1
|
Krueger E, Brown AC. Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol 2020; 35:85-105. [PMID: 32061022 PMCID: PMC7359886 DOI: 10.1111/omi.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with localized aggressive periodontitis, as well as other systemic diseases. This organism produces a number of virulence factors, all of which provide some advantage to the bacterium. Several studies have demonstrated that clinical isolates from diseased patients, particularly those of African descent, frequently belong to specific clones of A. actinomycetemcomitans that produce significantly higher amounts of a protein exotoxin belonging to the repeats-in-toxin (RTX) family, leukotoxin (LtxA), whereas isolates from healthy patients harbor minimally leukotoxic strains. This finding suggests that LtxA might play a key role in A. actinomycetemcomitans pathogenicity. Because of this correlation, much work over the past 30 years has been focused on understanding the mechanisms by which LtxA interacts with and kills host cells. In this article, we review those findings, highlight the remaining open questions, and demonstrate how knowledge of these mechanisms, particularly the toxin's interactions with lymphocyte function-associated antigen-1 (LFA-1) and cholesterol, enables the design of targeted anti-LtxA strategies to prevent/treat disease.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
2
|
Raja M, Ummer F, Dhivakar CP. Aggregatibacter actinomycetemcomitans - a tooth killer? J Clin Diagn Res 2014; 8:ZE13-6. [PMID: 25302290 DOI: 10.7860/jcdr/2014/9845.4766] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2014] [Accepted: 07/13/2014] [Indexed: 11/24/2022]
Abstract
Strong evidence is available on Aggregatibacter actinomycetemcomitans (A.a) on its role as the causative agent of localised juvenile periodontitis (LJP), a disease characterised by rapid destruction of the tooth-supporting tissues. This organism possesses a large number of virulence factors with a wide range of activities which enable it to colonise the oral cavity, invade periodontal tissues, evade host defences, initiate connective tissue destruction and interfere with tissue repair. Adhesion to epithelial and tooth surfaces is dependent on the presence of surface proteins and structures such as microvesicles and fimbriae. Invasion has been demonstrated in vivo and in vitro. The organism has a number of means of evading host defences which include: (i) production of leukotoxin; (ii) producing immunosuppressive factors; (iv) secreting proteases capable of cleaving IgG; and (v) producing Fc-binding.
Collapse
Affiliation(s)
- Manoj Raja
- Reader, Department of Periodontics, Karpaga Vinayaga Institute of Dental Sciences , Chennai, India
| | - Fajar Ummer
- Reader, Department of Periodontics, MES Dental College , Perintalmanna, India
| | - C P Dhivakar
- Senior Lecturer, Department of Periodontics, Karpagavinayaga Institute of Dental Sciences , Chennai, India
| |
Collapse
|
3
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
Gutiérrez-Venegas G, Castillo-Alemán R. Characterization of the transduction pathway involved in c-fos and c-jun expression induced by Aggregatibacter actinomycetemcomitans lipopolysaccharides in human gingival fibroblasts. Int Immunopharmacol 2008; 8:1513-23. [DOI: 10.1016/j.intimp.2008.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Revised: 06/12/2008] [Accepted: 06/16/2008] [Indexed: 10/21/2022]
|
5
|
Membrane morphology and leukotoxin secretion are associated with a novel membrane protein of Aggregatibacter actinomycetemcomitans. J Bacteriol 2008; 190:5972-80. [PMID: 18621903 DOI: 10.1128/jb.00548-08] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gram-negative bacteria display either a flat or an irregular outer membrane. The periodontal pathogen Aggregatibacter (Actinobacillus) actinomycetemcomitans has an irregular outer membrane. We have identified a gene that is associated with the biogenesis of this morphology. The gene is part of a three-gene operon and codes for a 141-kDa protein designated morphogenesis protein C (MorC), which is conserved in several gram-negative bacteria including Haemophilus influenzae and Pasteurella multocida. Insertional inactivation of this gene resulted in the conversion of an irregularly shaped membrane to a flat membrane. Associated with this morphological change were the autoaggregation of the bacteria during planktonic growth and a concomitant increase in the surface hydrophobicity of the bacterium. The absence of MorC also resulted in the loss of the secretion of leukotoxin but not the ltxA transcription. Our findings suggest that MorC is critical for membrane morphology and leukotoxin secretion in A. actinomycetemcomitans.
Collapse
|
6
|
Bhattacharjee MK, Fine DH, Figurski DH. tfoX (sxy)-dependent transformation of Aggregatibacter (Actinobacillus) actinomycetemcomitans. Gene 2007; 399:53-64. [PMID: 17561357 PMCID: PMC2080652 DOI: 10.1016/j.gene.2007.04.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 04/16/2007] [Accepted: 04/25/2007] [Indexed: 12/16/2022]
Abstract
tfoX (sxy) is a regulatory gene needed to turn on competence genes. Aggregatibacter (Actinobacillus) actinomycetemcomitans has a tfoX gene that is important for transformation. We cloned this gene on an IncQ plasmid downstream of the inducible tac promoter. When this plasmid was resident in cells of A. actinomycetemcomitans and tfoX was induced, the cells became competent for transformation. Several strains of A. actinomycetemcomitans, including different serotypes, as well as rough (adherent) and isogenic smooth (nonadherent) forms were tested. Only our two serotype f strains failed to be transformed. With the other strains, we could easily get transformants with extrachromosomal plasmid DNA when closed circular, replicative plasmid carrying an uptake signal sequence (USS) was used. When a replicative plasmid carrying a USS and cloned DNA from the chromosome of A. actinomycetemcomitans was linearized by digestion with a restriction endonuclease or when genomic DNA was used directly, the outcome was allelic exchange. To facilitate allelic exchange, we constructed a suicide plasmid (pMB78) that does not replicate in A. actinomycetemcomitans and carries a region with two inverted copies of a USS. This vector gave allelic exchange in the presence of cloned and induced tfoX easily and without digestion. Using transposon insertions in cloned katA DNA, we found that as little as 78 bp of homology at one of the ends was sufficient for that end to participate in allelic exchange. The cloning and induction of tfoX makes it possible to transform nearly any strain of A. actinomycetemcomitans, and allelic exchange has proven to be important for site-directed mutagenesis.
Collapse
Affiliation(s)
- Mrinal K Bhattacharjee
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
7
|
Affiliation(s)
- Mary E Davey
- Department of Molecular Genetics, The Forsyth Institute, Boston, Massachusetts, USA
| | | |
Collapse
|
8
|
Tomich M, Fine DH, Figurski DH. The TadV protein of Actinobacillus actinomycetemcomitans is a novel aspartic acid prepilin peptidase required for maturation of the Flp1 pilin and TadE and TadF pseudopilins. J Bacteriol 2006; 188:6899-914. [PMID: 16980493 PMCID: PMC1595517 DOI: 10.1128/jb.00690-06] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The tad locus of Actinobacillus actinomycetemcomitans encodes genes for the biogenesis of Flp pili, which allow the bacterium to adhere tenaciously to surfaces and form strong biofilms. Although tad (tight adherence) loci are widespread among bacterial and archaeal species, very little is known about the functions of the individual components of the Tad secretion apparatus. Here we characterize the mechanism by which the pre-Flp1 prepilin is processed to the mature pilus subunit. We demonstrate that the tadV gene encodes a prepilin peptidase that is both necessary and sufficient for proteolytic maturation of Flp1. TadV was also found to be required for maturation of the TadE and TadF pilin-like proteins, which we term pseudopilins. Using site-directed mutagenesis, we show that processing of pre-Flp1, pre-TadE, and pre-TadF is required for biofilm formation. Mutation of a highly conserved glutamic acid residue at position +5 of Flp1, relative to the cleavage site, resulted in a processed pilin that was blocked in assembly. In contrast, identical mutations in TadE or TadF had no effect on biofilm formation, indicating that the mechanisms by which Flp1 pilin and the pseudopilins function are distinct. We also determined that two conserved aspartic acid residues in TadV are critical for function of the prepilin peptidase. Together, our results indicate that the A. actinomycetemcomitans TadV protein is a member of a novel subclass of nonmethylating aspartic acid prepilin peptidases.
