1
|
Kapil P, Wang Y, Gregg K, Zimmerman L, Molano D, Maldonado Villeda J, Sebo P, Merkel TJ. A whole-cell pertussis vaccine engineered to elicit reduced reactogenicity protects baboons against pertussis challenge. mSphere 2024:e0064724. [PMID: 39441011 DOI: 10.1128/msphere.00647-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/02/2024] [Indexed: 10/25/2024] Open
Abstract
Whole-cell pertussis (wP) vaccines introduced in the 1940s led to a dramatic reduction of pertussis incidence and are still widely used in low- and middle-income countries (LMICs) worldwide. The reactogenicity of wP vaccines resulted in reduced public acceptance, which drove the development and introduction of acellular pertussis (aP) vaccines in high-income countries in the 1990s. Increased incidence of pertussis disease has been observed in high-income countries following the introduction of aP vaccines despite near universal rates of pediatric vaccination. These increases are attributed to the reduced protection against colonization, carriage, and transmission as well as reduced duration of immunity conferred by aP vaccines relative to the wP vaccines they replaced. A reduced reactogenicity whole-cell pertussis (RRwP) vaccine was recently developed with the goal of achieving the same protection as conferred by wP vaccination but with an improved safety profile, which may benefit countries in which wP vaccines are still in routine use. In this study, we tested the RRwP vaccine in a baboon model of pertussis infection. We found that the RRwP vaccine induced comparable cellular and humoral immune responses and comparable protection following challenge relative to the wP vaccine, while significantly reducing injection-site reactogenicity.IMPORTANCEThe World Health Organization (WHO) recommended in 2015 that countries administering wP vaccines in their national vaccine programs should continue to do so, and that switching to aP vaccines for primary infant immunization should only be considered if periodic booster vaccinations and/or maternal immunization could be assured and sustained in their national immunization schedules (WHO, Vaccine 34:1423-1425, 2016, https://doi.org/10.1016/j.vaccine.2015.10.136). Due to the considerably higher cost of aP vaccines and the larger number of doses required, most LMICs continue to use wP vaccines. The development and introduction of a wP vaccine that induces fewer adverse events without sacrificing protection would significantly benefit countries in which wP vaccines are still in routine use. The results of this study indicate this desirable goal may be achievable.
Collapse
Affiliation(s)
- Parul Kapil
- Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, USA
| | - Yihui Wang
- Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, USA
| | - Kelsey Gregg
- Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, USA
| | - Lindsey Zimmerman
- Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, USA
| | - Damaris Molano
- Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, USA
| | | | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Tod J Merkel
- Center for Biologics Evaluation and Research, FDA, Bethesda, Maryland, USA
| |
Collapse
|
2
|
Bitzer GJ, Fitzgerald NA, DeJong MA, Cunningham C, Chapman JA, Boehm DT, Pyles GM, Huckaby AB, Miller SJ, Dublin SR, Warden MD, Barbier M, Damron FH. Immunization with an mRNA DTP vaccine protects against pertussis in rats. Infect Immun 2024; 92:e0052023. [PMID: 39016553 PMCID: PMC11320933 DOI: 10.1128/iai.00520-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/28/2024] [Indexed: 07/18/2024] Open
Abstract
Bordetella pertussis is a Gram-negative bacterium that is the causative agent of the respiratory disease known as pertussis. Since the switch to the acellular vaccines of DTaP and Tap, pertussis cases in the US have risen and cyclically fallen. We have observed that mRNA pertussis vaccines are immunogenic and protective in mice. Here, we further evaluated the pertussis toxoid mRNA antigen and refined the formulation based on optimal pertussis toxin neutralization in vivo. We next evaluated the mRNA pertussis vaccine in Sprague-Dawley rats using an aerosol B. pertussis challenge model paired with whole-body plethysmography to monitor coughing and respiratory function. Female Sprague-Dawley rats were primed and boosted with either commercially available vaccines (DTaP or wP-DTP), an mRNA-DTP vaccine, or mock-vaccinated. The mRNA-DTP vaccine was immunogenic in rats and induced antigen-specific IgG antibodies comparable to DTaP. Rats were then aerosol challenged with a streptomycin-resistant emerging clinical isolate D420Sm1. Bacterial burden was assessed at days 1 and 9 post-challenge, and the mRNA vaccine reduced burden equal to both DTaP and wP-DTP. Whole-body plethysmography revealed that mRNA-DTP vaccinated rats were well protected against coughing which was comparable to the non-challenged group. These data suggest that an mRNA-DTP vaccine is immunogenic in rats and provides protection against aerosolized B. pertussis challenge in Sprague-Dawley rats.
Collapse
Affiliation(s)
- Graham J. Bitzer
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Nicholas A. Fitzgerald
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Megan A. DeJong
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Casey Cunningham
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Joshua A. Chapman
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Gage M. Pyles
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Annalisa B. Huckaby
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Sarah J. Miller
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Spencer R. Dublin
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Matthew D. Warden
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology, and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- West Virginia University Vaccine Development Center, West Virginia University, Morgantown, West Virginia, USA
| |
Collapse
|
3
|
Horiguchi Y. Current understanding of Bordetella-induced cough. Microbiol Immunol 2024; 68:123-129. [PMID: 38318657 DOI: 10.1111/1348-0421.13119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/07/2024]
Abstract
Typical pathogenic bacteria of the genus Bordetella cause respiratory diseases, many of which are characterized by severe coughing in host animals. In human infections with these bacteria, such as whooping cough, coughing imposes a heavy burden on patients. The pathophysiology of this severe coughing had long been uncharacterized because convenient animal models that reproduce Bordetella-induced cough have not been available. However, rat and mouse models were recently shown as useful for understanding, at least partially, the causative factors and the mechanism of Bordetella-induced cough. Many types of coughs are induced under various physiological conditions, and the neurophysiological pathways of coughing are considered to vary among animal species, including humans. However, the neurophysiological mechanisms of the coughs in different animal species have not been entirely understood, and, accordingly, the current understanding of Bordetella-induced cough is still incomplete. Nevertheless, recent research findings may open the way for the development of prophylaxis and therapeutic measures against Bordetella-induced cough.
Collapse
Affiliation(s)
- Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
4
|
Kapil P, Wang Y, Zimmerman L, Gaykema M, Merkel TJ. Repeated Bordetella pertussis Infections Are Required to Reprogram Acellular Pertussis Vaccine-Primed Host Responses in the Baboon Model. J Infect Dis 2024; 229:376-383. [PMID: 37565807 PMCID: PMC10873172 DOI: 10.1093/infdis/jiad332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
BACKGROUND The United States has experienced a resurgence of pertussis following the introduction of acellular pertussis (aP) vaccines. This is likely due to the failure of aP vaccines to induce durable immunity and prevent infection, carriage, and transmission. METHODS To evaluate the impact of aP vaccination on the immune response to infection and test the ability of infection to reprogram aP-imprinted immune responses, we challenged unvaccinated and aP-vaccinated baboons with Bordetella pertussis multiple times and accessed the immune responses and outcomes of infections after each exposure. RESULTS Multiple infections were required to elicit T-helper 17 responses and protection in aP-vaccinated animals comparable to responses seen in unvaccinated animals after a single challenge. Even after 3 challenges, T-helper 1 responses were not observed in aP-vaccinated animals. Immunoglobulin G responses to vaccine and nonvaccine antigens were not negatively affected in aP-vaccinated animals. CONCLUSIONS Our results indicate that it is possible to retrain aP-primed immune responses, but it will likely require an optimal booster and multiple doses. Our results in the baboon model suggest that circulation of B. pertussis in aP-vaccinated populations is concentrated in the younger age bands of the population, providing information that can guide improved modeling of B. pertussis epidemiology in aP-vaccinated populations.
Collapse
Affiliation(s)
- Parul Kapil
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yihui Wang
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Lindsey Zimmerman
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Mara Gaykema
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
5
|
Xu Y, Luo Y, Yue N, Nie D, Ai L, Zhu C, Lv H, Wang G, Hu D, Wu Y, Qian J, Li C, Wu J, Tan W. Impact of outdoor air pollution on the incidence of pertussis in China: a time-series study. BMC Public Health 2023; 23:2231. [PMID: 37957620 PMCID: PMC10642023 DOI: 10.1186/s12889-023-16530-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 08/16/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND The increasing number of pertussis cases worldwide over the past two decades has challenged healthcare workers, and the role of environmental factors and climate change cannot be ignored. The incidence of pertussis has increased dramatically in mainland China since 2015, developing into a serious public health problem. The association of meteorological factors on pertussis has attracted attention, but few studies have examined the impact of air pollutants on this respiratory disease. METHODS In this study, we analyzed the relationship between outdoor air pollution and the pertussis incidence. The study period was from January 2013 to December 2018, and monthly air pollutant data and the monthly incidence of patients in 31 provinces of China were collected. Distributed lag nonlinear model (DLNM) analysis was used to estimate the associations between six air pollutants and monthly pertussis incidence in China. RESULTS We found a correlation between elevated pertussis incidence and short-term high monthly CO2 and O3 exposure, with a 10 μg/m3 increase in NO2 and O3 being significantly associated with increased pertussis incidence, with RR values of 1.78 (95% CI: 1.29-2.46) and 1.51 (95% CI: 1.16-1.97) at a lag of 0 months, respectively. Moreover, PM2.5 and SO2 also played key roles in the risk of pertussis surged. These associations remain significant after adjusting for long-term trend, seasonality and collinearity. CONCLUSIONS Overall, these data reinforce the evidence of a link between incidence and climate identified in regional and local studies. These findings also further support the hypothesis that air pollution is responsible for the global resurgence of pertussis. Based on this we suggest that public health workers should be encouraged to consider the risks of the environment when focusing on pertussis prevention and control.
Collapse
Affiliation(s)
- Yameng Xu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Yizhe Luo
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Na Yue
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Danyue Nie
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Lele Ai
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Changqiang Zhu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Heng Lv
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Gang Wang
- Hangzhou International Travel Healthcare Center, Hangzhou, 310061, P.R. China
| | - Dan Hu
- Hangzhou International Travel Healthcare Center, Hangzhou, 310061, P.R. China
| | - Yifan Wu
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Jiaojiao Qian
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
| | - Changzhe Li
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China
- School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, 550025, P.R. China
| | - Jiahong Wu
- School of Public Heath, Guizhou Medical University, Guiyang, Guizhou, 550025, P.R. China.
| | - Weilong Tan
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
- Nanjing Bioengineering (Gene) Technology Center for Medicines, Nanjing, China.
- School of Public Health, Nanjing Medical University, 101, Longmian Avenue, Nanjing, 211166, P.R. China.
| |
Collapse
|
6
|
Weaver KL, Bitzer GJ, Wolf MA, Pyles GM, DeJong MA, Dublin SR, Huckaby AB, Gutierrez MDLP, Hall JM, Wong TY, Warden M, Petty JE, Witt WT, Cunningham C, Sen-Kilic E, Damron FH, Barbier M. Intranasal challenge with B. pertussis leads to more severe disease manifestations in mice than aerosol challenge. PLoS One 2023; 18:e0286925. [PMID: 37917623 PMCID: PMC10621807 DOI: 10.1371/journal.pone.0286925] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/25/2023] [Indexed: 11/04/2023] Open
Abstract
The murine Bordetella pertussis challenge model has been utilized in preclinical research for decades. Currently, inconsistent methodologies are employed by researchers across the globe, making it difficult to compare findings. The objective of this work was to utilize the CD-1 mouse model with two routes of challenge, intranasal and aerosol administration of B. pertussis, to understand the differences in disease manifestation elicited via each route. We observed that both routes of B. pertussis challenge result in dose-dependent colonization of the respiratory tract, but overall, intranasal challenge led to higher bacterial burden in the nasal lavage, trachea, and lung. Furthermore, high dose intranasal challenge results in induction of leukocytosis and pro-inflammatory cytokine responses compared to aerosol challenge. These data highlight crucial differences in B. pertussis challenge routes that should be considered during experimental design.
