1
|
Howell AB, Dreyfus JF, Bosley S, Krueger CG, Birmingham A, Reed JD, Chughtai B. Differences in P-Type and Type 1 Uropathogenic Escherichia coli Urinary Anti-Adhesion Activity of Cranberry Fruit Juice Dry Extract Product and D-Mannose Dietary Supplement. J Diet Suppl 2024; 21:633-659. [PMID: 38804849 DOI: 10.1080/19390211.2024.2356592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
BACKGROUND Urinary tract infection (UTI) prevention benefits of cranberry intake are clinically validated, especially for women and children. To ensure the benefits of cranberry dietary supplement products, the anti-adhesion activity (AAA) against uropathogenic bacteria is routinely used in in vitro bioassays to determine the activity in whole product formulations, isolated compounds, and ex vivo bioassays to assess urinary activity following intake. D-mannose is another dietary supplement taken for UTI prevention, based on the anti-adhesion mechanism. OBJECTIVE Compare the relative AAA of cranberry and D-mannose dietary supplements against the most important bacterial types contributing to the pathogenesis of UTI, and consider how certain components potentially induce in vivo activity. METHODS The current study used a crossover design to determine ex vivo AAA against both P- and Type 1-fimbriated uropathogenic Escherichia coli of either D-mannose or a cranberry fruit juice dry extract product containing 36 mg of soluble proanthocyanidins (PACs), using bioassays that measure urinary activity following consumption. AAA of extracted cranberry compound fractions and D-mannose were compared in vitro and potential induction mechanisms of urinary AAA explored. RESULTS The cranberry dietary supplement exhibited both P-type and Type 1 in vitro and ex vivo AAA, while D-mannose only prevented Type 1 adhesion. Cranberry also demonstrated more robust and consistent ex vivo urinary AAA than D-mannose over each 1-week study period at different urine collection time points. The means by which the compounds with in vitro activity in each supplement product could potentially induce the AAA in urines was discussed relative to the data. CONCLUSIONS Results of the current study provide consumers and healthcare professionals with additional details on the compounds and mechanisms involved in the positive, broad-spectrum AAA of cranberry against both E. coli bacterial types most important in UTIs and uncovers limitations on AAA and effectiveness of D-mannose compared to cranberry.
Collapse
Affiliation(s)
- Amy B Howell
- Marucci Center for Blueberry Cranberry Research and Extension, Rutgers, the State University of NJ, Chatsworth, NJ, USA
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
| | | | - Scott Bosley
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
| | - Christian G Krueger
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- Department of Animal and Dairy Sciences, University of WI, Madison, WI, USA
| | | | - Jess D Reed
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- Department of Animal and Dairy Sciences, University of WI, Madison, WI, USA
| | - Bilal Chughtai
- Plainview Hospital, Smith Institute of Urology, Northwell Health, Syosset, NY, USA
| |
Collapse
|
2
|
Sato Y, Takita A, Suzue K, Hashimoto Y, Hiramoto S, Murakami M, Tomita H, Hirakawa H. TusDCB, a sulfur transferase complex involved in tRNA modification, contributes to UPEC pathogenicity. Sci Rep 2024; 14:8978. [PMID: 38637685 PMCID: PMC11026471 DOI: 10.1038/s41598-024-59614-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/12/2024] [Indexed: 04/20/2024] Open
Abstract
tRNA modifications play a crucial role in ensuring accurate codon recognition and optimizing translation levels. While the significance of these modifications in eukaryotic cells for maintaining cellular homeostasis and physiological functions is well-established, their physiological roles in bacterial cells, particularly in pathogenesis, remain relatively unexplored. The TusDCB protein complex, conserved in γ-proteobacteria like Escherichia coli, is involved in sulfur modification of specific tRNAs. This study focused on the role of TusDCB in the virulence of uropathogenic E. coli (UPEC), a bacterium causing urinary tract infections. The findings indicate that TusDCB is essential for optimal production of UPEC's virulence factors, including type 1 fimbriae and flagellum, impacting the bacterium's ability to aggregate in bladder epithelial cells. Deletion of tusDCB resulted in decreased virulence against urinary tract infection mice. Moreover, mutant TusDCB lacking sulfur transfer activity and tusE- and mnmA mutants revealed the indispensability of TusDCB's sulfur transfer activity for UPEC pathogenicity. The study extends its relevance to highly pathogenic, multidrug-resistant strains, where tusDCB deletion reduced virulence-associated bacterial aggregation. These insights not only deepen our understanding of the interplay between tRNA sulfur modification and bacterial pathogenesis but also highlight TusDCB as a potential therapeutic target against UPEC strains resistant to conventional antimicrobial agents.
Collapse
Affiliation(s)
- Yumika Sato
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Ayako Takita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Yusuke Hashimoto
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Suguru Hiramoto
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Masami Murakami
- Department of Clinical Laboratory Medicine, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi Maebashi, Gunma, 371-8511, Japan
| | - Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan.
| |
Collapse
|
3
|
Wang X, Ji T, Jiang Z, Wang J, Su X, Shan L. Tolterodine ameliorates inflammatory response and ferroptosis against LPS in human bladder epithelial cells. J Biochem Mol Toxicol 2024; 38:e23517. [PMID: 37702107 DOI: 10.1002/jbt.23517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 06/28/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
Bacterial endotoxin lipopolysaccharide (LPS)-induced inflammatory response and ferroptosis play an important role in urinary tract infections. Tolterodine has been used as a urinary tract antispasmodic and anticholinergic agent. However, the effects of Tolterodine against LPS-induced insults in human bladder epithelial cells (hBECs) have not been reported before. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase release assays to determine the cell viability, reactive oxygen species (ROS) and malondialdehyde level detection were used to determine the level of oxidative stress, enzyme-linked immunosorbent assay and Western blot analysis were used to detect the protein level. In the current study, we found that Tolterodine ameliorated LPS-induced production of ROS and lipid oxidation in hBECs. Interestingly, Tolterodine inhibited the production of interleukin 6, interleukin-1β, and tumor necrosis factor α. Also, Tolterodine reduced the levels of Fe2+ and suppressed ferroptosis by reducing the levels of glutathione peroxidase 4, prostaglandin-endoperoxide synthase 2, and acyl-CoA synthetase long-chain family member 4 in LPS-challenged bladder epithelial cells. Mechanistically, it was shown that Tolterodine restored the nuclear factor E2-related factor 2 (Nrf2)/nuclear factor-κB signaling. Importantly, inhibition of Nrf2 with its specific inhibitor ML385 abolished the protective effects of Tolterodine in the inflammatory response and ferroptosis, suggesting that the effects of Tolterodine are mediated by Nrf2. Based on these findings, we conclude that Tolterodine might serve as a promising agent for the treatment of LPS-induced bladder inflammation.
Collapse
Affiliation(s)
- Xiangyang Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Tongyu Ji
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Zhaoqiang Jiang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Jianan Wang
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Xiang Su
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Lei Shan
- Department of Urology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Ambite I, Tran TH, Butler DSC, Cavalera M, Wan MLY, Ahmadi S, Svanborg C. Therapeutic Effects of IL-1RA against Acute Bacterial Infections, including Antibiotic-Resistant Strains. Pathogens 2023; 13:42. [PMID: 38251349 PMCID: PMC10820880 DOI: 10.3390/pathogens13010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
Innate immunity is essential for the anti-microbial defense, but excessive immune activation may cause severe disease. In this study, immunotherapy was shown to prevent excessive innate immune activation and restore the anti-bacterial defense. E. coli-infected Asc-/- mice develop severe acute cystitis, defined by IL-1 hyper-activation, high bacterial counts, and extensive tissue pathology. Here, the interleukin-1 receptor antagonist (IL-1RA), which inhibits IL-1 hyper-activation in acute cystitis, was identified as a more potent inhibitor of inflammation and NK1R- and substance P-dependent pain than cefotaxime. Furthermore, IL-1RA treatment inhibited the excessive innate immune activation in the kidneys of infected Irf3-/- mice and restored tissue integrity. Unexpectedly, IL-1RA also accelerated bacterial clearance from infected bladders and kidneys, including antibiotic-resistant E. coli, where cefotaxime treatment was inefficient. The results suggest that by targeting the IL-1 response, control of the innate immune response to infection may be regained, with highly favorable treatment outcomes, including infections caused by antibiotic-resistant strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Faculty of Medicine, Lund University, 221 84 Lund, Sweden; (I.A.); (T.H.T.); (D.S.C.B.); (M.C.); (M.L.Y.W.); (S.A.)
| |
Collapse
|
5
|
Dai P, Wu H, Ding G, Fan J, Li Y, Li S, Bao E, Li Y, Gao X, Li H, Zhu C, Zhu G. Recombinant Salmonella gallinarum ( S. gallinarum) Vaccine Candidate Expressing Avian Pathogenic Escherichia coli Type I Fimbriae Provides Protections against APEC O78 and O161 Serogroups and S. gallinarum Infection. Vaccines (Basel) 2023; 11:1778. [PMID: 38140181 PMCID: PMC10747928 DOI: 10.3390/vaccines11121778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/24/2023] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is one of the leading pathogens that cause devastating economic losses to the poultry industry. Type I fimbriae are essential adhesion factors of APEC, which can be targeted and developed as a vaccine candidate against multiple APEC serogroups due to their excellent immunogenicity and high homology. In this study, the recombinant strain SG102 was developed by expressing the APEC type I fimbriae gene cluster (fim) on the cell surface of an avirulent Salmonella gallinarum (S. gallinarum) vector strain using a chromosome-plasmid-balanced lethal system. The expression of APEC type I fimbriae was verified by erythrocyte hemagglutination assays and antigen-antibody agglutination tests. In vitro, the level of the SG102 strain adhering to leghorn male hepatoma (LMH) cells was significantly higher than that of the empty plasmid control strain, SG101. At two weeks after oral immunization, the SG102 strain remained detectable in the livers, spleens, and ceca of SG102-immunized chickens, while the SG101 strain was eliminated in SG101-immunized chickens. At 14 days after the secondary immunization with 5 × 109 CFU of the SG102 strain orally, highly antigen-specific humoral and mucosal immune responses against APEC type I fimbriae protein were detected in SG102-immunized chickens, with IgG and secretory IgA (sIgA) concentrations of 221.50 μg/mL and 1.68 μg/mL, respectively. The survival rates of SG102-immunized chickens were 65% (13/20) and 60% (12/20) after challenge with 50 LD50 doses of APEC virulent strains O78 and O161 serogroups, respectively. By contrast, 95% (19/20) and 100% (20/20) of SG101-immunized chickens died in challenge studies involving APEC O78 and O161 infections, respectively. In addition, the SG102 strain effectively provided protection against lethal challenges from the virulent S. gallinarum strain. These results demonstrate that the SG102 strain, which expresses APEC type I fimbriae, is a promising vaccine candidate against APEC O78 and O161 serogroups as well as S. gallinarum infections.