Collapse
Affiliation(s)
- Mladen Tomich
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, 1516 HHSC, 701 West 168th Street, New York, NY 10032, USA
| | | | | |
Collapse
|
9
|
Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Arroyo-Cruz SR, Maldonado-Frías S. Luteolin inhibits lipopolysaccharide actions on human gingival fibroblasts. Eur J Pharmacol 2006; 541:95-105. [PMID: 16762341 DOI: 10.1016/j.ejphar.2006.03.069] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2005] [Revised: 03/22/2006] [Accepted: 03/30/2006] [Indexed: 11/24/2022]
Abstract
Periodontal disease comprises a group of infections that lead to inflammation of the gingiva, periodontal tissue destruction, and in severe cases is accompanied by alveolar bone loss with tooth exfoliation. Actinobacillus actinomycetemcomitans is a Gram-negative microorganism, which possesses and produces lipopolysaccharide (LPS) molecules that play a key role in disease development. Human gingival fibroblasts are the major constituents of gingival connective tissue and may interact directly with bacteria and bacterial products including LPS. Flavonoids possess antioxidant and anti-inflammatory properties that reduce inflammatory molecule expression in macrophages and monocytes. In this study, we evaluated the ability of diverse flavonoids to regulate nitric oxide production of LPS-stimulated human gingival fibroblasts, and studied the effect of luteolin on diminish phosphorylation in mitogen-activated protein kinase (MAPK) family members as well as in protein kinase B (Akt), nuclear factor kappa B (NF-kappaB) activation, inducible nitric oxide synthase (NOS) expression, and nitric oxide (NO) synthesis. We also found that pretreatment with three flavonoids, including quercetin, genistein, and luteolin, blocked nitric oxide synthesis in a dose-dependent fashion. Luteolin exerted the strongest blocking action on expression of this inflammatory mediator. Luteolin pretreatment attenuated LPS-induced extracellular signal-regulated kinase, p38, and Akt phosphorylation. LPS treatment of human gingival fibroblasts resulted in NF-kappaB translocation. Cell pretreatment with luteolin abolished LPS effects on NF-kappaB translocation. In addition, luteolin treatment blocked LPS-induced cellular proliferation inhibition without affecting genetic material integrity. We concluded that luteolin interferes with LPS signaling pathways, reducing activation of several mitogen-activated protein kinase family members, and inhibits inflammatory mediator expression.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica de la División de Estudios de Posgrado de la Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510 México, D.F., México.
| | | | | | | |
Collapse
|
10
|
Gutiérrez-Venegas G, Kawasaki-Cárdenas P, Cruz-Arroyo SR, Pérez-Garzón M, Maldonado-Frías S. Actinobacillus actinomycetemcomitans lipopolysaccharide stimulates the phosphorylation of p44 and p42 MAP kinases through CD14 and TLR-4 receptor activation in human gingival fibroblasts. Life Sci 2006; 78:2577-83. [PMID: 16318859 DOI: 10.1016/j.lfs.2005.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Accepted: 10/10/2005] [Indexed: 11/15/2022]
Abstract
Tyrosine phosphorylation is an early step in lipopolysaccharide (LPS) stimulated monocytes and macrophages that appears to play a key role in signal transduction. We have demonstrated that LPS purified from Actinobacillus actinomycetemcomitans also increases protein tyrosine phosphorylation in human gingival fibroblasts (HGF). This effect was elicited rapidly after LPS stimulation at concentrations that stimulate anti-bacterial responses in human gingival fibroblasts. Two main proteins, with an apparent molecular weight of 44 and 42 kDa, were phosphorylated after LPS stimulation of the human gingival fibroblasts. The phosphorylation was detected after 5 to 15 min and reached the maximum at 30 min of treatment. The increase in tyrosine phosphorylation was apparent following stimulation with LPS at 10 ng/ml and the response was dose dependent up to 10 microg/ml. Pretreatment with the tyrosine kinase inhibitors, herbimycin A and genistein inhibited the LPS-stimulated phosphorylation of p44 and p42 MAP kinases in a dose dependent manner. Pretreatment of human gingival fibroblasts with antibodies anti-CD14 or anti-TLR-4 but not anti-TLR-2 inhibited the LPS-induced tyrosine phosphorylation of p44 and p42. Additionally, LPS-induced p44 and p42 phosphorylation was inhibited by polymyxin treatment. These findings demonstrate that LPS from A. actinomycetemcomintans increases rapidly p44 and p42 phosphorylation (ERK 1 and ERK 2, respectively) in human gingival fibroblasts. Our data also suggest that CD14 and TLR-4 receptors are involved in the LPS effects in human gingival fibroblasts.
Collapse
Affiliation(s)
- Gloria Gutiérrez-Venegas
- Laboratorio de Bioquímica. División de Estudios de Posgrado Facultad de Odontología Universidad, Nacional Autónoma de México. México, D.F. 04510.
| | | | | | | | | |
Collapse
|
11
|
Haase EM, Bonstein T, Palmer RJ, Scannapieco FA. Environmental influences on Actinobacillus actinomycetemcomitans biofilm formation. Arch Oral Biol 2005; 51:299-314. [PMID: 16226214 DOI: 10.1016/j.archoralbio.2005.09.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 08/02/2005] [Accepted: 09/06/2005] [Indexed: 01/08/2023]
Abstract
Fresh clinical isolates of the periodontal pathogen Actinobacillus actinomycetemcomitans have an adherent, rough colony morphology that transforms into a minimally adherent, smooth colony phenotype during successive in vitro passage. The objectives of this study were: (1) to compare biofilm formation of the rough (RVs) and smooth variants (SVs) of several strains of A. actinomycetemcomitans grown under various environmental conditions and (2) to examine the dynamics of biofilm formation. A microtitre plate biofilm assay was used to evaluate biofilm formation of strains grown in broth with modified salt concentration and pH, and to evaluate the effect of pre-conditioning films. Scanning electron microscopy (SEM) was used to monitor microscopic changes in morphology. Dynamics of biofilm formation were measured in a flowcell monitored by confocal microscopy. The RVs generally produced greater biofilm than the SVs. However, medium-dependent differences in biofilm formation were evident for some rough/smooth pairs. The RVs were more tolerant to changes in salt and pH, and more resistant to chlorhexidine than the SVs. Horse serum virtually eliminated, and saliva significantly reduced, biofilm formation by the SVs in contrast to the RVs. SEM revealed no alteration in morphology with change of environment. In a flowcell, the RVs produced towers of microcolonies anchored by a small contact area, whereas the SVs produced an open architecture of reduced height. After 7 days in a flowcell, the rough to smooth phenotype transition could be demonstrated. In conclusion, strain, growth medium and conditioning film all affect biofilm formation. The RVs produce biofilms of unique architecture that may serve to protect the bacterium from environmental perturbations.
Collapse
Affiliation(s)
- Elaine M Haase
- Department of Oral Biology, University at Buffalo, 109 Foster Hall, 3435 Main Street, Buffalo, NY 14214, USA.
| | | | | | | |
Collapse
|
12
|
Wang Y, Chen C. Mutation analysis of the flp operon in Actinobacillus actinomycetemcomitans. Gene 2005; 351:61-71. [PMID: 15837433 DOI: 10.1016/j.gene.2005.02.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2004] [Revised: 01/19/2005] [Accepted: 02/22/2005] [Indexed: 11/16/2022]
Abstract
Fresh clinical isolates of the periodontal pathogen Actinobacillus actinomycetemcomitans live as autoaggregates, in which cells are densely packed and embedded in an extracellular matrix composed of bundled fimbriae, exopolymers, and vesicles. The expression of fimbriae is known to be determined by the flp operon of 14 genes, flp-1-flp-2-tadV-rcpCAB-tadZABCDEFG. We generated mutations of each gene of this operon in A. actinomycetemcomitans strain D7S. All mutants expressed some changes in the production of extracellular matrix materials that include vesicles, exopolymers, and fimbriae. The expression of fimbriae required the function of flp-1, rcpA, rcpB, tadB, tadD, tadE, and tadF. Mutants of flp-2, tadZ, tadA, tadC, and tadG expressed reduced levels of fimbriae, or fimbriae that had different gross appearance. Importantly, the expression of the non-fimbrial matrix materials was affected by all mutations, suggesting that the flp operon was involved in production of these materials. The flp locus apparently plays a central role in autoaggregation of A. actinomycetemcomitans, which may be the primary survival strategy of this bacterium in vivo.
Collapse
Affiliation(s)
- Ying Wang
- University of Southern California School of Dentistry, Los Angeles, 90089, USA.
| | | |
Collapse
|
13
|
Li L, Matevski D, Aspiras M, Ellen RP, Lépine G. Two epithelial cell invasion-related loci of the oral pathogen Actinobacillus actinomycetemcomitans. ACTA ACUST UNITED AC 2004; 19:16-25. [PMID: 14678470 DOI: 10.1046/j.0902-0055.2003.00102.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Two invasion-related loci, apiA and the two-gene operon apiBC, were isolated from the oral pathogen Actinobacillus actinomycetemcomitans UT32. apiA encodes a 32.5 kDa protein that migrates on SDS-PAGE as a 101 kDa protein as detected by Western blot analysis or silver staining of an outer membrane-enriched fraction of Escherichia coli transformants. E. coli expressing ApiA have a different phenotype than the host vector, in broth and on solid media, and a colony morphology that resembles that of fresh A. actinomycetemcomitans isolates. These E. coli transformants bound to chicken collagen type II, human collagen type II, III, V and fibronectin. apiB and apiC encode proteins of 130.1 and 70.6 kDa, respectively. ApiBC conferred on E. coli a slightly enhanced ability to bind to collagen type III. ApiA- and ApiB-deficient mutants were constructed in A. actinomycetemcomitans. The ApiB-mutant had 4-fold diminished invasion of KB cells; the ApiA-mutant had increased invasion. Both loci were found in all A. actinomycetemcomitans strains, although polymorphism was detected only for apiBC. The deduced sequences of these invasion-related proteins are homologous to members of the YadA adhesin/invasin family.