Collapse
Affiliation(s)
- Kelly L. Weaver
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Graham J. Bitzer
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - M. Allison Wolf
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Gage M. Pyles
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Megan A. DeJong
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Spencer R. Dublin
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Annalisa B. Huckaby
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Maria de la Paz Gutierrez
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Jesse M. Hall
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Ting Y. Wong
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Matthew Warden
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Jonathan E. Petty
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - William T. Witt
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Casey Cunningham
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Emel Sen-Kilic
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - F. Heath Damron
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| | - Mariette Barbier
- Vaccine Development Center in the Department of Microbiology, Immunology, and Cell Biology at West Virginia University, Morgantown, WV, United States of America
| |
Collapse
|
7
|
Gregg KA, Wang Y, Warfel J, Schoenfeld E, Jankowska E, Cipollo JF, Mayho M, Boinett C, Prasad D, Brickman TJ, Armstrong SK, Parkhill J, Da Silva Antunes R, Sette A, Papin JF, Wolf R, Merkel TJ. Antigen Discovery for Next-Generation Pertussis Vaccines Using Immunoproteomics and Transposon-Directed Insertion Sequencing. J Infect Dis 2023; 227:583-591. [PMID: 36575950 PMCID: PMC10169431 DOI: 10.1093/infdis/jiac502] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/20/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Despite high vaccination rates, the United States has experienced a resurgence in reported cases of pertussis after switching to the acellular pertussis vaccine, indicating a need for improved vaccines that enhance infection control. METHODS Bordetella pertussis antigens recognized by convalescent-baboon serum and nasopharyngeal wash were identified by immunoproteomics and their subcellular localization predicted. Genes essential or important for persistence in the baboon airway were identified by transposon-directed insertion-site sequencing (TraDIS) analysis. RESULTS In total, 314 B. pertussis antigens were identified by convalescent baboon serum and 748 by nasopharyngeal wash. Thirteen antigens were identified as immunogenic in baboons, essential for persistence in the airway by TraDIS, and membrane-localized: BP0840 (OmpP), Pal, OmpA2, BP1485, BamA, Pcp, MlaA, YfgL, BP2197, BP1569, MlaD, ComL, and BP0183. CONCLUSIONS The B. pertussis antigens identified as immunogenic, essential for persistence in the airway, and membrane-localized warrant further investigation for inclusion in vaccines designed to reduce or prevent carriage of bacteria in the airway of vaccinated individuals.
Collapse
Affiliation(s)
- Kelsey A Gregg
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Yihui Wang
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Jason Warfel
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Elizabeth Schoenfeld
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ewa Jankowska
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - John F Cipollo
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | | | - Deepika Prasad
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Timothy J Brickman
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Sandra K Armstrong
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | | | | | - Alessandro Sette
- Division of Vaccine Discovery, La Jolla Institute for Immunology, La Jolla, California, USA.,Department of Medicine, University of California, San Diego, La Jolla, California, USA
| | - James F Papin
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Roman Wolf
- Department of Pathology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
8
|
Abstract
Coughing is a dynamic physiological process resulting from input of vagal sensory neurons innervating the airways and perceived airway irritation. Although cough serves to protect and clear the airways, it can also be exploited by respiratory pathogens to facilitate disease transmission. Microbial components or infection-induced inflammatory mediators can directly interact with sensory nerve receptors to induce a cough response. Analysis of cough-generated aerosols and transmission studies have further demonstrated how infectious disease is spread through coughing. This review summarizes the neurophysiology of cough, cough induction by respiratory pathogens and inflammation, and cough-mediated disease transmission.
Collapse
Affiliation(s)
- Kubra F Naqvi
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| | - Stuart B Mazzone
- Department of Anatomy and Physiology, University of Melbourne, Victoria, Australia
| | - Michael U Shiloh
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
9
|
Corbière V, Lambert EE, Rodesch M, van Gaans-van den Brink JAM, Misiak A, Simonetti E, Van Praet A, Godefroid A, Diavatopoulos DA, van Els CACM, Mascart F. A semi high-throughput whole blood-based flow cytometry assay to detect and monitor Bordetella pertussis-specific Th1, Th2 and Th17 responses. Front Immunol 2023; 14:1101366. [PMID: 36814927 PMCID: PMC9939445 DOI: 10.3389/fimmu.2023.1101366] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/24/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction The characterization of B. pertussis (Bp) antigen-specific CD4+ T cell cytokine responses should be included in the evaluation of immunogenicity of pertussis vaccines but is often hindered by the lack of standardized robust assays. Methods To overcome this limitation, we developed a two-step assay comprising a short-term stimulation of fresh whole blood with Bp antigens and cryopreservation of the stimulated cells, followed later on by batch-wise intracellular cytokine analysis by flow cytometry. Blood samples collected from recently acellular (aP) vaccine boosted subjects with a whole-cell- or aP-primed background was incubated for 24 hrs with Pertussis toxin, Filamentous hemagglutinin or a Bp lysate (400µl per stimulation). Antigen-specific IFN-γ-, IL-4/IL-5/IL-13-, IL-17A/IL-17F- and/or IL-22-producing CD4+ T cells were quantified by flow cytometry to reveal Th1, Th2, and Th17-type responses, respectively. The frequencies of IFN-γ-producing CD8+ T cells were also analyzed. Results We demonstrate high reproducibility of the Bp-specific whole blood intracellular staining assay. The results obtained after cryopreservation of the stimulated and fixed cells were very well correlated to those obtained without cryopreservation, an approach used in our previously published assay. Optimization resulted in high sensitivity thanks to very low non-specific backgrounds, with reliable detection of Bp antigen-specific Th1, Th2 and Th17-type CD4+ T cells, in the lowest range frequency of 0.01-0.03%. Bp antigen-specific IFN-γ+ CD8+ T lymphocytes were also detected. This test is easy to perform, analyse and interpret with the establishment of strict criteria defining Bp antigen responses. Discussion Thus, this assay appears as a promising test for evaluation of Bp antigen-specific CD4+ T cells induced by current and next generation pertussis vaccines.
Collapse
Affiliation(s)
- Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Eleonora E Lambert
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands
| | - Marine Rodesch
- Department of Paediatrics, Cliniques Universitaires de Bruxelles, Hôpital Erasme, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | | - Alicja Misiak
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | - Elles Simonetti
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Audrey Godefroid
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | - Dimitri A Diavatopoulos
- Laboratory of Medical Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands.,Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cécile A C M van Els
- Center for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, Netherlands.,Infectious Diseases & Immunology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U.L.B.), Brussels, Belgium
| | | |
Collapse
|
10
|
Blanc P, Liu Y, Reveneau N, Cavell B, Gorringe A, Renauld-Mongénie G. The role of bactericidal and opsonic activity in immunity against Bordetella pertussis. Expert Rev Vaccines 2022; 21:1727-1738. [PMID: 36369768 DOI: 10.1080/14760584.2022.2137145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
INTRODUCTION Pertussis vaccines have drastically reduced the disease burden in humans since their implementation. Despite their success, pertussis remains an important global public health challenge. Bordetella pertussis resurgence could be a result of greater surveillance combined with improved diagnosis methods, changes in Bordetella pertussis biology, vaccine schedules, and/or coverage. Additionally, mechanisms of protection conferred by acellular pertussis (aP) and whole-cell pertussis (wP) vaccines differ qualitatively. There are no clear immune correlates of protection for pertussis vaccines. Pertussis antigens can induce toxin neutralizing antibodies, block adherence or engage complement mediated phagocytic/bactericidal killing. AREAS COVERED We reviewed the existing evidence on antibody-mediated serum bactericidal and opsonophagocytic activity and discussed the relevance of these functional antibodies in the development of next-generation pertussis vaccines. EXPERT OPINION Current paradigm proposes that wP vaccines may confer greater herd protection than aP vaccines due to their enhanced clearance of bacteria from the nasopharynx in animal models. Functional antibodies may contribute to the reduction of nasal colonization, which differentiates aP and wP vaccines. Understanding the intrinsic differences in protective immune responses elicited by each class of vaccines will help to identify biomarkers that can be used as immunological end points in clinical trials.
Collapse
Affiliation(s)
- Pascal Blanc
- Research & Development, Sanofi, Marcy l'Etoile, France
| | - Yuanqing Liu
- Research & Development, Sanofi, Marcy l'Etoile, France
| | | | - Breeze Cavell
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, UK
| | - Andrew Gorringe
- Department of Research and Evaluation, United Kingdom (UK) Health Security Agency, Salisbury, UK
| | | |
Collapse
|
11
|
Choy RKM, Bourgeois AL, Ockenhouse CF, Walker RI, Sheets RL, Flores J. Controlled Human Infection Models To Accelerate Vaccine Development. Clin Microbiol Rev 2022; 35:e0000821. [PMID: 35862754 PMCID: PMC9491212 DOI: 10.1128/cmr.00008-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Collapse
Affiliation(s)
- Robert K. M. Choy
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | - A. Louis Bourgeois
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Richard I. Walker
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| | | | - Jorge Flores
- PATH, Center for Vaccine Innovation and Access, Seattle, Washington, USA
| |
Collapse
|
12
|
Cai L, Xu H, Cui Z. Factors Limiting the Translatability of Rodent Model-Based Intranasal Vaccine Research to Humans. AAPS PharmSciTech 2022; 23:191. [PMID: 35819736 PMCID: PMC9274968 DOI: 10.1208/s12249-022-02330-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 06/09/2022] [Indexed: 12/19/2022] Open
Abstract
The intranasal route of vaccination presents an attractive alternative to parenteral routes and offers numerous advantages, such as the induction of both mucosal and systemic immunity, needle-free delivery, and increased patient compliance. Despite demonstrating promising results in preclinical studies, however, few intranasal vaccine candidates progress beyond early clinical trials. This discrepancy likely stems in part from the limited predictive value of rodent models, which are used frequently in intranasal vaccine research. In this review, we explored the factors that limit the translatability of rodent-based intranasal vaccine research to humans, focusing on the differences in anatomy, immunology, and disease pathology between rodents and humans. We also discussed approaches that minimize these differences and examined alternative animal models that would produce more clinically relevant research.
Collapse
Affiliation(s)
- Lucy Cai
- University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, Texas, 75390, USA
| | - Haiyue Xu
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA
| | - Zhengrong Cui
- The University of Texas at Austin, College of Pharmacy, Division of Molecular Pharmaceutics and Drug Delivery, 2409 University Ave., A1900, Austin, Texas, 78712, USA.
| |
Collapse
|
13
|
What Causes the Cough in Whooping Cough? mBio 2022; 13:e0091722. [PMID: 35604095 PMCID: PMC9239215 DOI: 10.1128/mbio.00917-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
What causes the cough in whooping cough (pertussis) has been a longstanding question in the field but has been difficult to answer because of the perceived lack of convenient small animal models. Y. Hiramatsu, K. Suzuki, T. Nishida, N. Onoda, et al. (mBio 13:e01397-21, 2022, https://doi.org/10.1128/mbio.03197-21) used a mouse model and cellular studies to investigate bacterial and host factors that contribute to cough production during Bordetella pertussis infection. In elegant studies, they found that the bacterial factors pertussis toxin, lipooligosaccharide, and Vag8 function cooperatively to produce cough. These factors induce production of host bradykinin, a known cough inducer that sensitizes the ion channel TRPV1 on neurons, and they investigated host signaling pathways altered by the bacterial factors that exacerbate cough responses. This is a highly significant and important finding that not only elucidates mechanisms underlying the pathophysiology of the severe cough, but also may reveal potential novel therapeutic approaches to treat individuals suffering from the debilitating effects of cough in pertussis.
