1
|
Cheng H, Men Y, An Y, Yu J, Zhang G, Li J, Wang X, Sun G, Wu Y. Overexpression of endothelial S1pr2 promotes blood-brain barrier disruption via JNK/c-Jun/MMP-9 pathway after traumatic brain injury in both in vivo and in vitro models. Front Pharmacol 2024; 15:1448570. [PMID: 39679379 PMCID: PMC11637860 DOI: 10.3389/fphar.2024.1448570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/25/2024] [Indexed: 12/17/2024] Open
Abstract
Objectives The disruption of blood-brain barrier (BBB) is associated with poor outcomes of TBI patients. Sphingosine-1-phosphate receptor 2 (S1pr2), a member of the G protein-coupled receptor family, is involved in endothelial activation and the regulation of vascular integrity. We hypothesized that the inhibition of S1pr2 may alleviate BBB disruption and explored potential underlying molecular mechanisms. Methods Lesion volumes were assessed utilizing Nissl staining; neurological outcomes were evaluated through a battery of neurobehavioral assessments; phenotype-associated proteins were scrutinized via Western blot analysis; levels of reactive oxygen species (ROS), neuronal apoptosis, and S1pr2 expression were determined using immunofluorescence staining. The impact of S1pr2 inhibition after TBI and its underlying mechanism were elucidated using the selective S1pr2 inhibitor JTE-013, the JNK phosphorylation inhibitor SP600125, and cellular models. Chip-qPCR was employed to further elucidate the binding sites of the transcription factor c-Jun. Results The expression of S1pr2 significantly increased following TBI in mice. Pharmacological inhibition of S1pr2 alleviated secondary injury with reduced lesion volume, ROS generation, cerebral oedema, neurological deficits, and neuronal apoptosis; BBB disruption was also mitigated, accompanied by reduced degradation of tight junction proteins and decreased induction of matrix metalloproteinases-9 (MMP-9) post-TBI. Mechanistically, TBI induces an increase in S1pr2 specifically in endothelial cells, leading to the promotion of MMP-9 transactivation by enhancing JNK/c-Jun signaling. This results in the degradation of tight junction proteins and increased BBB permeability. Through in vitro and in vivo Chip-qPCR experiments, we verified that AP-1a and AP-1b of MMP-9 promoter function as binding sites for phosphorylated c-Jun. Conclusion Our findings identify a previously undisclosed role of S1pr2 in the pathophysiology of TBI. The S1pr2 inhibition presents a novel approach to alleviate BBB disruption after TBI through regulating the JNK/c-Jun/MMP-9 pathway.
Collapse
Affiliation(s)
- Hongbo Cheng
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yijiao Men
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yaqing An
- Emergency Department, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiegang Yu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Gengshen Zhang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jiaming Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xiaoliang Wang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guozhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Yang Wu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Mikucki A, Kahler CM. Microevolution and Its Impact on Hypervirulence, Antimicrobial Resistance, and Vaccine Escape in Neisseria meningitidis. Microorganisms 2023; 11:3005. [PMID: 38138149 PMCID: PMC10745880 DOI: 10.3390/microorganisms11123005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Neisseria meningitidis is commensal of the human pharynx and occasionally invades the host, causing the life-threatening illness invasive meningococcal disease. The meningococcus is a highly diverse and adaptable organism thanks to natural competence, a propensity for recombination, and a highly repetitive genome. These mechanisms together result in a high level of antigenic variation to invade diverse human hosts and evade their innate and adaptive immune responses. This review explores the ways in which this diversity contributes to the evolutionary history and population structure of the meningococcus, with a particular focus on microevolution. It examines studies on meningococcal microevolution in the context of within-host evolution and persistent carriage; microevolution in the context of meningococcal outbreaks and epidemics; and the potential of microevolution to contribute to antimicrobial resistance and vaccine escape. A persistent theme is the idea that the process of microevolution contributes to the development of new hyperinvasive meningococcal variants. As such, microevolution in this species has significant potential to drive future public health threats in the form of hypervirulent, antibiotic-resistant, vaccine-escape variants. The implications of this on current vaccination strategies are explored.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA 6009, Australia;
- Wesfarmers Centre of Vaccines and Infectious Diseases, Telethon Kids Institute, University of Western Australia, Perth, WA 6009, Australia
| |
Collapse
|
3
|
Moran TE, Hammers DE, Lee SW. The Role of Host-Cellular Responses in COVID-19 Endothelial Dysfunction. Curr Drug Targets 2022; 23:1555-1566. [PMID: 35748550 DOI: 10.2174/1389450123666220624094940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/11/2022] [Accepted: 05/11/2022] [Indexed: 01/25/2023]
Abstract
SARS-CoV2, Severe acute respiratory syndrome coronavirus 2, is a novel member of the human coronavirus family that has recently emerged worldwide to cause COVID-19 disease. COVID-19 disease has been declared a worldwide pandemic with over 270 million total cases, and >5 million deaths as of this writing. Although co-morbidities and preexisting conditions have played a significant role in the severity of COVID-19, the hallmark feature of severe disease associated with SARS-CoV2 is respiratory failure. Recent findings have demonstrated a key role for endothelial dysfunction caused by SARS-CoV2 in these clinical outcomes, characterized by endothelial inflammation, the persistence of a pro-coagulative state, and major recruitment of leukocytes and other immune cells to localized areas of endothelial dysfunction. Though it is generally recognized that endothelial impairment is a major contributor to COVID-19 disease, studies to examine the initial cellular events involved in triggering endothelial dysfunction are needed. In this article, we review the general strategy of pathogens to exploit endothelial cells and the endothelium to cause disease. We discuss the role of the endothelium in COVID-19 disease and highlight very recent findings that identify key signaling and cellular events that are associated with the initiation of SARS-CoV2 infection. These studies may reveal specific molecular pathways that can serve as potential means of therapeutic development against COVID-19 disease.
