1
|
Li H, Lv Y, Teng Z, Guo R, Jiang L. Shigella Senses the Environmental Cue Leucine to Promote its Virulence Gene Expression in the Colon. J Mol Biol 2024; 436:168798. [PMID: 39303765 DOI: 10.1016/j.jmb.2024.168798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Shigella is a foodborne enteropathogenic bacteria that causes severe bacillary dysentery in humans. Shigella primarily colonizes the human colon and causes disease via invasion of colon epithelial cells. However, the signal regulatory mechanisms associated with its colonization and pathogenesis in the colon remain poorly defined. Here, we report a leucine-mediated regulatory mechanism that promotes Shigella virulence gene expression and invasion of colon epithelial cells. Shigella in response to leucine, which is highly abundant in the colon, via the leucine-responsive regulator Lrp and the binding of Lrp with leucine induces the expression of a newly identified small RNA SsrV. SsrV then activates the expression of virF and downstream invasion-related virulence genes by increasing the protein level of the LysR-type transcription regulator LrhA, therefore enabling Shigella invasion of colon epithelial cells. Shigella lacking ssrV displays impaired invasion ability. Collectively, these findings suggest that Shigella employs a leucine-responsive environmental activation mechanism to establish colonization and pathogenicity.
Collapse
Affiliation(s)
- Huiying Li
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yongyao Lv
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiqi Teng
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Rui Guo
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Lingyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China.
| |
Collapse
|
2
|
Haidar-Ahmad N, Manigat FO, Silué N, Pontier SM, Campbell-Valois FX. A Tale about Shigella: Evolution, Plasmid, and Virulence. Microorganisms 2023; 11:1709. [PMID: 37512882 PMCID: PMC10383432 DOI: 10.3390/microorganisms11071709] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/30/2023] Open
Abstract
Shigella spp. cause hundreds of millions of intestinal infections each year. They target the mucosa of the human colon and are an important model of intracellular bacterial pathogenesis. Shigella is a pathovar of Escherichia coli that is characterized by the presence of a large invasion plasmid, pINV, which encodes the characteristic type III secretion system and icsA used for cytosol invasion and cell-to-cell spread, respectively. First, we review recent advances in the genetic aspects of Shigella, shedding light on its evolutionary history within the E. coli lineage and its relationship to the acquisition of pINV. We then discuss recent insights into the processes that allow for the maintenance of pINV. Finally, we describe the role of the transcription activators VirF, VirB, and MxiE in the major virulence gene regulatory cascades that control the expression of the type III secretion system and icsA. This provides an opportunity to examine the interplay between these pINV-encoded transcriptional activators and numerous chromosome-encoded factors that modulate their activity. Finally, we discuss novel chromosomal genes icaR, icaT, and yccE that are regulated by MxiE. This review emphasizes the notion that Shigella and E. coli have walked the fine line between commensalism and pathogenesis for much of their history.
Collapse
Affiliation(s)
- Nathaline Haidar-Ahmad
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - France Ourida Manigat
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Navoun Silué
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | - Stéphanie M Pontier
- Centre de Recherche Santé Environnementale et Biodiversité de l'Outaouais (SEBO), CEGEP de l'Outaouais, Gatineau, QC J8Y 6M4, Canada
| | - François-Xavier Campbell-Valois
- Host-Microbe Interactions Laboratory, Centre for Chemical and Synthetic Biology, Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, ON K1N 6N5, Canada
- Centre for Infection, Immunity and Inflammation, Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
3
|
Toward a Shigella Vaccine: Opportunities and Challenges to Fight an Antimicrobial-Resistant Pathogen. Int J Mol Sci 2023; 24:ijms24054649. [PMID: 36902092 PMCID: PMC10003550 DOI: 10.3390/ijms24054649] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/04/2023] Open
Abstract
Shigellosis causes more than 200,000 deaths worldwide and most of this burden falls on Low- and Middle-Income Countries (LMICs), with a particular incidence in children under 5 years of age. In the last decades, Shigella has become even more worrisome because of the onset of antimicrobial-resistant strains (AMR). Indeed, the WHO has listed Shigella as one of the priority pathogens for the development of new interventions. To date, there are no broadly available vaccines against shigellosis, but several candidates are being evaluated in preclinical and clinical studies, bringing to light very important data and information. With the aim to facilitate the understanding of the state-of-the-art of Shigella vaccine development, here we report what is known about Shigella epidemiology and pathogenesis with a focus on virulence factors and potential antigens for vaccine development. We discuss immunity after natural infection and immunization. In addition, we highlight the main characteristics of the different technologies that have been applied for the development of a vaccine with broad protection against Shigella.