Collapse
|
14
|
Holubova J, Stanek O, Juhasz A, Hamidou Soumana I, Makovicky P, Sebo P. The Fim and FhaB adhesins play a crucial role in nasal cavity infection and Bordetella pertussis transmission in a novel mouse catarrhal infection model. PLoS Pathog 2022; 18:e1010402. [PMID: 35395059 PMCID: PMC9020735 DOI: 10.1371/journal.ppat.1010402] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 04/20/2022] [Accepted: 02/28/2022] [Indexed: 02/07/2023] Open
Abstract
Pulmonary infections caused by Bordetella pertussis used to be the prime cause of infant mortality in the pre-vaccine era and mouse models of pertussis pneumonia served in characterization of B. pertussis virulence mechanisms. However, the biologically most relevant catarrhal disease stage and B. pertussis transmission has not been adequately reproduced in adult mice due to limited proliferation of the human-adapted pathogen on murine nasopharyngeal mucosa. We used immunodeficient C57BL/6J MyD88 KO mice to achieve B. pertussis proliferation to human-like high counts of 108 viable bacteria per nasal cavity to elicit rhinosinusitis accompanied by robust shedding and transmission of B. pertussis bacteria to adult co-housed MyD88 KO mice. Experiments with a comprehensive set of B. pertussis mutants revealed that pertussis toxin, adenylate cyclase toxin-hemolysin, the T3SS effector BteA/BopC and several other known virulence factors were dispensable for nasal cavity infection and B. pertussis transmission in the immunocompromised MyD88 KO mice. In contrast, mutants lacking the filamentous hemagglutinin (FhaB) or fimbriae (Fim) adhesins infected the nasal cavity poorly, shed at low levels and failed to productively infect co-housed MyD88 KO or C57BL/6J mice. FhaB and fimbriae thus appear to play a critical role in B. pertussis transmission. The here-described novel murine model of B. pertussis-induced nasal catarrh opens the way to genetic dissection of host mechanisms involved in B. pertussis shedding and to validation of key bacterial transmission factors that ought to be targeted by future pertussis vaccines.
Collapse
Affiliation(s)
- Jana Holubova
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ondrej Stanek
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Attila Juhasz
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Illiassou Hamidou Soumana
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, Georgia, United States of America
| | - Peter Makovicky
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics, Vestec, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
15
|
Abstract
Pertussis, also known as whooping cough, is a contagious respiratory disease caused by the Gram-negative bacterium Bordetella pertussis. This disease is characterized by severe and uncontrollable coughing, which imposes a significant burden on patients. However, its etiological agent and the mechanism are totally unknown because of a lack of versatile animal models that reproduce the cough. Here, we present a mouse model that reproduces coughing after intranasal inoculation with the bacterium or its components and demonstrate that lipooligosaccharide (LOS), pertussis toxin (PTx), and Vag8 of the bacterium cooperatively function to cause coughing. Bradykinin induced by LOS sensitized a transient receptor potential ion channel, TRPV1, which acts as a sensor to evoke the cough reflex. Vag8 further increased bradykinin levels by inhibiting the C1 esterase inhibitor, the major downregulator of the contact system, which generates bradykinin. PTx inhibits intrinsic negative regulation systems for TRPV1 through the inactivation of Gi GTPases. Our findings provide a basis to answer long-standing questions on the pathophysiology of pertussis cough.
Collapse
|
16
|
Cimolai N. Non-primate animal models for pertussis: back to the drawing board? Appl Microbiol Biotechnol 2022; 106:1383-1398. [PMID: 35103810 PMCID: PMC8803574 DOI: 10.1007/s00253-022-11798-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 01/17/2022] [Accepted: 01/21/2022] [Indexed: 11/30/2022]
Abstract
Despite considerable progress in the understanding of clinical pertussis, the contemporary emergence of antimicrobial resistance for Bordetella pertussis and an evolution of concerns with acellular component vaccination have both sparked a renewed interest. Although simian models of infection best correlate with the observed attributes of human infection, several animal models have been used for decades and have positively contributed in many ways to the related science. Nevertheless, there is yet the lack of a reliable small animal model system that mimics the combination of infection genesis, variable upper and lower respiratory infection, systemic effects, infection resolution, and vaccine responses. This narrative review examines the history and attributes of non-primate animal models for pertussis and places context with the current use and needs. Emerging from the latter is the necessity for further such study to better create the optimal model of infection and vaccination with use of current molecular tools and a broader range of animal systems. KEY POINTS: • Currently used and past non-primate animal models of B. pertussis infection often have unique and focused applications. • A non-primate animal model that consistently mimics human pertussis for the majority of key infection characteristics is lacking. • There remains ample opportunity for an improved non-primate animal model of pertussis with the use of current molecular biology tools and with further exploration of species not previously considered.
Collapse
Affiliation(s)
- Nevio Cimolai
- Faculty of Medicine, The University of British Columbia, Vancouver, Canada.
- Children's and Women's Health Centre of British Columbia, 4480 Oak Street, Vancouver, B.C., V6H3V4, Canada.
| |
Collapse
|
17
|
Wang X, Gao N, Wen J, Li J, Ma Y, Sun M, Liang J, Shi L. Immunogenicity of a Candidate DTacP-sIPV Combined Vaccine and Its Protection Efficacy against Pertussis in a Rhesus Macaque Model. Vaccines (Basel) 2021; 10:47. [PMID: 35062708 PMCID: PMC8779802 DOI: 10.3390/vaccines10010047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The research and development of a pertussis-combined vaccine using a novel inactivated poliovirus vaccine made from the Sabin strain (sIPV) is of great significance in the polio eradication project and to address the recent resurge in pertussis. In the present study, we compared the immunogenicity and efficacy of a candidate DTacP-sIPV with those of a commercial DTacP-wIPV/Hib, DTaP/Hib, pertussis vaccine, and aluminum hydroxide adjuvant control in the rhesus macaque model with a 0-, 1-, and 2-month immunization schedule. At day 28 after the third dose, rhesus macaques were challenged with aerosol pertussis and the antibody and cellular response together with pertussis clinical symptoms were determined. The production of anti-PT, anti-PRN, anti-FHA, anti-DT, anti-TT, and polio type I, II, III antibodies was induced by the candidate DTacP-sIPV, which was as potent as commercial vaccines. In comparison with the control group that showed typical pertussis symptoms of humans after the aerosol challenge, the DTacP-sIPV group did not exhibit obvious clinical pertussis symptoms and had higher neutralization titers of anti-PT, anti-PRN, and anti-FHA. In conclusion, the DTacP-sIPV vaccine was able to induce immunity in rhesus macaques to prevent pertussis infections after immunization. The developed vaccine was as efficient as other commercial vaccines.
Collapse
Affiliation(s)
- Xiaoyu Wang
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China; (X.W.); (J.W.); (Y.M.); (M.S.)
| | - Na Gao
- Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China; (N.G.); (J.L.)
| | - Jiana Wen
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China; (X.W.); (J.W.); (Y.M.); (M.S.)
| | - Jingyan Li
- Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China; (N.G.); (J.L.)
| | - Yan Ma
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China; (X.W.); (J.W.); (Y.M.); (M.S.)
| | - Mingbo Sun
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China; (X.W.); (J.W.); (Y.M.); (M.S.)
| | - Jiangli Liang
- Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China; (N.G.); (J.L.)
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming 650118, China
| |
Collapse
|
18
|
Naninck T, Contreras V, Coutte L, Langlois S, Hébert-Ribon A, Pelletier M, Reveneau N, Locht C, Chapon C, Le Grand R. Intranasal inoculation with Bordetella pertussis confers protection without inducing classical whooping cough in baboons. CURRENT RESEARCH IN MICROBIAL SCIENCES 2021; 2:100072. [PMID: 34841362 PMCID: PMC8610340 DOI: 10.1016/j.crmicr.2021.100072] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 11/29/2022] Open
Abstract
In this manuscript, we describe the impact of Bordetella pertussis exposure route on whooping cough pathogenesis in baboons. We demonstrate in this paper that intranasal exposure of animals with a clinical isolate (or its fluorescent derivative) of B. pertussis induced classical nasopharyngeal and tracheal colonization but without inducing pertussis symptoms (cough and leukocytosis) compared to animals exposed to the classical combined intranasal and intra-tracheal routes with the same bacterial strains. Moreover, this intranasal exposure induces good B. pertussis specific seroconversion and provides protection from further infection.
Background The resurgence of whooping cough in many countries highlights the crucial need for a better understanding of the pathogenesis of respiratory infection by Bordetella pertussis. Exposure of baboons to B. pertussis by the intranasal and intra-tracheal routes is a recently described preclinical model that reproduces both B. pertussis infection of humans and whooping cough disease. Here, we tested both intranasal and intranasal+intra-tracheal exposure routes and assessed their impact on disease development and immunity. Methods Young baboons were intranasally exposed to the B1917 clinical isolate, representative of circulating strains in Europe, or its green-fluorescent protein expressing derivative. Animals were followed for pertussis symptoms and bacterial colonization and by in vivo probe-based confocal laser endomicroscopy (pCLE) imaging. Sero-conversion and protection against subsequent infection were then evaluated. Results Seroconversion and bacterial colonization of both the nasopharynx and trachea was observed in baboons exposed to B. pertussis by the intranasal route only, and also in those animals challenged by both the intranasal and intra-tracheal routes together. However, baboons exposed solely by the intranasal route developed only mild clinical symptoms, with no paroxysmal cough. These animals were protected against re-infection by B. pertussis. Conclusions Intranasal exposure of baboons to B. pertussis does not induce disease but elicits immune mechanisms that protect them from subsequent exposure to the bacteria. These findings suggest that the intranasal route of inoculation in this non-human primate model could be used in the pre-clinical evaluation of nasal candidate vaccines against pertussis.
Collapse
Affiliation(s)
- Thibaut Naninck
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vanessa Contreras
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Loïc Coutte
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Sébastien Langlois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | | | | | | | - Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR8204 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Catherine Chapon
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| |
Collapse
|
19
|
Hall JM, Kang J, Kenney SM, Wong TY, Bitzer GJ, Kelly CO, Kisamore CA, Boehm DT, DeJong MA, Wolf MA, Sen-Kilic E, Horspool AM, Bevere JR, Barbier M, Damron FH. Reinvestigating the Coughing Rat Model of Pertussis To Understand Bordetella pertussis Pathogenesis. Infect Immun 2021; 89:e0030421. [PMID: 34125597 PMCID: PMC8594615 DOI: 10.1128/iai.00304-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 06/05/2021] [Indexed: 12/04/2022] Open
Abstract
Bordetella pertussis is a highly contagious bacterium that is the causative agent of whooping cough (pertussis). Currently, acellular pertussis vaccines (aP, DTaP, and Tdap) are used to prevent pertussis disease. However, it is clear that the aP vaccine efficacy quickly wanes, resulting in the reemergence of pertussis. Furthermore, recent work performed by the CDC suggest that current circulating strains are genetically distinct from strains of the past. The emergence of genetically diverging strains, combined with waning aP vaccine efficacy, calls for reevaluation of current animal models of pertussis. In this study, we used the rat model of pertussis to compare two genetically divergent strains Tohama 1 and D420. We intranasally challenged 7-week-old Sprague-Dawley rats with 108 viable Tohama 1 and D420 and measured the hallmark signs/symptoms of B. pertussis infection such as neutrophilia, pulmonary inflammation, and paroxysmal cough using whole-body plethysmography. Onset of cough occurred between 2 and 4 days after B. pertussis challenge, averaging five coughs per 15 min, with peak coughing occurring at day 8 postinfection, averaging upward of 13 coughs per 15 min. However, we observed an increase of coughs in rats infected with clinical isolate D420 through 12 days postchallenge. The rats exhibited increased bronchial restriction following B. pertussis infection. Histology of the lung and flow cytometry confirm both cellular infiltration and pulmonary inflammation. D420 infection induced higher production of anti-B. pertussis IgM antibodies compared to Tohama 1 infection. The coughing rat model provides a way of characterizing disease manifestation differences between B. pertussis strains.