Collapse
Affiliation(s)
- L Li
- University of Toronto, Faculty of Dentistry, Toronto, Ontario, Canada
| | | | | | | | | |
Collapse
|
14
|
Kaplan JB, Ragunath C, Ramasubbu N, Fine DH. Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 2003; 185:4693-8. [PMID: 12896987 PMCID: PMC166467 DOI: 10.1128/jb.185.16.4693-4698.2003] [Citation(s) in RCA: 247] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
When cultured in broth, fresh clinical isolates of the gram-negative periodontal pathogen Actinobacillus actinomycetemcomitans form tenaciously adherent biofilm colonies on surfaces such as plastic and glass. These biofilm colonies release adherent cells into the medium, and the released cells can attach to the surface of the culture vessel and form new colonies, enabling the biofilm to spread. We mutagenized A. actinomycetemcomitans clinical strain CU1000 with transposon IS903phikan and isolated a transposon insertion mutant that formed biofilm colonies which were tightly adherent to surfaces but which lacked the ability to release cells into the medium and disperse. The transposon insertion in the mutant strain mapped to a gene, designated dspB, that was predicted to encode a secreted protein homologous to the catalytic domain of the family 20 glycosyl hydrolases. A plasmid carrying a wild-type dspB gene restored the ability of biofilm colonies of the mutant strain to disperse. We expressed A. actinomycetemcomitans DspB protein engineered to contain a hexahistidine metal-binding site at its C terminus in Escherichia coli and purified the protein by using Ni affinity chromatography. Substrate specificity studies performed with monosaccharides labeled with 4-nitrophenyl groups showed that DspB hydrolyzed the 1-->4 glycosidic bond of beta-substituted N-acetylglucosamine, which is consistent with the known functions of other family 20 glycosyl hydrolases. When added to culture medium, purified DspB protein, but not heat-inactivated DspB, restored the ability of the mutant strain to release cells and disperse. DspB protein also caused the detachment of cells from preformed biofilm colonies of strain CU1000 grown attached to plastic and the disaggregation of highly autoaggregated clumps of CU1000 cells in solution. We concluded that dspB encodes a soluble beta-N-acetylglucosaminidase that causes detachment and dispersion of A. actinomycetemcomitans biofilm cells.
Collapse
Affiliation(s)
- Jeffrey B Kaplan
- Department of Oral Biology, New Jersey Dental School, Newark, New Jersey 07103, USA.
| | | | | | | |
Collapse
|
15
|
Kaplan JB, Meyenhofer MF, Fine DH. Biofilm growth and detachment of Actinobacillus actinomycetemcomitans. J Bacteriol 2003; 185:1399-404. [PMID: 12562811 PMCID: PMC142852 DOI: 10.1128/jb.185.4.1399-1404.2003] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative, oral bacterium Actinobacillus actinomycetemcomitans has been implicated as the causative agent of several forms of periodontal disease in humans. When cultured in broth, fresh clinical isolates of A. actinomycetemcomitans form tenacious biofilms on surfaces such as glass, plastic, and saliva-coated hydroxyapatite, a property that probably plays an important role in the ability of this bacterium to colonize the oral cavity and cause disease. We examined the morphology of A. actinomycetemcomitans biofilm colonies grown on glass slides and in polystyrene petri dishes by using light microscopy and scanning and transmission electron microscopy. We found that A. actinomycetemcomitans developed asymmetric, lobed biofilm colonies that displayed complex architectural features, including a layer of densely packed cells on the outside of the colony and nonaggregated cells and large, transparent cavities on the inside of the colony. Mature biofilm colonies released single cells or small clusters of cells into the medium. These released cells adhered to the surface of the culture vessel and formed new colonies, enabling the biofilm to spread. We isolated three transposon insertion mutants which produced biofilm colonies that lacked internal, nonaggregated cells and were unable to release cells into the medium. All three transposon insertions mapped to genes required for the synthesis of the O polysaccharide (O-PS) component of lipopolysaccharide. Plasmids carrying the complementary wild-type genes restored the ability of mutant strains to synthesize O-PS and release cells into the medium. Our findings suggest that A. actinomycetemcomitans biofilm growth and detachment are discrete processes and that biofilm cell detachment evidently involves the formation of nonaggregated cells inside the biofilm colony that are destined for release from the colony.
Collapse
Affiliation(s)
- Jeffrey B Kaplan
- Department of Oral Biology, New Jersey Dental School Electron Microscopy Facility, New Jersey Medical School, Newark, New Jersey 07103, USA.
| | | | | |
Collapse
|
16
|
Affiliation(s)
| | - Michael Wilson
- Cellular Microbiology Research Group and *Microbiology Department, Eastman Dental Institute, University College London and †Department of Biochemistry and Molecular Biology, University College London, London
| | | | - John M Ward
- Cellular Microbiology Research Group and *Microbiology Department, Eastman Dental Institute, University College London and †Department of Biochemistry and Molecular Biology, University College London, London
| |
Collapse
|
17
|
Bhattacharjee MK, Kachlany SC, Fine DH, Figurski DH. Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans: TadA protein is an ATPase. J Bacteriol 2001; 183:5927-36. [PMID: 11566992 PMCID: PMC99671 DOI: 10.1128/jb.183.20.5927-5936.2001] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Cells of Actinobacillus actinomycetemcomitans, a gram-negative pathogen responsible for an aggressive form of juvenile periodontitis, form tenaciously adherent biofilms on solid surfaces. The bacteria produce long fibrils of bundled pili, which are required for adherence. Mutations in flp-1, which encodes the major subunit of the pili, or any of seven downstream tad genes (tadABCDEFG) cause defects in fibril production, autoaggregation, and tenacious adherence. We proposed that the tad genes specify part of a novel secretion system for the assembly and transport of Flp pili. The predicted amino acid sequence of TadA (426 amino acids, 47,140 Da) contains motifs for nucleotide binding and hydrolysis common among secretion NTP hydrolase (NTPase) proteins. In addition, the tadA gene is the first representative of a distinct subfamily of potential type IV secretion NTPase genes. Here we report studies on the function of TadA. The tadA gene was altered to express a modified version of TadA that has the 11-residue epitope (T7-TAG) fused to its C terminus. The TadA-T7 protein was indistinguishable from the wild type in its ability to complement the fibril and adherence defects of A. actinomycetemcomitans tadA mutants. Although TadA is not predicted to have a transmembrane domain, the protein was localized to the inner membrane and cytoplasmic fractions of A. actinomycetemcomitans cells, indicating a possible peripheral association with the inner membrane. TadA-T7 was purified and found to hydrolyze ATP in vitro. The ATPase activity is stimulated by Triton X-100, with maximal stimulation at the critical micellar concentration. TadA-T7 forms multimers that are stable during sodium dodecyl sulfate-polyacrylamide gel electrophoresis in nonreducing conditions, and electron microscopy revealed that TadA-T7 can form structures closely resembling the hexameric rings of other type IV secretion NTPases. Site-directed mutagenesis was used to substitute Ala and Gln residues for the conserved Lys residue of the Walker A box for nucleotide binding. Both mutants were found to be defective in their ability to complement tadA mutants. We suggest that the ATPase activity of TadA is required to energize the assembly or secretion of Flp pili for tight adherence of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- M K Bhattacharjee
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | |
Collapse
|
18
|
Kachlany SC, Planet PJ, Bhattacharjee MK, Kollia E, DeSalle R, Fine DH, Figurski DH. Nonspecific adherence by Actinobacillus actinomycetemcomitans requires genes widespread in bacteria and archaea. J Bacteriol 2000; 182:6169-76. [PMID: 11029439 PMCID: PMC94753 DOI: 10.1128/jb.182.21.6169-6176.2000] [Citation(s) in RCA: 172] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The gram-negative coccobacillus, Actinobacillus actinomycetemcomitans, is the putative agent for localized juvenile periodontitis, a particularly destructive form of periodontal disease in adolescents. This bacterium has also been isolated from a variety of other infections, notably endocarditis. Fresh clinical isolates of A. actinomycetemcomitans form tenacious biofilms, a property likely to be critical for colonization of teeth and other surfaces. Here we report the identification of a locus of seven genes required for nonspecific adherence of A. actinomycetemcomitans to surfaces. The recently developed transposon IS903phikan was used to isolate mutants of the rough clinical isolate CU1000 that are defective in tight adherence to surfaces (Tad(-)). Unlike wild-type cells, Tad(-) mutant cells adhere poorly to surfaces, fail to form large autoaggregates, and lack long, bundled fibrils. Nucleotide sequencing and genetic complementation analysis revealed a 6.7-kb region of the genome with seven adjacent genes (tadABCDEFG) required for tight adherence. The predicted TadA polypeptide is similar to VirB11, an ATPase involved in macromolecular transport. The predicted amino acid sequences of the other Tad polypeptides indicate membrane localization but no obvious functions. We suggest that the tad genes are involved in secretion of factors required for tight adherence of A. actinomycetemcomitans. Remarkably, complete and highly conserved tad gene clusters are present in the genomes of the bubonic plague bacillus Yersinia pestis and the human and animal pathogen Pasteurella multocida. Partial tad loci also occur in strikingly diverse Bacteria and Archaea. Our results show that the tad genes are required for tight adherence of A. actinomycetemcomitans to surfaces and are therefore likely to be essential for colonization and pathogenesis. The occurrence of similar genes in a wide array of microorganisms indicates that they have important functions. We propose that tad-like genes have a significant role in microbial colonization.