Collapse
Affiliation(s)
- Thomas E Moran
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Hammers
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Shaun W Lee
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, USA.,Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA.,W.M. Keck Center for Transgene Research, University of Notre Dame, Notre Dame, IN, USA.,Boler-Parseghian Center for Rare and Neglected Diseases, University of Notre Dame, Notre Dame, IN, USA
| |
Collapse
|
4
|
Mikucki A, McCluskey NR, Kahler CM. The Host-Pathogen Interactions and Epicellular Lifestyle of Neisseria meningitidis. Front Cell Infect Microbiol 2022; 12:862935. [PMID: 35531336 PMCID: PMC9072670 DOI: 10.3389/fcimb.2022.862935] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 02/28/2022] [Indexed: 01/17/2023] Open
Abstract
Neisseria meningitidis is a gram-negative diplococcus and a transient commensal of the human nasopharynx. It shares and competes for this niche with a number of other Neisseria species including N. lactamica, N. cinerea and N. mucosa. Unlike these other members of the genus, N. meningitidis may become invasive, crossing the epithelium of the nasopharynx and entering the bloodstream, where it rapidly proliferates causing a syndrome known as Invasive Meningococcal Disease (IMD). IMD progresses rapidly to cause septic shock and meningitis and is often fatal despite aggressive antibiotic therapy. While many of the ways in which meningococci survive in the host environment have been well studied, recent insights into the interactions between N. meningitidis and the epithelial, serum, and endothelial environments have expanded our understanding of how IMD develops. This review seeks to incorporate recent work into the established model of pathogenesis. In particular, we focus on the competition that N. meningitidis faces in the nasopharynx from other Neisseria species, and how the genetic diversity of the meningococcus contributes to the wide range of inflammatory and pathogenic potentials observed among different lineages.
Collapse
Affiliation(s)
- August Mikucki
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
| | - Nicolie R. McCluskey
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- College of Science, Health, Engineering and Education, Telethon Kids Institute, Murdoch University, Perth, WA, Australia
| | - Charlene M. Kahler
- Marshall Centre for Infectious Diseases Research and Training, School of Biomedical Sciences, University of Western Australia, Perth, WA, Australia
- *Correspondence: Charlene M. Kahler,
| |
Collapse
|
5
|
Marullo S, Scott MGH, Enslen H, Coureuil M. Mechanical Activation of the β 2-Adrenergic Receptor by Meningococcus: A Historical and Future Perspective Analysis of How a Bacterial Probe Can Reveal Signalling Pathways in Endothelial Cells, and a Unique Mode of Receptor Activation Involving Its N-Terminal Glycan Chains. Front Endocrinol (Lausanne) 2022; 13:883568. [PMID: 35586623 PMCID: PMC9108228 DOI: 10.3389/fendo.2022.883568] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
More than 12 years have passed since the seminal observation that meningococcus, a pathogen causing epidemic meningitis in humans, occasionally associated with infectious vasculitis and septic shock, can promote the translocation of β-arrestins to the cell surface beneath bacterial colonies. The cellular receptor used by the pathogen to induce signalling in host cells and allowing it to open endothelial cell junctions and reach meninges was unknown. The involvement of β-arrestins, which are scaffolding proteins regulating G protein coupled receptor signalling and function, incited us to specifically investigate this class of receptors. In this perspective article we will summarize the events leading to the discovery that the β2-adrenergic receptor is the receptor that initiates the signalling cascades induced by meningococcus in host cells. This receptor, however, cannot mediate cell infection on its own. It needs to be pre-associated with an "early" adhesion receptor, CD147, within a hetero-oligomeric complex, stabilized by the cytoskeletal protein α-actinin 4. It then required several years to understand how the pathogen actually activates the signalling receptor. Once bound to the N-terminal glycans of the β2-adrenergic receptor, meningococcus provides a mechanical stimulation that induces the biased activation of β-arrestin-mediated signalling pathways. This activating mechanical stimulus can be reproduced in the absence of any pathogen by applying equivalent forces on receptor glycans. Mechanical activation of the β2-adrenergic receptor might have a physiological role in signalling events promoted in the context of cell-to-cell interaction.
Collapse
Affiliation(s)
- Stefano Marullo
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
- *Correspondence: Stefano Marullo,
| | - Mark G. H. Scott
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Hervé Enslen
- Université de Paris, Institut Cochin, INSERM U1016, CNRS UMR 8104, Paris, France
| | - Mathieu Coureuil
- Université de Paris, Institut-Necker-Enfants-Malades, INSERM U1151, CNRS UMR 8253, Paris, France
| |
Collapse
|
6
|
Interactions and Signal Transduction Pathways Involved during Central Nervous System Entry by Neisseria meningitidis across the Blood-Brain Barriers. Int J Mol Sci 2020; 21:ijms21228788. [PMID: 33233688 PMCID: PMC7699760 DOI: 10.3390/ijms21228788] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 11/20/2022] Open
Abstract
The Gram-negative diplococcus Neisseria meningitidis, also called meningococcus, exclusively infects humans and can cause meningitis, a severe disease that can lead to the death of the afflicted individuals. To cause meningitis, the bacteria have to enter the central nervous system (CNS) by crossing one of the barriers protecting the CNS from entry by pathogens. These barriers are represented by the blood–brain barrier separating the blood from the brain parenchyma and the blood–cerebrospinal fluid (CSF) barriers at the choroid plexus and the meninges. During the course of meningococcal disease resulting in meningitis, the bacteria undergo several interactions with host cells, including the pharyngeal epithelium and the cells constituting the barriers between the blood and the CSF. These interactions are required to initiate signal transduction pathways that are involved during the crossing of the meningococci into the blood stream and CNS entry, as well as in the host cell response to infection. In this review we summarize the interactions and pathways involved in these processes, whose understanding could help to better understand the pathogenesis of meningococcal meningitis.
Collapse
|
7
|
Custodio R, Johnson E, Liu G, Tang CM, Exley RM. Commensal Neisseria cinerea impairs Neisseria meningitidis microcolony development and reduces pathogen colonisation of epithelial cells. PLoS Pathog 2020; 16:e1008372. [PMID: 32208456 PMCID: PMC7092958 DOI: 10.1371/journal.ppat.1008372] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
It is increasingly being recognised that the interplay between commensal and pathogenic bacteria can dictate the outcome of infection. Consequently, there is a need to understand how commensals interact with their human host and influence pathogen behaviour at epithelial surfaces. Neisseria meningitidis, a leading cause of sepsis and meningitis, exclusively colonises the human nasopharynx and shares this niche with several other Neisseria species, including the commensal Neisseria cinerea. Here, we demonstrate that during adhesion to human epithelial cells N. cinerea co-localises with molecules that are also recruited by the meningococcus, and show that, similar to N. meningitidis, N. cinerea forms dynamic microcolonies on the cell surface in a Type four pilus (Tfp) dependent manner. Finally, we demonstrate that N. cinerea colocalises with N. meningitidis on the epithelial cell surface, limits the size and motility of meningococcal microcolonies, and impairs the effective colonisation of epithelial cells by the pathogen. Our data establish that commensal Neisseria can mimic and affect the behaviour of a pathogen on epithelial cell surfaces.