Collapse
Affiliation(s)
- Peng Dai
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225012, China;
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd., Yangzhou 225008, China; (G.D.); (J.F.); (Y.L.)
| | - Hucong Wu
- Nei Monggol Animal Disease Control Center, Hohhot 010010, China;
| | - Guowei Ding
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd., Yangzhou 225008, China; (G.D.); (J.F.); (Y.L.)
| | - Juan Fan
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd., Yangzhou 225008, China; (G.D.); (J.F.); (Y.L.)
| | - Yuhe Li
- Yangzhou Uni-Bio Pharmaceutical Co., Ltd., Yangzhou 225008, China; (G.D.); (J.F.); (Y.L.)
| | - Shoujun Li
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China; (S.L.); (E.B.); (Y.L.); (X.G.)
| | - Endong Bao
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China; (S.L.); (E.B.); (Y.L.); (X.G.)
| | - Yajie Li
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China; (S.L.); (E.B.); (Y.L.); (X.G.)
| | - Xiaolei Gao
- Tianjin Ringpu Bio-Technology Co., Ltd., Tianjin 300308, China; (S.L.); (E.B.); (Y.L.); (X.G.)
| | - Huifang Li
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; (H.L.); (C.Z.)
| | - Chunhong Zhu
- Jiangsu Institute of Poultry Sciences, Yangzhou 225125, China; (H.L.); (C.Z.)
| | - Guoqiang Zhu
- Joint Laboratory of International Cooperation on Prevention and Control Technology of Important Animal Diseases and Zoonoses of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou 225012, China;
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225012, China
| |
Collapse
|
6
|
Bosley S, Krueger CG, Birmingham A, Howell AB, Reed JD. Improved in vitro Hemagglutination Assays Utilizing P-Type and Type 1 Uropathogenic Escherichia coli to Evaluate Bacterial Anti-Adhesion Activity of Cranberry Products. J Diet Suppl 2023; 21:327-343. [PMID: 37961872 DOI: 10.1080/19390211.2023.2276962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Cranberries have a long history of use in the prevention of urinary tract infections. Cranberry products vary in proanthocyanidin content, a compound implicated in preventing the adhesion of uropathogenic Escherichia coli (E. coli) to uroepithelial cells. Testing is routinely done by cranberry product formulators to evaluate in vitro bacterial anti-adhesion bioactivity, shelf-life, and potential efficacy of cranberry products for consumer use to maintain urinary tract health. Hemagglutination assays evaluate the anti-adhesion bioactivity of cranberry products by determining how effectively the products prevent agglutination of specific red blood cells with E. coli expressing P-type and Type 1 fimbriae. The current study sought to improve upon an established anti-adhesion assay method by expanding the number of E. coli strains used to broaden potential in vivo efficacy implications and presenting results using photomicrographic data to improve accuracy and build databases on products that are routinely tested. Different lots of cranberry powder ingredient and two formulated products were tested independently for anti-adhesion activity using the established method and the improved method. Positive harmonization of results on the same samples using rigorous controls was achieved and provides the substantiation needed for the cranberry industry to utilize the improved, rapid in vitro testing method to standardize cranberry products for sufficient anti-adhesion bioactivity and maintain consumer confidence.
Collapse
Affiliation(s)
- Scott Bosley
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
| | - Christian G Krueger
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- University of WI-Madison, Madison, WI, USA
| | | | - Amy B Howell
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- Marucci Center for Blueberry Cranberry Research, Rutgers, The State University of NJ, Chatsworth, NJ, USA
| | - Jess D Reed
- Complete Phytochemical Solutions, LLC, Cambridge, WI, USA
- University of WI-Madison, Madison, WI, USA
| |
Collapse
|
7
|
Burgaya J, Marin J, Royer G, Condamine B, Gachet B, Clermont O, Jaureguy F, Burdet C, Lefort A, de Lastours V, Denamur E, Galardini M, Blanquart F. The bacterial genetic determinants of Escherichia coli capacity to cause bloodstream infections in humans. PLoS Genet 2023; 19:e1010842. [PMID: 37531401 PMCID: PMC10395866 DOI: 10.1371/journal.pgen.1010842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 06/23/2023] [Indexed: 08/04/2023] Open
Abstract
Escherichia coli is both a highly prevalent commensal and a major opportunistic pathogen causing bloodstream infections (BSI). A systematic analysis characterizing the genomic determinants of extra-intestinal pathogenic vs. commensal isolates in human populations, which could inform mechanisms of pathogenesis, diagnostic, prevention and treatment is still lacking. We used a collection of 912 BSI and 370 commensal E. coli isolates collected in France over a 17-year period (2000-2017). We compared their pangenomes, genetic backgrounds (phylogroups, STs, O groups), presence of virulence-associated genes (VAGs) and antimicrobial resistance genes, finding significant differences in all comparisons between commensal and BSI isolates. A machine learning linear model trained on all the genetic variants derived from the pangenome and controlling for population structure reveals similar differences in VAGs, discovers new variants associated with pathogenicity (capacity to cause BSI), and accurately classifies BSI vs. commensal strains. Pathogenicity is a highly heritable trait, with up to 69% of the variance explained by bacterial genetic variants. Lastly, complementing our commensal collection with an older collection from 1980, we predict that pathogenicity continuously increased through 1980, 2000, to 2010. Together our findings imply that E. coli exhibit substantial genetic variation contributing to the transition between commensalism and pathogenicity and that this species evolved towards higher pathogenicity.
Collapse
Affiliation(s)
- Judit Burgaya
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - Julie Marin
- Université Sorbonne Paris Nord, INSERM, IAME, Bobigny, France
| | - Guilhem Royer
- Université Paris Cité, INSERM, IAME, Paris, France
- Département de Prévention, Diagnostic et Traitement des Infections, Hôpital Henri Mondor, Créteil, France
- Unité Ecologie et Evolution de la Résistance aux Antibiotiques, Institut Pasteur, UMR CNRS 6047, Université Paris-Cité, Paris, France
| | | | | | | | | | | | - Agnès Lefort
- Université Paris Cité, INSERM, IAME, Paris, France
| | | | - Erick Denamur
- Université Paris Cité, INSERM, IAME, Paris, France
- Laboratoire de Génétique Moléculaire, Hôpital Bichat, AP-HP, Paris, France
| | - Marco Galardini
- Institute for Molecular Bacteriology, TWINCORE Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
- Cluster of Excellence RESIST (EXC 2155), Hannover Medical School (MHH), Hannover, Germany
| | - François Blanquart
- Center for Interdisciplinary Research in Biology, Collège de France, CNRS UMR7241 / INSERM U1050, PSL Research University, Paris, France
| |
Collapse
|
8
|
Hirakawa H, Shimokawa M, Noguchi K, Tago M, Matsuda H, Takita A, Suzue K, Tajima H, Kawagishi I, Tomita H. The PapB/FocB family protein TosR acts as a positive regulator of flagellar expression and is required for optimal virulence of uropathogenic Escherichia coli. Front Microbiol 2023; 14:1185804. [PMID: 37533835 PMCID: PMC10392849 DOI: 10.3389/fmicb.2023.1185804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/30/2023] [Indexed: 08/04/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a major causative agent of urinary tract infections. The bacteria internalize into the uroepithelial cells, where aggregate and form microcolonies. UPEC fimbriae and flagella are important for the formation of microcolonies in uroepithelial cells. PapB/FocB family proteins are small DNA-binding transcriptional regulators consisting of approximately 100 amino acids that have been reported to regulate the expression of various fimbriae, including P, F1C, and type 1 fimbriae, and adhesins. In this study, we show that TosR, a member of the PapB/FocB family is the activator of flagellar expression. The tosR mutant had similar expression levels of type 1, P and F1C fimbriae as the parent strain, but flagellar production was markedly lower than in the parent strain. Flagellin is a major component of flagella. The gene encoding flagellin, fliC, is transcriptionally activated by the sigma factor FliA. The fliA expression is induced by the flagellar master regulator FlhDC. The flhD and flhC genes form an operon. The promoter activity of fliC, fliA and flhD in the tosR mutant was significantly lower than in the parent strain. The purified recombinant TosR does not bind to fliC and fliA but to the upstream region of the flhD gene. TosR is known to bind to an AT-rich DNA sequence consisting of 29 nucleotides. The characteristic AT-rich sequence exists 550-578 bases upstream of the flhD gene. The DNA fragment lacking this sequence did not bind TosR. Furthermore, loss of the tosR gene reduced motility and the aggregation ability of UPEC in urothelial cells. These results indicate that TosR is a transcriptional activator that increases expression of the flhDC operon genes, contributing to flagellar expression and optimal virulence.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Mizuki Shimokawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Koshi Noguchi
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Minori Tago
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hiroshi Matsuda
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Ayako Takita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| | - Hirotaka Tajima
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Ikuro Kawagishi
- Department of Frontier Bioscience and Research Center for Micro-Nano Technology, Hosei University, Tokyo, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
- Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Maebashi, Gunma, Japan
| |
Collapse
|
9
|
Phenotypic Assessment of Clinical Escherichia coli Isolates as an Indicator for Uropathogenic Potential. mSystems 2022; 7:e0082722. [PMID: 36445110 PMCID: PMC9765037 DOI: 10.1128/msystems.00827-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
For women in the United States, urinary tract infections (UTIs) are the most frequent diagnosis in emergency departments, comprising 21.3% of total visits. Uropathogenic Escherichia coli (UPEC) causes ~80% of uncomplicated UTIs. To combat this public health issue, it is vital to characterize UPEC strains as well as to differentiate them from commensal strains to reduce the overuse of antibiotics. It has been challenging to determine a consistent genetic signature that clearly distinguishes UPEC from other E. coli strains. Therefore, we examined whether phenotypic data could be predictive of uropathogenic potential. We screened 13 clinical strains of UPEC, isolated from cases of uncomplicated UTI in young otherwise healthy women, in a series of microbiological phenotypic assays using UPEC prototype strain CFT073 and nonpathogenic E. coli strain MG1655 K-12 as controls. Phenotypes included adherence, iron acquisition, biofilm formation, human serum resistance, motility, and stress resistance. By use of a well-established experimental mouse model of UTI, these data were able to predict the severity of the bacterial burden in both the urine and bladders. Multiple linear regression using three different phenotypic assays, i.e., growth in minimal medium, siderophore production, and type 1 fimbrial expression, was predictive of bladder colonization (adjusted R2 = 0.6411). Growth in ex vivo human urine, hemagglutination of red blood cells, and motility modeled urine colonization (adjusted R2 = 0.4821). These results showcase the utility of phenotypic characterization to predict the severity of infection that these strains may cause. We predict that these methods will also be applicable to other complex, genetically redundant, pathogens. IMPORTANCE Urinary tract infections are the second leading infectious disease worldwide, occurring in over half of the female population during their lifetime. Most infections are caused by uropathogenic Escherichia coli (UPEC) strains. These strains can establish a reservoir in the gut, in which they do not cause disease but, upon introduction to the urinary tract, can infect the host and elicit pathogenesis. Clinically, it would be beneficial to screen patient E. coli strains to understand their pathogenic potential, which may lead to the administration of prophylactic antibiotic treatment for those with increased risk. Others have proposed the use of PCR-based genetic screening methods to detect UPEC strains and differentiate them from other E. coli pathotypes; however, this method has not yielded a consistent uropathogenic genetic signature. Here, we used phenotypic characteristics such as growth rate, siderophore production, and expression of fimbriae to better predict uropathogenic potential.