Collapse
Affiliation(s)
- S C Kachlany
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | | | | | | | | | |
Collapse
|
19
|
Okte E, Sultan N, Doğan B, Asikainen S. Bacterial adhesion of Actinobacillus actinomycetemcomitans serotypes to titanium implants: SEM evaluation. A preliminary report. J Periodontol 1999; 70:1376-82. [PMID: 10588502 DOI: 10.1902/jop.1999.70.11.1376] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND In this study, the adherence ability of Actinobacillus actinomycetemcomitans serotypes to titanium implant surfaces was evaluated to demonstrate if any selective adherence occurs according to the serotypes of the microorganism. METHODS The study material included 3 reference strains of A. actinomycetemcomitans serotypes a, b, and c (ATCC 29523, ATCC 43718, ATCC 33384) and 2 clinical isolates of A. actinomycetemcomitans serotypes d and e (IDH 781, IDH 1705), together with commercially available titanium blade implants. For each strain, bacterial suspensions with identical concentrations (5 x 10(7) cells/ml) were prepared and 0.5 ml of each was added on to the implant surfaces, which had been precoated with glycine-bovine serum albumin (BSA). After incubation at 37 degrees C for 60 minutes in 5% CO2 in air, the implants with attached bacteria were prepared for scanning electron microscopic (SEM) observations. Bacterial adhesion was quantified on the textured body surfaces of the implants, and results were statistically analyzed with analysis of variance followed by Duncan's test. The surface ultrastructure of the bacterial cells was also evaluated descriptively. RESULTS The tested strains adhered to implant surfaces in different quantities. Serotype a (ATCC 29523) showed the highest adherence affinity (statistically significant, P <0.01). When compared with each other, serotypes b, c, and d (ATCC 43718, ATCC 33384, and IDH 781) attached equally well, whereas serotype e (IDH 1705) had a statistically significant low adherence capability. CONCLUSIONS It is suggested that in vitro A. actinomycetemcomitans adhesion to implant surfaces is strain dependent.
Collapse
Affiliation(s)
- E Okte
- Department of Periodontology, Faculty of Dentistry, Gazi University, Ankara, Turkey.
| | | | | | | |
Collapse
|
20
|
Fives-Taylor PM, Meyer DH, Mintz KP, Brissette C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol 2000 1999; 20:136-67. [PMID: 10522226 DOI: 10.1111/j.1600-0757.1999.tb00161.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A. actinomycetemcomitans has clearly adapted well to its environs; its armamentarium of virulence factors (Table 2) ensures its survival in the oral cavity and enables it to promote disease. Factors that promote A. actinomycetemcomitans colonization and persistence in the oral cavity include adhesins, bacteriocins, invasins and antibiotic resistance. It can interact with and adhere to all components of the oral cavity (the tooth surface, other oral bacteria, epithelial cells or the extracellular matrix). The adherence is mediated by a number of distinct adhesins that are elements of the cell surface (outer membrane proteins, vesicles, fimbriae or amorphous material). A. actinomycetemcomitans enhances its chance of colonization by producing actinobacillin, an antibiotic that is active against both streptococci and Actinomyces, primary colonizers of the tooth surface. The fact that A. actinomycetemcomitans resistance to tetracyclines, a drug often used in the treatment of periodontal disease, is on the rise is an added weapon. Periodontal pathogens or their pathogenic products must be able to pass through the epithelial cell barrier in order to reach and cause destruction to underlying tissues (the gingiva, cementum, periodontal ligament and alveolar bone). A. actinomycetemcomitans is able to elicit its own uptake into epithelial cells and its spread to adjacent cells by usurping normal epithelial cell function. A. actinomycetemcomitans may utilize these remarkable mechanisms for host cell infection and migration to deeper tissues. A. actinomycetemcomitans also orchestrates its own survival by elaborating factors that interfere with the host's defense system (such as factors that kill phagocytes and impair lymphocyte activity, inhibit phagocytosis and phagocyte chemotaxis or interfere with antibody production). Once the organisms are firmly established in the gingiva, the host responds to the bacterial onslaught, especially to the bacterial lipopolysaccharide, by a marked and continual inflammatory response, which results in the destruction of the periodontal tissues. A. actinomycetemcomitans has at least three individual factors that cause bone resorption (lipopolysaccharide, proteolysis-sensitive factor and GroEL), as well as a number of activities (collagenase, fibroblast cytotoxin, etc.) that elicit detrimental effects on connective tissue and the extracellular matrix. It is of considerable interest to know that A. actinomycetemcomitans possesses so many virulence factors but unfortunate that only a few have been extensively studied. If we hope to understand and eradicate this pathogen, it is critical that in-depth investigations into the biochemistry, genetic expression, regulation and mechanisms of action of these factors be initiated.
Collapse
Affiliation(s)
- P M Fives-Taylor
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, USA
| | | | | | | |
Collapse
|
21
|
Wilson M, Henderson B. Virulence factors of Actinobacillus actinomycetemcomitans relevant to the pathogenesis of inflammatory periodontal diseases. FEMS Microbiol Rev 1995; 17:365-79. [PMID: 8845187 DOI: 10.1111/j.1574-6976.1995.tb00220.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There is strong evidence implicating Actinobacillus actinomycetemcomitans as the causative agent of localised juvenile periodontitis (LJP), a disease characterised by rapid destruction of the tooth-supporting tissues. This organism possesses a large number of virulence factors with a wide range of activities which enable it to colonise the oral cavity, invade periodontal tissues, evade host defences, initiate connective tissue destruction and interfere with tissue repair. Adhesion to epithelial and tooth surfaces is dependent on the presence of surface proteins and structures such as microvesicles and fimbriae. Invasion has been demonstrated in vivo and in vitro although the mechanisms involved are poorly understood. The organism has a number of means of evading host defences which include: (i) inhibiting poloymorphonuclear leukocyte (PMN) chemotaxis; (ii) killing PMNs and monocytes; (iii) producing immunosuppressive factors; (iv) secreting proteases capable of cleaving IgG; and (v) producing Fc-binding proteins. Surface components of A. actinomycetemcomitans are potent stimulators of bone resorption and can induce the release of a range of cytokines which can initiate tissue destruction. A number of surface components can also inhibit the proliferation of fibroblasts and their production of components of the extracellular matrix. Little is known, however, regarding the way in which these factors operate in vivo to produce the pathological features of the disease.
Collapse
Affiliation(s)
- M Wilson
- Department of Microbiology Eastman Dental Institute for Oral Health Care Sciences, University of London, UK
| | | |
Collapse
|
22
|
Spitznagel J, Kraig E, Kolodrubetz D. The regulation of leukotoxin production in Actinobacillus actinomycetemcomitans strain JP2. Adv Dent Res 1995; 9:48-54. [PMID: 7669214 DOI: 10.1177/08959374950090010901] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Actinobacillus actinomycetemcomitans (A.a.) can produce a potent leukotoxin that is thought to be involved in evasion of the host immune response. In order to understand the role of A.a. and its leukotoxin in the initiation and progression of periodontal disease, it is important determine how the expression of A.a. virulence factors might be regulated by the local periodontal micro-environment. To facilitate the measurement of leukotoxin levels, a leukotoxin-beta-galactosidase gene fusion was constructed and recombined into the chromosome of A.a. strain JP2 at the leukotoxin locus. The resulting strain, AAM17, produces beta-galactosidase under control of the leukotoxin promoter. It also produces leukotoxin, since integration of the gene fusion into the chromosome was designed to produce a duplication of the leukotoxin gene. This strain was used to measure the change in leukotoxin level in response to alterations in two environmental signals: iron concentration and oxygen tension. When AAM17 was grown in iron-limited media that did not alter growth rate but did increase the levels of other iron-regulated proteins, the levels of the leukotoxin-beta-galactosidase were similar to those found in AAM17 grown in iron-replete media. These results were confirmed in strains AAM17 and JP2 by leukotoxicity assays and RNA blots. Aerobic growth of AAM17 resulted in a three-fold decrease in leukotoxin beta-galactosidase activity compared with anaerobically grown cells. These results indicate that the A.a. leukotoxin is regulated by some of the environmental signals that may vary in the gingival crevice.