Collapse
|
4
|
Shigella Outer Membrane Vesicles as Promising Targets for Vaccination. Int J Mol Sci 2022; 23:ijms23020994. [PMID: 35055181 PMCID: PMC8781765 DOI: 10.3390/ijms23020994] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
The clinical symptoms of shigellosis, a gastrointestinal infection caused by Shigella spp. range from watery diarrhea to fulminant dysentery. Endemic infections, particularly among children in developing countries, represent the majority of clinical cases. The situation is aggravated due to the high mortality rate of shigellosis, the rapid dissemination of multi-resistant Shigella strains and the induction of only serotype-specific immunity. Thus, infection prevention due to vaccination, encompassing as many of the circulating serotypes as possible, has become a topic of interest. However, vaccines have turned out to be ineffective so far. Outer membrane vesicles (OMVs) are promising novel targets for vaccination. OMVs are constitutively secreted by Gram-negative bacteria including Shigella during growth. They are composed of soluble luminal portions and an insoluble membrane and can contain toxins, bioactive periplasmic and cytoplasmic (lipo-) proteins, (phospho-) lipids, nucleic acids and/or lipopolysaccharides. Thus, OMVs play an important role in bacterial cell–cell communication, growth, survival and pathogenesis. Furthermore, they modulate the secretion and transport of biomolecules, the stress response, antibiotic resistance and immune responses of the host. Thus, OMVs serve as novel secretion machinery. Here, we discuss the current literature and highlight the properties of OMVs as potent vaccine candidates because of their immunomodulatory, antigenic and adjuvant properties.
Collapse
|
5
|
Weatherspoon-Griffin N, Picker MA, Pew KL, Park HS, Ginete DR, Karney MMA, Usufzy P, Castellanos MI, Duhart JC, Harrison DJ, Socea JN, Karabachev AD, Hensley CT, Howerton AJ, Ojeda-Daulo R, Immak JA, Wing HJ. Insights into transcriptional silencing and anti-silencing in Shigella flexneri: a detailed molecular analysis of the icsP virulence locus. Mol Microbiol 2018; 108:505-518. [PMID: 29453862 PMCID: PMC6311345 DOI: 10.1111/mmi.13932] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2018] [Indexed: 11/28/2022]
Abstract
Transcriptional silencing and anti-silencing mechanisms modulate bacterial physiology and virulence in many human pathogens. In Shigella species, many virulence plasmid genes are silenced by the histone-like nucleoid structuring protein H-NS and anti-silenced by the virulence gene regulator VirB. Despite the key role that these regulatory proteins play in Shigella virulence, their mechanisms of transcriptional control remain poorly understood. Here, we characterize the regulatory elements and their relative spacing requirements needed for the transcriptional silencing and anti-silencing of icsP, a locus that requires remotely located regulatory elements for both types of transcriptional control. Our findings highlight the flexibility of the regulatory elements' positions with respect to each other, and yet, a molecular roadblock docked between the VirB binding site and the upstream H-NS binding region abolishes transcriptional anti-silencing by VirB, providing insight into transcriptional anti-silencing. Our study also raises the need to re-evaluate the currently proposed VirB binding site. Models of transcriptional silencing and anti-silencing at this genetic locus are presented, and the implications for understanding these regulatory mechanisms in bacteria are discussed.