Collapse
|
10
|
Yadav M, Pundir S, Kumari R, Kumar A, Venugopal SJ, Panigrahy R, Tak V, Chunchanur SK, Gautam H, Kapil A, Das B, Sood S, Salve HR, Malhotra S, Kant S, Hari P, Chaudhuri S, Mohapatra S. Virulence gene mutations as a differentiator of clinical phenotypes: insights from community-acquired uropathogenic Escherichia coli. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35380532 DOI: 10.1099/mic.0.001161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) remains an important cause of urinary tract infection during pregnancy. Multiple molecular virulence determinants and antibiotic resistant genes facilitate its pathogenesis and virulence phenotype. Hence it is hypothesized that there will be considerable variation in genes among the isolates from symptomatic as well as asymptomatic bacteriuria (ABU) during pregnancy. The aim of this study was to decipher the genetic variation among the two phenotypes. Six different UPEC isolates collected from urine specimens of consecutive pregnant females (five, symptomatic bacteriuria and one, ABU) were tested for their growth kinetics, and biofilm formation. A total of 87 virulence determinants and 56 antibiotic resistance genes were investigated using whole-genome sequencing, to identify putative drives of virulence phenotype. In this analysis, we identified eight different types of fully functional toxin antitoxin (TA) systems [HipAB, YefM-YoeB, YeeU-YeeV (CbtA), YhaV-PrlF, ChpBS, HigAB, YgiUT and HicAB] in the isolates from symptomatic bacteriuria; whereas partially functional TA system with mutations were observed in the asymptomatic one. Isolates of both the groups showed equivalent growth characteristics and biofilm-formation ability. Genes for an iron transport system (Efe UOB system, Fhu system except FhuA) were observed functional among all symptomatic and asymptomatic isolates, however functional mutations were observed in the latter group. Gene YidE was observed predominantly associated with the biofilm formation along with few other genes (BssR, BssS, YjgK, etc.). This study outlines putative critical relevance of specific variations in the genes for the TA system, biofilm formation, cell adhesion and colonization among UPEC isolates from symptomatic and asymptomatic bacteriuria among pregnant women. Further functional genomic study in the same cohort is warranted to establish the pathogenic role of these genes.
Collapse
Affiliation(s)
- Manisha Yadav
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Swati Pundir
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Rajesh Kumari
- Department of Obstetrics and Gynaecology, All India Institute of Medical Science, New Delhi, India
| | - Arvind Kumar
- Department of Medicine, All India Institute of Medical Science, New Delhi, India
| | - Shwetha J Venugopal
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, India
| | - Rajashree Panigrahy
- Department of Microbiology, Institute of Medical Sciences and SUM Hospital, Bhubaneswar, India
| | - Vibhor Tak
- Department of Microbiology, All India Institute of Medical Science, Jodhpur, India
| | - Sneha K Chunchanur
- Department of Microbiology, Bangalore Medical College and Research Institute, Bangalore, India
| | - Hitender Gautam
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Arti Kapil
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Bimal Das
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Seema Sood
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| | - Harshal Ramesh Salve
- Centre for Community Medicine, All India Institute of Medical Science, New Delhi, India
| | - Sumit Malhotra
- Centre for Community Medicine, All India Institute of Medical Science, New Delhi, India
| | - Shashi Kant
- Centre for Community Medicine, All India Institute of Medical Science, New Delhi, India
| | - Pankaj Hari
- Department of Pediatrics, All India Institute of Medical Science, New Delhi, India
| | - Susmita Chaudhuri
- Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Sarita Mohapatra
- Department of Microbiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
11
|
uvrY deletion and acetate reduce gut colonization of Crohn's disease-associated adherent-invasive Escherichia coli by decreasing expression of type 1 fimbriae. Infect Immun 2022; 90:e0066221. [PMID: 34978926 DOI: 10.1128/iai.00662-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Adherent-invasive Escherichia coli (AIEC) is involved in onset and/or exacerbation of Crohn's disease. AIEC adapts to the gut environment by altering gene-expression programs, leading to successful gut-lumen colonization. However, the underlying mechanism of gut colonization is still far from clarified. Here, we show the role of UvrY, a response regulator of bacterial two-component signal transduction systems, in AIEC gut colonization. An AIEC mutant lacking the uvrY gene exhibited impairment of competitive colonization in the murine intestinal tract. UvrY contributes to functional expression of type 1 fimbriae by activating expression of small RNA CsrB, which confers adherence and invasion into epithelial cells on AIEC. In contrast, acetate suppresses the UvrY-dependent expression of type 1 fimbriae, resulting in less efficient cell invasion and attenuated gut colonization. Our findings might lead to therapeutic interventions for CD, in which inhibitions of UvrY activation and acetate supplementation reduce the colonization levels of AIEC by decreasing type-1 fimbriae expression.
Collapse
|
12
|
Loss of an Intimin-Like Protein Encoded on a Uropathogenic E. coli Pathogenicity Island Reduces Inflammation and Affects Interactions with the Urothelium. Infect Immun 2021; 90:e0027521. [PMID: 34871042 DOI: 10.1128/iai.00275-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) causes the majority of uncomplicated urinary tract infections (UTI), which affect nearly half of women worldwide. Many UPEC strains encode an annotated intimin-like adhesin (ila) locus in their genome related to a well-characterized virulence factor in diarrheagenic E. coli pathotypes. Its role in UPEC uropathogenesis, however, remains unknown. In prototype UPEC strain CFT073, there is an ila locus that encodes three predicted intimin-like genes sinH, sinI, and ratA. We used in silico approaches to determine the phylogeny and genomic distribution of this locus among uropathogens. We found that the currently annotated intimin-encoding proteins in CFT073 are more closely related to invasin proteins found in Salmonella. Deletion of the individual sinH, sinI, and ratA genes did not result in measurable effects on growth, biofilm formation, or motility in vitro. On average, sinH was more highly expressed in clinical strains during active human UTI than in human urine ex vivo. Unexpectedly, we found that strains lacking this ila locus had increased adherence to bladder cells in vitro, coupled with a decrease in bladder cell invasion and death. The sinH mutant displayed a significant fitness defect in the murine model of ascending UTI including reduced inflammation in the bladder. These data confirmed an inhibitory role in bladder cell adherence to facilitate invasion and inflammation; therefore, the ila locus should be termed invasin-like, rather than intimin-like. Collectively, our data suggest that loss of this locus mediates measurable interactions with bladder cells in vitro and contributes to fitness during UTI.
Collapse
|
13
|
Mijbel Ali B, Gatea Kaabi SA, Al-Bayati MA, Musafer HK. A Novel Phage Cocktail Therapy of the Urinary Tract Infection in a Mouse Model. ARCHIVES OF RAZI INSTITUTE 2021; 76:1229-1236. [PMID: 35355758 PMCID: PMC8934106 DOI: 10.22092/ari.2021.356004.1762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 09/25/2021] [Indexed: 06/14/2023]
Abstract
Escherichia coli (E. coli) is a major bacterial pathogen associated with many cases of serious infections, such as urinary tract infections (UTI) and meningitis intestinal. The rapid emergence of antimicrobial multidrug-resistant bacteria occurring worldwide has been attributed to the overuse of antibiotics. Alternative strategies must be developed to overcome antibiotic resistance. A promising alternative for the treatment of infections is the use of phages as antibacterial agents. A total of 90 female albino mice were randomly divided into three groups (n=30) and used for the induction of UTI. The animals were acclimatized in their cages for 24 h before inoculation and allowed to access chow and water freely. For UTI induction, the peri-urethral area was sterilized with 70% ethanol, and bacterial inoculation was then injected into the bladder through the urethra using a 24-gauge sterile Teflon catheter with an outer diameter of 0.7 mm and length of 19 mm. A single phage and a phage cocktail preparation have been evaluated for their therapeutic activity in the mouse model of chronic UTI induced by transurethral injection of two isolates of the uropathogenic E. coli 8 and E. coli 302. The results of the transurethral and intra-peritoneal injection of phage(s) that prepared on day 10 after the establishment of the mouse chronic model showed no effect of a single phage PEC80 in the treatment of UTI, whereas both administration routes of the phage cocktail preparation resulted in the clearance of bacteria from mice urine and homogenates of the urinary bladders and kidneys of the sacrificed mice after 24 h following the administration of phage cocktail dose. The high activity of the phage cocktail in the treatment of mouse chronic model of UTI is attributed to the broader host range of the phage cocktail, compared to the very narrow host range of the phage PEC80. It is concluded that the phage therapy by using phage preparations as the 25 phages cocktail evaluated in this study is a highly promising and potential alternative therapy for human UTIs.
Collapse
Affiliation(s)
- B Mijbel Ali
- Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - S A Gatea Kaabi
- Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - M A Al-Bayati
- Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| | - H K Musafer
- Department of Biology, College of Sciences, Mustansiriyah University, Baghdad, Iraq
| |
Collapse
|
14
|
Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B, Mourkas E, Calland JK, Yahara K, Murray S, Wilkinson TS, Williams LK, Hitchings MD, Porter J, Kemmett K, Feil EJ, Jolley KA, Williams NJ, Corander J, Sheppard SK. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun 2021; 12:765. [PMID: 33536414 PMCID: PMC7858641 DOI: 10.1038/s41467-021-20988-w] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Chickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic Escherichia coli (APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.
Collapse
Affiliation(s)
- Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK
| | - Johan Pensar
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Koji Yahara
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
| | - Susan Murray
- Uppsala University, Department for medical biochemistry and microbiology, Uppsala University, Uppsala, Sweden
| | - Thomas S Wilkinson
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Lisa K Williams
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Jonathan Porter
- National Laboratory Service, Environment Agency, Starcross, UK
| | - Kirsty Kemmett
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK.
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
15
|
Ambite I, Butler D, Wan MLY, Rosenblad T, Tran TH, Chao SM, Svanborg C. Molecular determinants of disease severity in urinary tract infection. Nat Rev Urol 2021; 18:468-486. [PMID: 34131331 PMCID: PMC8204302 DOI: 10.1038/s41585-021-00477-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/07/2021] [Indexed: 02/06/2023]
Abstract
The most common and lethal bacterial pathogens have co-evolved with the host. Pathogens are the aggressors, and the host immune system is responsible for the defence. However, immune responses can also become destructive, and excessive innate immune activation is a major cause of infection-associated morbidity, exemplified by symptomatic urinary tract infections (UTIs), which are caused, in part, by excessive innate immune activation. Severe kidney infections (acute pyelonephritis) are a major cause of morbidity and mortality, and painful infections of the urinary bladder (acute cystitis) can become debilitating in susceptible patients. Disease severity is controlled at specific innate immune checkpoints, and a detailed understanding of their functions is crucial for strategies to counter microbial aggression with novel treatment and prevention measures. One approach is the use of bacterial molecules that reprogramme the innate immune system, accelerating or inhibiting disease processes. A very different outcome is asymptomatic bacteriuria, defined by low host immune responsiveness to bacteria with attenuated virulence. This observation provides the rationale for immunomodulation as a new therapeutic tool to deliberately modify host susceptibility, control the host response and avoid severe disease. The power of innate immunity as an arbitrator of health and disease is also highly relevant for emerging pathogens, including the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Ines Ambite
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel Butler
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Murphy Lam Yim Wan
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Therese Rosenblad
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thi Hien Tran
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| | - Sing Ming Chao
- Nephrology Service, Department of Paediatrics, KK Hospital, Singapore, Singapore
| | - Catharina Svanborg
- grid.4514.40000 0001 0930 2361Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|
16
|
Tseng CC, Lin WH, Wu AB, Wang MC, Teng CH, Wu JJ. Escherichia coli FimH adhesins act synergistically with PapGII adhesins for enhancing establishment and maintenance of kidney infection. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2020; 55:44-50. [PMID: 33023843 DOI: 10.1016/j.jmii.2020.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 11/26/2022]
Abstract
BACKGROUND FimH adhesin is proposed to enhance Escherichia coli kidney infection by acting with PapGII adhesin, but genetic epidemiology study and animal study have not been widely conducted to confirm this hypothesis. METHODS We compared the prevalence of adhesin gene and their coexistent pattern between upper and lower urinary tract infection (UTI) strains. fimH mutant (EC114FM), papGII mutant (EC114PM) and fimH/papGII double mutant (EC114DM) were constructed from a pylonephritogenic strain (EC114). We compared among these strains for the infection ability in bladders and kidneys of female BALB/c mice challenged transurethrally with these bacteria and assessed 1, 3, and 7 days after inoculation. RESULTS Strains carrying fimH-only genotype were significantly more prevalent in lower UTI (P < 0.001). Strains carrying the fimH/papGII, but not papGII-only, were significantly associated with upper UTI (P = 0.001). Incidence of kidney infection increased after inoculation with EC114 on days 1 and 3, at both low and high dose, as compared with EC114DM; and the effect was greater than the sum of individual effect of EC114PM and EC114FM. Geometric means of quantitative bacterial counts in the kidneys significantly decreased when challenged with EC114FM on days 3 and 7, EC114PM on day 3 and EC114DM on day 1 after inoculation at high dose, as compared with EC114 (all P < 0.05). CONCLUSIONS We confirmed the advantage and synergistic action of FimH and PapGII for E. coli kidney infection and concluded that antagonists against FimH and PapGII adhesin may prevent kidney infection and enable its management.