Collapse
Affiliation(s)
- J Spitznagel
- Department of Periodontolgy, College of Dentistry, University of Tennessee Center for Health Sciences, Memphis 38163, USA
| | | | | |
Collapse
|
23
|
Saito A, Hosaka Y, Nakagawa T, Seida K, Yamada S, Takazoe I, Okuda K. Significance of serum antibody against surface antigens of Actinobacillus actinomycetemcomitans in patients with adult periodontitis. ORAL MICROBIOLOGY AND IMMUNOLOGY 1993; 8:146-53. [PMID: 7901829 DOI: 10.1111/j.1399-302x.1993.tb00657.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study was undertaken to examine the prevalence of Actinobacillus actinomycetemcomitans, its serotype distribution and the serum immune responses against its surface antigens in 41 Japanese patients with adult periodontitis. The dominant A. actinomycetemcomitans serotype isolated was serotype c. Immunoblot analysis of 3 serotypes of A. actinomycetemcomitans-sonicated antigens and the patient sera revealed that the reactivities with serotype c were the most frequent and that heat-stable surface serotype-specific antigen appeared to be immunodominant. Elevated serum immunoglobulin G titers to extracted lipopolysaccharide and fimbriae antigen of A. actinomycetemcomitans were noted for the patient sera by enzyme-linked immunosorbent assay. High serum immunoglobulin G titers to the fimbriae antigen detected in patients without cultivable A. actinomycetemcomitans suggested the possibility that the elicited antibody to the antigen played a role in eliminating A. actinomycetemcomitans from the periodontal lesions.
Collapse
Affiliation(s)
- A Saito
- Department of Periodontics, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Garcia MM, Becker SA, Brooks BW, Berg JN, Finegold SM. Ultrastructure and molecular characterization of Fusobacterium necrophorum biovars. CANADIAN JOURNAL OF VETERINARY RESEARCH = REVUE CANADIENNE DE RECHERCHE VETERINAIRE 1992; 56:318-25. [PMID: 1477801 PMCID: PMC1263563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The ultrastructural features and molecular components of 18 strains of Fusobacterium necrophorum biovars A, AB and B, isolated from animal and human infections, were examined by electron microscopy, multilocus enzyme electrophoresis (MEE) and by sodium dodecyl sulfate-gradient polyacrylamide gel electrophoresis (SDS-PAGE). High resolution scanning electron microscopy revealed that the strains possessed a convoluted surface pattern. Transmission electron microscopy showed that all strains possessed a cell wall structure typical of gram-negative bacteria. Bleb formation was not uncommon. Numerous extracellular materials, resembling lipopolysaccharide (LPS) fragments, surrounded cells of both human strains and biovar B animal strains. Biovar A field strains revealed capsules as stained by ruthenium red whereas a stock culture strain showed the capsule only when immunostabilized with hyperimmune serum. Starch gel electrophoresis showed all strains to possess adenyl kinase, glutamate dehydrogenases and lactate dehydrogenase; each enzyme migrated uniformly (monomorphic) among the strains and represented an electrotype. However, SDS-PAGE indicated differences in the protein profiles between all of the strains; the most distinctly different was a human isolate (FN 606). Silver staining to detect LPS showed extensive "ladder" patterns among the majority of biovar A strains but not in the animal biovar B strains. Immunoblotting of LPS with a rabbit antiserum prepared against phenol extracted LPS from a biovar A animal isolate (LA 19) suggested marked variability in the LPS antigens among the isolates studied.
Collapse
Affiliation(s)
- M M Garcia
- Agriculture Canada, Animal Diseases Research Institute, Nepean, Ontario
| | | | | | | | | |
Collapse
|
25
|
Berthold P, Forti D, Kieba IR, Rosenbloom J, Taichman NS, Lally ET. Electron immunocytochemical localization of Actinobacillus actinomycetemcomitans leukotoxin. ORAL MICROBIOLOGY AND IMMUNOLOGY 1992; 7:24-7. [PMID: 1528620 DOI: 10.1111/j.1399-302x.1992.tb00015.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The Actinobacillus actinomycetemcomitans leukotoxin was localized in A. actinomycetemcomitans bacteria using an electron immunocytochemical thin-section labeling method. An immuno-dot blot procedure was initially used to ascertain the optimal specimen fixation. This consisted of a periodate-lysine-paraformaldehyde (2%) fixative in a phosphate buffer followed by embedding in LR White. Affinity-purified toxin was used to produce a monospecific polyclonal antibody. The reaction sites were visualized with a colloidal gold-tagged reporter antibody. The leukotoxin was found to be localized either in the cell envelope and/or in membranous vesicles on the outer surface of the bacterial cell. These results support previous observations indicating the same location.
Collapse
Affiliation(s)
- P Berthold
- School of Dental Medicine, University of Pennsylvania
| | | | | | | | | | | |
Collapse
|
26
|
Liljemark WF, Bloomquist CG, Lai CH. Clustering of an outer membrane adhesin of Haemophilus parainfluenzae. Infect Immun 1992; 60:687-9. [PMID: 1730505 PMCID: PMC257685 DOI: 10.1128/iai.60.2.687-689.1992] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Haemophilus parainfluenzae synthesizes an outer membrane protein adhesin which mediates binding to oral streptococci, salivary pellicle, and neuraminidase-treated erythrocytes. An indirect gold labeling technique and immunoelectron microscopy verified the location of this outer membrane protein. Further, a clustering of gold particles was observed in irregular patches at the cell surface.
Collapse
Affiliation(s)
- W F Liljemark
- Department of Diagnostic and Surgical Sciences, School of Dentistry, University of Minnesota, Minneapolis 55455-0329
| | | | | |
Collapse
|
27
|
Dongari AI, Miyasaki KT. Sensitivity of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus to oxidative killing. ORAL MICROBIOLOGY AND IMMUNOLOGY 1991; 6:363-72. [PMID: 1668250 DOI: 10.1111/j.1399-302x.1991.tb00508.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We examined the killing of Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus by oxygen metabolites generated by the xanthine-xanthine oxidase (X-XO) system. This system generates a mixture of oxidants, including superoxide radical, hydrogen peroxide, hydroxyl radical, and possibly singlet oxygen. Differential sensitivity to the X-XO system was observed among strains of A. actinomycetemcomitans; notably, 2 catalase-deficient strains and 2 strains representative of serotypes b and c were the most susceptible. H. aphrophilus was not sensitive. The amount of oxidants produced by the X-XO system more closely correlated with killing than the ratio of oxidant production. Cytochrome c, superoxide dismutase, catalase, dimethyl sulfoxide, and desferrioxamine were used to determine the role of superoxide radical, hydrogen peroxide and hydroxyl radical in the bactericidal process. Hydrogen peroxide was the major bactericidal agent against A. actinomycetemcomitans. Superoxide anion participated in killing of A. actinomycetemcomitans to varying but lesser degrees. The intracellular generation of hydroxyl radical was implicated in the killing of several strains. We conclude that (i) strains of A. actinomycetemcomitans are differentially sensitive to the bactericidal effects of the X-XO system and (ii) of the oxidants produced by the X-XO system, hydrogen peroxide is the most bactericidal against A. actinomycetemcomitans.
Collapse
Affiliation(s)
- A I Dongari
- UCLA School of Dentistry, Center for the Health Sciences
| | | |
Collapse
|
28
|
Holt SC, Bramanti TE. Factors in virulence expression and their role in periodontal disease pathogenesis. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1991; 2:177-281. [PMID: 1912148 DOI: 10.1177/10454411910020020301] [Citation(s) in RCA: 265] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The classic progression of the development of periodontitis with its associated formation of an inflammatory lesion is characterized by a highly reproducible microbiological progression of a Gram-positive microbiota to a highly pathogenic Gram-negative one. While this Gram-negative microbiota is estimated to consist of at least 300 different microbial species, it appears to consist of a very limited number of microbial species that are involved in the destruction of periodontal diseases. Among these "putative periodontopathic species" are members of the genera Porphyromonas, Bacteroides, Fusobacterium, Wolinella, Actinobacillus, Capnocytophaga, and Eikenella. While members of the genera Actinomyces and Streptococcus may not be directly involved in the microbial progression, these species do appear to be essential to the construction of the network of microbial species that comprise both the subgingival plaque matrix. The temporal fluctuation (emergence/disappearance) of members of this microbiota from the developing lesion appears to depend upon the physical interaction of the periodontal pocket inhabitants, as well as the utilization of the metabolic end-products of the respective species intimately involved in the disease progression. A concerted action of the end-products of prokaryotic metabolism and the destruction of host tissues through the action of a large number of excreted proteolytic enzymes from several of these periodontopathogens contribute directly to the periodontal disease process.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S C Holt
- Department of Periodontics, University of Texas Health Science Center, San Antonio 78284-7894
| | | |
Collapse
|
29
|
Barber P, Watt BA, Newman HN, Challacombe SJ. Identification of Porphyromonas gingivalisand Actinobacillus actinomycetemcomitansin Apical Border Plaque. MICROBIAL ECOLOGY IN HEALTH AND DISEASE 1991. [DOI: 10.3109/08910609109140137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- P. Barber
- Electron Microscopy Unit, Institute of Dental Surgery, University of London, London, UK
| | - B. A. Watt
- Electron Microscopy Unit, Institute of Dental Surgery, University of London, London, UK
| | - H. N. Newman
- Electron Microscopy Unit, Institute of Dental Surgery, University of London, London, UK
- Department of Periodontology, Institute of Dental Surgery, University of London, London, UK
| | - S. J. Challacombe
- Department of Oral Medicine and Pathology, United Medical and Dental Schools of Guy's and St Thomas' Hospitals, London, UK
| |
Collapse
|
30
|
Wilson ME, Genco RJ. The role of antibody, complement and neutrophils in host defense against Actinobacillus actinomycetemcomitans. Immunol Invest 1989; 18:187-209. [PMID: 2659510 DOI: 10.3109/08820138909112237] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A. actinomycetemcomitans is a facultative Gram-negative coccobacillus which has been implicated in the etiology and pathogenesis of localized juvenile periodontitis and has also been recognized for its potential to cause serious extraoral infections, particularly endocarditis. The polymorphonuclear neutrophil has been suggested to play a key role in host resistance to periodontopathic organisms, as indicated by the association between defective production or function of these phagocytic cells and severe periodontal disease. This association has engendered interest in the study of the interaction between neutrophils and A. actinomycetemcomitans, as well as the role of immunoglobulin and complement in facilitating this interaction. The objective of this review is to summarize current knowledge of the nature and consequences of the interaction between A. actinomycetemcomitans and the host defense triad consisting of neutrophils, complement and immunoglobulin.