Collapse
Affiliation(s)
| | | | - Krystle L. Pew
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Hiromichi S. Park
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Daren R. Ginete
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Monika MA. Karney
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Pashtana Usufzy
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Maria I. Castellanos
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Juan Carlos Duhart
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Dustin J. Harrison
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Jillian N. Socea
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | | | | | - Rosa Ojeda-Daulo
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Joy A. Immak
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| | - Helen J. Wing
- School of Life Sciences, University of Nevada, Las Vegas, Las Vegas, NV 89154-4004, USA
| |
Collapse
|
6
|
Fris ME, Broach WH, Klim SE, Coschigano PW, Carroll RK, Caswell CC, Murphy ER. Sibling sRNA RyfA1 Influences Shigella dysenteriae Pathogenesis. Genes (Basel) 2017; 8:genes8020050. [PMID: 28134784 PMCID: PMC5333039 DOI: 10.3390/genes8020050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2016] [Accepted: 01/17/2017] [Indexed: 12/23/2022] Open
Abstract
Small regulatory RNAs (sRNAs) of Shigella dysenteriae and other pathogens are vital for the regulation of virulence-associated genes and processes. Here, we characterize RyfA1, one member of a sibling pair of sRNAs produced by S. dysenteriae. Unlike its nearly identical sibling molecule, RyfA2, predicted to be encoded almost exclusively by non-pathogenic species, the presence of a gene encoding RyfA1, or a RyfA1-like molecule, is strongly correlated with virulence in a variety of enteropathogens. In S. dysenteriae, the overproduction of RyfA1 negatively impacts the virulence-associated process of cell-to-cell spread as well as the expression of ompC, a gene encoding a major outer membrane protein important for the pathogenesis of Shigella. Interestingly, the production of RyfA1 is controlled by a second sRNA, here termed RyfB1, the first incidence of one regulatory small RNA controlling another in S. dysenteriae or any Shigella species.
Collapse
Affiliation(s)
- Megan E Fris
- Department of Biological Sciences, Ohio University, 1 Ohio University Drive Athens, Athens, OH 45701, USA.
| | - William H Broach
- OU Genomics Core Facility, Ohio University, 1 Ohio University Drive Athens, Athens, OH 45701, USA.
| | - Sarah E Klim
- Department of Biological Sciences, Ohio University, 1 Ohio University Drive Athens, Athens, OH 45701, USA.
| | - Peter W Coschigano
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 1 Ohio University Drive Athens, Athens, OH 45701, USA.
| | - Ronan K Carroll
- Department of Biological Sciences, Ohio University, 1 Ohio University Drive Athens, Athens, OH 45701, USA.
| | - Clayton C Caswell
- Department of Biomedical Sciences and Pathobiology, Center for Molecular Medicine and Infectious Diseases, VA-MD College of Veterinary Medicine, Virginia Tech, 1410 Prices Fork Rd., Blacksburg, VA 24060, USA.
| | - Erin R Murphy
- Department of Biomedical Sciences, Ohio University Heritage College of Osteopathic Medicine, 1 Ohio University Drive Athens, Athens, OH 45701, USA.
| |
Collapse
|
7
|
Abstract
Enteric pathogens of the family Enterobacteriaceae colonize various niches within animals and humans in which they compete with intestinal commensals and are attacked by the host immune system. To survive these hostile environments they possess complex, multilayer regulatory networks that coordinate the control of virulence factors, host-adapted metabolic functions and stress resistance. An important part of these intricate control networks are RNA-based control systems that enable the pathogen to fine-tune its responses. Recent next-generation sequencing approaches revealed a large repertoire of conserved and species-specific riboregulators, including numerous cis- and trans-acting non-coding RNAs, sensory RNA elements (RNA thermometers, riboswitches), regulatory RNA-binding proteins and RNA degrading enzymes which regulate colonization factors, toxins, host defense processes and virulence-relevant physiological and metabolic processes. All of which are important cues for pathogens to sense and respond to fluctuating conditions during the infection. This review covers infection-relevant riboregulators of E. coli, Salmonella, Shigella and Yersinia, highlights their versatile regulatory mechanisms, complex target regulons and functions, and discusses emerging topics and future challenges to fully understand and exploit RNA-based control to combat bacterial infections.
