INRA, UR454 Microbiologie, Clermont-Ferrand, France
- INRA, UR370 Qualité des Produits Animaux, Clermont-Ferrand, France
| | - Allison Agus
- INRA, UR454 Microbiologie, Clermont-Ferrand, France
| | | | - Frédéric Peyrin
- INRA, UR370 Qualité des Produits Animaux, Clermont-Ferrand, France
| | - Régine Talon
- INRA, UR454 Microbiologie, Clermont-Ferrand, France
| | - Thierry Astruc
- INRA, UR370 Qualité des Produits Animaux, Clermont-Ferrand, France
| | | |
Collapse
|
47
|
Farfan MJ, Cantero L, Vergara A, Vidal R, Torres AG. The long polar fimbriae of STEC O157:H7 induce expression of pro-inflammatory markers by intestinal epithelial cells. Vet Immunol Immunopathol 2013; 152:126-31. [DOI: 10.1016/j.vetimm.2012.09.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Chagnot C, Listrat A, Astruc T, Desvaux M. Bacterial adhesion to animal tissues: protein determinants for recognition of extracellular matrix components. Cell Microbiol 2012; 14:1687-96. [PMID: 22882798 DOI: 10.1111/cmi.12002] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 12/13/2022]
Abstract
The extracellular matrix (ECM) is present within all animal tissues and organs. Actually, it surrounds the eukaryotic cells composing the four basic tissue types, i.e. epithelial, muscle, nerve and connective. ECM does not solely refer to connective tissue but composes all tissues where its composition, structure and organization vary from one tissue to another. Constituted of the four main fibrous proteins, i.e. collagen, fibronectin, laminin and elastin, ECM components form a highly structured and functional network via specific interactions. From the basement membrane to interstitial matrix, further heterogeneity exists in the organization of the ECM in various tissues and organs also depending on their physiological state. Back to a molecular level, bacterial proteins represent the most significant part of the microbial surface components recognizing adhesive matrix molecules (MSCRAMM). These cell surface proteins are secreted and localized differently in monoderm and diderm-LPS bacteria. While one collagen-binding domain (CBD) and different fibronectin-binding domains (FBD1 to 8) have been registered in databases, much remains to be learned on specific binding to other ECM proteins via single or supramolecular protein structures. Besides theinteraction of bacterial proteins with individual ECM components, this review aims at stressing the importance of fully considering the ECM at supramolecular, cellular, tissue and organ levels. This conceptual view should not be overlooked to rigorously comprehend the physiology of bacterial interaction from commensal to pathogenic species.
Collapse
|
49
|
Chassaing B, Etienne-Mesmin L, Bonnet R, Darfeuille-Michaud A. Bile salts induce long polar fimbriae expression favouring Crohn's disease-associated adherent-invasive Escherichia coli interaction with Peyer's patches. Environ Microbiol 2012; 15:355-71. [PMID: 22789019 DOI: 10.1111/j.1462-2920.2012.02824.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ileal lesions of patients with Crohn's disease are colonized by adherent-invasive Escherichia coli (AIEC). The earliest lesions of recurrent Crohn's disease are erosions of Peyer's patches (PP). We recently reported the presence of a functional lpf operon in AIEC, encoding long polar fimbriae (LPF), that allows AIEC bacteria to interact with PP and to translocate across M cells. The aim of this study was to analyse the effect of gastrointestinal conditions on LPF expression in AIEC strains. The LF82 bacterial growth in an acid pH medium or at high osmolarity medium had no effect on lpf transcription level, in contrast to bacterial growth in the presence of bile salts, which promoted activation of lpf transcription. When cultured in the presence of bile salt, LF82 wild-type bacteria, but not the isogenic mutant deleted for lpfA, exhibited a higher level of interaction with PP and a higher level of translocation through M cell monolayers. The FhlA transcriptional factor was found to be a key bacterial regulator at the origin of LPF expression in the presence of bile salts.
Collapse
Affiliation(s)
- Benoit Chassaing
- Clermont Université, UMR 1071 Inserm/Université Auvergne, Clermont-Ferrand 63000, France
| | | | | | | |
Collapse
|
50
|
Farfan MJ, Torres AG. Molecular mechanisms that mediate colonization of Shiga toxin-producing Escherichia coli strains. Infect Immun 2012; 80:903-13. [PMID: 22144484 PMCID: PMC3294676 DOI: 10.1128/iai.05907-11] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) is a group of pathogens which cause gastrointestinal disease in humans and have been associated with numerous food-borne outbreaks worldwide. The intimin adhesin has been considered for many years to be the only colonization factor in these strains. However, the rapid progress in whole-genome sequencing of different STEC serotypes has accelerated the discovery of other adhesins (fimbrial and afimbrial), which have emerged as important contributors to the intestinal colonization occurring during STEC infection. This review summarizes recent progress to identify and characterize, at the molecular level, novel adhesion and colonization factors in STEC strains, with an emphasis on their contribution to virulence traits, their host-pathogen interactions, the regulatory mechanisms controlling their expression, and their role as targets eliciting immune responses in the host.
Collapse
Affiliation(s)
- Mauricio J. Farfan
- Centro de Estudios Moleculares, Departamento de Pediatría, Hospital Dr. Luis Calvo Mackenna, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, Department of Pathology, Sealy Center for Vaccine Development, and Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|