Collapse
Affiliation(s)
- Rafael Custodio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Errin Johnson
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Guangyu Liu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Christoph M. Tang
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Rachel M. Exley
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
8
|
Kim BJ, Schubert-Unkmeir A. In Vitro Models for Studying the Interaction of Neisseria meningitidis with Human Brain Endothelial Cells. Methods Mol Biol 2019; 1969:135-148. [PMID: 30877675 DOI: 10.1007/978-1-4939-9202-7_10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Bacterial meningitis is a serious, life-threatening infection of the central nervous system (CNS). To cause meningitis, bacteria must interact with and penetrate the meningeal blood-cerebrospinal fluid barrier (mB/CSFB), which comprises highly specialized brain endothelial cells. Neisseria meningitidis (meningococcus) is a leading cause of bacterial meningitis, and examination meningococcus' interaction with the BBB is critical for understanding disease progression. To examine specific interactions, in vitro mB/CSFB models have been developed and employed and are of great importance because in vivo models have been difficult to produce considering Neisseria meningitidis is exclusively a human pathogen. Most in vitro blood-brain barrier and mB/CSF models use primary and immortalized brain endothelial cells, and these models have been used to examine bacterial-mB/CSFB interactions by a variety of pathogens. This chapter describes the use of past and current in vitro brain endothelial cells to model Neisseria meningitidis interaction with the mB/CSFB, and inform on the standard operating procedure for their use.
Collapse
Affiliation(s)
- Brandon J Kim
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | | |
Collapse
|
9
|
Lécuyer H, Virion Z, Barnier JP, Matczak S, Bourdoulous S, Bianchini E, Saller F, Borgel D, Nassif X, Coureuil M. An ADAM-10 dependent EPCR shedding links meningococcal interaction with endothelial cells to purpura fulminans. PLoS Pathog 2018; 14:e1006981. [PMID: 29630665 PMCID: PMC5908201 DOI: 10.1371/journal.ppat.1006981] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 04/19/2018] [Accepted: 03/20/2018] [Indexed: 01/03/2023] Open
Abstract
Purpura fulminans is a deadly complication of Neisseria meningitidis infections due to extensive thrombosis of microvessels. Although a Disseminated Intra-vascular Coagulation syndrome (DIC) is frequently observed during Gram negative sepsis, it is rarely associated with extensive thrombosis like those observed during meningococcemia, suggesting that the meningococcus induces a specific dysregulation of coagulation. Another specific feature of N. meningitidis pathogenesis is its ability to colonize microvessels endothelial cells via type IV pili. Importantly, endothelial cells are key in controlling the coagulation cascade through the activation of the potent anticoagulant Protein C (PC) thanks to two endothelial cell receptors among which the Endothelial Protein C Receptor (EPCR). Considering that congenital or acquired deficiencies of PC are associated with purpura fulminans, we hypothesized that a defect in the activation of PC following meningococcal adhesion to microvessels is responsible for the thrombotic events observed during meningococcemia. Here we showed that the adhesion of N. meningitidis on endothelial cells results in a rapid and intense decrease of EPCR expression by inducing its cleavage in a process know as shedding. Using siRNA experiments and CRISPR/Cas9 genome edition we identified ADAM10 (A Disintegrin And Metalloproteinase-10) as the protease responsible for this shedding. Surprisingly, ADAM17, the only EPCR sheddase described so far, was not involved in this process. Finally, we showed that this ADAM10-mediated shedding of EPCR induced by the meningococcal interaction with endothelial cells was responsible for an impaired activation of Protein C. This work unveils for the first time a direct link between meningococcal adhesion to endothelial cells and a severe dysregulation of coagulation, and potentially identifies new therapeutic targets for meningococcal purpura fulminans. Neisseria meningitidis (meningococcus) is responsible for a severe syndrome called purpura fulminans in which the coagulation system is totally dysregulated, leading to an extensive occlusion of blood microvessels. The pathogenesis of this syndrome is still not understood. Here we show that the meningococcus, when adhering on the apical surface of endothelial cells, induces the activation of membranous protease named ADAM-10, which in turn hydrolyses a cellular receptor called EPCR. The latter is key for the activation of a circulating potent anticoagulant, the Protein C (PC). PC activation is then impaired following meningococcal adhesion on endothelial cells. This work unveils for the first time a specific dysregulation of coagulation induced by the meningococcus and potentially identifies new therapeutic targets for meningococcal purpura fulminans.
Collapse
Affiliation(s)
- Hervé Lécuyer
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service de Microbiologie Clinique, Paris, France
- * E-mail:
| | - Zoé Virion
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Jean-Philippe Barnier
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service de Microbiologie Clinique, Paris, France
| | - Soraya Matczak
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Sandrine Bourdoulous
- Université Paris Descartes, Paris, France
- Institut Cochin, INSERM U1016, CNRS UMR8104, Paris, France
| | - Elsa Bianchini
- INSERM UMR-S1176, Université Paris-Sud, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - François Saller
- INSERM UMR-S1176, Université Paris-Sud, Université Paris Saclay, Le Kremlin-Bicêtre, France
| | - Delphine Borgel
- INSERM UMR-S1176, Université Paris-Sud, Université Paris Saclay, Le Kremlin-Bicêtre, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service d’Hématologie Biologique, Paris, France
| | - Xavier Nassif
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
- Assistance Publique–Hôpitaux de Paris, Hôpital Universitaire Necker Enfants Malades, Service de Microbiologie Clinique, Paris, France
| | - Mathieu Coureuil
- Institut Necker Enfants Malades, INSERM U1151, CNRS UMR8253, Paris, France
- Université Paris Descartes, Paris, France
| |
Collapse
|
10
|
Response of the respiratory mucosal cells to mycobacterium avium subsp. Hominissuis microaggregate. Arch Microbiol 2018; 200:729-742. [PMID: 29383404 DOI: 10.1007/s00203-018-1479-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 11/06/2017] [Accepted: 01/15/2018] [Indexed: 01/10/2023]
Abstract
Mycobacterium avium: subsp. hominissuis (MAH) is an opportunistic pathogen that commonly infects immunocompromised individuals. Recently, we described an invasive phenotypic change MAH undergoes when incubated with lung airway epithelial host cells for 24 h, which is accompanied with microaggregate formation in vitro. The microaggregate phenotype also resulted in higher colonization in the lungs of mice early during infection. Previously, we identified genes highly regulated during microaggregate formation and further characterized the function of two highly upregulated bacterial proteins, mycobacterial binding protein-1 (MBP-1) and mycobacterial inversion protein-1 (MIP-1), which were found to be involved in binding and invasion of the respiratory mucosa. While these studies are valuable in understanding the pathogenesis of MAH, they primarily investigated the bacteria during microaggregate infection without commenting on the differences in the host response to microaggregate and planktonic infection. The bacteria-host interaction between microaggregates and epithelial cells was examined in a variety of assays. Using a transwell polarized epithelial cell model, microaggregates translocated through the monolayer more efficiently than planktonic bacteria at set timepoints. In addition, during infection with microaggregate and planktonic bacteria, host phosphorylated proteins were identified revealing differences in immune response, glutathione synthesis, and apoptosis. The host immune response was further investigated by measuring pro-inflammatory cytokine secretion during microaggregate and planktonic infection of BEAS-2B bronchial epithelial cells. The epithelial cells secreted more CCL5 during infection with microaggregates suggesting that this chemokine may play an important role during microaggregate invasion. Subsequent experiments showed that microaggregates are formed more efficiently in the presence of CCL5, suggesting that MAH had evolved a strategy to use the host response in its benefit. Collectively, this study establishes the different nature of infection by planktonic bacteria and microaggregates.