Collapse
Affiliation(s)
- Ann Kathrin Heroven
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Aaron M Nuss
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| | - Petra Dersch
- a Department of Molecular Infection Biology , Helmholtz Centre for Infection Research , Braunschweig , Germany
| |
Collapse
|
8
|
Fris ME, Murphy ER. Riboregulators: Fine-Tuning Virulence in Shigella. Front Cell Infect Microbiol 2016; 6:2. [PMID: 26858941 PMCID: PMC4728522 DOI: 10.3389/fcimb.2016.00002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 01/08/2016] [Indexed: 11/13/2022] Open
Abstract
Within the past several years, RNA-mediated regulation (ribo-regulation) has become increasingly recognized for its importance in controlling critical bacterial processes. Regulatory RNA molecules, or riboregulators, are perpetually responsive to changes within the micro-environment of a bacterium. Notably, several characterized riboregulators control virulence in pathogenic bacteria, as is the case for each riboregulator characterized to date in Shigella. The timing of virulence gene expression and the ability of the pathogen to adapt to rapidly changing environmental conditions is critical to the establishment and progression of infection by Shigella species; ribo-regulators mediate each of these important processes. This mini review will present the current state of knowledge regarding RNA-mediated regulation in Shigella by detailing the characterization and function of each identified riboregulator in these pathogens.
Collapse
Affiliation(s)
- Megan E Fris
- Department of Biological Science, Ohio University Athens, OH, USA
| | - Erin R Murphy
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University Athens, OH, USA
| |
Collapse
|
9
|
Liu L, Chi H, Sun L. Pseudomonas fluorescens: identification of Fur-regulated proteins and evaluation of their contribution to pathogenesis. DISEASES OF AQUATIC ORGANISMS 2015; 115:67-80. [PMID: 26119301 DOI: 10.3354/dao02874] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Pseudomonas fluorescens is a Gram-negative bacterium and a common pathogen to a wide range of farmed fish. In a previous study, we found that the ferric uptake regulator gene (fur) is essential to the infectivity of a pathogenic fish isolate of P. fluorescens (wild-type strain TSS). In the present work, we conducted comparative proteomic analysis to examine the global protein profiles of TSS and the P. fluorescens fur knockout mutant TFM. Twenty-eight differentially produced proteins were identified, which belong to different functional categories. Four of these proteins, viz. TssP (a type VI secretion protein), PspA (a serine protease), OprF (an outer membrane porin), and ClpP (the proteolytic subunit of an ATP-dependent Clp protease), were assessed for virulence participation in a model of turbot Scophthalmus maximus. The results showed that the oprF and clpP knockouts exhibited significantly reduced capacities in (1) resistance against the bactericidal effect of host serum, (2) dissemination into and colonization of host tissues, and (3) inducing host mortality. In contrast, mutation of tssP and pspA had no apparent effect on the pathogenicity of TSS. Purified recombinant OprF, when used as a subunit vaccine, induced production of specific serum antibodies in immunized fish and elicited significant protection against lethal TSS challenge. Antibody blocking of the OprF in TSS significantly impaired the ability of the bacteria to invade host tissues. Taken together, these results indicate for the first time that in pathogenic P. fluorescens, Fur regulates the expression of diverse proteins, some of which are required for optimal infection.