Collapse
Affiliation(s)
- Chin-Chung Tseng
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan.
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - An-Bang Wu
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ming-Cheng Wang
- Division of Nephrology, Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan; Institute of Clinical Pharmacy and Pharmaceutical Sciences, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan.
| |
Collapse
|
17
|
Tawfick MM, Rosser A, Rajakumar K. Heterologous expression of the Salmonella enterica serovar Paratyphi A stk fimbrial operon suggests a potential for repeat sequence-mediated low-frequency phase variation. INFECTION GENETICS AND EVOLUTION 2020; 85:104508. [PMID: 32835875 DOI: 10.1016/j.meegid.2020.104508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 08/11/2020] [Accepted: 08/18/2020] [Indexed: 10/23/2022]
Abstract
Fimbriae mediate adhesion of Salmonella enterica organisms to the intestinal epithelium, which is an essential step in the pathogenesis process preceding invasion and/or systemic spread. In addition, Salmonella fimbrial genes transcripts were detected in the blood samples from Salmonella infected human patients, which supports the proposal that fimbriae play a role in invasive Salmonella infections. In this study, BlastN-based interrogation of the NCBI bacterial genome database and PCR investigation of Salmonella serovars have shown that the S. Paratyphi A stkF gene and/or the whole stk fimbrial gene cluster is present in about ~30% of S. enterica serovars investigated up to date. Furthermore, bioinformatics and phenotypic characterization have revealed that the stk fimbrial operon belongs to the chaperone/usher-γ4- fimbrial clade and that it encodes a mannose-sensitive hemagglutinating fimbrial structure. The latter trait is typical of type 1 fimbriae, in which fimbrial phase variation is common. The observed intragenic, 26 bp tandem repeat triplication event in stkF would suggest that slipped-strand mispairing and/or recombination within a signature stkF-borne tandem repeat motif as a likely mechanism for a form of low-frequency phase switching at the translational level leading to allelic OFF forms, hence the inability of production and/or absence of fimbriae by EM-examination on E. coli HB101/pUCstk-stkFOFFv2. The in vitro profile of marked anti-StkF-mediated opsonophagocytosis and complement-mediated killing activity observed coupled with the mice immunogenicity profile strongly supports further investigation of StkF as a potential Salmonella vaccine candidate.
Collapse
Affiliation(s)
- Mahmoud M Tawfick
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom; Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Nasr City, Cairo, Egypt.
| | - Andrew Rosser
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Kumar Rajakumar
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| |
Collapse
|
18
|
Short Chain Fatty Acids Modulate the Growth and Virulence of Pathosymbiont Escherichia coli and Host Response. Antibiotics (Basel) 2020; 9:antibiotics9080462. [PMID: 32751519 PMCID: PMC7460008 DOI: 10.3390/antibiotics9080462] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
Short chain fatty acids (SCFA), principally acetate, propionate, and butyrate, are produced by fermentation of dietary fibers by the gut microbiota. SCFA regulate the growth and virulence of enteric pathogens, such as enterohemorrhagic E. coli (EHEC), Klebsiella and Salmonella. We sought to investigate the impact of SCFA on growth and virulence of pathosymbiont E. coli associated with inflammatory bowel disease (IBD) and colorectal cancer (CRC), and their role in regulating host responses to bacterial infection in vitro. We found that under ileal conditions (pH = 7.4; 12 mM total SCFA), SCFA significantly (p < 0.05) potentiate the growth and motility of pathosymbiont E. coli. However, under colonic conditions (pH = 6.5; 65 to 123 mM total SCFA), SCFA significantly (p < 0.05) inhibit growth in a pH dependent fashion (up to 60%), and down-regulate virulence gene expression (e.g., fliC, fimH, htrA, chuA, pks). Functional analysis reveals that colonic SCFA significantly (p < 0.05) inhibit E. coli motility (up to 95%), infectivity (up to 60%), and type 1 fimbria-mediated agglutination (up to 50%). In addition, SCFA significantly (p < 0.05) inhibit the activation of NF-κB, and IL-8 production by epithelial cells. Our findings provide novel insights on the role of the regional chemical microenvironment in regulating the growth and virulence of pathosymbiont E. coli and opportunities for therapeutic intervention.
Collapse
|
19
|
Rubini D, Varthan PV, Jayasankari S, Vedahari BN, Nithyanand P. Suppressing the phenotypic virulence factors of Uropathogenic Escherichia coli using marine polysaccharide. Microb Pathog 2020; 141:103973. [PMID: 31927002 DOI: 10.1016/j.micpath.2020.103973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 12/10/2019] [Accepted: 01/07/2020] [Indexed: 12/16/2022]
Abstract
Uropathogenic Escherichia coli (UPEC) is one of the keystone pathogen that cause 80-90% of community acquired urinary tract infections (UTIs) and Catheter associated urinary tract infections (CAUTIs). Pathogenicity and ability of UPEC to colonize the bladder majorly relies on the expression of phenotypic virulence factors like flagella, pili, curli, and non pilus adhesion. Pathogens that colonize on the indwelling medical devices are able to communicate using quorum sensing (QS) signals. QS Plays a vital role in coordinating biofilm formation which results in the bacterial cells encased inside an extracellular polymeric substance (EPS). Chitosan is a marine polysaccharide which is known for its antibacterial activity. In the present study we investigated the ability of chitosan extracted from marine biowaste to mitigate the QS mediated biofilm formation in UPEC. Extracted chitosan (EC) and Commercial chitosan (CC) showed percentage inhibition of 80-85% and 60-75% respectively on young biofilm inhibition and preformed biofilm disruption. EC and CC were assessed for its ability to suppress QS mediated virulence in UPEC. Hemolysis assay showed a percentage inhibition of 79% against EC. Both chitosan showed profound activity to suppress the phenotypic virulence factors like swarming motility which is mediated by type I pili and colony morphology assay showed repression in cellulose production in UPEC. Furthermore, Real-Time PCR confirmed the ability of EC to down regulate the virulent genes which are responsible for invasion in UPEC. Accordingly, the current study foresees the quorum sensing inhibiting (QSI) potential of chitosan extracted from marine biowaste which offers an antibiotic free approach to combat UTI caused by UPEC.
Collapse
Affiliation(s)
- Durairajan Rubini
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Prakash Vishnu Varthan
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - Senthilganesh Jayasankari
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India
| | - B Narayanan Vedahari
- School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, 613 401, Tamil Nadu, India
| | - Paramasivam Nithyanand
- Biofilm Biology Laboratory, Centre for Research on Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed University, Tirumalaisamudram, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
20
|
Hirakawa H, Suzue K, Kurabayashi K, Tomita H. The Tol-Pal System of Uropathogenic Escherichia coli Is Responsible for Optimal Internalization Into and Aggregation Within Bladder Epithelial Cells, Colonization of the Urinary Tract of Mice, and Bacterial Motility. Front Microbiol 2019; 10:1827. [PMID: 31456768 PMCID: PMC6698795 DOI: 10.3389/fmicb.2019.01827] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 07/24/2019] [Indexed: 11/30/2022] Open
Abstract
Urinary tracts infection (UTI) caused by uropathogenic Escherichia coli (UPEC) is a common infectious disease. With the shortage of new antimicrobial agents, the increase in UPEC resistance to commonly used drugs, such as fluoroquinolones and β-lactams including carbapenems is a critical issue. UPEC invades urinary tract cells, where it aggregates, and subsequently, forms biofilm-like multicellular colonies termed intracellular bacterial communities (IBCs). This process allows the bacteria to establish infections and so may be a good potential target for new drugs to treat infections. Here, we show that deletion of the tolB gene, encoding a protein of the Tol-Pal system that was originally characterized as a protein complex for colicin uptake and maintenance of the outer membrane, decreases the level of bacterial internalization into and aggregation within cultured bladder epithelial cells and also inhibits the colonization of mice urinary tracts. The tolB mutant also exhibited defective motility because of impaired flagellum syntheses. The fliC and motA mutants, which are non-motile strains, also exhibited lower levels of bacterial internalization and aggregation than their wild-type parent. Additional deletion of tolB in the fliC mutant did not further decrease these, suggesting that the attenuated virulence of the tolB mutant is a result of defective motility. The tolA, tolQ, tolR, and pal mutants that lack other members of the Tol-Pal system also exhibited lower levels of motility and aggregation within bladder epithelial cells compared to their wild-type parent. These combined results suggest another role of the Tol-Pal system, i.e., that it is responsible for optimal internalization, aggregation followed by IBC formation within urinary tract cells, and bacterial motility.
Collapse
Affiliation(s)
- Hidetada Hirakawa
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Kazutomo Suzue
- Department of Infectious Diseases and Host Defense, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Kumiko Kurabayashi
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Gunma, Japan
| | - Haruyoshi Tomita
- Department of Bacteriology, Graduate School of Medicine, Gunma University, Gunma, Japan.,Laboratory of Bacterial Drug Resistance, Graduate School of Medicine, Gunma University, Gunma, Japan
| |
Collapse
|
21
|
Kim WJ, Shea AE, Kim JH, Daaka Y. Uropathogenic Escherichia coli invades bladder epithelial cells by activating kinase networks in host cells. J Biol Chem 2018; 293:16518-16527. [PMID: 30166343 DOI: 10.1074/jbc.ra118.003499] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 08/23/2018] [Indexed: 12/16/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is the causative bacterium in most urinary tract infections (UTIs). UPEC cells adhere to and invade bladder epithelial cells (BECs) and cause uropathogenicity. Invading UPEC cells may encounter one of several fates, including degradation in the lysosome, expulsion to the extracellular milieu for clearance, or survival as an intracellular bacterial community and quiescent intracellular reservoir that can cause later infections. Here we considered the possibility that UPEC cells secrete factors that activate specific host cell signaling networks to facilitate the UPEC invasion of BECs. Using GFP-based reporters and Western blot analysis, we found that the representative human cystitis isolate E. coli UTI89 and its derivative UTI89ΔFimH, which does not bind to BECs, equally activate phosphatidylinositol 4,5-bisphosphate 3-OH kinase (PI3K), Akt kinase, and mTOR complex (mTORC) 1 and 2 in BECs. We also found that conditioned medium taken from UTI89 and UTI89ΔFimH cultures similarly activates epidermal growth factor receptor (EGFR), PI3K, Akt, and mTORC and that inhibition of EGFR and mTORC2, but not mTORC1, abrogates UTI89 invasion in vitro and in animal models of UTI. Our results reveal a key molecular mechanism of UPEC invasion and the host cells it targets, insights that may have therapeutic utility for managing the ever-increasing number of persistent and chronic UTIs.