Collapse
Affiliation(s)
- Jesse M. Hall
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Jason Kang
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Sophia M. Kenney
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Ting Y. Wong
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Graham J. Bitzer
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Claire O. Kelly
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Caleb A. Kisamore
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Dylan T. Boehm
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Megan A. DeJong
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - M. Allison Wolf
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Emel Sen-Kilic
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Alexander M. Horspool
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Justin R. Bevere
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - Mariette Barbier
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| | - F. Heath Damron
- Department of Microbiology, Immunology and Cell Biology, School of Medicine, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, WVU Health Sciences Center, Morgantown, West Virginia, USA
| |
Collapse
|
20
|
Citron MP, McAnulty J, Callahan C, Knapp W, Fontenot J, Morales P, Flynn JA, Douglas CM, Espeseth AS. Transplacental Antibody Transfer of Respiratory Syncytial Virus Specific IgG in Non-Human Primate Mother-Infant Pairs. Pathogens 2021; 10:pathogens10111441. [PMID: 34832599 PMCID: PMC8624788 DOI: 10.3390/pathogens10111441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/30/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022] Open
Abstract
One approach to protect new-borns against respiratory syncytial virus (RSV) is to vaccinate pregnant women in the last trimester of pregnancy. The boosting of circulating antibodies which can be transferred to the foetus would offer immune protection against the virus and ultimately the disease. Since non-human primates (NHPs) have similar reproductive anatomy, physiology, and antibody architecture and kinetics to humans, we utilized this preclinical species to evaluate maternal immunization (MI) using an RSV F subunit vaccine. Three species of NHPs known for their ability to be infected with human RSV in experimental challenge studies were tested for RSV-specific antibodies. African green monkeys had the highest overall antibody levels of the old-world monkeys evaluated and they gave birth to offspring with anti-RSV titers that were proportional to their mother. These higher overall antibody levels are associated with greater durability found in their offspring. Immunization of RSV seropositive AGMs during late pregnancy boosts RSV titers, which consequentially results in significantly higher titers in the vaccinated new-borns compared to the new-borns of unvaccinated mothers. These findings, accomplished in small treatment group sizes, demonstrate a model that provides an efficient, resource sparing and translatable preclinical in vivo system for evaluating vaccine candidates for maternal immunization.
Collapse
Affiliation(s)
- Michael P. Citron
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
- Correspondence:
| | - Jessica McAnulty
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Cheryl Callahan
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Walter Knapp
- Safety Assessment and Laboratory Animal Resources, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Jane Fontenot
- The New Iberia Research Center, University of Louisiana at Lafayette, New Iberia, LA 70560, USA;
| | - Pablo Morales
- The Mannheimer Foundation, Homestead, FL 33034, USA;
| | - Jessica A. Flynn
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Cameron M. Douglas
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| | - Amy S. Espeseth
- Infectious Disease & Vaccines, Merck & Co., Inc., Kenilworth, NJ 07033, USA; (J.M.); (C.C.); (J.A.F.); (C.M.D.); (A.S.E.)
| |
Collapse
|
21
|
Zuo W, Li J, Jiang W, Zhang M, Ma Y, Gu Q, Wang X, Cai L, Shi L, Sun M. Dose-Sparing Intradermal DTaP-sIPV Immunization With a Hollow Microneedle Leads to Superior Immune Responses. Front Microbiol 2021; 12:757375. [PMID: 34759909 PMCID: PMC8573275 DOI: 10.3389/fmicb.2021.757375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/23/2021] [Indexed: 01/10/2023] Open
Abstract
Dose-sparing intradermal (ID) vaccination may induce the same immune responses as intramuscular (IM) vaccination, which can increase vaccine supplies and save costs. In this study, rats were immunized with fractional-dose of Sabin-derived IPV combined with diphtheria-tetanus-acellular pertussis vaccine (DTaP-sIPV) intradermally with hollow microneedle devices called MicronJet600 and the vaccine immunogenicity and efficacy were evaluated and compared with those of full-dose intramuscular immunization. We tested levels of antibodies and the subclass distribution achieved via different immunization routes. Furthermore, gene transcription in the lung and spleen, cytokine levels and protection against Bordetella pertussis (B. pertussis) infection were also examined. The humoral immune effect of DTaP-sIPV delivered with MicronJet600 revealed that this approach had a significant dose-sparing effect and induced more effective protection against B. pertussis infection by causing Th1/Th17 responses. In conclusion, ID immunization of DTaP-sIPV with the MicronJet600 is a better choice than IM immunization, and it has the potential to be a new DTaP-sIPV vaccination strategy.
Collapse
Affiliation(s)
- Weilun Zuo
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Jingyan Li
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Wenwen Jiang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Mengyao Zhang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Yan Ma
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Qin Gu
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Xiaoyu Wang
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Lukui Cai
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Li Shi
- Laboratory of Immunogenetics, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| | - Mingbo Sun
- Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
- Laboratory of Vaccine Development, Institute of Medical Biology, Chinese Academy of Medical Sciences, Peking Union Medical College, Kunming, China
| |
Collapse
|
22
|
Saso A, Kampmann B, Roetynck S. Vaccine-Induced Cellular Immunity against Bordetella pertussis: Harnessing Lessons from Animal and Human Studies to Improve Design and Testing of Novel Pertussis Vaccines. Vaccines (Basel) 2021; 9:877. [PMID: 34452002 PMCID: PMC8402596 DOI: 10.3390/vaccines9080877] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 07/28/2021] [Indexed: 12/14/2022] Open
Abstract
Pertussis ('whooping cough') is a severe respiratory tract infection that primarily affects young children and unimmunised infants. Despite widespread vaccine coverage, it remains one of the least well-controlled vaccine-preventable diseases, with a recent resurgence even in highly vaccinated populations. Although the exact underlying reasons are still not clear, emerging evidence suggests that a key factor is the replacement of the whole-cell (wP) by the acellular pertussis (aP) vaccine, which is less reactogenic but may induce suboptimal and waning immunity. Differences between vaccines are hypothesised to be cell-mediated, with polarisation of Th1/Th2/Th17 responses determined by the composition of the pertussis vaccine given in infancy. Moreover, aP vaccines elicit strong antibody responses but fail to protect against nasal colonisation and/or transmission, in animal models, thereby potentially leading to inadequate herd immunity. Our review summarises current knowledge on vaccine-induced cellular immune responses, based on mucosal and systemic data collected within experimental animal and human vaccine studies. In addition, we describe key factors that may influence cell-mediated immunity and how antigen-specific responses are measured quantitatively and qualitatively, at both cellular and molecular levels. Finally, we discuss how we can harness this emerging knowledge and novel tools to inform the design and testing of the next generation of improved infant pertussis vaccines.
Collapse
Affiliation(s)
- Anja Saso
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Beate Kampmann
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| | - Sophie Roetynck
- The Vaccine Centre, Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine, London WC1 7HT, UK; (B.K.); (S.R.)
- Vaccines and Immunity Theme, MRC Unit, The Gambia at London School of Hygiene & Tropical Medicine, Banjul P.O. Box 273, The Gambia
| |
Collapse
|
23
|
Soumana IH, Linz B, Dewan KK, Sarr D, Gestal MC, Howard LK, Caulfield AD, Rada B, Harvill ET. Modeling Immune Evasion and Vaccine Limitations by Targeted Nasopharyngeal Bordetella pertussis Inoculation in Mice. Emerg Infect Dis 2021; 27:2107-2116. [PMID: 34286682 PMCID: PMC8314809 DOI: 10.3201/eid2708.203566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Conventional pertussis animal models deliver hundreds of thousands of Bordetella pertussis bacteria deep into the lungs, rapidly inducing severe pneumonic pathology and a robust immune response. However, human infections usually begin with colonization and growth in the upper respiratory tract. We inoculated only the nasopharynx of mice to explore the course of infection in a more natural exposure model. Nasopharyngeal colonization resulted in robust growth in the upper respiratory tract but elicited little immune response, enabling prolonged and persistent infection. Immunization with human acellular pertussis vaccine, which prevents severe lung infections in the conventional pneumonic infection model, had little effect on nasopharyngeal colonization. Our infection model revealed that B. pertussis can efficiently colonize the mouse nasopharynx, grow and spread within and between respiratory organs, evade robust host immunity, and persist for months. This experimental approach can measure aspects of the infection processes not observed in the conventional pneumonic infection model.
Collapse
|
24
|
Lemaitre J, Naninck T, Delache B, Creppy J, Huber P, Holzapfel M, Bouillier C, Contreras V, Martinon F, Kahlaoui N, Pascal Q, Tricot S, Ducancel F, Vecellio L, Le Grand R, Maisonnasse P. Non-human primate models of human respiratory infections. Mol Immunol 2021; 135:147-164. [PMID: 33895579 PMCID: PMC8062575 DOI: 10.1016/j.molimm.2021.04.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/03/2021] [Accepted: 04/12/2021] [Indexed: 12/25/2022]
Abstract
Respiratory pathogens represent a great burden for humanity and a potential source of new pandemics, as illustrated by the recent emergence of coronavirus disease 2019 (COVID-19). In recent decades, biotechnological advances have led to the development of numerous innovative therapeutic molecules and vaccine immunogens. However, we still lack effective treatments and vaccines against many respiratory pathogens. More than ever, there is a need for a fast, predictive, preclinical pipeline, to keep pace with emerging diseases. Animal models are key for the preclinical development of disease management strategies. The predictive value of these models depends on their ability to reproduce the features of the human disease, the mode of transmission of the infectious agent and the availability of technologies for monitoring infection. This review focuses on the use of non-human primates as relevant preclinical models for the development of prevention and treatment for human respiratory infections.