Collapse
Affiliation(s)
- Li Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, PR China
| | | | | |
Collapse
|
10
|
The small RNA RyhB contributes to siderophore production and virulence of uropathogenic Escherichia coli. Infect Immun 2014; 82:5056-68. [PMID: 25245805 DOI: 10.1128/iai.02287-14] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In Escherichia coli, the small regulatory noncoding RNA (sRNA) RyhB and the global ferric uptake regulator (Fur) mediate iron acquisition and storage control. Iron is both essential and potentially toxic for most living organisms, making the precise maintenance of iron homeostasis necessary for survival. While the roles of these regulators in iron homeostasis have been well studied in a nonpathogenic E. coli strain, their impact on the production of virulence-associated factors is still unknown for a pathogenic E. coli strain. We thus investigated the roles of RyhB and Fur in iron homeostasis and virulence of the uropathogenic E. coli (UPEC) strain CFT073. In a murine model of urinary tract infection (UTI), deletion of fur alone did not attenuate virulence, whereas a ΔryhB mutant and a Δfur ΔryhB double mutant showed significantly reduced bladder colonization. The Δfur mutant was more sensitive to oxidative stress and produced more of the siderophores enterobactin, salmochelins, and aerobactin than the wild-type strain. In contrast, while RyhB was not implicated in oxidative stress resistance, the ΔryhB mutant produced lower levels of siderophores. This decrease was correlated with the downregulation of shiA (encoding a transporter of shikimate, a precursor of enterobactin and salmochelin biosynthesis) and iucD (involved in aerobactin biosynthesis) in this mutant grown in minimal medium or in human urine. iucD was also downregulated in bladders infected with the ΔryhB mutant compared to those infected with the wild-type strain. Our results thus demonstrate that the sRNA RyhB is involved in production of iron acquisition systems and colonization of the urinary tract by pathogenic E. coli.
Collapse
|
11
|
Abstract
Although the composition of the gut microbiota and its symbiotic contribution to key host physiological functions are well established, little is known as yet about the bacterial factors that account for this symbiosis. We selected Lactobacillus casei as a model microorganism to proceed to genomewide identification of the functions required for a symbiont to establish colonization in the gut. As a result of our recent development of a transposon-mutagenesis tool that overcomes the barrier that had prevented L. casei random mutagenesis, we developed a signature-tagged mutagenesis approach combining whole-genome reverse genetics using a set of tagged transposons and in vivo screening using the rabbit ligated ileal loop model. After sequencing transposon insertion sites in 9,250 random mutants, we assembled a library of 1,110 independent mutants, all disrupted in a different gene, that provides a representative view of the L. casei genome. By determining the relative quantity of each of the 1,110 mutants before and after the in vivo challenge, we identified a core of 47 L. casei genes necessary for its establishment in the gut. They are involved in housekeeping functions, metabolism (sugar, amino acids), cell wall biogenesis, and adaptation to environment. Hence we provide what is, to our knowledge, the first global functional genomics analysis of L. casei symbiosis.
Collapse
|
12
|
The iron stimulon and fur regulon of Geobacter sulfurreducens and their role in energy metabolism. Appl Environ Microbiol 2014; 80:2918-27. [PMID: 24584254 DOI: 10.1128/aem.03916-13] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Iron plays a critical role in the physiology of Geobacter species. It serves as both an essential component for proteins and cofactors and an electron acceptor during anaerobic respiration. Here, we investigated the iron stimulon and ferric uptake regulator (Fur) regulon of Geobacter sulfurreducens to examine the coordination between uptake of Fe(II) and the reduction of Fe(III) at the transcriptional level. Gene expression studies across a variety of different iron concentrations in both the wild type and a Δfur mutant strain were used to determine the iron stimulon. The stimulon consists of a broad range of gene products, ranging from iron-utilizing to central metabolism and iron reduction proteins. Integration of gene expression and chromatin immunoprecipitation (ChIP) data sets assisted in the identification of the Fur transcriptional regulatory network and Fur's role as a regulator of the iron stimulon. Additional physiological and transcriptional analyses of G. sulfurreducens grown with various Fe(II) concentrations revealed the depth of Fur's involvement in energy metabolism and the existence of redundancy within the iron-regulatory network represented by IdeR, an alternative iron transcriptional regulator. These characteristics enable G. sulfurreducens to thrive in environments with fluctuating iron concentrations by providing it with a robust mechanism to maintain tight and deliberate control over intracellular iron homeostasis.