Collapse
Affiliation(s)
- Wan-Ju Kim
- From the Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Allyson E Shea
- From the Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Joon-Hyung Kim
- From the Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| | - Yehia Daaka
- From the Department of Anatomy and Cell Biology, University of Florida College of Medicine, Gainesville, Florida 32610
| |
Collapse
|
22
|
Role of class II P fimbriae and cytokine response in the pathogenesis of Escherichia coli kidney infection in diabetic mice. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 51:492-499. [DOI: 10.1016/j.jmii.2017.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 05/07/2017] [Accepted: 06/06/2017] [Indexed: 11/24/2022]
|
23
|
Identification and Characterization of Human Monoclonal Antibodies for Immunoprophylaxis against Enterotoxigenic Escherichia coli Infection. Infect Immun 2018; 86:IAI.00355-18. [PMID: 29866909 PMCID: PMC6056861 DOI: 10.1128/iai.00355-18] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 05/31/2018] [Indexed: 11/20/2022] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) causes diarrheal illness in infants in the developing world and travelers to countries where the disease is endemic, including military personnel. ETEC infection of the host involves colonization of the small intestinal epithelium and toxin secretion, leading to watery diarrhea. Enterotoxigenic Escherichia coli (ETEC) causes diarrheal illness in infants in the developing world and travelers to countries where the disease is endemic, including military personnel. ETEC infection of the host involves colonization of the small intestinal epithelium and toxin secretion, leading to watery diarrhea. There is currently no vaccine licensed to prevent ETEC infection. CFA/I is one of the most common colonization factor antigens (CFAs). The CFA/I adhesin subunit, CfaE, is required for ETEC adhesion to host intestinal cells. Human antibodies against CfaE have the potential to block colonization of ETEC and serve as an immunoprophylactic against ETEC-related diarrhea. Mice transgenic for human immunoglobulin genes were immunized with CfaE to generate a panel of human monoclonal IgG1 antibodies (HuMAbs). The most potent IgG1 antibodies identified in the in vitro functional assays were selected and isotype switched to secretory IgA (sIgA) and tested in animal colonization assays via oral administration. Over 300 unique anti-CfaE IgG1 HuMAbs were identified. The lead IgG1 anti-CfaE HuMAbs completely inhibited hemagglutination and blocked adhesion of ETEC to Caco-2 cells. Epitope mapping studies revealed that HuMAbs recognized epitopes in the N-terminal domain of CfaE near the putative receptor binding site. Oral administration of anti-CfaE antibodies in either IgG or sIgA isotypes inhibited intestinal colonization in mice challenged with ETEC. A 2- to 4-log decrease in CFU was observed in comparison to mice challenged with irrelevant isotype controls. We identified fully human monoclonal antibodies against the CfaE adhesion domain that can be potentially employed as an immunoprophylactic to prevent ETEC-related diarrhea.
Collapse
|
24
|
Ehrmann S, Chu CW, Kumari S, Silberreis K, Böttcher C, Dernedde J, Ravoo BJ, Haag R. A toolbox approach for multivalent presentation of ligand-receptor recognition on a supramolecular scaffold. J Mater Chem B 2018; 6:4216-4222. [PMID: 32254595 DOI: 10.1039/c8tb00922h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A supramolecular toolbox approach for multivalent ligand-receptor recognition was established based on β-cyclodextrin vesicles (CDVs). A series of bifunctional ligands for CDVs was synthesised. These ligands comprise on one side adamantane, enabling the functionalisation of CDVs with these ligands, and either mannose or sulphate group moieties on the other side for biological receptor recognition. The physicochemical properties of the host-guest complexes formed by β-cyclodextrin (β-CD) and adamantane were determined by isothermal titration calorimetry (ITC). Ligand-lectin interactions were investigated by surface plasmon resonance experiments (SPR) for the mannose ligands and the lectin Concanavalin A (ConA). Microscale thermophoresis (MST) measurements were applied for sulphate-dependent binding to L-selectin. In both cases, a multivalent affinity enhancement became apparent when the ligands were presented on the CDV scaffold. Furthermore, not only the clustering between our supramolecular mannosylated complex and Escherichia coli (E. coli), expressing the lectin FimH, was visualised by cryo-TEM, but also the competitive character to detach bound E. coli from a cell line, representing the uroepithelial cell surface, was demonstrated. In summary, a facile and effective supramolecular toolbox was established for various ligand-receptor recognition applications.
Collapse
Affiliation(s)
- Svenja Ehrmann
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Pharmacokinetics and Pharmacodynamics of Fosfomycin and Its Activity against Extended-Spectrum-β-Lactamase-, Plasmid-Mediated AmpC-, and Carbapenemase-Producing Escherichia coli in a Murine Urinary Tract Infection Model. Antimicrob Agents Chemother 2018; 62:AAC.02560-17. [PMID: 29581117 PMCID: PMC5971609 DOI: 10.1128/aac.02560-17] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/17/2018] [Indexed: 01/16/2023] Open
Abstract
Fosfomycin has become an attractive treatment alternative for urinary tract infections (UTIs) due to increasing multidrug resistance (MDR) in Escherichia coli. In this study, we evaluated the pharmacokinetic (PK) and pharmacodynamic (PD) indices of fosfomycin and its in vivo activity in an experimental murine model of ascending UTI. Subcutaneous administration of fosfomycin showed that the mean peak plasma concentrations of fosfomycin were 36, 280, and 750 mg/liter following administration of a single dose of 0.75, 7.5, and 30 mg/mouse, respectively, with an elimination half-life of 28 min, and urine peak concentrations of 1,100, 33,400, and 70,000 mg/liter expected to be sustained above 1 mg/liter (MIC of the test strain, NU14) for 5, 8, and 9.5 h, respectively. The optimal PK/PD indices for reducing urine colony counts (number of CFU per milliliter) were determined to be the area under the concentration-time curve/MIC from 0 to 72 h and the maximum concentration/MIC on the basis of the dose-dependent bloodstream PK and the results of an evaluation of six dosing regimens. With a dosing regimen of 15 mg/mouse twice (every 36 h), fosfomycin significantly reduced the number of CFU per milliliter of all susceptible strains in urine, including clinical MDR strains, except for one clinical strain (P = 0.062). Variable degrees of reduction were observed in the bladder and kidneys. No significant reductions in the number of CFU per milliliter were observed with the resistant strains. In conclusion, fosfomycin shows concentration-dependent in vivo activity, and the results suggest that fosfomycin is an effective alternative to carbapenems in treating MDR E. coli in uncomplicated UTIs. The data on the effectiveness of fosfomycin against the MDR isolates along with the results of PK/PD modeling should facilitate the further development of improved recommendations for its clinical use.
Collapse
|
26
|
Pompilio A, Crocetta V, Savini V, Petrelli D, Di Nicola M, Bucco S, Amoroso L, Bonomini M, Di Bonaventura G. Phylogenetic relationships, biofilm formation, motility, antibiotic resistance and extended virulence genotypes among Escherichia coli strains from women with community-onset primitive acute pyelonephritis. PLoS One 2018; 13:e0196260. [PMID: 29758033 PMCID: PMC5951556 DOI: 10.1371/journal.pone.0196260] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 03/09/2018] [Indexed: 01/07/2023] Open
Abstract
The present work set out to search for a virulence repertoire distinctive for Escherichia coli causing primitive acute pyelonephritis (APN). To this end, the virulence potential of 18 E. coli APN strains was genotypically and phenotypically assessed, comparatively with 19 strains causing recurrent cystitis (RC), and 16 clinically not significant (control, CO) strains. Most of the strains belong to phylogenetic group B1 (69.8%; p<0.01), and APN strains showed unique features, which are the presence of phylogroup A, and the absence of phylogroup B2 and non-typeable strains. Overall, the most dominant virulence factor genes (VFGs) were ecpA and fyuA (92.4 and 86.7%, respectively; p<0.05), and the mean number of VFGs was significantly higher in uropathogenic strains. Particularly, papAH and malX were exclusive for uropathogenic strains. APN and RC strains showed a significantly higher prevalence of fyuA, usp, and malX than of CO strains. Compared to RC strains, APN ones showed a higher prevalence of iha, but a lower prevalence of iroN, cnf1, and kpsMT-II. Hierarchical cluster analysis showed a higher proportion of two gene clusters (malX and usp, and fyuA and ecpA) were detected in the APN and RC groups than in CO, whereas iutA and iha clusters were detected more frequently in APN strains. The motility level did not differ among the study-groups and phylogroups considered, although a higher proportion of swarming strains was observed in APN strains. Antibiotic-resistance rates were generally low except for ampicillin (37.7%), and were not associated with specific study- or phylogenetic groups. APN and RC strains produced more biofilm than CO strains. In APN strains, iha was associated with higher biofilm biomass formation, whereas iroN and KpSMT-K1 were associated with a lower amount of biofilm biomass. Further work is needed to grasp the virulence and fitness mechanisms adopted by E. coli causing APN, and hence develop new therapeutic and prophylactic approaches.
Collapse
Affiliation(s)
- Arianna Pompilio
- Department of Medical, Oral, and Biotechnological Sciences, Laboratory of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Laboratory of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- * E-mail:
| | - Valentina Crocetta
- Department of Medical, Oral, and Biotechnological Sciences, Laboratory of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Laboratory of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Vincenzo Savini
- "Spirito Santo" Hospital, Laboratory of Clinical Microbiology and Virology, Pescara, Italy
| | - Dezemona Petrelli
- School of Pharmacy, Microbiology Unit, University of Camerino, Camerino, Italy
| | - Marta Di Nicola
- Department of Medical, Oral, and Biotechnological Sciences, Laboratory of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Silvia Bucco
- Department of Medicine, Nephrology and Dialysis Unit, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Luigi Amoroso
- Department of Medicine, Nephrology and Dialysis Unit, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Mario Bonomini
- Department of Medicine, Nephrology and Dialysis Unit, “G. d'Annunzio” University of Chieti-Pescara, Chieti, Italy
| | - Giovanni Di Bonaventura
- Department of Medical, Oral, and Biotechnological Sciences, Laboratory of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
- Center of Excellence on Aging and Translational Medicine (CeSI-MeT), Laboratory of Clinical Microbiology, “G. d’Annunzio” University of Chieti-Pescara, Chieti, Italy
| |
Collapse
|
27
|
Barbieri NL, Vande Vorde JA, Baker AR, Horn F, Li G, Logue CM, Nolan LK. FNR Regulates the Expression of Important Virulence Factors Contributing to the Pathogenicity of Avian Pathogenic Escherichia coli. Front Cell Infect Microbiol 2017; 7:265. [PMID: 28690981 PMCID: PMC5481319 DOI: 10.3389/fcimb.2017.00265] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 06/02/2017] [Indexed: 12/14/2022] Open
Abstract
Avian pathogenic Escherichia coli (APEC) is the etiologic agent of colibacillosis, an important cause of morbidity and mortality in poultry. Though, many virulence factors associated with APEC pathogenicity are known, their regulation remains unclear. FNR (fumarate and nitrate reduction) is a well-known global regulator that works as an oxygen sensor and has previously been described as a virulence regulator in bacterial pathogens. The goal of this study was to examine the role of FNR in the regulation of APEC virulence factors, such as Type I fimbriae, and processes such as adherence and invasion, type VI secretion, survival during oxidative stress, and growth in iron-restricted environments. To accomplish this goal, APEC O1, a well-characterized, highly virulent, and fully sequenced strain of APEC harboring multiple virulence mechanisms, some of which are plasmid-linked, was compared to its FNR mutant for expression of various virulence traits. Deletion of FNR was found to affect APEC O1's adherence, invasion and expression of ompT, a plasmid-encoded outer membrane protein, type I fimbriae, and aatA, encoding an autotransporter. Indeed, the fnr− mutant showed an 8-fold reduction in expression of type I fimbriae and a highly significant (P < 0.0001) reduction in expression of fimA, ompT (plasmid-borne), and aatA. FNR was also found to regulate expression of the type VI secretion system, affecting the expression of vgrG. Further, FNR was found to be important to APEC O1's growth in iron-deficient media and survival during oxidative stress with the mutant showing a 4-fold decrease in tolerance to oxidative stress, as compared to the wild type. Thus, our results suggest that FNR functions as an important regulator of APEC virulence.