Collapse
Affiliation(s)
- Julien Lemaitre
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Thibaut Naninck
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Benoît Delache
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Justina Creppy
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France; Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France
| | - Philippe Huber
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Marion Holzapfel
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Camille Bouillier
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Vanessa Contreras
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frédéric Martinon
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Nidhal Kahlaoui
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Quentin Pascal
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Sabine Tricot
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Frédéric Ducancel
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Laurent Vecellio
- Centre d'Etude des Pathologies Respiratoires, INSERM U1100, Université de Tours, Tours, France; Plateforme Scientifique et Technique Animaleries (PST-A), Université de Tours, Tours, France
| | - Roger Le Grand
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France
| | - Pauline Maisonnasse
- Université Paris-Saclay, INSERM, CEA, Center for Immunology of Viral, Autoimmune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), Fontenay-aux-Roses & Le Kremlin-Bicêtre, France.
| |
Collapse
|
25
|
Clemmons EA, Chavez D, Condel L, Dutton JW, Price S, Lanford R. Comparison of oral, nebulized and combination antibiotic treatment of Bordetella bronchiseptica in baboons (Papio spp.). J Vet Pharmacol Ther 2021; 44:836-841. [PMID: 33963570 DOI: 10.1111/jvp.12975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/26/2021] [Accepted: 04/16/2021] [Indexed: 11/26/2022]
Abstract
Incidence of Bordetella pertussis, the causative agent of whooping cough, is rising in some global human populations despite high vaccination rates, and significant research is underway to address the issue. Baboons are an established model for pertussis research, but like many mammals, they can be naturally infected with Bordetella bronchiseptica. Because B. bronchiseptica interferes with B. pertussis research, it must be excluded from baboons under consideration for enrollment in pertussis studies. In addition to research-related concerns, B. bronchiseptica can sometimes cause clinical disease in baboons and other nonhuman primates. This study examined the use of antibiotics to clear B. bronchiseptica in naturally infected baboons. Thirty-five juvenile baboons were divided into five treatment groups: oral sulfamethoxazole/trimethoprim (TMS), nebulized gentamicin (gentamicin), combination (TMS + gentamicin) in positive animals, combination (TMS + gentamicin) as a prophylactic in exposed animals and no treatment (control). Combination of oral TMS and nebulized gentamicin given to positive animals was most effective, producing long-term clearance in 11 out of 12 treated animals. To avoid unnecessary use of antibiotics, our primary management strategy is screening and separating to allow natural clearance and limiting exposure to non-infected animals, but this study investigates an antibiotic regimen that could be used in special circumstances.
Collapse
Affiliation(s)
- Elizabeth A Clemmons
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Deborah Chavez
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Laura Condel
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - John W Dutton
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Sharon Price
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Robert Lanford
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
26
|
Jiang W, Wei C, Mou D, Zuo W, Liang J, Ma X, Wang L, Gao N, Gu Q, Luo P, Ma Y, Li J, Liu S, Shi L, Sun M. Infant rhesus macaques as a non-human primate model of Bordetella pertussis infection. BMC Infect Dis 2021; 21:407. [PMID: 33941094 PMCID: PMC8091708 DOI: 10.1186/s12879-021-06090-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 04/20/2021] [Indexed: 11/10/2022] Open
Abstract
Background The prevalent resurgence of pertussis has recently become a critical public health problem worldwide. To understand pertussis pathogenesis and the host response to both the pathogen and vaccines, a suitable pertussis animal model, particularly a non-human primate model, is necessary. Recently, a non-human primate pertussis model was successfully established with baboons. Rhesus macaques have been shown to be ideal animal models for several infectious diseases, but a model of infectious pertussis has not been established in these organisms. Studies on rhesus macaque models of pertussis were performed in the 1920s–1930s, but limited experimental details are available. Recent monkey pertussis models have not been successful because the typical clinical symptoms and transmission have not been achieved. Methods In the present study, infant rhesus macaques were challenged with Bordetella pertussis (B.p) using an aerosol method to evaluate the feasibility of this system as an animal model of pertussis. Results Upon aerosol infection, monkeys infected with the recently clinically isolated B.p strain 2016-CY-41 developed the typical whooping cough, leukocytosis, bacteria-positive nasopharyngeal wash (NPW), and interanimal transmission of pertussis. Both systemic and mucosal humoral responses were induced by B.p. Conclusion These results demonstrate that a model of pertussis was successfully established in infant rhesus macaques. This model provides a valuable platform for research on pertussis pathogenesis and evaluation of vaccine candidates. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-021-06090-y.
Collapse
Affiliation(s)
- Wenwen Jiang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Chen Wei
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Dachao Mou
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Weilun Zuo
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jiangli Liang
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Xiao Ma
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Lichan Wang
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Na Gao
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Qin Gu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Peng Luo
- Department of Diphtheria, Tetanus and Pertussis Vaccine and Toxins, National Institute for Food and Drug Control, Beijing, China
| | - Yan Ma
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Jingyan Li
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China
| | - Shuyuan Liu
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China
| | - Li Shi
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China.
| | - Mingbo Sun
- Institute of Medical Biology, Chinese Academy of Medical Science & Peking Union Medical College, Kunming, 650118, Yunnan, China. .,Yunnan Key Laboratory of Vaccine Research and Development on Severe Infectious Diseases, Kunming, 650118, Yunnan, China.
| |
Collapse
|
27
|
Locht C. The Path to New Pediatric Vaccines against Pertussis. Vaccines (Basel) 2021; 9:vaccines9030228. [PMID: 33807962 PMCID: PMC7998139 DOI: 10.3390/vaccines9030228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/04/2021] [Accepted: 03/04/2021] [Indexed: 12/21/2022] Open
Abstract
Whooping cough, or pertussis, mostly caused by Bordetella pertussis, is a respiratory disease that affects all age groups, but severe and fatal pertussis occurs almost exclusively in young children. The widespread use of whole-cell and, more recently, of acellular vaccines has substantially reduced the disease incidence. However, it has not been eliminated in any part of the world and has made a worrisome rebound in several areas. Cocoon and maternal immunization have been implemented in several countries but have their intrinsic limitations. To effectively control pertussis, novel vaccines are needed that protect against disease and prevent B. pertussis infection and transmission, which is not the case for current vaccines. Several approaches are contemplated, including alternative administration routes, such as nasal immunization, improvement of acellular vaccines by adding more antigens and T-cell-promoting adjuvants, and the development of novel vaccines, such as outer membrane vesicles and live attenuated vaccines. Among them, only a live attenuated vaccine has so far been assessed for safety and immunogenicity in preclinical models other than mice and is in clinical development. Before any of these vaccines can be used in neonates, extensive safety and immunogenicity assessment in pre-clinical neonatal models and in carefully designed clinical trials is necessary. The aim of this review is to discuss the current pertussis problem, implemented strategies to resolve it, the value of animal models and novel vaccine approaches.
Collapse
Affiliation(s)
- Camille Locht
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR 8204-CIIL-Center for Infection and Immunity of Lille, F-59000 Lille, France
| |
Collapse
|
28
|
Cole LE, Zhang J, Pacheco KM, Lhéritier P, Anosova NG, Piolat J, Zheng L, Reveneau N. Immunological Distinctions between Acellular and Whole-Cell Pertussis Immunizations of Baboons Persist for at Least One Year after Acellular Vaccine Boosting. Vaccines (Basel) 2020; 8:vaccines8040729. [PMID: 33276673 PMCID: PMC7761625 DOI: 10.3390/vaccines8040729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/19/2020] [Accepted: 11/26/2020] [Indexed: 01/17/2023] Open
Abstract
While both whole-cell (wP) and acellular pertussis (aP) vaccines have been highly effective at reducing the global pertussis disease burden, there are concerns that compared to wP vaccination, the immune responses to aP vaccination may wane more rapidly. To gain insights into the vaccine elicited immune responses, pre-adult baboons were immunized with either aP or wP vaccines, boosted with an aP vaccine, and observed over a nearly two-year period. Priming with a wP vaccine elicited a more Th17-biased response than priming with aP, whereas priming with an aP vaccine led to a more Th2-biased response than priming with wP. These differences were maintained after aP vaccine boost immunizations. Compared to aP, animals primed with a wP vaccine exhibited greater numbers of pertussis specific memory B cells. While aP and wP vaccine priming initially elicited similar levels of anti-pertussis toxin antibody, titers declined more rapidly in aP vaccine primed animals leading to a 4-fold difference. Both wP and aP vaccine immunization could induce serum bactericidal activity (SBA); however, only one wP vaccine immunization was required to elicit SBA while multiple aP vaccine immunizations were required to elicit lower, less durable SBA titers. In conclusion, when compared to aP vaccine, priming with wP vaccine elicits distinct cellular and humoral immune responses that persist after aP vaccine boosting.
Collapse
Affiliation(s)
- Leah E. Cole
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
- Correspondence: (L.E.C.); (N.R.); Tel.: +1-617-866-4473 (L.E.C.); +33-4-37-66-8510 (N.R.)
| | - Jinrong Zhang
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
| | - Kristl M. Pacheco
- Sanofi Pasteur, Cambridge, MA 02139, USA; (J.Z.); (K.M.P.); (N.G.A.)
| | | | | | - Julie Piolat
- Sanofi Pasteur, 69280 Marcy L’Etoile, France; (P.L.); (J.P.)
| | | | - Nathalie Reveneau
- Sanofi Pasteur, 69280 Marcy L’Etoile, France; (P.L.); (J.P.)
- Correspondence: (L.E.C.); (N.R.); Tel.: +1-617-866-4473 (L.E.C.); +33-4-37-66-8510 (N.R.)
| |
Collapse
|
29
|
Production of Highly Active Recombinant Dermonecrotic Toxin of Bordetella Pertussis. Toxins (Basel) 2020; 12:toxins12090596. [PMID: 32942577 PMCID: PMC7551409 DOI: 10.3390/toxins12090596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/06/2020] [Accepted: 09/10/2020] [Indexed: 11/16/2022] Open
Abstract
Pathogenic Bordetella bacteria release a neurotropic dermonecrotic toxin (DNT) that is endocytosed into animal cells and permanently activates the Rho family GTPases by polyamination or deamidation of the glutamine residues in their switch II regions (e.g., Gln63 of RhoA). DNT was found to enable high level colonization of the nasal cavity of pigs by B. bronchiseptica and the capacity of DNT to inhibit differentiation of nasal turbinate bone osteoblasts causes atrophic rhinitis in infected pigs. However, it remains unknown whether DNT plays any role also in virulence of the human pathogen B. pertussis and in pathogenesis of the whooping cough disease. We report a procedure for purification of large amounts of LPS-free recombinant DNT that exhibits a high biological activity on cells expressing the DNT receptors Cav3.1 and Cav3.2. Electron microscopy and single particle image analysis of negatively stained preparations revealed that the DNT molecule adopts a V-shaped structure with well-resolved protein domains. These results open the way to structure–function studies on DNT and its interactions with airway epithelial layers.
Collapse
|
30
|
Tracheal colonization factor A (TcfA) is a biomarker for rapid and specific detection of Bordetella pertussis. Sci Rep 2020; 10:15002. [PMID: 32929160 PMCID: PMC7490692 DOI: 10.1038/s41598-020-72092-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 08/24/2020] [Indexed: 11/23/2022] Open
Abstract
Pertussis is a highly contagious disease for which prompt, point-of-care diagnosis remains an unmet clinical need. Results from conventional test modalities (nucleic acid detection, serology, and culture) take hours to days. To overcome this challenge, we identified a new biomarker (tracheal colonization factor A, TcfA) for detection of Bordetella pertussis infection by lateral flow immunoassay (LFIA). We developed a library of 28 epitope-mapped monoclonal antibodies against TcfA and incorporated three antibodies into a LFIA. The LFIA did not cross-react with common bacterial or fungal organisms, but did react with nine distinct B. pertussis strains. The minimal linear epitope sequences targeted by the LFIA were conserved in 98% of 954 B. pertussis isolates collected across 12 countries from 1949–2017. The LFIA’s limit of detection was 3.0 × 105 CFU/mL with B. pertussis cells in buffer, 6.2 × 105 CFU/mL with nasopharyngeal washes from a non-human primate model, and 2.3 ng/mL with recombinant TcfA. The LFIA reacted with patient nasopharyngeal swab specimens containing as few as 1.8 × 106B. pertussis genomes/mL and showed no false-positives. Rapid (< 20 min) LFIA detection of TcfA as a biomarker for B. pertussis infection is feasible and may facilitate early detection of pertussis.