Collapse
|
13
|
Oglesby-Sherrouse AG, Murphy ER. Iron-responsive bacterial small RNAs: variations on a theme. Metallomics 2013; 5:276-86. [PMID: 23340911 DOI: 10.1039/c3mt20224k] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
For most living organisms, iron is both essential and potentially toxic, making the precise maintenance of iron homeostasis necessary for survival. To manage this paradox, bacteria regulate the acquisition, utilization, and storage of iron in response to its availability. The iron-dependent ferric uptake repressor (Fur) often mediates this iron-responsive regulation by both direct and indirect mechanisms. In 2002, Masse and Gottesman identified a novel target of Fur-mediated regulation in Escherichia coli: a gene encoding a small regulatory RNA (sRNA) termed RyhB. Under conditions of iron-limitation, RyhB is produced and functions to regulate the expression of several target genes encoding iron-utilizing enzymes, iron acquisition systems, and iron storage factors. This pivotal finding provided the missing link between environmental iron-limitation and previously observed decreases in certain iron-dependent metabolic pathways, a phenomenon now referred to as an "iron-sparing" response. The discovery of RyhB opened the door to the rapidly expanding field of bacterial iron-regulated sRNAs, which continue to be identified and described in numerous bacterial species. Most striking are findings that the impact of iron-responsive sRNA regulation often extends beyond iron homeostasis, particularly with regard to production of virulence-associated factors by pathogenic bacteria. This review discusses trends in the collective body of work on iron-regulated sRNAs, highlighting both the regulatory mechanisms they utilize to control target gene expression and the impact of this regulation on basic processes controlling bacterial physiology and virulence.
Collapse
Affiliation(s)
- Amanda G Oglesby-Sherrouse
- Department of Pharmaceutical Sciences, School of Pharmacy, Department of Microbiology and Immunology, School of Medicine, University of Maryland Baltimore, 20 Penn Street, Baltimore, MD, USA.
| | | |
Collapse
|
14
|
Harrison A, Santana EA, Szelestey BR, Newsom DE, White P, Mason KM. Ferric uptake regulator and its role in the pathogenesis of nontypeable Haemophilus influenzae. Infect Immun 2013; 81:1221-33. [PMID: 23381990 PMCID: PMC3639608 DOI: 10.1128/iai.01227-12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/21/2013] [Indexed: 11/20/2022] Open
Abstract
Nontypeable Haemophilus influenzae (NTHi) is a commensal microorganism of the human nasopharynx, and yet is also an opportunistic pathogen of the upper and lower respiratory tracts. Host microenvironments influence gene expression patterns, likely critical for NTHi persistence. The host sequesters iron as a mechanism to control microbial growth, and yet iron limitation influences gene expression and subsequent production of proteins involved in iron homeostasis. Careful regulation of iron uptake, via the ferric uptake regulator Fur, is essential in multiple bacteria, including NTHi. We hypothesized therefore that Fur contributes to iron homeostasis in NTHi, is critical for bacterial persistence, and likely regulates expression of virulence factors. Toward this end, fur was deleted in the prototypic NTHi clinical isolate, 86-028NP, and we assessed gene expression regulated by Fur. As expected, expression of the majority of genes that encode proteins with predicted roles in iron utilization was repressed by Fur. However, 14 Fur-regulated genes encode proteins with no known function, and yet may contribute to iron utilization or other biological functions. In a mammalian model of human otitis media, we determined that Fur was critical for bacterial persistence, indicating an important role for Fur-mediated iron homeostasis in disease progression. These data provide a profile of genes regulated by Fur in NTHi and likely identify additional regulatory pathways involved in iron utilization. Identification of such pathways will increase our understanding of how this pathogen can persist within host microenvironments, as a common commensal and, importantly, as a pathogen with significant clinical impact.