Collapse
Affiliation(s)
- M E Wilson
- Department of Oral Biology, Buffalo, New York
| | | |
Collapse
|
31
|
Zambon JJ, Umemoto T, De Nardin E, Nakazawa F, Christersson LA, Genco RJ. Actinobacillus actinomycetemcomitans in the pathogenesis of human periodontal disease. Adv Dent Res 1988; 2:269-74. [PMID: 3271021 DOI: 10.1177/08959374880020021101] [Citation(s) in RCA: 103] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The present report reviews data implicating Actinobacillus actinomycetemcomitans in the etiology of human periodontal disease. Recent data are also presented relative to: (1) serological studies of this microorganism using monoclonal antibodies and the serodiagnosis of A. actinomycetemcomitans infections; (2) characterization of the serotype antigens; (3) studies of the serotype distribution of A. actinomycetemcomitans in extra-oral infections; and (4) examination of the correlation between A. actinomycetemcomitans colony morphology and fimbriae.
Collapse
|
32
|
Preus HR, Namork E, Olsen I. Fimbriation of Actinobacillus actinomycetemcomitans. ORAL MICROBIOLOGY AND IMMUNOLOGY 1988; 3:93-4. [PMID: 2908339 DOI: 10.1111/j.1399-302x.1988.tb00090.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
33
|
Lindemann RA. Bacterial activation of human natural killer cells: role of cell surface lipopolysaccharide. Infect Immun 1988; 56:1301-8. [PMID: 2895743 PMCID: PMC259814 DOI: 10.1128/iai.56.5.1301-1308.1988] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Culture of human peripheral blood lymphocytes with gram-negative bacteria associated with periodontal disease caused a rapid increase in the cytotoxic potential of natural killer (NK) cells. The NK cells were activated to kill NK-resistant targets, the peak cytotoxicity occurring on day 1 of culture. The addition of anti-Tac, anti-CD3, or anti-OKT-11 antibodies to block activation via the interleukin-2 (IL-2), T-cell, or E rosette receptors had a minimal effect on this inductive process. Anti-IL-2 antiserum was effective in blocking a significant amount, but not all, of the cytotoxicity in bacterium-activated cultures. Modest IL-2 production (5 to 6 National Institutes of Health units) was measured in lymphocyte cultures activated by bacteria, but proliferation was not induced during a 1-week period. When polymixin B sulfate was added to bind and block lipopolysaccharides, bacterium-induced cytotoxicity was completely abrogated for all activating bacteria. In addition, when culture supernatants from Actinobacillus actinomycetemcomitans were tested, activation still occurred. However, again, this activation was totally inhibited by polymixin B sulfate. Monocytes were also activated by bacteria to produce tumor necrosis factor (TNF). To exclude the possibility that TNF was responsible for cytotoxicity, an antiserum to TNF was added to cocultures of bacteria and lymphocytes with adherent cells removed. The antiserum had no effect on the inductive process. In addition, exogenous TNF did not kill M14 targets. These results suggest that bacterial cell surface lipopolysaccharides provide a major activation signal for NK cells to enhance cytotoxicity.
Collapse
MESH Headings
- Antigens, Bacterial/immunology
- CD2 Antigens
- Carrier Proteins/immunology
- Cytotoxicity, Immunologic
- Gram-Negative Bacteria/immunology
- Humans
- Immunity, Cellular
- Immunity, Innate
- In Vitro Techniques
- Interleukin-2/biosynthesis
- Killer Cells, Natural/immunology
- Lipopolysaccharides/immunology
- Lymphocyte Activation
- Monocytes/immunology
- Periodontal Diseases/immunology
- Receptors, Antigen, T-Cell/immunology
- Receptors, Immunologic/immunology
- Receptors, Immunologic/physiology
- Receptors, Interleukin-2
- Tumor Necrosis Factor-alpha/biosynthesis
Collapse
Affiliation(s)
- R A Lindemann
- UCLA School of Dentistry, Center for the Health Sciences 90024
| |
Collapse
|
34
|
Nishihara T, Koga T, Hamada S. Suppression of murine macrophage interleukin-1 release by the polysaccharide portion of Haemophilus actinomycetemcomitans lipopolysaccharide. Infect Immun 1988; 56:619-25. [PMID: 3257748 PMCID: PMC259336 DOI: 10.1128/iai.56.3.619-625.1988] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Lipopolysaccharide (LPS) was extracted from whole cells of Haemophilus actinomycetemcomitans Y4 by the hot phenol-water procedure. LPS was cleaved into its lipid A and polysaccharide moieties by hydrolysis in 1% acetic acid. The major component sugars of the polysaccharide were glucose, heptose, rhamnose, galactose, and fucose. LPS and lipid A from H. actinomycetemcomitans induced the release of interleukin-1 (IL-1) by LPS-responsive C3H/HeN murine peritoneal macrophages and cell line macrophages (P388D1 and J744.1), but not by LPS-nonresponsive C3H/HeJ peritoneal macrophages. The polysaccharide was unable to induce the release of IL-1. It suppressed the IL-1 release from LPS- and lipid A-stimulated macrophages, but not the production of cell-associated and intracellular IL-1. The addition of rhamnose, a sugar component of the polysaccharide, abrogated the inhibitory effect of the polysaccharide on IL-1 release. These results suggest the participation of a lectinlike molecule in IL-1 release.
Collapse
Affiliation(s)
- T Nishihara
- Department of Dental Research, National Institute of Health, Tokyo, Japan
| | | | | |
Collapse
|
35
|
Repo H, Leirisalo-Repo M, Nurminen M, Mäkelä PH. Antibody- and complement-dependent cell injury assayed by 51Cr release from human peripheral blood mononuclear cells pretreated with lipopolysaccharide. Infect Immun 1987; 55:507-12. [PMID: 3818082 PMCID: PMC260365 DOI: 10.1128/iai.55.3.507-512.1987] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Exposure of human peripheral blood mononuclear (MN) cells to deesterified (alkali-treated) lipopolysaccharide (LPS-OH) and then to 51Cr rendered the cells susceptible to 51Cr release in the presence of specific antibody and complement. The assay was optimized by using rough (Rb2 or Re) LPS. 51Cr release did not occur from cells preexposed to untreated or electrodialyzed LPS. Studies of isolated monocytes and lymphocytes revealed that the majority of the 51Cr released was derived from monocytes. The optimum concentration of LPS-OH was 10 micrograms/ml. Antiyersinia agglutinin-positive serum, but not a negative serum, obtained from patients with reactive yersinia arthritis caused 51Cr release from MN cells pretreated with yersinia LPS-OH. This implies that during yersinia infection antibodies are generated that can attack the cell membrane--LPS-OH complex. We conclude that the method provides a tool to demonstrate binding of LPS to MN cells in a manner that leads to cell injury in an immune host.
Collapse
|
36
|
Gamazo C, Moriyón I. Release of outer membrane fragments by exponentially growing Brucella melitensis cells. Infect Immun 1987; 55:609-15. [PMID: 3818086 PMCID: PMC260382 DOI: 10.1128/iai.55.3.609-615.1987] [Citation(s) in RCA: 70] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Rough and smooth strains of Brucella melitensis released a membranous material that was devoid of detectable NADH oxidase and succinic dehydrogenase activity (cytoplasmic membrane markers) but that contained lipopolysaccharide, proteins, and phospholipids. This material was composed of two fractions that had similar chemical compositions but that were of different sizes which were separated by differential ultracentrifugation. Electron microscopy showed that both fractions are made of unit membrane structures. The membrane fragments were released during the exponential phase of growth, and no leakage of malic dehydrogenase activity (cytosol marker) was detected. Thus, the fragments were unlikely a result of cell lysis. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis showed that, although group 2 Brucella outer membrane proteins and lipoprotein were not detected, the proteins in the membranous material were outer membrane proteins. Gas-liquid chromatography analysis showed a similar fatty acid profile for the cell envelope and the outer membrane fragments of the smooth strain B. melitensis 16M. In contrast, the outer membrane fragments from the rough 115 strain were enriched in palmitic and stearic acids. With respect to the unfractionated cell envelope, outer membrane fragments were enriched in phosphatidylcholine, a phospholipid that is unusual in bacterial membranes.