Collapse
|
31
|
Pertussis Vaccines and Vaccination Strategies. An Ever-Challenging Health Problem. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 31342457 DOI: 10.1007/5584_2019_411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Vaccines and vaccination against pertussis (whooping cough) have had one of the longest and most complex history, with alternating splendour and public disbelief, enthusiasm and concerns, overall resulting in changes in composition and replacement of vaccines, and associated vaccination strategies, including use of different vaccines in different countries, with no apparent equals for other bacterial vaccines. Of this both frustrating and exciting venue no end has been reached. In this note, I am shortly recapitulating the history of pertussis vaccines, from the inactivated, whole-cell vaccine to the acellular ones, with their merits and limitations, particularly concerning the debated issue of waning immunity, and a glimpse on a new vaccine proposal. Some reflections on the complexity and apparent peculiarity of this field are also made to the final scope of discussing aspects of the evolving strategies of disease control in a high-income country.
Collapse
|
32
|
Magden ER, Nehete BP, Chitta S, Williams LE, Simmons JH, Abee CR, Nehete PN. Comparative Analysis of Cellular Immune Responses in Conventional and SPF Olive Baboons ( Papio anubis). Comp Med 2020; 70:160-169. [PMID: 32014083 DOI: 10.30802/aalas-cm-19-000035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Olive baboons (P. anubis) have provided a useful model of human diseases and conditions, including cardiac, respiratory, and infectious diseases; diabetes; and involving genetics, immunology, aging, and xenotransplantation. The development of a immunologically defined SPF baboons has advanced research further, especially for studies involving the immune system and immunosuppression. In this study, we compare normal immunologic changes of PBMC subsets, and their function in age-matched conventional and SPF baboons. Our results revealed that both groups have comparable numbers of different lymphocyte subsets, but phenotypic differences in central and effector memory T-cell subsets are more pronounced in CD4+ T cells. Despite equal proportions of CD3+ T cells among the conventional and SPF baboons, PBMC from the conventional group showed greater proliferative responses to phytohemagglutinin and pokeweed mitogen and higher numbers of IFNγ-producing cells after stimulation with concanavalin A or pokeweed mitogen, whereas plasma levels of the inflammatory cytokine TNFα were significantly higher in SPF baboons. Exposure of PBMC from conventional baboons to various Toll-like (TLR) ligands, including TLR3, TLR4, and TLR8, yielded increased numbers of IFNγ producing cells, whereas PBMC from SPF baboons stimulated with TLR5 or TLR6 ligand had more IFNγ-producing cells. These findings suggest that although lymphocyte subsets share many phenotypic and functional similarities in conventional and SPF baboons, specific differences in the immune function of lymphocytes could differentially influence the quality and quantity of their innate and adaptive immune responses. These differences should be considered in interpreting experimental outcomes, specifically in studies measuring immunologic endpoints.
Collapse
Affiliation(s)
- Elizabeth R Magden
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Bharti P Nehete
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas;,
| | - Sriram Chitta
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Lawrence E Williams
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Joe H Simmons
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Christian R Abee
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas
| | - Pramod N Nehete
- The University of Texas MD Anderson Cancer Center Bastrop, Department of Comparative Medicine, Houston, Texas; The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas
| |
Collapse
|
33
|
Pertussis Toxin: A Key Component in Pertussis Vaccines? Toxins (Basel) 2019; 11:toxins11100557. [PMID: 31546599 PMCID: PMC6832755 DOI: 10.3390/toxins11100557] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 12/18/2022] Open
Abstract
B. pertussis is a human-specific pathogen and the causative agent of whooping cough. The ongoing resurgence in pertussis incidence in high income countries is likely due to faster waning of immunity and increased asymptomatic colonization in individuals vaccinated with acellular pertussis (aP) vaccine relative whole-cell pertussis (wP)-vaccinated individuals. This has renewed interest in developing more effective vaccines and treatments and, in support of these efforts, defining pertussis vaccine correlates of protection and the role of vaccine antigens and toxins in disease. Pertussis and its toxins have been investigated by scientists for over a century, yet we still do not have a clear understanding of how pertussis toxin (PT) contributes to disease symptomology or how anti-PT immune responses confer protection. This review covers PT's role in disease and evidence for its protective role in vaccines. Clinical data suggest that PT is a defining and essential toxin for B. pertussis pathogenesis and, when formulated into a vaccine, can prevent disease. Additional studies are required to further elucidate the role of PT in disease and vaccine-mediated protection, to inform the development of more effective treatments and vaccines.
Collapse
|
34
|
Scanlon K, Skerry C, Carbonetti N. Association of Pertussis Toxin with Severe Pertussis Disease. Toxins (Basel) 2019; 11:toxins11070373. [PMID: 31252532 PMCID: PMC6669598 DOI: 10.3390/toxins11070373] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/17/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Pertussis, caused by respiratory tract infection with the bacterial pathogen Bordetella pertussis, has long been considered to be a toxin-mediated disease. Bacteria adhere and multiply extracellularly in the airways and release several toxins, which have a variety of effects on the host, both local and systemic. Predominant among these toxins is pertussis toxin (PT), a multi-subunit protein toxin that inhibits signaling through a subset of G protein-coupled receptors in mammalian cells. PT activity has been linked with severe and lethal pertussis disease in young infants and a detoxified version of PT is a common component of all licensed acellular pertussis vaccines. The role of PT in typical pertussis disease in other individuals is less clear, but significant evidence supporting its contribution to pathogenesis has been accumulated from animal model studies. In this review we discuss the evidence indicating a role for PT in pertussis disease, focusing on its contribution to severe pertussis in infants, modulation of immune and inflammatory responses to infection, and the characteristic paroxysmal cough of pertussis.
Collapse
Affiliation(s)
- Karen Scanlon
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ciaran Skerry
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Nicholas Carbonetti
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
| |
Collapse
|
35
|
Gonyar LA, Gelbach PE, McDuffie DG, Koeppel AF, Chen Q, Lee G, Temple LM, Stibitz S, Hewlett EL, Papin JA, Damron FH, Eby JC. In Vivo Gene Essentiality and Metabolism in Bordetella pertussis. mSphere 2019; 4:e00694-18. [PMID: 31118307 PMCID: PMC6531889 DOI: 10.1128/msphere.00694-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/10/2019] [Indexed: 12/30/2022] Open
Abstract
Bordetella pertussis is the causative agent of whooping cough, a serious respiratory illness affecting children and adults, associated with prolonged cough and potential mortality. Whooping cough has reemerged in recent years, emphasizing a need for increased knowledge of basic mechanisms of B. pertussis growth and pathogenicity. While previous studies have provided insight into in vitro gene essentiality of this organism, very little is known about in vivo gene essentiality, a critical gap in knowledge, since B. pertussis has no previously identified environmental reservoir and is isolated from human respiratory tract samples. We hypothesize that the metabolic capabilities of B. pertussis are especially tailored to the respiratory tract and that many of the genes involved in B. pertussis metabolism would be required to establish infection in vivo In this study, we generated a diverse library of transposon mutants and then used it to probe gene essentiality in vivo in a murine model of infection. Using the CON-ARTIST pipeline, 117 genes were identified as conditionally essential at 1 day postinfection, and 169 genes were identified as conditionally essential at 3 days postinfection. Most of the identified genes were associated with metabolism, and we utilized two existing genome-scale metabolic network reconstructions to probe the effects of individual essential genes on biomass synthesis. This analysis suggested a critical role for glucose metabolism and lipooligosaccharide biosynthesis in vivo This is the first genome-wide evaluation of in vivo gene essentiality in B. pertussis and provides tools for future exploration.IMPORTANCE Our study describes the first in vivo transposon sequencing (Tn-seq) analysis of B. pertussis and identifies genes predicted to be essential for in vivo growth in a murine model of intranasal infection, generating key resources for future investigations into B. pertussis pathogenesis and vaccine design.
Collapse
Affiliation(s)
- Laura A Gonyar
- Department of Pediatrics, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Patrick E Gelbach
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Dennis G McDuffie
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Alexander F Koeppel
- Department of Medicine, University of Virginia, Charlottesville, Virginia, USA
| | - Qing Chen
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Gloria Lee
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Louise M Temple
- Department of Integrated Science and Technology, James Madison University, Harrisonburg, Virginia, USA
| | - Scott Stibitz
- Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Erik L Hewlett
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Jason A Papin
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - F Heath Damron
- Department of Microbiology, Immunology and Cell Biology, West Virginia University, Morgantown, West Virginia, USA
- Vaccine Development Center, West Virginia University Health Sciences Center, Morgantown, West Virginia, USA
| | - Joshua C Eby
- Department of Medicine, Division of Infectious Diseases and International Health, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
36
|
Kapil P, Merkel TJ. Pertussis vaccines and protective immunity. Curr Opin Immunol 2019; 59:72-78. [PMID: 31078081 DOI: 10.1016/j.coi.2019.03.006] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 03/15/2019] [Accepted: 03/18/2019] [Indexed: 12/18/2022]
Abstract
Despite high vaccine coverage, reported cases of pertussis have increased steadily over the last twenty years. This resurgence has stimulated interest in host responses to pertussis infection and vaccination with the goal of developing more effective next-generation vaccines and vaccination strategies. Optimal protection against Bordetella pertussis appears to be multifactorial requiring both humoral and cellular responses. Natural infection and whole-cell pertussis vaccination induce Th1 and Th17-dominated responses. In contrast, acellular vaccines induce Th2-dominated responses. Available immunological data indicate that while antibodies provide protection against disease, Th1 and Th17-mediated immune responses are required for bacterial clearance and long-lasting protection. The nature of the priming in children appears to be important in modulating bias and durability of immune responses required to provide protection against B. pertussis. This review summarizes the current understanding of differences in immune responses and their role in protection against B. pertussis following infection or vaccination.