Collapse
Affiliation(s)
- Nicolle L Barbieri
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Jessica A Vande Vorde
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Alison R Baker
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Fabiana Horn
- Departamento de Biofísica, Universidade Federal do Rio Grande do SulPorto Alegre, Brazil
| | - Ganwu Li
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Catherine M Logue
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States
| | - Lisa K Nolan
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State UniversityAmes, IA, United States.,Department of Infectious Disease, College of Veterinary Medicine, University of GeorgiaAthens, Georgia
| |
Collapse
|
28
|
Ambite I, Puthia M, Nagy K, Cafaro C, Nadeem A, Butler DSC, Rydström G, Filenko NA, Wullt B, Miethke T, Svanborg C. Molecular Basis of Acute Cystitis Reveals Susceptibility Genes and Immunotherapeutic Targets. PLoS Pathog 2016; 12:e1005848. [PMID: 27732661 PMCID: PMC5061333 DOI: 10.1371/journal.ppat.1005848] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/06/2016] [Indexed: 12/19/2022] Open
Abstract
Tissue damage is usually regarded as a necessary price to pay for successful elimination of pathogens by the innate immune defense. Yet, it is possible to distinguish protective from destructive effects of innate immune activation and selectively attenuate molecular nodes that create pathology. Here, we identify acute cystitis as an Interleukin-1 beta (IL-1β)-driven, hyper-inflammatory condition of the infected urinary bladder and IL-1 receptor blockade as a novel therapeutic strategy. Disease severity was controlled by the mechanism of IL-1β processing and mice with intact inflammasome function developed a moderate, self-limiting form of cystitis. The most severe form of acute cystitis was detected in mice lacking the inflammasome constituents ASC or NLRP-3. IL-1β processing was hyperactive in these mice, due to a new, non-canonical mechanism involving the matrix metalloproteinase 7- (MMP-7). ASC and NLRP-3 served as transcriptional repressors of MMP7 and as a result, Mmp7 was markedly overexpressed in the bladder epithelium of Asc-/- and Nlrp3-/- mice. The resulting IL-1β hyper-activation loop included a large number of IL-1β-dependent pro-inflammatory genes and the IL-1 receptor antagonist Anakinra inhibited their expression and rescued susceptible Asc-/- mice from bladder pathology. An MMP inhibitor had a similar therapeutic effect. Finally, elevated levels of IL-1β and MMP-7 were detected in patients with acute cystitis, suggesting a potential role as biomarkers and immunotherapeutic targets. The results reproduce important aspects of human acute cystitis in the murine model and provide a comprehensive molecular framework for the pathogenesis and immunotherapy of acute cystitis, one of the most common infections in man. Infections continue to threaten human health as pathogenic organisms outsmart available therapies with remarkable genetic versatility. Fortunately, microbial versatility is matched by the flexibility of the host immune system which provide a rich source of novel therapeutic concepts. Emerging therapeutic solutions include substances that strengthen the immune system rather than killing the bacteria directly. Selectivity is a concern, however, as boosting of the antibacterial immune response may cause collateral tissue damage. This study addresses how the host response to urinary bladder infection causes acute cystitis and how this response can be attenuated in patients who suffer from this very common condition. We identify the cytokine Interleukin-1 beta (IL-1β) as a key immune response determinant in acute cystitis and successfully treat mice with severe acute cystitis by inhibiting IL-1β or the enzyme MMP-7 that processes IL-1β to its active form. Finally, we detect elevated levels of these molecules in urine samples from patients with cystitis, suggesting clinical relevance and a potential role of IL-1β and MMP-7 both as therapeutic targets and as biomarkers of infection. These findings provide a much needed, molecular framework for the pathogenesis and treatment of acute cystitis.
Collapse
Affiliation(s)
- Ines Ambite
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Manoj Puthia
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Karoly Nagy
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Caterina Cafaro
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Aftab Nadeem
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Daniel S. C. Butler
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Gustav Rydström
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Nina A. Filenko
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Björn Wullt
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Thomas Miethke
- Institute of Medical Microbiology and Hygiene, Medical Faculty of Mannheim, University of Heidelberg, Mannheim, Germany
| | - Catharina Svanborg
- Division of Microbiology, Immunology and Glycobiology, Department of Laboratory Medicine, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
29
|
Bacterial Suppression of RNA Polymerase II-Dependent Host Gene Expression. Pathogens 2016; 5:pathogens5030049. [PMID: 27420101 PMCID: PMC5039429 DOI: 10.3390/pathogens5030049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 05/17/2016] [Accepted: 07/04/2016] [Indexed: 12/21/2022] Open
Abstract
Asymptomatic bacteriuria (ABU) is a bacterial carrier state in the urinary tract that resembles commensalism at other mucosal sites. ABU strains often lack the virulence factors that characterize uropathogenic Escherichia coli (E. coli) strains and therefore elicit weak innate immune responses in the urinary tract. In addition, ABU strains are active modifiers of the host environment, which they influence by suppressing RNA polymerase II (Pol II)-dependent host gene expression. In patients inoculated with the ABU strain E. coli 83972, gene expression was markedly reduced after 24 h (>60% of all regulated genes). Specific repressors and activators of Pol II-dependent transcription were modified, and Pol II Serine 2 phosphorylation was significantly inhibited, indicating reduced activity of the polymerase. This active inhibition included disease–associated innate immune response pathways, defined by TLR4, IRF-3 and IRF-7, suggesting that ABU strains persist in human hosts by active suppression of the antibacterial defense. In a search for the mechanism of inhibition, we compared the whole genome sequences of E. coli 83972 and the uropathogenic strain E. coli CFT073. In addition to the known loss of virulence genes, we observed that the ABU strain has acquired several phages and identified the lytic Prophage 3 as a candidate Pol II inhibitor. Intact phage particles were released by ABU during in vitro growth in human urine. To address if Prophage 3 affects Pol II activity, we constructed a Prophage 3 negative deletion mutant in E. coli 83972 and compared the effect on Pol II phosphorylation between the mutant and the E. coli 83972 wild type (WT) strains. No difference was detected, suggesting that the Pol II inhibitor is not encoded by the phage. The review summarizes the evidence that the ABU strain E. coli 83972 modifies host gene expression by inhibition of Pol II phosphorylation, and discusses the ability of ABU strains to actively create an environment that enhances their persistence.
Collapse
|
30
|
|
31
|
Stephenson SAM, Brown PD. Epigenetic Influence of Dam Methylation on Gene Expression and Attachment in Uropathogenic Escherichia coli. Front Public Health 2016; 4:131. [PMID: 27446897 PMCID: PMC4921776 DOI: 10.3389/fpubh.2016.00131] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 06/09/2016] [Indexed: 11/13/2022] Open
Abstract
Urinary tract infections (UTI) are among the most frequently encountered infections in clinical practice globally. Predominantly a burden among female adults and infants, UTIs primarily caused by uropathogenic Escherichia coli (UPEC) results in high morbidity and fiscal health strains. During pathogenesis, colonization of the urinary tract via fimbrial adhesion to mucosal cells is the most critical point in infection and has been linked to DNA methylation. Furthermore, with continuous exposure to antibiotics as the standard therapeutic strategy, UPEC has evolved to become highly adaptable in circumventing the effect of antimicrobial agents and host defenses. Hence, the need for alternative treatment strategies arises. Since differential DNA methylation is observed as a critical precursor to virulence in various pathogenic bacteria, this body of work sought to assess the influence of the DNA adenine methylase (dam) gene on gene expression and cellular adhesion in UPEC and its potential as a therapeutic target. To monitor the influence of dam on attachment and FQ resistance, selected UPEC dam mutants created via one-step allelic exchange were transformed with cloned qnrA and dam complement plasmid for comparative analysis of growth rate, antimicrobial susceptibility, biofilm formation, gene expression, and mammalian cell attachment. The absence of DNA methylation among dam mutants was apparent. Varying deficiencies in cell growth, antimicrobial resistance and biofilm formation, alongside low-level increases in gene expression (recA and papI), and adherence to HEK-293 and HTB-9 mammalian cells were also detected as a factor of SOS induction to result in increased mutability. Phenotypic characteristics of parental strains were restored in dam complement strains. Dam's vital role in DNA methylation and gene expression in local UPEC isolates was confirmed. Similarly to dam-deficient Enterohemorrhagic E. coli (EHEC), these findings suggest unsuccessful therapeutic use of Dam inhibitors against UPEC or dam-deficient UPEC strains as attenuated live vaccines. However, further investigations are necessary to determine the post-transcriptional influence of dam on the regulatory network of virulence genes central to pathogenesis.
Collapse
Affiliation(s)
| | - Paul D Brown
- Department of Basic Medical Sciences, Faculty of Medical Sciences, University of West Indies , Jamaica
| |
Collapse
|
32
|
Thakur P, Chawla R, Narula A, Goel R, Arora R, Sharma RK. Anti-hemolytic, hemagglutination inhibition and bacterial membrane disruptive properties of selected herbal extracts attenuate virulence of Carbapenem Resistant Escherichia coli. Microb Pathog 2016; 95:133-141. [PMID: 27057673 DOI: 10.1016/j.micpath.2016.04.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Accepted: 04/01/2016] [Indexed: 11/19/2022]
Abstract
Expression of a multitude of virulence factors by multi-drug resistant microbial strains, e.g., Carbapenem Resistant Escherichia coli (Family: Enterobacteriaceae; Class: Gammaproteobacteria), is responsible for resistance against beta-lactam antibiotics. Hemolysin production and induction of hemagglutination by bacterial surface receptors inflicts direct cytotoxicity by destroying host phagocytic and epithelial cells. We have previously reported that Berberis aristata, Camellia sinensis, Cyperus rotundus Holarrhena antidysenterica and Andrographis paniculata are promising herbal leads for targeting Carbapenem resistant Escherichia coli. These herbal leads were analyzed for their anti-hemolytic potential by employing spectrophotometric assay of hemoglobin liberation. Anti-hemagglutination potential of the extracts was assessed by employing qualitative assay of visible RBC aggregate formation. Camellia sinensis (PTRC-31911-A) exhibited anti-hemolytic potential of 73.97 ± 0.03%, followed by Holarrhena antidysenterica (PTRC-8111-A) i.e., 68.32 ± 0.05%, Berberis aristata (PTRC-2111-A) i.e., 60.26 ± 0.05% and Cyperus rotundus (PTRC-31811-A) i.e., 53.76 ± 0.03%. Comprehensive, visual analysis of hemagglutination inhibition revealed that only Berberis aristata (PTRC-2111-A) and Camellia sinensis (PTRC-31911-A) exhibited anti-hemagglutination activity. However, Andrographis paniculata (PTRC-11611-A) exhibited none of the inhibitory activities. Furthermore, the pair wise correlation analysis of the tested activities with quantitative phytochemical descriptors revealed that an increased content of alkaloid; flavonoids; polyphenols, and decreased content of saponins supported both the activities. Additionally, flow cytometry revealed that cell membrane structures of CRE were damaged by extracts of Berberis aristata (PTRC-2111-A) and Camellia sinensis (PTRC-31911-A) at their respective Minimum Inhibitory Concentrations, thereby confirming noteworthy antibacterial potential of both these extracts targeting bacterial membrane; hemolysin and bacterial hemagglutination.