Collapse
|
11
|
Bille E, Meyer J, Jamet A, Euphrasie D, Barnier JP, Brissac T, Larsen A, Pelissier P, Nassif X. A virulence-associated filamentous bacteriophage of Neisseria meningitidis increases host-cell colonisation. PLoS Pathog 2017; 13:e1006495. [PMID: 28704569 PMCID: PMC5526601 DOI: 10.1371/journal.ppat.1006495] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2017] [Revised: 07/25/2017] [Accepted: 06/27/2017] [Indexed: 01/31/2023] Open
Abstract
Neisseria meningitidis is a commensal of human nasopharynx. In some circumstances, this bacteria can invade the bloodstream and, after crossing the blood brain barrier, the meninges. A filamentous phage, designated MDAΦ for Meningococcal Disease Associated, has been associated with invasive disease. In this work we show that the prophage is not associated with a higher virulence during the bloodstream phase of the disease. However, looking at the interaction of N. meningitidis with epithelial cells, a step essential for colonization of the nasopharynx, we demonstrate that the presence of the prophage, via the production of viruses, increases colonization of encapsulated meningococci onto monolayers of epithelial cells. The analysis of the biomass covering the epithelial cells revealed that meningococci are bound to the apical surface of host cells by few layers of heavily piliated bacteria, whereas, in the upper layers, bacteria are non-piliated but surrounded by phage particles which (i) form bundles of filaments, and/or (ii) are in some places associated with bacteria. The latter are likely to correspond to growing bacteriophages during their extrusion through the outer membrane. These data suggest that, as the biomass increases, the loss of piliation in the upper layers of the biomass does not allow type IV pilus bacterial aggregation, but is compensated by a large production of phage particles that promote bacterial aggregation via the formation of bundles of phage filaments linked to the bacterial cell walls. We propose that MDAΦ by increasing bacterial colonization in the mucosa at the site-of-entry, increase the occurrence of diseases. Bacteriophages are bacterial viruses, which in some cases encode for virulence factors and increase bacterial virulence. Comparative genomic of several strains of Neisseria meningitidis, a major human pathogen, identified the presence of an 8kb prophage in strains belonging to invasive clonal complexes. The analysis of this filamentous bacteriophage, designated MDA for Meningococcal Disease Associated (MDAΦ) did not reveal any obvious virulence factors responsible for an increase invasiveness of strains carrying this prophage. Using our animal model mimicking the septicemic phase of the neisserial invasive diseases, we demonstrate that the presence of the MDAΦ is not associated with a higher virulence, but we show that the bacteriophage particles, by promoting bacteria-bacteria interactions, increase the biomass of bacteria colonizing a monolayer of epithelial cells. These data suggest that the increased invasiveness mediated by the MDAΦ bacteriophage is likely to be due to a better ability of the bacteria to colonize the nasopharyngeal mucosa.
Collapse
Affiliation(s)
- Emmanuelle Bille
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
- Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
- * E-mail:
| | - Julie Meyer
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Anne Jamet
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
- Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Daniel Euphrasie
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Jean-Philippe Barnier
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
- Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Terry Brissac
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Anna Larsen
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
| | - Philippe Pelissier
- Service de Chirurgie Reconstructrice et Plastique, Fondation Hôpital Saint Joseph, Paris, France
| | - Xavier Nassif
- Institut Necker-Enfants Malades, INSERM U1151, CNRS UMR 8253, Paris, France
- Université Paris Descartes, Paris, France
- Service de Microbiologie, Hôpital Necker-Enfants Malades, Assistance Publique-Hôpitaux de Paris, Paris, France
| |
Collapse
|
12
|
Ruch TR, Engel JN. Targeting the Mucosal Barrier: How Pathogens Modulate the Cellular Polarity Network. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a027953. [PMID: 28193722 DOI: 10.1101/cshperspect.a027953] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The mucosal barrier is composed of polarized epithelial cells with distinct apical and basolateral surfaces separated by tight junctions and serves as both a physical and immunological barrier to incoming pathogens. Specialized polarity proteins are critical for establishment and maintenance of polarity. Many human pathogens have evolved virulence mechanisms that target the polarity network to enhance binding, create replication niches, move through the barrier by transcytosis, or bypass the barrier by disrupting cell-cell junctions. This review summarizes recent advances and compares and contrasts how three important human pathogens that colonize mucosal surfaces, Pseudomonas aeruginosa, Helicobacter pylori, and Neisseria meningitidis, subvert the host cell polarization machinery during infection.
Collapse
Affiliation(s)
- Travis R Ruch
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143
| | - Joanne N Engel
- Department of Medicine, University of California, San Francisco, San Francisco, California 94143.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, California 94143
| |
Collapse
|
13
|
Schubert-Unkmeir A. Molecular mechanisms involved in the interaction of Neisseria meningitidis with cells of the human blood-cerebrospinal fluid barrier. Pathog Dis 2017; 75:3061359. [PMID: 28334198 DOI: 10.1093/femspd/ftx023] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/02/2017] [Indexed: 11/15/2022] Open
Abstract
Neisseria meningitidis is one of the most common aetiological agents of bacterial meningitis, affecting predominantly children and young adults. The interaction of N. meningitidis with human endothelial cells lining blood vessels of the blood-cerebrospinal fluid barrier (B-CSFB) is critical for meningitis development. In recent decades, there has been a significant increase in understanding of the molecular mechanisms involved in the interaction of N. meningitidis with brain vascular cells. In this review, we will describe how N. meningitidis adheres to the brain vasculature, may enter inside these cells, hijack receptor signalling pathways and alter host-cell responses in order to traverse the B-CSFB.