Collapse
Affiliation(s)
- Parul Kapil
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Silver Spring MD 20993, USA
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, FDA, Silver Spring MD 20993, USA.
| |
Collapse
|
37
|
BspR/BtrA, an Anti-σ Factor, Regulates the Ability of Bordetella bronchiseptica To Cause Cough in Rats. mSphere 2019; 4:4/2/e00093-19. [PMID: 31019000 PMCID: PMC6483047 DOI: 10.1128/msphere.00093-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Whooping cough is a contagious respiratory disease caused by Bordetella pertussis. This disease is characterized by severe paroxysmal coughing, which becomes a heavy burden for patients and occasionally results in death; however, its pathogenesis remains largely unknown. The major obstacle to analyzing Bordetella-induced coughing is the lack of conventional animal models that replicate coughing. As Bordetella pertussis is highly adapted to humans, infection models in experimental animals are not considered to be well established. In the present study, we examined coughing in rats infected with B. bronchiseptica, which shares many virulence factors with B. pertussis. Using this rat model, we demonstrated that some of the major virulence factors of Bordetella are not involved in cough production, but an anti-σ factor, BspR/BtrA, of B. bronchiseptica regulates the production of unknown cough-causing bacterial factor(s). Our results provide important clues to understand the mechanism by which Bordetella induces cough. Bordetella pertussis, B. parapertussis, and B. bronchiseptica cause respiratory infections, many of which are characterized by coughing of the infected hosts. The pathogenesis of the coughing remains to be analyzed, mainly because there were no convenient infection models of small animals that replicate coughing after Bordetella infection. Here, we present a coughing model of rats infected with B. bronchiseptica. Rats, which are one of natural hosts of B. bronchiseptica, were readily infected with the organisms and showed frequent coughing. B. pertussis also caused coughing in rats, which is consistent with previous reports, but the cough response was less apparent than the B. bronchiseptica-induced cough. By using the rat model, we demonstrated that adenylate cyclase toxin, dermonecrotic toxin, and the type III secretion system are not involved in cough production, but BspR/BtrA (different names for the same protein), an anti-σ factor, regulates the production of unknown factor(s) to cause coughing. Rat coughing was observed by inoculation of not only the living bacteria but also the bacterial lysates. Infection with bspR (btrA)-deficient strains caused significantly less frequent coughing than the wild type; however, intranasal inoculation of the lysates from a bspR (btrA)-deficient strain caused coughing similarly to the wild type, suggesting that BspR/BtrA regulates the production of the cough factor(s) only when the bacteria colonize host bodies. Moreover, the cough factor(s) was found to be heat labile and produced by B. bronchiseptica in the Bvg+ phase. We consider that our rat model provides insight into the pathogenesis of cough induced by the Bordetella infection. IMPORTANCE Whooping cough is a contagious respiratory disease caused by Bordetella pertussis. This disease is characterized by severe paroxysmal coughing, which becomes a heavy burden for patients and occasionally results in death; however, its pathogenesis remains largely unknown. The major obstacle to analyzing Bordetella-induced coughing is the lack of conventional animal models that replicate coughing. As Bordetella pertussis is highly adapted to humans, infection models in experimental animals are not considered to be well established. In the present study, we examined coughing in rats infected with B. bronchiseptica, which shares many virulence factors with B. pertussis. Using this rat model, we demonstrated that some of the major virulence factors of Bordetella are not involved in cough production, but an anti-σ factor, BspR/BtrA, of B. bronchiseptica regulates the production of unknown cough-causing bacterial factor(s). Our results provide important clues to understand the mechanism by which Bordetella induces cough.
Collapse
|
38
|
Lambert EE, Buisman AM, van Els CACM. Superior B. pertussis Specific CD4+ T-Cell Immunity Imprinted by Natural Infection. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:81-98. [PMID: 31321753 DOI: 10.1007/5584_2019_405] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pertussis remains endemic in vaccinated populations due to waning of vaccine-induced immunity and insufficient interruption of transmission. Correlates of long-term protection against whooping cough remain elusive but increasing evidence from experimental models indicates that the priming of particular lineages of B. pertussis (Bp) specific CD4+ T cells is essential to control bacterial load. Critical hallmarks of these protective CD4+ T cell lineages in animals are suggested to be their differentiation profile as Th1 and Th17 cells and their tissue residency. These features seem optimally primed by previous infection but insufficiently or only partially by current vaccines. In this review, evidence is sought indicating whether infection also drives such superior Bp specific CD4+ T cell lineages in humans. We highlight key features of effector immunity downstream of Th1 and Th17 cell cytokines that explain clearing of primary Bp infections in naïve hosts, and effective prevention of infection in convalescent hosts during secondary challenge. Outstanding questions are put forward that need answers before correlates of human Bp infection-primed CD4+ T cell immunity can be used as benchmark for the development of improved pertussis vaccines.
Collapse
Affiliation(s)
- Eleonora E Lambert
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Anne-Marie Buisman
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | - Cécile A C M van Els
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment, Bilthoven, The Netherlands.
| |
Collapse
|
39
|
Scanlon K, Skerry C, Carbonetti N. Role of Major Toxin Virulence Factors in Pertussis Infection and Disease Pathogenesis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1183:35-51. [PMID: 31376138 DOI: 10.1007/5584_2019_403] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Bordetella pertussis produces several toxins that affect host-pathogen interactions. Of these, the major toxins that contribute to pertussis infection and disease are pertussis toxin, adenylate cyclase toxin-hemolysin and tracheal cytotoxin. Pertussis toxin is a multi-subunit protein toxin that inhibits host G protein-coupled receptor signaling, causing a wide array of effects on the host. Adenylate cyclase toxin-hemolysin is a single polypeptide, containing an adenylate cyclase enzymatic domain coupled to a hemolysin domain, that primarily targets phagocytic cells to inhibit their antibacterial activities. Tracheal cytotoxin is a fragment of peptidoglycan released by B. pertussis that elicits damaging inflammatory responses in host cells. This chapter describes these three virulence factors of B. pertussis, summarizing background information and focusing on the role of each toxin in infection and disease pathogenesis, as well as their role in pertussis vaccination.
Collapse
Affiliation(s)
- Karen Scanlon
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ciaran Skerry
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Nicholas Carbonetti
- Department of Microbiology & Immunology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
40
|
PERISCOPE: road towards effective control of pertussis. THE LANCET. INFECTIOUS DISEASES 2018; 19:e179-e186. [PMID: 30503084 DOI: 10.1016/s1473-3099(18)30646-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/02/2018] [Accepted: 10/12/2018] [Indexed: 12/28/2022]
Abstract
The resurgence and changing epidemiology of pertussis in high-income countries, the high infant mortality caused by pertussis in low-income countries, and the increasing morbidity in all age groups worldwide call for a concerted effort to both improve the current vaccines and develop new vaccines and vaccination strategies against pertussis. In this Personal View, we identify several key obstacles on the path to developing a durable solution for global control of pertussis. To systematically address these obstacles, the PERtussIS Correlates Of Protection Europe (PERISCOPE) Consortium was established in March, 2016. The objectives of this consortium are to increase scientific understanding of immunity to pertussis in humans induced by vaccines and infections, to identify biomarkers of protective immunity, and to generate technologies and infrastructure for the future development of improved pertussis vaccines. By working towards the accelerated licensure and implementation of novel, well tolerated, and effective pertussis vaccines, we hope to strengthen and stimulate further collaboration and transparency between the key stakeholders, including the public, the scientific community, public health institutes, regulatory authorities, and vaccine manufacturers.
Collapse
|
41
|
Queenan AM, Dowling DJ, Cheng WK, Faé K, Fernandez J, Flynn PJ, Joshi S, Brightman SE, Ramirez J, Serroyen J, Wiertsema S, Fortanier A, van den Dobbelsteen G, Levy O, Poolman J. Increasing FIM2/3 antigen-content improves efficacy of Bordetella pertussis vaccines in mice in vivo without altering vaccine-induced human reactogenicity biomarkers in vitro. Vaccine 2018; 37:80-89. [PMID: 30478007 DOI: 10.1016/j.vaccine.2018.11.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/30/2018] [Accepted: 11/12/2018] [Indexed: 01/17/2023]
Abstract
Current acellular-pertussis (aP) vaccines appear inadequate for long-term pertussis control because of short-lived efficacy and the increasing prevalence of pertactin-negative isolates which may negatively impact vaccine efficacy. In this study, we added fimbriae (FIM)2 and FIM3 protein to licensed 2-, 3- or 5-component aP vaccines (Pentavac®, Boostrix®, Adacel®, respectively) to assess whether an aP vaccine with enhanced FIM content demonstrates enhanced efficacy. Vaccine-induced protection was assessed in an intranasal mouse challenge model. In addition, potential reactogenicity was measured by biomarkers in a human whole blood assay (WBA) in vitro and benchmarked the responses against licensed whole cell pertussis (wP) and aP vaccines including Easyfive®, Pentavac® and Pentacel®. The results show that commercial vaccines demonstrated reduced efficacy against pertactin-negative versus pertactin-positive strains. However, addition of higher amounts of FIM2/3 to aP vaccines reduced lung colonization and increased vaccine efficacy against a pertactin-negative strain in a dose-dependent manner. Improvements in efficacy were similar for FIM2 and FIM3-expressing strains. Increasing the amount of FIM2/3 proteins in aP formulations did not alter vaccine-induced biomarkers of potential reactogenicity including prostaglandin E2, cytokines and chemokines in human newborn cord and adult peripheral blood tested in vitro. These results suggest that increasing the quantity of FIM proteins in current pertussis vaccine formulations may further enhance vaccine efficacy against B. pertussis infection without increasing the reactogenicity of the vaccine.
Collapse
Affiliation(s)
| | - David J Dowling
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wing Ki Cheng
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Kellen Faé
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | | | - Peter J Flynn
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Sweta Joshi
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Spencer E Brightman
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Juan Ramirez
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA
| | - Jan Serroyen
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | - Selma Wiertsema
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| | | | | | - Ofer Levy
- Precision Vaccines Program, Division of Infectious Diseases, Boston Children's Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA; Broad Institute of MIT & Harvard, USA.
| | - Jan Poolman
- Janssen Vaccines and Prevention, Leiden 2333CN, the Netherlands
| |
Collapse
|
42
|
Miller LA, Royer CM, Pinkerton KE, Schelegle ES. Nonhuman Primate Models of Respiratory Disease: Past, Present, and Future. ILAR J 2018; 58:269-280. [PMID: 29216343 PMCID: PMC5886323 DOI: 10.1093/ilar/ilx030] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/19/2017] [Indexed: 12/13/2022] Open
Abstract
The respiratory system consists of an integrated network of organs and structures that primarily function for gas exchange. In mammals, oxygen and carbon dioxide are transmitted through a complex respiratory tract, consisting of the nasal passages, pharynx, larynx, and lung. Exposure to ambient air throughout the lifespan imposes vulnerability of the respiratory system to environmental challenges that can contribute toward development of disease. The importance of the respiratory system to human health is supported by statistics from the Centers for Disease Control and Prevention; in 2015, chronic lower respiratory diseases were the third leading cause of death in the United States. In light of the significant mortality associated with respiratory conditions that afflict all ages of the human population, this review will focus on basic and preclinical research conducted in nonhuman primate models of respiratory disease. In comparison with other laboratory animals, the nonhuman primate lung most closely resembles the human lung in structure, physiology, and mucosal immune mechanisms. Studies defining the influence of inhaled microbes, pollutants, or allergens on the nonhuman primate lung have provided insight on disease pathogenesis, with the potential for elucidation of molecular targets leading to new treatment modalities. Vaccine trials in nonhuman primates have been crucial for confirmation of safety and protective efficacy against infectious diseases of the lung in a laboratory animal model that recapitulates pathology observed in humans. In looking to the future, nonhuman primate models of respiratory diseases will continue to be instrumental for translating biomedical research for improvement of human health.
Collapse
Affiliation(s)
- Lisa A Miller
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California
| | - Christopher M Royer
- California National Primate Research Center, University of California, Davis, California
| | - Kent E Pinkerton
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine and Department of Pediatrics, UC Davis School of Medicine, University of California, Davis, California
| | - Edward S Schelegle
- Department of Anatomy, Physiology & Cell Biology, UC Davis School of Veterinary Medicine, University of California, Davis, California
| |
Collapse
|
43
|
Histopathology of Bordetella pertussis in the Baboon Model. Infect Immun 2018; 86:IAI.00511-18. [PMID: 30126900 DOI: 10.1128/iai.00511-18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 08/13/2018] [Indexed: 01/27/2023] Open
Abstract
Pertussis is a severe respiratory disease caused by Bordetella pertussis The classic symptoms of pertussis include paroxysmal coughing with an inspiratory whoop, posttussive vomiting, cyanosis, and persistent coryzal symptoms. Infants under 2 months of age experience more severe disease, with most deaths occurring in this age group. Most of what is known about the pathology of pertussis in humans is from the evaluation of fatal human infant cases. The baboon model of pertussis provides the opportunity to evaluate the histopathology of severe but nonfatal pertussis. The baboon model recapitulates the characteristic clinical signs of pertussis observed in humans, including leukocytosis, paroxysmal coughing, mucus production, heavy colonization of the airway, and transmission of the bacteria between hosts. As in humans, baboons demonstrate age-related differences in clinical presentation, with younger animals experiencing more severe disease. We examined the histopathology of 5- to 6-week-old baboons, with the findings being similar to those reported for fatal human infant cases. In juvenile baboons, we found that the disease is highly inflammatory and concentrated to the lungs with signs of disease that would typically be diagnosed as acute respiratory distress syndrome (ARDS) and bronchopneumonia. In contrast, no significant pathology was observed in the trachea. Histopathological changes in the trachea were limited to cellular infiltrates and mucus production. Immunohistostaining revealed that the bacteria were localized to the surface of the ciliated epithelium in the conducting airways. Our observations provide important insights into the pathology of pertussis in typical, severe but nonfatal pertussis cases in a very relevant animal model.