Collapse
Affiliation(s)
- Pallavi Thakur
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Raman Chawla
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India.
| | - Alka Narula
- Department of Biotechnology, Jamia Hamdard, Delhi, India
| | - Rajeev Goel
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| | - Rajesh Arora
- Directorate General-Life Sciences, Defence Research and Development Organisation, DRDO Bhawan, Delhi, India
| | - Rakesh Kumar Sharma
- Division of CBRN Defence, Institute of Nuclear Medicine and Allied Sciences, Delhi, India
| |
Collapse
|
33
|
Štaudová B, Micenková L, Bosák J, Hrazdilová K, Slaninková E, Vrba M, Ševčíková A, Kohoutová D, Woznicová V, Bureš J, Šmajs D. Determinants encoding fimbriae type 1 in fecal Escherichia coli are associated with increased frequency of bacteriocinogeny. BMC Microbiol 2015; 15:201. [PMID: 26445407 PMCID: PMC4594643 DOI: 10.1186/s12866-015-0530-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 09/25/2015] [Indexed: 01/03/2023] Open
Abstract
Background To screen whether E. coli strains encoding type 1 fimbriae, isolated from fecal microflora, produce bacteriocins more often relative to fimA-negative E. coli strains of similar origin. Methods PCR assays were used to detect presence of genes encoding 30 bacteriocin determinants (23 colicin- and 7 microcin-encoding genes) and 18 virulence determinants in 579 E. coli strains of human and animal origin isolated from hospitals and animal facilities in the Czech and Slovak Republic. E. coli strains were also classified into phylogroups (A, B1, B2 and D). Results fimA-negative E. coli strains (defined as those possessing none of the 18 tested virulence determinants) were compared to fimA-positive E. coli strains (possessing fimA as the only detected virulence determinant). Strains with identified bacteriocin genes were more commonly found among fimA-positive E. coli strains (35.6 %) compared to fimA-negative E. coli strains (21.9 %, p < 0.01) and this was true for both colicin and microcin determinants (p = 0.02 and p < 0.01, respectively). In addition, an increased number of strains encoding colicin E1 were found among fimA-positive E. coli strains (p < 0.01). Conclusions fimA-positive E. coli strains produced bacteriocins (colicins and microcins) more often compared to fimA-negative strains of similar origin. Since type 1 fimbriae of E. coli have been shown to mediate adhesion to epithelial host cells and help colonize the intestines, bacteriocin synthesis appears to be an additional feature of colonizing E. coli strains. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0530-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Barbora Štaudová
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| | - Lenka Micenková
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| | - Juraj Bosák
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| | - Kristýna Hrazdilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42, Brno, Czech Republic. .,CEITEC - Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42, Brno, Czech Republic.
| | - Eva Slaninková
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Palackého tř. 1/3, 612 42, Brno, Czech Republic.
| | - Martin Vrba
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic.
| | - Alena Ševčíková
- Department of Clinical Microbiology, Faculty Hospital Brno, Jihlavská 20, 625 00, Brno, Czech Republic.
| | - Darina Kohoutová
- 2nd Department of Internal Medicine - Gastroenterology, Charles University in Praha, Faculty of Medicine at Hradec Kralové, University Teaching Hospital, Sokolská 581, Hradec Kralové, 500 05, Czech Republic.
| | - Vladana Woznicová
- Department of Microbiology, Faculty of Medicine, Masaryk University and St. Anne's University Hospital, Pekařská 53, 656 91, Brno, Czech Republic.
| | - Jan Bureš
- 2nd Department of Internal Medicine - Gastroenterology, Charles University in Praha, Faculty of Medicine at Hradec Kralové, University Teaching Hospital, Sokolská 581, Hradec Kralové, 500 05, Czech Republic.
| | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, 625 00, Brno, Czech Republic.
| |
Collapse
|
34
|
Shevade SU, Agrawal GN. Study of virulence factors of E. coli in community and nosocomial urinary tract infection. INDIAN JOURNAL OF MEDICAL SPECIALITIES 2015. [DOI: 10.1016/j.injms.2015.07.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Howell A, Souza D, Roller M, Fromentin E. Comparison of the Anti-Adhesion Activity of Three Different Cranberry Extracts on Uropathogenic P-fimbriated Escherichia coli: A Randomized, Double-blind, Placebo Controlled, Ex Vivo, Acute Study. Nat Prod Commun 2015. [DOI: 10.1177/1934578x1501000720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Research suggests that cranberry ( Vaccinium macrocarpon) helps maintain urinary tract health. Bacterial adhesion to the uroepithelium is the initial step in the progression to development of a urinary tract infection. The bacterial anti-adhesion activity of cranberry proanthocyanidins (PACs) has been demonstrated in vitro. Three different cranberry extracts were developed containing a standardized level of 36 mg of PACs. This randomized, double-blind, placebo controlled, ex vivo, acute study was designed to compare the anti-adhesion activity exhibited by human urine following consumption of three different cranberry extracts on uropathogenic P-fimbriated Escherichia coli in healthy men and women. All three cranberry extracts significantly increased anti-adhesion activity in urine from 6 to 12 hours after intake of a single dose standardized to deliver 36 mg of PACs (as measured by the BL-DMAC method), versus placebo.
Collapse
Affiliation(s)
- Amy Howell
- Marucci Center for Blueberry Cranberry Research, Rutgers University, 125A Lake Oswego Rd, Chatsworth, NJ 08019, USA
| | - Dan Souza
- NATUREX-DBS, LLC. 39 Pleasant Street, Sagamore, MA, 02561, USA
| | - Marc Roller
- NATUREX SA. Site d'Agroparc-BP 81218. 84911 Avignon, Cedex 9, France
| | | |
Collapse
|
36
|
Carey AJ, Tan CK, Ipe DS, Sullivan MJ, Cripps AW, Schembri MA, Ulett GC. Urinary tract infection of mice to model human disease: Practicalities, implications and limitations. Crit Rev Microbiol 2015; 42:780-99. [PMID: 26006172 DOI: 10.3109/1040841x.2015.1028885] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Murine models of human UTI are vital experimental tools that have helped to elucidate UTI pathogenesis and advance knowledge of potential treatment and infection prevention strategies. Fundamentally, several variables are inherent in different murine models, and understanding the limitations of these variables provides an opportunity to understand how models may be best applied to research aimed at mimicking human disease. In this review, we discuss variables inherent in murine UTI model studies and how these affect model usage, data analysis and data interpretation. We examine recent studies that have elucidated UTI host-pathogen interactions from the perspective of gene expression, and review new studies of biofilm and UTI preventative approaches. We also consider potential standards for variables inherent in murine UTI models and discuss how these might expand the utility of models for mimicking human disease and uncovering new aspects of pathogenesis.
Collapse
Affiliation(s)
- Alison J Carey
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Chee K Tan
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Deepak S Ipe
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Matthew J Sullivan
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| | - Allan W Cripps
- b Menzies Health Institute Queensland, Griffith University , Gold Coast , Australia , and
| | - Mark A Schembri
- c School of Chemistry and Molecular Biosciences, University of Queensland , Brisbane , Australia
| | - Glen C Ulett
- a Menzies Health Institute Queensland & School of Medical Sciences, Griffith University , Gold Coast , Australia
| |
Collapse
|
37
|
Molecular analysis of asymptomatic bacteriuria Escherichia coli strain VR50 reveals adaptation to the urinary tract by gene acquisition. Infect Immun 2015; 83:1749-64. [PMID: 25667270 DOI: 10.1128/iai.02810-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 01/09/2015] [Indexed: 12/21/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common infectious diseases of humans, with Escherichia coli responsible for >80% of all cases. One extreme of UTI is asymptomatic bacteriuria (ABU), which occurs as an asymptomatic carrier state that resembles commensalism. To understand the evolution and molecular mechanisms that underpin ABU, the genome of the ABU E. coli strain VR50 was sequenced. Analysis of the complete genome indicated that it most resembles E. coli K-12, with the addition of a 94-kb genomic island (GI-VR50-pheV), eight prophages, and multiple plasmids. GI-VR50-pheV has a mosaic structure and contains genes encoding a number of UTI-associated virulence factors, namely, Afa (afimbrial adhesin), two autotransporter proteins (Ag43 and Sat), and aerobactin. We demonstrated that the presence of this island in VR50 confers its ability to colonize the murine bladder, as a VR50 mutant with GI-VR50-pheV deleted was attenuated in a mouse model of UTI in vivo. We established that Afa is the island-encoded factor responsible for this phenotype using two independent deletion (Afa operon and AfaE adhesin) mutants. E. coli VR50afa and VR50afaE displayed significantly decreased ability to adhere to human bladder epithelial cells. In the mouse model of UTI, VR50afa and VR50afaE displayed reduced bladder colonization compared to wild-type VR50, similar to the colonization level of the GI-VR50-pheV mutant. Our study suggests that E. coli VR50 is a commensal-like strain that has acquired fitness factors that facilitate colonization of the human bladder.
Collapse
|
38
|
|
39
|
Efficient and cost-effective alternative treatment for recurrent urinary tract infections and interstitial cystitis in women: a two-case report. Case Rep Med 2014; 2014:698758. [PMID: 25587284 PMCID: PMC4283390 DOI: 10.1155/2014/698758] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2014] [Accepted: 11/28/2014] [Indexed: 11/18/2022] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections affecting women. UTIs are primarily caused by Escherichia coli, which increases the likelihood of a recurrent infection. We encountered two cases of recurrent UTIs (rUTIs) with a positive E. coli culture, not improving with antibiotics due to the development of antibiotic resistance. An alternative therapeutic regimen based on parsley and garlic, L-arginine, probiotics, and cranberry tablets has been given. This regimen showed a significant health improvement and symptoms relief without recurrence for more than 12 months. In conclusion, the case supports the concept of using alternative medicine in treating rUTI and as a prophylaxis or in patients who had developed antibiotic resistance.
Collapse
|
40
|
FNR regulates expression of important virulence factors contributing to pathogenicity of uropathogenic Escherichia coli. Infect Immun 2014; 82:5086-98. [PMID: 25245807 DOI: 10.1128/iai.02315-14] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is responsible for the majority of urinary tract infections (UTIs), which are some of the world's most common bacterial infections of humans. Here, we examined the role of FNR (fumarate and nitrate reduction), a well-known global regulator, in the pathogenesis of UPEC infections. We constructed an fnr deletion mutant of UPEC CFT073 and compared it to the wild type for changes in virulence, adherence, invasion, and expression of key virulence factors. Compared to the wild type, the fnr mutant was highly attenuated in the mouse model of human UTI and showed severe defects in adherence to and invasion of bladder and kidney epithelial cells. Our results showed that FNR regulates motility and multiple virulence factors, including expression of type I and P fimbriae, modulation of hemolysin expression, and expression of a novel pathogenicity island involved in α-ketoglutarate metabolism under anaerobic conditions. Our results demonstrate that FNR is a key global regulator of UPEC virulence and controls expression of important virulence factors that contribute to UPEC pathogenicity.
Collapse
|
41
|
A conserved PapB family member, TosR, regulates expression of the uropathogenic Escherichia coli RTX nonfimbrial adhesin TosA while conserved LuxR family members TosE and TosF suppress motility. Infect Immun 2014; 82:3644-56. [PMID: 24935980 DOI: 10.1128/iai.01608-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
A heterogeneous subset of extraintestinal pathogenic Escherichia coli (ExPEC) strains, referred to as uropathogenic E. coli (UPEC), causes most uncomplicated urinary tract infections. However, no core set of virulence factors exists among UPEC strains. Instead, the focus of the analysis of urovirulence has shifted to studying broad classes of virulence factors and the interactions between them. For example, the RTX nonfimbrial adhesin TosA mediates adherence to host cells derived from the upper urinary tract. The associated tos operon is well expressed in vivo but poorly expressed in vitro and encodes TosCBD, a predicted type 1 secretion system. TosR and TosEF are PapB and LuxR family transcription factors, respectively; however, no role has been assigned to these potential regulators. Thus, the focus of this study was to determine how TosR and TosEF regulate tosA and affect the reciprocal expression of adhesins and flagella. Among a collection of sequenced UPEC strains, 32% (101/317) were found to encode TosA, and nearly all strains (91% [92/101]) simultaneously carried the putative regulatory genes. Deletion of tosR alleviates tosA repression. The tos promoter was localized upstream of tosR using transcriptional fusions of putative promoter regions with lacZ. TosR binds to this region, affecting a gel shift. A 100-bp fragment 220 to 319 bp upstream of tosR inhibits binding, suggesting localization of the TosR binding site. TosEF, on the other hand, downmodulate motility when overexpressed by preventing the expression of fliC, encoding flagellin. Deletion of tosEF increased motility. Thus, we present an additional example of the reciprocal control of adherence and motility.