Collapse
|
37
|
Suido H, Nakamura M, Mashimo PA, Zambon JJ, Genco RJ. Arylaminopeptidase activities of oral bacteria. J Dent Res 1986; 65:1335-40. [PMID: 3478393 DOI: 10.1177/00220345860650111101] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Protease and peptidase enzymes are thought to play a role in the virulence of many oral organisms, especially those associated with periodontal diseases. In order to evaluate the peptidases of periodontopathogens, we compared the arylaminopeptidase activities of Bacteroides gingivalis with those of other oral and non-oral bacteria. Sixty-three bacterial strains representing the prominent cultivable organisms in human periodontal pockets were tested, including representatives of the black-pigmented Bacteroides, Actinobacillus, Actinomyces, Campylobacter, Capnocytophaga, Eikenella, Fusobacterium, Haemophilus, Lactobacillus, Streptococcus, and Veillonella species. Each micro-organism was examined for its ability to hydrolyze 18 synthetic substrates of beta-naphthylamide derivatives of amino acids, dipeptides, and tripeptides. Quantitation of the enzyme activity was accomplished by colorimetric measurement of the amounts of released beta-naphthylamines. N-CBz-glycyl-glycyl-L-arginine-beta-naphthylamide was readily cleaved by B. gingivalis, but slightly or not at all by the other oral strains tested. L-arginine-beta-naphthylamide was cleaved by B. gingivalis, Capnocytophaga species, and Streptococcus species, but not readily by the other Bacteroides strains. Some dipeptide substrates tested, such as glycyl-L-arginine- and glycyl-L-proline-beta-naphthylamide, were strongly cleaved by B. gingivalis and weakly cleaved by other Bacteroides strains. Since high levels of N-CBz-glycyl-glycyl-L-arginyl-aminopeptidase activity are characteristic of B. gingivalis, its measurement may be valuable in the identification of this organism in clinical samples as an aid in diagnosis and monitoring of periodontal infections. Furthermore, this and other aminopeptidases produced by B. gingivalis and other oral organisms may play a role in the tissue destruction seen in periodontal disease.
Collapse
Affiliation(s)
- H Suido
- Department of Oral Biology, School of Dental Medicine, University of New York at Buffalo 14214
| | | | | | | | | |
Collapse
|
38
|
Fenwick BW, Osburn BI, Olander HJ. Resistance of C3H/HeJ mice to the effects of Haemophilus pleuropneumoniae. Infect Immun 1986; 53:474-9. [PMID: 3527983 PMCID: PMC260813 DOI: 10.1128/iai.53.3.474-479.1986] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Comparisons were made in the mortality associated with an inhaled dose of viable Haemophilus pleuropneumoniae type 5, strain J45, between adult C3H/HeN and C3H/HeJ mice. Mice of both strains were also challenged with Escherichia coli strains O111:B4 and J5. The 50% lethal dose (LD50) of H. pleuropneumoniae in C3H/HeN mice was calculated to be 10(6.5) CFU. At a mean dose of 10(6.7) CFU a 46% mortality rate occurred in C3H/HeN mice, whereas only 10% of the C3H/HeJ mice died (P less than 0.01). Deaths occurred significantly earlier in C3H/HeN mice (P less than 0.01). No deaths occurred later than 12 h postinfection in either group. Pulmonary lesions in the mice that died were similar to those in pigs that die during the acute phase of H. pleuropneumoniae infection. In surviving mice of both strains, a mild resolving interstitial and bronchopneumonia was present which was not typical of subacute H. pleuropneumoniae infections in swine. Quantitative bacterial isolations from the lungs, liver, and spleen indicate that H. pleuropneumoniae did not multiply in the lungs, was rapidly cleared, and did not become systemic. No deaths occurred in the mice inoculated with E. coli J5 or O111:B4 at mean doses of 10(6.3), 10(7.2), and 10(8.5) CFU, and 10(6.4), 10(7.5), and 10(8.2) CFU, respectively. The difference in the mortality rate between the C3H/HeN and C3H/HeJ mice suggests that endotoxin may be involved in acute deaths in pigs infected with H. pleuropneumonia. As indicated by the E. coli challenge, however, other factors are also likely to be involved. Because of the differences in the pathology and microbiology following H. pleuropneumoniae pulmonary infections in mice and pigs, mice do not appear to be an accurate model of the overall disease in swine.
Collapse
|
39
|
Berthold P, Listgarten MA. Distribution of Actinobacillus actinomycetemcomitans in localized juvenile periodontitis plaque: an electron immunocytochemical study. J Periodontal Res 1986; 21:473-85. [PMID: 2946848 DOI: 10.1111/j.1600-0765.1986.tb01483.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
40
|
Farida R, Wilson M, Ivanyi L. Serum IgG antibodies to lipopolysaccharides in various forms of periodontal disease in man. Arch Oral Biol 1986; 31:711-5. [PMID: 3479058 DOI: 10.1016/0003-9969(86)90001-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Serum IgG antibody titres to lipopolysaccharides (LPS) from two strains of Actinobacillus actinomycetemcomitans were significantly elevated in juvenile periodontitis compared with other types of periodontal disease and with controls (p less than 0.05). The highest antibody titres to Bacteroides gingivalis LPS were in juvenile periodontitis, but this difference was significant only against the control group (p less than 0.01). In adult mild periodontitis there were higher antibody levels to LPS from Veillonella parvula compared with all other groups and controls (p less than 0.05). The possibility that high antibody titres to LPS from A. actinomycetemcomitans may play a protective role in juvenile periodontitis needs further investigation.
Collapse
Affiliation(s)
- R Farida
- Department of Clinical Pathology and Immunology, Institute of Dental Surgery, Eastman Dental Hospital, London, England, U.K
| | | | | |
Collapse
|
41
|
Olsen I, Brondz I. Differentiation among closely related organisms of the Actinobacillus-Haemophilus-Pasteurella group by means of lysozyme and EDTA. J Clin Microbiol 1985; 22:629-36. [PMID: 3935663 PMCID: PMC268481 DOI: 10.1128/jcm.22.4.629-636.1985] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Bacteriolysis in Tris-maleate buffer (0.005 M, pH 7.2) supplemented with EDTA (0.01 M) and hen egg white lysozyme (HEWL, 1.0 microgram/ml) was set up to assist differentiation between the taxonomically closely related Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus. A. actinomycetemcomitans was more sensitive to lysis in this system than H. aphrophilus. The standard method for bacteriolysis separated the 10 tested strains of A. actinomycetemcomitans into two groups (I and II) based on their lysis patterns, whereas the 7 strains of H. aphrophilus examined were homogeneous. In group I of A. actinomycetemcomitans, EDTA displayed a considerable lytic effect, which was not increased by supplementation with HEWL. In group II, the lytic effect of EDTA was much less, but HEWL had a considerable supplementary lytic effect. When the turbidity of A. actinomycetemcomitans (ATCC 29522) or H. aphrophilus (ATCC 33389) suspended in Tris buffer was monitored at close pH intervals (0.2) from pH 5.2 to 9.2, maximal lysis of ATCC 29522 occurred with EDTA at pH 8.0 and with EDTA-HEWL at pH 7.6, while ATCC 33389 lysed with EDTA at pH 9.0 and with EDTA-HEWL at pH 9.2. When other members of the family Pasteurellaceae (Haemophilus influenzae type b, Haemophilus paraphrophilus, Pasteurella multocida, Pasteurella haemolytica, and Pasteurella ureae) were included for comparison, the group I strains of A. actinomycetemcomitans were the most rapidly lysed by EDTA. H. paraphrophilus was the least sensitive of the gram-negative strains tested, but not as resistant as Micrococcus luteus (control). M. luteus was the organism most sensitive to lysozyme, followed by P. ureae and the group II strains of A. actinomycetemcomitans, while the group I strains of A. actinomycetemcomitans, H. paraphrophilus, and P. haemolytica were the least sensitive organisms.