Collapse
|
44
|
In vivo imaging of bacterial colonization of the lower respiratory tract in a baboon model of Bordetella pertussis infection and transmission. Sci Rep 2018; 8:12297. [PMID: 30115990 PMCID: PMC6095854 DOI: 10.1038/s41598-018-30896-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/31/2018] [Indexed: 01/10/2023] Open
Abstract
Recent whooping cough (pertussis) outbreaks in many countries highlight the crucial need for a better understanding of the pathogenesis of Bordetella pertussis infection of the respiratory tract. The baboon is a recently described preclinical model for the study of B. pertussis infection and may be ideal for the evaluation of new pertussis vaccines. However, many pathophysiological aspects, including bacterial localization and interactions, have yet to be described in this model. Here, we used a baboon model of infection with a fluorescent GFP-expressing B. pertussis strain, derived from European clinical isolate B1917. Juvenile baboons were used to evaluate susceptibility to infection and transmission. Non-invasive in vivo imaging procedures, using probe-based confocal endomicroscopy coupled with bronchoscopy, were developed to track fluorescent bacterial localization and cellular interactions with host cells in the lower respiratory tract of infected animals. All B1917-GFP-challenged animals developed classical pertussis symptoms, including paroxysmal cough, nasopharyngeal colonization, and leukocytosis. In vivo co-localization with antigen presenting cells and progressive bacterial colonization of the lower airways were also assessed by imaging during the first weeks of infection. Our results demonstrate that in vivo imaging can be used to assess bacterial colonization and to point out interactions in a baboon model of pertussis.
Collapse
|
45
|
Abstract
ABSTRACT
Bordetella bronchiseptica
is involved in respiratory tract infections mainly in dogs and pigs but may also cause infections in humans. Valid and representative data on antimicrobial susceptibility of
B. bronchiseptica
is rare. Approved antimicrobial susceptibility testing methods have been published, but very few clinical breakpoints are available. The MIC values are low for most agents but high for β-lactam antibiotics and macrolides. Information on the genetic basis of resistance is scarce. For a small number of isolates that are resistant or show elevated MICs, the molecular basis of resistance was identified. Three tetracycline resistance genes,
tet
(A),
tet
(C), and
tet
(31), coding for major facilitator superfamily efflux pumps, were identified. Two other major facilitator superfamily exporter genes confer resistance to chloramphenicol (
cmlB1
) or to chloramphenicol and florfenicol (
floR
). Two class B chloramphenicol acetyltransferase genes (
catB1
and
catB3
), which confer resistance to nonfluorinated phenicols by enzymatic inactivation, have been identified in
B. bronchiseptica
. Like the trimethoprim resistance genes
dfrA1
and
dfrB1
, which code for trimethoprim-insensitive dihydrofolate reductases, the genes
catB1
and
catB3
were located on gene cassettes and found in class 1 integrons also harboring the sulfonamide resistance gene
sul1
. In addition, the gene
sul2
has also been detected. Both
sul1
and
sul2
code for sulfonamide-insensitive dihydropteroate synthases. A gene cassette harboring the β-lactamase gene
bla
OXA-2
was also identified, whereas β-lactam resistance in
B. bronchiseptica
seems to be more likely due to reduced influx in combination with the species-specific β-lactamase encoded by
bla
BOR-1
. The resistance genes were mostly located on conjugative plasmids.
Collapse
|
46
|
Kanojia G, Raeven RHM, van der Maas L, Bindels THE, van Riet E, Metz B, Soema PC, Ten Have R, Frijlink HW, Amorij JP, Kersten GFA. Development of a thermostable spray dried outer membrane vesicle pertussis vaccine for pulmonary immunization. J Control Release 2018; 286:167-178. [PMID: 30048656 DOI: 10.1016/j.jconrel.2018.07.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/17/2018] [Accepted: 07/21/2018] [Indexed: 11/30/2022]
Abstract
Worldwide resurgence of whooping cough calls for improved, next-generation pertussis vaccines that induce broad and long-lasting immunity. A mucosal pertussis vaccine based on outer membrane vesicles (omvPV) is a promising candidate. Further, a vaccine that is stable outside the cold chain would be of substantial advantage for worldwide distribution and application. A vaccine formulated as a powder could both stabilize the vaccine as well as make it suitable for pulmonary vaccination. To that end, we developed a spray dried omvPV with improved stability compared to the liquid omvPV formulation. Spray drying did not affect the structural integrity of the omvPV. The antigenicity of Vag8, a major antigen in omvPV was diminished slightly and an altered tryptophan fluorescence indicated some changes in protein structure. However, when administered via the pulmonary route in mice after reconstitution, spray dried omvPV showed comparable immune responses and protection against challenge with live B. pertussis as liquid omvPV. Mucosal IgA and Th17 responses were established in addition to broad systemic IgG and Th1/Th17 responses, indicating the induction of an effective immunity profile. Overall, a spray dried omvPV was developed that maintained effective immunogenic properties and has an improved storage stability.
Collapse
Affiliation(s)
- Gaurav Kanojia
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands.
| | - René H M Raeven
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands.
| | | | - Tim H E Bindels
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Elly van Riet
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Bernard Metz
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Peter C Soema
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Rimko Ten Have
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Henderik W Frijlink
- University of Groningen, Department of Pharmaceutical Technology and Biopharmacy, Groningen, The Netherlands
| | - Jean-Pierre Amorij
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands
| | - Gideon F A Kersten
- Intravacc (Institute for Translational Vaccinology), Bilthoven, The Netherlands; Division of Biotherapeutics, Leiden Academic Center for Drug Research, Leiden University, Leiden, The Netherlands
| |
Collapse
|
47
|
Hasan S, Sebo P, Osicka R. A guide to polarized airway epithelial models for studies of host-pathogen interactions. FEBS J 2018; 285:4343-4358. [PMID: 29896776 DOI: 10.1111/febs.14582] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/21/2018] [Accepted: 06/11/2018] [Indexed: 11/28/2022]
Abstract
Mammalian lungs are organs exhibiting the cellular and spatial complexity required for gas exchange to support life. The respiratory epithelium internally lining the airways is susceptible to infections due to constant exposure to inhaled microbes. Biomedical research into respiratory bacterial infections in humans has been mostly carried out using small mammalian animal models or two-dimensional, submerged cultures of undifferentiated epithelial cells. These experimental model systems have considerable limitations due to host specificity of bacterial pathogens and lack of cellular and morphological complexity. This review describes the in vitro differentiated and polarized airway epithelial cells of human origin that are used as a model to study respiratory bacterial infections. Overall, these models recapitulate key aspects of the complexity observed in vivo and can help in elucidating the molecular details of disease processes observed during respiratory bacterial infections.
Collapse
Affiliation(s)
- Shakir Hasan
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Peter Sebo
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| | - Radim Osicka
- Institute of Microbiology of the CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
48
|
Edwards KM. How Can We Best Protect Infants from Pertussis? J Infect Dis 2018; 217:1177-1179. [DOI: 10.1093/infdis/jiy023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Accepted: 01/13/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Kathryn M Edwards
- Monroe Carell Children’s Hospital, Vanderbilt University School of Medicine, Nashville, Tennessee
| |
Collapse
|
49
|
Kapil P, Papin JF, Wolf RF, Zimmerman LI, Wagner LD, Merkel TJ. Maternal Vaccination With a Monocomponent Pertussis Toxoid Vaccine Is Sufficient to Protect Infants in a Baboon Model of Whooping Cough. J Infect Dis 2018; 217:1231-1236. [PMID: 29346585 PMCID: PMC6018939 DOI: 10.1093/infdis/jiy022] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Bordetella pertussis is a human pathogen responsible for serious respiratory illness. The disease is most severe in infants too young to be vaccinated with most hospitalizations and deaths occurring within this age group. The Advisory Committee on Immunization Practices recommended immunization of pregnant women to protect infants from birth until their first vaccination at 6-8 weeks of age. We previously demonstrated that maternal vaccination with licensed acellular pertussis vaccines protected newborn baboons from disease. We hypothesized that protection was due to toxin-neutralizing, maternal anti-pertussis toxin antibodies and predicted that maternal vaccination with a pertussis toxoid (PTx)-only vaccine would protect newborns from disease. Methods Infant baboons born to unvaccinated mothers or mothers vaccinated with a PTx-only vaccine were challenged with B. pertussis at 5 weeks of age and followed for infection and signs of disease. Results Although all challenged infants were heavily colonized, the infant baboons born to mothers vaccinated with PTx-only vaccine were free from clinical disease following exposure to B. pertussis. In contrast, disease was observed in infants born to unvaccinated mothers. Conclusions Our results demonstrated that maternal vaccination with a PTx-only vaccine is sufficient to protect newborn baboons from disease following exposure to pertussis.
Collapse
Affiliation(s)
- Parul Kapil
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - James F Papin
- Oklahoma Baboon Research Resource, Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Roman F Wolf
- Oklahoma Baboon Research Resource, Comparative Medicine, University of Oklahoma Health Sciences Center, Oklahoma City
| | - Lindsey I Zimmerman
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Leslie D Wagner
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| | - Tod J Merkel
- Division of Bacterial, Parasitic and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland
| |
Collapse
|
50
|
Abstract
Whooping cough is a highly contagious, acute respiratory disease, caused by the Gram-negative bacterium Bordetella pertussis (Bp). Despite the introduction and widespread use of vaccines starting in the 1950s pertussis cases continue to be reported, with a significant global impact. The role of specific virulence factors in disease and the immune mechanisms associated with protection following natural infection or vaccination are still not completely understood. The recently-developed baboon model of clinical pertussis provides a valuable tool for the study of pertussis. Baboons infected with B. pertussis exhibit all of the manifestations of human pertussis including paroxysmal coughing, mucus production, leukocytosis and transmission. The establishment of this model provides the opportunity to address unanswered questions about the natural progression of this disease and host responses to infection and vaccination in a very relevant model. In this review, we present an overview of our knowledge of pertussis along with recent advances resulting from use of the baboon model. Remaining questions and future research directions are discussed. We hope that the knowledge gained through use of the baboon model of pertussis and clinical studies will allow the development of more efficacious vaccines, conferring long lasting protection against disease and transmission.
Collapse
Affiliation(s)
- Marta V Pinto
- Oxford Vaccine Group, Department of Paediatrics, University of Oxford, Oxford, UK.
| | - Tod J Merkel
- Laboratory of Respiratory and Special Pathogens, Center for Biologics Evaluation and Research, Food and Drug Administration, Bethesda, MD, USA.
| |
Collapse
|