Collapse
|
14
|
Vacca I, Del Tordello E, Gasperini G, Pezzicoli A, Di Fede M, Rossi Paccani S, Marchi S, Mubaiwa TD, Hartley-Tassell LE, Jennings MP, Seib KL, Masignani V, Pizza M, Serruto D, Aricò B, Delany I. Neisserial Heparin Binding Antigen (NHBA) Contributes to the Adhesion of Neisseria meningitidis to Human Epithelial Cells. PLoS One 2016; 11:e0162878. [PMID: 27780200 PMCID: PMC5079597 DOI: 10.1371/journal.pone.0162878] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 08/30/2016] [Indexed: 11/19/2022] Open
Abstract
Neisserial Heparin Binding Antigen (NHBA) is a surface-exposed lipoprotein ubiquitously expressed by Neisseria meningitidis strains and an antigen of the Bexsero® vaccine. NHBA binds heparin through a conserved Arg-rich region that is the target of two proteases, the meningococcal NalP and human lactoferrin (hLf). In this work, in vitro studies showed that recombinant NHBA protein was able to bind epithelial cells and mutations of the Arg-rich tract abrogated this binding. All N-terminal and C-terminal fragments generated by NalP or hLf cleavage, regardless of the presence or absence of the Arg-rich region, did not bind to cells, indicating that a correct positioning of the Arg-rich region within the full length protein is crucial. Moreover, binding was abolished when cells were treated with heparinase III, suggesting that this interaction is mediated by heparan sulfate proteoglycans (HSPGs). N. meningitidis nhba knockout strains showed a significant reduction in adhesion to epithelial cells with respect to isogenic wild-type strains and adhesion of the wild-type strain was inhibited by anti-NHBA antibodies in a dose-dependent manner. Overall, the results demonstrate that NHBA contributes to meningococcal adhesion to epithelial cells through binding to HSPGs and suggest a possible role of anti-Bexsero® antibodies in the prevention of colonization.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tsisti D. Mubaiwa
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | | | - Michael P. Jennings
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Kate L. Seib
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | | | | | | | | | | |
Collapse
|
15
|
Simonis A, Schubert-Unkmeir A. Interactions of meningococcal virulence factors with endothelial cells at the human blood-cerebrospinal fluid barrier and their role in pathogenicity. FEBS Lett 2016; 590:3854-3867. [PMID: 27498906 DOI: 10.1002/1873-3468.12344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 07/08/2016] [Accepted: 07/31/2016] [Indexed: 01/06/2023]
Abstract
The Gram-negative extracellular bacterium Neisseria meningitidis is one of the most common aetiological agents of bacterial meningitis affecting predominantly young children worldwide. This bacterium is normally a quiescent coloniser of the upper respiratory tract, but in some individuals it enters the blood stream and causes invasive diseases, such as septicaemia and meningitis. Interactions of N. meningitidis with human endothelial cells are crucially involved in pathogencitiy, and great efforts have been made to understand these molecular interactions. The aim of this review article is to provide an overview of the interactions of meningococcal virulence factors with host endothelial cells at the blood-cerebrospinal fluid barrier.
Collapse
Affiliation(s)
- Alexander Simonis
- Division of Hematology, University Hospital Zurich, Switzerland.,Institute of Hygiene and Microbiology, University of Wuerzburg, Germany
| | | |
Collapse
|
16
|
Barrile R, Kasendra M, Rossi-Paccani S, Merola M, Pizza M, Baldari C, Soriani M, Aricò B. Neisseria meningitidis subverts the polarized organization and intracellular trafficking of host cells to cross the epithelial barrier. Cell Microbiol 2015; 17:1365-75. [PMID: 25801707 DOI: 10.1111/cmi.12439] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 03/13/2015] [Accepted: 03/14/2015] [Indexed: 12/19/2022]
Abstract
Translocation of the nasopharyngeal barrier by Neisseria meningitidis occurs via an intracellular microtubule-dependent pathway and represents a crucial step in its pathogenesis. Despite this fact, the interaction of invasive meningococci with host subcellular compartments and the resulting impact on their organization and function have not been investigated. The influence of serogroup B strain MC58 on host cell polarity and intracellular trafficking system was assessed by confocal microscopy visualization of different plasma membrane-associated components (such as E-cadherin, ZO-1 and transferrin receptor) and evaluation of the transferrin uptake and recycling in infected Calu-3 monolayers. Additionally, the association of N. meningitidis with different endosomal compartments was evaluated through the concomitant staining of bacteria and markers specific for Rab11, Rab22a, Rab25 and Rab3 followed by confocal microscopy imaging. Subversion of the host cell architecture and intracellular trafficking system, denoted by mis-targeting of cell plasma membrane components and perturbations of transferrin transport, was shown to occur in response to N. meningitidis infection. Notably, the appearance of all of these events seems to positively correlate with the efficiency of N. meningitidis to cross the epithelial barrier. Our data reveal for the first time that N. meningitidis is able to modulate the host cell architecture and function, which might serve as a strategy of this pathogen for overcoming the nasopharyngeal barrier without affecting the monolayer integrity.
Collapse
Affiliation(s)
- Riccardo Barrile
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy.,Biomimetic Microsystems platform, Wyss Institute for Biologically Inspired Engineering at Harvard University, Boston, MA, 02115, USA
| | - Magdalena Kasendra
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Silvia Rossi-Paccani
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Marcello Merola
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy.,Department of Biology, University of Naples 'Federico II', Napoli, Italy
| | - Mariagrazia Pizza
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Cosima Baldari
- Department of Life Sciences, University of Siena, Siena, Italy
| | - Marco Soriani
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| | - Beatrice Aricò
- Department of Microbial Molecular Biology, Novartis Vaccines and Diagnostics (a GSK company), Siena, Italy
| |
Collapse
|
17
|
Pizza M, Rappuoli R. Neisseria meningitidis: pathogenesis and immunity. Curr Opin Microbiol 2014; 23:68-72. [PMID: 25461575 DOI: 10.1016/j.mib.2014.11.006] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 11/08/2014] [Accepted: 11/10/2014] [Indexed: 12/20/2022]
Abstract
The recent advances in cellular microbiology, genomics, and immunology has opened new horizons in the understanding of meningococcal pathogenesis and in the definition of new prophylactic intervention. It is now clear that Neissera meningitidis has evolved a number of surface structures to mediate interaction with host cells and a number of mechanisms to subvert the immune system and escape complement-mediated killing. In this review we report the more recent findings on meningococcal adhesion and on the bacteria-complement interaction highlighting the redundancy of these mechanisms. An effective vaccine against meningococcus B, based on multiple antigens with different function, has been recently licensed. The antibodies induced by the 4CMenB vaccine could mediate bacterial killing by activating directly the classical complement pathway or, indirectly, by preventing binding of fH on the bacterial surface and interfering with colonization.