Collapse
Affiliation(s)
- Alistair Harrison
- The Center for Microbial Pathogenesis, The Research Institute at Nationwide Children's Hospital, The Center for Microbial Interface Biology, and Department of Pediatrics, The Ohio State University, Columbus, Ohio, USA.
| | | | | | | | | | | |
Collapse
|
15
|
Braun V, Hantke K. The Tricky Ways Bacteria Cope with Iron Limitation. IRON UPTAKE IN BACTERIA WITH EMPHASIS ON E. COLI AND PSEUDOMONAS 2013. [DOI: 10.1007/978-94-007-6088-2_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
16
|
VirF-independent regulation of Shigella virB transcription is mediated by the small RNA RyhB. PLoS One 2012; 7:e38592. [PMID: 22701677 PMCID: PMC3372517 DOI: 10.1371/journal.pone.0038592] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 05/11/2012] [Indexed: 01/12/2023] Open
Abstract
Infection of the human host by Shigella species requires the coordinated production of specific Shigella virulence factors, a process mediated largely by the VirF/VirB regulatory cascade. VirF promotes the transcription of virB, a gene encoding the transcriptional activator of several virulence-associated genes. This study reveals that transcription of virB is also regulated by the small RNA RyhB, and importantly, that this regulation is not achieved indirectly via modulation of VirF activity. These data are the first to demonstrate that the regulation of virB transcription can be uncoupled from the master regulator VirF. It is also established that efficient RyhB-dependent regulation of transcription is facilitated by specific nucleic acid sequences within virB. This study not only reveals RyhB-dependent regulation of virB transcription as a novel point of control in the central regulatory circuit modulating Shigella virulence, but also highlights the versatility of RyhB in controlling bacterial gene expression.
Collapse
|
17
|
Merchant SS, Helmann JD. Elemental economy: microbial strategies for optimizing growth in the face of nutrient limitation. Adv Microb Physiol 2012; 60:91-210. [PMID: 22633059 PMCID: PMC4100946 DOI: 10.1016/b978-0-12-398264-3.00002-4] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Microorganisms play a dominant role in the biogeochemical cycling of nutrients. They are rightly praised for their facility for fixing both carbon and nitrogen into organic matter, and microbial driven processes have tangibly altered the chemical composition of the biosphere and its surrounding atmosphere. Despite their prodigious capacity for molecular transformations, microorganisms are powerless in the face of the immutability of the elements. Limitations for specific elements, either fleeting or persisting over eons, have left an indelible trace on microbial genomes, physiology, and their very atomic composition. We here review the impact of elemental limitation on microbes, with a focus on selected genetic model systems and representative microbes from the ocean ecosystem. Evolutionary adaptations that enhance growth in the face of persistent or recurrent elemental limitations are evident from genome and proteome analyses. These range from the extreme (such as dispensing with a requirement for a hard to obtain element) to the extremely subtle (changes in protein amino acid sequences that slightly, but significantly, reduce cellular carbon, nitrogen, or sulfur demand). One near-universal adaptation is the development of sophisticated acclimation programs by which cells adjust their chemical composition in response to a changing environment. When specific elements become limiting, acclimation typically begins with an increased commitment to acquisition and a concomitant mobilization of stored resources. If elemental limitation persists, the cell implements austerity measures including elemental sparing and elemental recycling. Insights into these fundamental cellular properties have emerged from studies at many different levels, including ecology, biological oceanography, biogeochemistry, molecular genetics, genomics, and microbial physiology. Here, we present a synthesis of these diverse studies and attempt to discern some overarching themes.
Collapse
Affiliation(s)
- Sabeeha S. Merchant
- Institute for Genomics and Proteomics and Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - John D. Helmann
- Department of Microbiology, Cornell University, Ithaca, NY, 14853-8101
| |
Collapse
|