Collapse
|
42
|
Micenková L, Štaudová B, Bosák J, Mikalová L, Littnerová S, Vrba M, Ševčíková A, Woznicová V, Šmajs D. Bacteriocin-encoding genes and ExPEC virulence determinants are associated in human fecal Escherichia coli strains. BMC Microbiol 2014; 14:109. [PMID: 24774171 PMCID: PMC4021369 DOI: 10.1186/1471-2180-14-109] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 04/22/2014] [Indexed: 11/10/2022] Open
Abstract
Background A set of 1181 E. coli strains of human fecal origin isolated in the South Moravia region of the Czech Republic was collected during the years 2007–2010. Altogether, 17 virulence determinants and 31 bacteriocin-encoding genes were tested in each of them. Results The occurrence of bacteriocin-encoding genes was found to be positively correlated with the occurrence of E. coli virulence factors. Based on the presence of virulence factors and their combinations, E. coli strains were classified as non-pathogenic E. coli (n = 399), diarrhea-associated E. coli (n = 179) and ExPEC strains (n = 603). Non-pathogenic and diarrhea-associated E. coli strains had a low frequency of bacteriocinogeny (32.6% and 36.9%, respectively). ExPEC strains encoding S-fimbriae (sfa), P-fimbriae (pap) and having genes for aerobactin biosynthesis (aer, iucC), α-hemolysis (α-hly) and cytotoxic necrosis factor (cnf1) were often bacteriocinogenic (73.8%), had a high prevalence of bacteriocin multi-producers and showed a higher frequency of genes encoding microcins H47, M, V, B17 and colicins E1, Ia and S4. Conclusions The occurrence of bacteriocin-encoding genes and ExPEC virulence determinants correlate positively in E. coli strains of human fecal origin. Bacteriocin synthesis appears to modulate the ability of E. coli strains to reside in the human intestine and/or the virulence of the corresponding strains.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - David Šmajs
- Department of Biology, Faculty of Medicine, Masaryk University, Kamenice 5, Building A6, Brno 625 00, Czech Republic.
| |
Collapse
|
43
|
Marhova M, Kostadinova S, Stoitsova S. Biofilm-Forming Capabilities of UrinaryEscherichia ColiIsolates. BIOTECHNOL BIOTEC EQ 2014. [DOI: 10.1080/13102818.2010.10817903] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
44
|
Liao J, Tomochika K, Watanabe S, Kanemasa Y. Establishment of a Mouse Model of Cystitis and Roles of Type 1 FimbriatedEscherichia coliin Its Pathogenesis. Microbiol Immunol 2013; 36:243-56. [PMID: 1351243 DOI: 10.1111/j.1348-0421.1992.tb01662.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The role of type 1 fimbriae in promoting bladder colonization and the course of Escherichia coli cystitis were examined with type 1 fimbriated strains of clinically isolated E. coli. In the experiments of mice in vivo, intact bladder epithelium showed natural resistance to the adherence of type 1 fimbriated and non-fimbriated E. coli. However, the exfoliation of bladder superficial cells by trypsinization before the bacterial inoculation promoted the adhesion and colonization of type 1 fimbriated E. coli onto bladder epithelium. After colonization of E. coli, maximum numbers of E. coli and leukocytes were observed 3 days after inoculation. Nine days after inoculation, both of E. coli and leukocytes disappeared and the regeneration of superficial cells was observed. On the other hand, superficial cells in mice injected with phosphate-buffered saline or non-fimbriated E. coli regenerated 5 days after trypsinization. The present study demonstrated that the removal of superficial cells is essential for the adhesion and colonization of type 1 fimbriated E. coli onto bladder epithelium in vivo and a new model of E. coli cystitis in mice was established. The model which we established is valuable for histopathological, immunological, and therapeutic studies.
Collapse
Affiliation(s)
- J Liao
- Department of Microbiology, Okayama University Medical School, Japan
| | | | | | | |
Collapse
|
45
|
Mast cell interleukin-10 drives localized tolerance in chronic bladder infection. Immunity 2013; 38:349-59. [PMID: 23415912 DOI: 10.1016/j.immuni.2012.10.019] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Accepted: 10/09/2012] [Indexed: 01/13/2023]
Abstract
The lower urinary tract's virtually inevitable exposure to external microbial pathogens warrants efficient tissue-specialized defenses to maintain sterility. The observation that the bladder can become chronically infected in combination with clinical observations that antibody responses after bladder infections are not detectable suggest defects in the formation of adaptive immunity and immunological memory. We have identified a broadly immunosuppressive transcriptional program specific to the bladder, but not the kidney, during infection of the urinary tract that is dependent on tissue-resident mast cells (MCs). This involves localized production of interleukin-10 and results in suppressed humoral and cell-mediated responses and bacterial persistence. Therefore, in addition to the previously described role of MCs orchestrating the early innate immunity during bladder infection, they subsequently play a tissue-specific immunosuppressive role. These findings may explain the prevalent recurrence of bladder infections and suggest the bladder as a site exhibiting an intrinsic degree of MC-maintained immune privilege.
Collapse
|
46
|
Watts RE, Tan CK, Ulett GC, Carey AJ, Totsika M, Idris A, Paton AW, Morona R, Paton JC, Schembri MA. Escherichia coli 83972 Expressing a P fimbriae Oligosaccharide Receptor Mimic Impairs Adhesion of Uropathogenic E. coli. J Infect Dis 2012; 206:1242-9. [DOI: 10.1093/infdis/jis493] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
47
|
Role of Uropathogenic Escherichia coli Virulence Factors in Development of Urinary Tract Infection and Kidney Damage. Int J Nephrol 2012; 2012:681473. [PMID: 22506110 PMCID: PMC3312279 DOI: 10.1155/2012/681473] [Citation(s) in RCA: 203] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 11/02/2011] [Accepted: 12/01/2011] [Indexed: 01/17/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC) is a causative agent in the vast majority of urinary tract infections (UTIs), including cystitis and pyelonephritis, and infectious complications, which may result in acute renal failure in healthy individuals as well as in renal transplant patients. UPEC expresses a multitude of virulence factors to break the inertia of the mucosal barrier. In response to the breach by UPEC into the normally sterile urinary tract, host inflammatory responses are triggered leading to cytokine production, neutrophil influx, and the exfoliation of infected bladder epithelial cells. Several signaling pathways activated during UPEC infection, including the pathways known to activate the innate immune response, interact with calcium-dependent signaling pathways. Some UPEC isolates, however, might possess strategies to delay or suppress the activation of components of the innate host response in the urinary tract. Studies published in the recent past provide new information regarding how virulence factors of uropathogenic E. coli are involved in activation of the innate host response. Despite numerous host defense mechanisms, UPEC can persist within the urinary tract and may serve as a reservoir for recurrent infections and serious complications. Presentation of the molecular details of these events is essential for development of successful strategies for prevention of human UTIs and urological complications associated with UTIs.
Collapse
|
48
|
Norinder BS, Köves B, Yadav M, Brauner A, Svanborg C. Do Escherichia coli strains causing acute cystitis have a distinct virulence repertoire? Microb Pathog 2011; 52:10-6. [PMID: 22023989 DOI: 10.1016/j.micpath.2011.08.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Revised: 08/18/2011] [Accepted: 08/23/2011] [Indexed: 11/27/2022]
Abstract
Bacterial virulence factors influence the site and severity of urinary tract infections. While pyelonephritis-associated molecular traits have been defined, virulence factors specific for acute cystitis strains have not been identified. This study examined the virulence factor repertoire of 247 Escherichia coli strains, prospectively isolated from women with community-acquired acute cystitis. Fim sequences were present in 96% of the isolates, which also expressed Type 1 fimbriae. Curli were detected in 75%, 13% of which formed cellulose. Pap sequences were present in 47%, 27% were papG+, 23% were prsG+ and 42% expressed P fimbriae. TcpC was expressed by 33% of the strains, 32% in a subgroup of patients who only had symptoms of cystitis and 42% in patients with signs of upper urinary tract involvement; most frequently by the papG+/prsG+ subgroup. Strains with the full fim, pap and TcpC and curli virulence profile were more common in cystitis patients with than in patients without upper tract involvement (p < 0.05). The varied virulence profile of E. coli strains causing acute cystitis suggests that diverse bacterial strains, expressing Type 1 fimbriae trigger a convergent host response, involving pathways that give rise to the characteristic symptoms of acute cystitis.
Collapse
Affiliation(s)
- Birgit Stattin Norinder
- Department of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, SE-22362 Lund, Sweden
| | | | | | | | | |
Collapse
|
49
|
Ragnarsdóttir B, Lutay N, Grönberg-Hernandez J, Köves B, Svanborg C. Genetics of innate immunity and UTI susceptibility. Nat Rev Urol 2011; 8:449-68. [PMID: 21750501 DOI: 10.1038/nrurol.2011.100] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A functional and well-balanced immune response is required to resist most infections. Slight dysfunctions in innate immunity can turn the 'friendly' host defense into an unpleasant foe and give rise to disease. Beneficial and destructive forces of innate immunity have been discovered in the urinary tract and mechanisms by which they influence the severity of urinary tract infections (UTIs) have been elucidated. By modifying specific aspects of the innate immune response to UTI, genetic variation either exaggerates the severity of acute pyelonephritis to include urosepsis and renal scarring or protects against symptomatic disease by suppressing innate immune signaling, as in asymptomatic bacteriuria (ABU). Different genes are polymorphic in patients prone to acute pyelonephritis or ABU, respectively, and yet discussions of UTI susceptibility in clinical practice still focus mainly on social and behavioral factors or dysfunctional voiding. Is it not time for UTIs to enter the era of molecular medicine? Defining why certain individuals are protected from UTI while others have severe, recurrent infections has long been difficult, but progress is now being made, encouraging new approaches to risk assessment and therapy in this large and important patient group, as well as revealing promising facets of 'good' versus 'bad' inflammation.
Collapse
Affiliation(s)
- Bryndís Ragnarsdóttir
- Section of Microbiology, Immunology and Glycobiology, Institute of Laboratory Medicine, Lund University, Sölvegatan 23, 22362 Lund, Sweden
| | | | | | | | | |
Collapse
|
50
|
Virulence of Escherichia coli B2 isolates from meat and animals in a murine model of ascending urinary tract infection (UTI): evidence that UTI is a zoonosis. J Clin Microbiol 2010; 48:2978-80. [PMID: 20519476 DOI: 10.1128/jcm.00281-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In vivo evidence of a connection between urinary tract infections (UTI) and foods is lacking. The virulence of 13 Escherichia coli B2 isolates from healthy animals and fresh meat was investigated in a murine model of ascending UTI. All isolates produced positive bladder cultures (10(2) to 10(7) CFU), and nine isolates produced positive kidney cultures (10(2) to 10(5) CFU).
Collapse
|