Collapse
|
42
|
Wilson M, Kamin S, Harvey W. Bone resorbing activity of purified capsular material from Actinobacillus actinomycetemcomitans. J Periodontal Res 1985; 20:484-91. [PMID: 2934533 DOI: 10.1111/j.1600-0765.1985.tb00831.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Abstract
Recent evidence implicates Actinobacillus actinomycetemcomitans in the etiology of localized juvenile periodontitis. This paper reviews the morphological, biochemical and serological charcteristics of A. actinomycetemcomitans, evidence incriminating it as a periodontopathogen, its importance in human nonoral infections, and virulence factors which may be involved in the pathogenesis of A. actinomycetemcomitans infections. A. actinomycetemcomitans is a non-motile, gram-negative, capnophilic, fermentative coccobacillus which closely resembles several Haemophilus species but which does not require X or V growth factors. The organism has been categorized into 10 biotypes based on the variable fermentation of dextrin, maltose, mannitol, and xylose and into 3 serotypes on the basis of heat stable, cell surface antigens. A. actinomycetemcomitans' primary human ecologic niche is the oral cavity. It is found in dental plaque, in periodontal pockets, and buccal mucosa in up to 36% of the normal population. The organism can apparently seed from these sites to cause severe infections throughout the human body such as brain abscesses and endocarditis. There is a large body of evidence which implicates A. actinomycetemcomitans as an important micro-organism in the etiology of localized juvenile periodontitis including: (1) an increased prevalence of the organism in almost all localized juvenile periodontitis patients and their families compared to other patient groups; (2) the observation that localized juvenile periodontitis patients exhibit elevated antibody levels to A. actinomycetemcomitans in serum, saliva and gingival crevicular fluid; (3) the finding that localized juvenile periodontitis can be successfully treated by eliminating A. actinomycetemcomitans from periodontal pockets; (4) histopathologic investigations showing that A. actinomycetemcomitans invades the gingival connective tissue in localized juvenile periodontitis lesions; (5) the demonstration of several pathogenic products from A. actinomycetemcomitans including factors which may: (a) facilitate its adherence to mucosal surfaces such as capsular polysaccharides; (b) inhibit host defense mechanisms including leukotoxin, a polymorphonuclear leukocyte chemotaxis inhibiting factor, and a lymphocyte suppressing factor (c) cause tissue destruction such as lipopolysaccharide endotoxin, a bone resorption-inducing toxin, acid and alkaline phosphatases, collagenase, a fibroblast inhibiting factor and an epitheliotoxin.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
44
|
Slots J, Genco RJ. Black-pigmented Bacteroides species, Capnocytophaga species, and Actinobacillus actinomycetemcomitans in human periodontal disease: virulence factors in colonization, survival, and tissue destruction. J Dent Res 1984; 63:412-21. [PMID: 6583243 DOI: 10.1177/00220345840630031101] [Citation(s) in RCA: 757] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
45
|
Scannapieco FA, Kornman KS, Coykendall AL. Observation of fimbriae and flagella in dispersed subgingival dental plaque and fresh bacterial isolates from periodontal disease. J Periodontal Res 1983; 18:620-33. [PMID: 6142102 DOI: 10.1111/j.1600-0765.1983.tb00399.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
46
|
Poirier TP, Mishell R, Trummel CL, Holt SC. Biological and chemical comparison of butanol- and phenol-water extracted lipopolysaccharide from Capnocytophaga sputigena. J Periodontal Res 1983; 18:541-57. [PMID: 6227738 DOI: 10.1111/j.1600-0765.1983.tb00391.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
47
|
Zambon JJ, Slots J, Genco RJ. Serology of oral Actinobacillus actinomycetemcomitans and serotype distribution in human periodontal disease. Infect Immun 1983; 41:19-27. [PMID: 6407997 PMCID: PMC264736 DOI: 10.1128/iai.41.1.19-27.1983] [Citation(s) in RCA: 310] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Actinobacillus actinomycetemcomitans from the human oral cavity was serologically characterized with rabbit antisera to the type strain NCTC 9710; a number of reference strains, including Y4, ATCC 29522, ATCC 29523, ATCC 29524, NCTC 9709; and our own isolates representative of each of 10 biotypes. Using immunoabsorbed antisera, we identified three distinct serotypes by immunodiffusion and indirect immunofluorescence. Serotype a was represented by ATCC 29523 and SUNYaB 75; serotype b was represented by ATCC 29522 and Y4; and serotype c was represented by NCTC 9710 and SUNYaB 67. Indirect immunofluorescence revealed no reaction between the three A. actinomycetemcomitans serotype-specific antisera and 62 strains representing 23 major oral bacterial species. Distinct from the serotype antigens were at least one A. actinomycetemcomitans species common antigen and an antigen shared with other Actinobacillus species, Haemophilus aphrophilus, and Haemophilus paraphrophilus. All serotype a A. actinomycetemcomitans strains failed to ferment xylose, whereas all serotype b organisms fermented xylose. Serotype c included xylose-positive as well as xylose-negative strains. A total of 301 isolates of A. actinomycetemcomitans from the oral cavity of 74 subjects were serologically categorized by indirect immunofluorescence with serotype-specific rabbit antisera. Each patient harbored only one serotype of A. actinomycetemcomitans. Fourteen healthy subjects, five diabetics, and seventeen adult periodontitis patients exhibited serotypes a and b in approximately equal frequency, whereas serotype c was found less frequently. In contrast, in 29 localized juvenile periodontitis patients, the incidence of serotype b was approximately two times higher than that of serotypes a or c, suggesting a particularly high periodontopathic potential of A. actinomycetemcomitans serotype b strains. In subjects infected with A. actinomycetemcomitans, serum antibodies were detected to the serotype antigens, indicating that these antigens may play a role in the pathogenesis of periodontal disease.
Collapse
|
48
|
Di Rienzo JM, Spieler EL. Identification and characterization of the major cell envelope proteins of oral strains of Actinobacillus actinomycetemcomitans. Infect Immun 1983; 39:253-61. [PMID: 6401694 PMCID: PMC347934 DOI: 10.1128/iai.39.1.253-261.1983] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The major cell envelope protein compositions of seven Actinobacillus actinomycetemcomitans strains of human origin were compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The major envelope polypeptides were homogeneous, in relation to molecular weight, in all of the strains that were examined. The characterization of the five major proteins, designated Env1 through Env5, in the leukotoxic strain Y4 revealed that proteins Env2 to -5 may reside in the outer membrane as suggested by differential detergent extractions and 125I-labeling experiments. The proteins did not demonstrate covalent or ionic interactions with the peptidoglycan; however, one protein, Env2, displayed heat-modifiable properties, having apparent molecular weights of 32,000 and 45,000 when heated in sodium dodecyl sulfate at 50 and 100 degrees C, respectively. The protein composition of the extracellular "bleb" material, normally released by strain Y4, was determined, and proteins Env1 to -4 were the predominant protein species found. A comparison of the cell envelope proteins of strain Y4 with those of other members of the human oral flora, including species within the genera Capnocytophaga, Bacteroides, and Fusobacterium, revealed distinct differences on the basis of molecular size and heat-modifiable properties. However, the membrane proteins of Haemophilus aphrophilus showed a remarkable degree of homology with those of A. actinomycetemcomitans.
Collapse
|
49
|
Tanner AC, Visconti RA, Socransky SS, Holt SC. Classification and identification of Actinobacillus actinomycetemcomitans and haemophilus aphrophilus by cluster analysis and deoxyribonucleic acid hybridizations. J Periodontal Res 1982; 17:585-96. [PMID: 6219206 DOI: 10.1111/j.1600-0765.1982.tb01180.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
50
|
Abstract
Bovine rumen fluid contained relatively large numbers of spirochetes capable of fermenting polymers commonly present in plant materials. Polymers such as xylan, pectin, and arabinogalactan served as fermentable substrates for the spirochetes, whereas cellulose did not. Furthermore, spirochetes cultured from rumen fluid utilized as growth substrates hydrolysis products of plant polymers (e.g., D-xylose, L-arabinose, D-galacturonic acid, D-glucuronic acid, cellobiose), but did not ferment amino acids. Viable cell counts of spirochetes capable of fermenting individual plant polymers or their hydrolysis products yielded minimum values ranging from 0.2 X 10(6) to 4 X 10(6) cells per ml of rumen fluid. Thirteen strains of rumen spirochetes were characterized in terms of their fermentation products from glucose, the guanine plus cytosine content of their DNA, their ultrastructure, and their ability to ferment pectin, starch, or arabinogalactan. Of the 13 strains, 6 fermented glucose mainly to formate, acetate, and succinate, whereas the remaining 7 strains did not produce succinate, but instead formed ethanol, in addition to formate and acetate. The succinate-forming strains had two periplasmic (axial) fibrils per cell, measured 0.2 to 0.3 by 5 to 8 micrograms, had a guanine plus cytosine content of the DNA ranging from 36 to 38 mol%, and lacked the ability to ferment pectin, starch, or arabinogalactan. The ethanol-forming strains had from 8 to more than 32 periplasmic fibrils per cell, tended to be larger in cell size than the succinate-forming strains, and had a guanine plus cytosine content of the DNA ranging from 41 to 54 mol%. Some of the ethanol-forming strains fermented pectin, starch, or arabinogalactan. The results of this study indicate that the bovine rumen is inhabited by a physiologically and morphologically diverse population of spirochetes. It is likely that these spirochetes contribute significantly to the degradation of plant materials ingested by the ruminants.
Collapse
|