Collapse
|
18
|
Dando SJ, Mackay-Sim A, Norton R, Currie BJ, St John JA, Ekberg JAK, Batzloff M, Ulett GC, Beacham IR. Pathogens penetrating the central nervous system: infection pathways and the cellular and molecular mechanisms of invasion. Clin Microbiol Rev 2014; 27:691-726. [PMID: 25278572 PMCID: PMC4187632 DOI: 10.1128/cmr.00118-13] [Citation(s) in RCA: 289] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The brain is well protected against microbial invasion by cellular barriers, such as the blood-brain barrier (BBB) and the blood-cerebrospinal fluid barrier (BCSFB). In addition, cells within the central nervous system (CNS) are capable of producing an immune response against invading pathogens. Nonetheless, a range of pathogenic microbes make their way to the CNS, and the resulting infections can cause significant morbidity and mortality. Bacteria, amoebae, fungi, and viruses are capable of CNS invasion, with the latter using axonal transport as a common route of infection. In this review, we compare the mechanisms by which bacterial pathogens reach the CNS and infect the brain. In particular, we focus on recent data regarding mechanisms of bacterial translocation from the nasal mucosa to the brain, which represents a little explored pathway of bacterial invasion but has been proposed as being particularly important in explaining how infection with Burkholderia pseudomallei can result in melioidosis encephalomyelitis.
Collapse
Affiliation(s)
- Samantha J Dando
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Alan Mackay-Sim
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Robert Norton
- Townsville Hospital, Townsville, Queensland, Australia
| | - Bart J Currie
- Menzies School of Health Research and Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - James A St John
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia
| | - Jenny A K Ekberg
- Eskitis Institute for Drug Discovery, Griffith University, Brisbane, Queensland, Australia School of Biomedical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Michael Batzloff
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| | - Glen C Ulett
- School of Medical Science and Griffith Health Institute, Griffith University, Gold Coast, Queensland, Australia
| | - Ifor R Beacham
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
19
|
Pathogenic Neisseria meningitidis utilizes CD147 for vascular colonization. Nat Med 2014; 20:725-31. [PMID: 24880614 PMCID: PMC7095922 DOI: 10.1038/nm.3563] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Accepted: 04/10/2014] [Indexed: 01/07/2023]
Abstract
Neisseria meningitidis is a cause of meningitis epidemics worldwide and of rapidly progressing fatal septic shock. A crucial step in the pathogenesis of invasive meningococcal infections is the adhesion of bloodborne meningococci to both peripheral and brain endothelia, leading to major vascular dysfunction. Initial adhesion of pathogenic strains to endothelial cells relies on meningococcal type IV pili, but the endothelial receptor for bacterial adhesion remains unknown. Here, we report that the immunoglobulin superfamily member CD147 (also called extracellular matrix metalloproteinase inducer (EMMPRIN) or Basigin) is a critical host receptor for the meningococcal pilus components PilE and PilV. Interfering with this interaction potently inhibited the primary attachment of meningococci to human endothelial cells in vitro and prevented colonization of vessels in human brain tissue explants ex vivo and in humanized mice in vivo. These findings establish the molecular events by which meningococci target human endothelia, and they open new perspectives for treatment and prevention of meningococcus-induced vascular dysfunctions.
Collapse
|
20
|
The hypervariable region of meningococcal major pilin PilE controls the host cell response via antigenic variation. mBio 2014; 5:e01024-13. [PMID: 24520062 PMCID: PMC3950515 DOI: 10.1128/mbio.01024-13] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Type IV pili (Tfp) are expressed by many Gram-negative bacteria to promote aggregation, adhesion, internalization, twitching motility, or natural transformation. Tfp of Neisseria meningitidis, the causative agent of cerebrospinal meningitis, are involved in the colonization of human nasopharynx. After invasion of the bloodstream, Tfp allow adhesion of N. meningitidis to human endothelial cells, which leads to the opening of the blood-brain barrier and meningitis. To achieve firm adhesion, N. meningitidis induces a host cell response that results in elongation of microvilli surrounding the meningococcal colony. Here we study the role of the major pilin subunit PilE during host cell response using human dermal microvascular endothelial cells and the pharynx carcinoma-derived FaDu epithelial cell line. We first show that some PilE variants are unable to induce a host cell response. By engineering PilE mutants, we observed that the PilE C-terminus domain, which contains a disulfide bonded region (D-region), is critical for the host cell response and that hypervariable regions confer different host cell specificities. Moreover, the study of point mutants of the pilin D-region combined with structural modeling of PilE revealed that the D-region contains two independent regions involved in signaling to human dermal microvascular endothelial cells (HDMECs) or FaDu cells. Our results indicate that the diversity of the PilE D-region sequence allows the induction of the host cell response via several receptors. This suggests that Neisseria meningitidis has evolved a powerful tool to adapt easily to many niches by modifying its ability to interact with host cells. Type IV pili (Tfp) are long appendages expressed by many Gram-negative bacteria, including Neisseria meningitidis, the causative agent of cerebrospinal meningitis. These pili are involved in many aspects of pathogenesis: natural competence, aggregation, adhesion, and twitching motility. More specifically, Neisseria meningitidis, which is devoid of a secretion system to manipulate its host, has evolved its Tfp to signal to brain endothelial cells and open the blood-brain barrier. In this report, we investigate, at the molecular level, the involvement of the major pilin subunit PilE in host cell response. Our results indicate that the PilE C-terminal domain, which contains a disulfide bonded region (D-region), is critical for the host cell response and contains two independent regions involved in host cell signaling.
Collapse
|
21
|
Soyer M, Charles-Orszag A, Lagache T, Machata S, Imhaus AF, Dumont A, Millien C, Olivo-Marin JC, Duménil G. Early sequence of events triggered by the interaction ofNeisseria meningitidiswith endothelial cells. Cell Microbiol 2013; 16:878-95. [DOI: 10.1111/cmi.12248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/12/2013] [Accepted: 12/03/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Magali Soyer
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Arthur Charles-Orszag
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Thibault Lagache
- Institut Pasteur; Unité d'Analyse d'Images Quantitative; Centre National de la Recherche Scientifique; Unité de Recherche Associée 2582; Paris France
| | - Silke Machata
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Anne-Flore Imhaus
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Audrey Dumont
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Corinne Millien
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur; Unité d'Analyse d'Images Quantitative; Centre National de la Recherche Scientifique; Unité de Recherche Associée 2582; Paris France
| | - Guillaume Duménil
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| |
Collapse
|
22
|
Abstract
Type IV pili (T4P) are multifunctional protein fibers produced on the surfaces of a wide variety of bacteria and archaea. The major subunit of T4P is the type IV pilin, and structurally related proteins are found as components of the type II secretion (T2S) system, where they are called pseudopilins; of DNA uptake/competence systems in both Gram-negative and Gram-positive species; and of flagella, pili, and sugar-binding systems in the archaea. This broad distribution of a single protein family implies both a common evolutionary origin and a highly adaptable functional plan. The type IV pilin is a remarkably versatile architectural module that has been adopted widely for a variety of functions, including motility, attachment to chemically diverse surfaces, electrical conductance, acquisition of DNA, and secretion of a broad range of structurally distinct protein substrates. In this review, we consider recent advances in this research area, from structural revelations to insights into diversity, posttranslational modifications, regulation, and function.
Collapse
|
23
|
Rendón MA, Hockenberry AM, McManus SA, So M. Sigma factor RpoN (σ54) regulates pilE transcription in commensal Neisseria elongata. Mol Microbiol 2013; 90:103-13. [PMID: 23899162 PMCID: PMC4474139 DOI: 10.1111/mmi.12350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/28/2013] [Indexed: 01/29/2023]
Abstract
Human-adapted Neisseria includes two pathogens, Neisseria gonorrhoeae and Neisseria meningitidis, and at least 13 species of commensals that colonize many of the same niches as the pathogens. The Type IV pilus plays an important role in the biology of pathogenic Neisseria. In these species, Sigma factor RpoD (σ(70)), Integration Host Factor, and repressors RegF and CrgA regulate transcription of pilE, the gene encoding the pilus structural subunit. The Type IV pilus is also a strictly conserved trait in commensal Neisseria. We present evidence that a different mechanism regulates pilE transcription in commensals. Using Neisseria elongata as a model, we show that Sigma factor RpoN (σ(54)), Integration Host Factor, and an activator we name Npa regulate pilE transcription. Taken in context with previous reports, our findings indicate pilE regulation switched from an RpoN- to an RpoD-dependent mechanism as pathogenic Neisseria diverged from commensals during evolution. Our findings have implications for the timing of Tfp expression and Tfp-mediated host cell interactions in these two groups of bacteria.
Collapse
Affiliation(s)
- María A. Rendón
- The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
| | - Alyson M. Hockenberry
- The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
| | - Steven A. McManus
- Undergraduate Biology Research Program, University of Arizona, Tucson, AZ 85721, USA
| | - Magdalene So
- The BIO5 Institute, University of Arizona, Tucson, AZ 85721, USA
- Department of Immunobiology, University of Arizona, Tucson, AZ 85721, USA
| |
Collapse
|
24
|
Hung MC, Christodoulides M. The biology of Neisseria adhesins. BIOLOGY 2013; 2:1054-109. [PMID: 24833056 PMCID: PMC3960869 DOI: 10.3390/biology2031054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/01/2013] [Accepted: 07/03/2013] [Indexed: 01/15/2023]
Abstract
Members of the genus Neisseria include pathogens causing important human diseases such as meningitis, septicaemia, gonorrhoea and pelvic inflammatory disease syndrome. Neisseriae are found on the exposed epithelia of the upper respiratory tract and the urogenital tract. Colonisation of these exposed epithelia is dependent on a repertoire of diverse bacterial molecules, extending not only from the surface of the bacteria but also found within the outer membrane. During invasive disease, pathogenic Neisseriae also interact with immune effector cells, vascular endothelia and the meninges. Neisseria adhesion involves the interplay of these multiple surface factors and in this review we discuss the structure and function of these important molecules and the nature of the host cell receptors and mechanisms involved in their recognition. We also describe the current status for recently identified Neisseria adhesins. Understanding the biology of Neisseria adhesins has an impact not only on the development of new vaccines but also in revealing fundamental knowledge about human biology.
Collapse
Affiliation(s)
- Miao-Chiu Hung
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| | - Myron Christodoulides
- Neisseria Research, Molecular Microbiology, Clinical and Experimental Sciences, Sir Henry Wellcome Laboratories, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, SO16 6YD, UK.
| |
Collapse
|
25
|
Join-Lambert O, Lecuyer H, Miller F, Lelievre L, Jamet A, Furio L, Schmitt A, Pelissier P, Fraitag S, Coureuil M, Nassif X. Meningococcal Interaction to Microvasculature Triggers the Tissular Lesions of Purpura Fulminans. J Infect Dis 2013; 208:1590-7. [DOI: 10.1093/infdis/jit301] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
26
|
Coureuil M, Join-Lambert O, Lécuyer H, Bourdoulous S, Marullo S, Nassif X. Pathogenesis of meningococcemia. Cold Spring Harb Perspect Med 2013; 3:3/6/a012393. [PMID: 23732856 DOI: 10.1101/cshperspect.a012393] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Neisseria meningitidis is responsible for two major diseases: cerebrospinal meningitis and/or septicemia. The latter can lead to a purpura fulminans, an often-fatal condition owing to the associated septic shock. These two clinical aspects of the meningococcal infection are consequences of a tight interaction of meningococci with host endothelial cells. This interaction, mediated by the type IV pili, is responsible for the formation of microcolonies on the apical surface of the cells. This interaction is followed by the activation of signaling pathways in the host cells leading to the formation of a microbiological synapse. A low level of bacteremia is likely to favor the colonization of brain vessels, leading to bacterial meningitis, whereas the colonization of a large number of vessels by a high number of bacteria is responsible for one of the most severe forms of septic shock observed.
Collapse
|
27
|
Dual pili post-translational modifications synergize to mediate meningococcal adherence to platelet activating factor receptor on human airway cells. PLoS Pathog 2013; 9:e1003377. [PMID: 23696740 PMCID: PMC3656113 DOI: 10.1371/journal.ppat.1003377] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Accepted: 04/05/2013] [Indexed: 12/02/2022] Open
Abstract
Pili of pathogenic Neisseria are major virulence factors associated with adhesion, twitching motility, auto-aggregation, and DNA transformation. Pili of N. meningitidis are subject to several different post-translational modifications. Among these pilin modifications, the presence of phosphorylcholine (ChoP) and a glycan on the pilin protein are phase-variable (subject to high frequency, reversible on/off switching of expression). In this study we report the location of two ChoP modifications on the C-terminus of N. meningitidis pilin. We show that the surface accessibility of ChoP on pili is affected by phase variable changes to the structure of the pilin-linked glycan. We identify for the first time that the platelet activating factor receptor (PAFr) is a key, early event receptor for meningococcal adherence to human bronchial epithelial cells and tissue, and that synergy between the pilin-linked glycan and ChoP post-translational modifications is required for pili to optimally engage PAFr to mediate adherence to human airway cells. Neisseria meningitidis is an important human pathogen that can cause rapidly progressing, life threatening meningitis and sepsis in humans. There is no fully protective vaccine against this pathogen in current use and the key processes that dictate the transition from harmless carriage of the bacterium in the airway (the case for the vast majority of colonised hosts) to invasive disease are largely undefined. A key missing link in this organism's interaction with the human host is the identity of the receptor that is the first point of contact for the organism within the airway. In this study, we report that the receptor for this important human pathogen on airway epithelial cells is the platelet activating factor receptor (PAFr), an immunomodulatory molecule shown by others to play a role in promoting bacterial sepsis. We also show that two post-translational modifications, glycosylation and phosphorylcholine, are subject to phase-variation (high frequency, reversible switching of gene expression). They are closely associated on adjacent pilin subunits, and synergy between both are required for the efficient engagement with the PAFr. These data define a new role for these post-translational modifications in meningococcal adherence and also provide an insight into the selective pressures that underlie their phase variable expression.
Collapse
|
28
|
Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013; 10:16. [PMID: 23531482 PMCID: PMC3623852 DOI: 10.1186/2045-8118-10-16] [Citation(s) in RCA: 501] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 02/25/2013] [Indexed: 12/29/2022] Open
Abstract
Since the first attempts in the 1970s to isolate cerebral microvessel endothelial cells (CECs) in order to model the blood-brain barrier (BBB) in vitro, the need for a human BBB model that closely mimics the in vivo phenotype and is reproducible and easy to grow, has been widely recognized by cerebrovascular researchers in both academia and industry. While primary human CECs would ideally be the model of choice, the paucity of available fresh human cerebral tissue makes wide-scale studies impractical. The brain microvascular endothelial cell line hCMEC/D3 represents one such model of the human BBB that can be easily grown and is amenable to cellular and molecular studies on pathological and drug transport mechanisms with relevance to the central nervous system (CNS). Indeed, since the development of this cell line in 2005 over 100 studies on different aspects of cerebral endothelial biology and pharmacology have been published. Here we review the suitability of this cell line as a human BBB model for pathogenic and drug transport studies and we critically consider its advantages and limitations.
Collapse
|
29
|
Weksler B, Romero IA, Couraud PO. The hCMEC/D3 cell line as a model of the human blood brain barrier. Fluids Barriers CNS 2013. [PMID: 23531482 DOI: 10.1186/2045‐8118‐10‐16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Since the first attempts in the 1970s to isolate cerebral microvessel endothelial cells (CECs) in order to model the blood-brain barrier (BBB) in vitro, the need for a human BBB model that closely mimics the in vivo phenotype and is reproducible and easy to grow, has been widely recognized by cerebrovascular researchers in both academia and industry. While primary human CECs would ideally be the model of choice, the paucity of available fresh human cerebral tissue makes wide-scale studies impractical. The brain microvascular endothelial cell line hCMEC/D3 represents one such model of the human BBB that can be easily grown and is amenable to cellular and molecular studies on pathological and drug transport mechanisms with relevance to the central nervous system (CNS). Indeed, since the development of this cell line in 2005 over 100 studies on different aspects of cerebral endothelial biology and pharmacology have been published. Here we review the suitability of this cell line as a human BBB model for pathogenic and drug transport studies and we critically consider its advantages and limitations.
Collapse
|
30
|
Abstract
β-Arrestins regulate G protein-coupled receptors through receptor desensitization while also acting as signaling scaffolds to facilitate numerous effector pathways. Recent studies have provided evidence that β-arrestins play a key role in inflammatory responses. Here, we summarize these advances on the roles of β-arrestins in immune regulation and inflammatory responses under physiological and pathological conditions, with an emphasis on translational implications of β-arrestins on human diseases.
Collapse
|
31
|
Miller F, Lécuyer H, Join-Lambert O, Bourdoulous S, Marullo S, Nassif X, Coureuil M. Neisseria meningitidis colonization of the brain endothelium and cerebrospinal fluid invasion. Cell Microbiol 2012. [PMID: 23189983 DOI: 10.1111/cmi.12082] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The brain and meningeal spaces are protected from bacterial invasion by the blood-brain barrier, formed by specialized endothelial cells and tight intercellular junctional complexes. However, once in the bloodstream, Neisseria meningitidis crosses this barrier in about 60% of the cases. This highlights the particular efficacy with which N. meningitidis targets the brain vascular cell wall. The first step of central nervous system invasion is the direct interaction between bacteria and endothelial cells. This step is mediated by the type IV pili, which induce a remodelling of the endothelial monolayer, leading to the opening of the intercellular space. In this review, strategies used by the bacteria to survive in the bloodstream, to colonize the brain vasculature and to cross the blood-brain barrier will be discussed.
Collapse
Affiliation(s)
- Florence Miller
- INSERM, unité U1002, Paris, France; Université Paris Descartes, Sorbonne Paris Cité, Faculté de médecine, Paris, France
| | | | | | | | | | | | | |
Collapse
|
32
|
Burrows LL. Prime time for minor subunits of the type II secretion and type IV pilus systems. Mol Microbiol 2012; 86:765-9. [PMID: 22998166 DOI: 10.1111/mmi.12034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/07/2012] [Indexed: 10/27/2022]
Abstract
The type II secretion system (T2SS) exports folded proteins from the periplasms of Gram-negative bacteria. The type IV pilus system (T4PS) is a multifunctional machine used for adherence, motility and DNA transfer in bacteria and archaea. Partial sequence identity between the two systems suggests that they are related and might function via a similar mechanism, the dynamic assembly and disassembly of pseudopilus (T2SS) or pilus (T4PS) filaments. The major subunit in each system is thought to form the bulk of the (pseudo)pilus, while minor (low-abundance) subunits have proposed roles in assembly initiation, antagonism of disassembly, or modulation of (pseudo)pilus functional properties. In this issue, Cisneros et al. () extend their previous finding that pseudopilus assembly is primed by the minor pseudopilins, showing that the same proteins can initiate assembly of Escherichia coli T4P. Similarly, they show that the E. coli minor pilins prime the polymerization of T2S pseudopili, although unlike genuine pseudopili, the chimeric filaments did not support secretion. This work reinforces the notion of a common assembly mechanism for the T2S and T4P systems.
Collapse
Affiliation(s)
- Lori L Burrows
- Department of Biochemistry and Biomedical Sciences, the Michael G. DeGroote Institute for Infectious Diseases Research, McMaster University, Hamilton, Ontario, Canada, L8S4K1.
| |
Collapse
|