1
|
Epstein AL, Rabkin SD. Safety of non-replicative and oncolytic replication-selective HSV vectors. Trends Mol Med 2024; 30:781-794. [PMID: 38886138 PMCID: PMC11329358 DOI: 10.1016/j.molmed.2024.05.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/20/2024]
Abstract
Herpes simplex virus type 1 (HSV-1) is a DNA virus and human pathogen used to construct promising therapeutic vectors. HSV-1 vectors fall into two classes: replication-selective oncolytic vectors for cancer therapy and defective non-replicative vectors for gene therapy. Vectors from each class can accommodate ≥30 kb of inserts, have been approved clinically, and demonstrate a relatively benign safety profile. Despite oncolytic HSV (oHSV) replication in tumors and elicited immune responses, the virus is well tolerated in cancer patients. Current non-replicative vectors elicit only limited immune responses. Seropositivity and immune responses against HSV-1 do not eliminate either the vector or infected cells, and the vectors can therefore be re-administered. In this review we highlight vectors that have been translated to the clinic and host-virus immune interactions that impact on the safety and efficacy of HSVs.
Collapse
Affiliation(s)
| | - Samuel D Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Gabrielli L, Banchini I, Petrisli E, Piccirilli G, Venturoli S, Pavoni M, Cantiani A, Lanna F, Campoli C, Montironi M, Giannella M, Lazzarotto T. Mollaret's Meningitis due to Herpes Simplex Virus 2: A Case Report and Review of the Literature. Microorganisms 2024; 12:1363. [PMID: 39065131 PMCID: PMC11278522 DOI: 10.3390/microorganisms12071363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/28/2024] Open
Abstract
Mollaret's meningitis is a rare neurological disorder characterized by recurrent episodes of aseptic lymphocytic meningitis, often associated with herpes simplex virus 2 (HSV-2) infection. We report the case of a 39 y.o. Italian woman who experienced four episodes of aseptic lymphocytic meningitis between 2004 and 2023, diagnosed as Mollaret's meningitis. In each episode, the patient presented with fever, severe headache and photophobia. In two episodes cutaneous vesicles in the left gluteal area preceding meningitis symptoms were also reported. A diagnostic evaluation included a physical-chemical analysis and a real-time PCR of the cerebrospinal fluid (CSF). The CSF presented pleocytosis with lymphocytic predominance and a positive HSV-2 load, with a peak of 1234 copies/mL. The patient was treated successfully with acyclovir, and the symptoms resolved without neurological sequelae. This case highlights the importance of comprehensive diagnostic testing and vigilant monitoring to manage Mollaret's syndrome effectively.
Collapse
Affiliation(s)
- Liliana Gabrielli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.G.)
| | - Isabella Banchini
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, 40138 Bologna, Italy
| | - Evangelia Petrisli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.G.)
| | - Giulia Piccirilli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.G.)
| | - Simona Venturoli
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.G.)
| | - Matteo Pavoni
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, 40138 Bologna, Italy
| | - Alessia Cantiani
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, 40138 Bologna, Italy
| | - Federica Lanna
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, 40138 Bologna, Italy
| | - Caterina Campoli
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Matteo Montironi
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Maddalena Giannella
- Infectious Diseases Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
- Department of Medical and Surgical Sciences, Infectious Diseases Section, Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| | - Tiziana Lazzarotto
- Microbiology Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy; (L.G.)
- Department of Medical and Surgical Sciences, Section of Microbiology, University of Bologna, 40138 Bologna, Italy
| |
Collapse
|
3
|
Alex Thomas M, Cui X, Artinian LR, Cao Q, Jing J, Silva FC, Wang S, Zigman JM, Sun Y, Shi H, Xue B. Crosstalk between Gut Sensory Ghrelin Signaling and Adipose Tissue Sympathetic Outflow Regulates Metabolic Homeostasis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.25.568689. [PMID: 38076894 PMCID: PMC10705268 DOI: 10.1101/2023.11.25.568689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The stomach-derived orexigenic hormone ghrelin is a key regulator of energy homeostasis and metabolism in humans. The ghrelin receptor, growth hormone secretagogue receptor 1a (GHSR), is widely expressed in the brain and gastrointestinal vagal sensory neurons, and neuronal GHSR knockout results in a profoundly beneficial metabolic profile and protects against diet-induced obesity (DIO) and insulin resistance. Here we show that in addition to the well characterized vagal GHSR, GHSR is robustly expressed in gastrointestinal sensory neurons emanating from spinal dorsal root ganglia. Remarkably, sensory neuron GHSR deletion attenuates DIO through increased energy expenditure and sympathetic outflow to adipose tissue independent of food intake. In addition, neuronal viral tract tracing reveals prominent crosstalk between gut non-vagal sensory afferents and adipose sympathetic outflow. Hence, these findings demonstrate a novel gut sensory ghrelin signaling pathway critical for maintaining energy homeostasis.
Collapse
Affiliation(s)
- M. Alex Thomas
- Department of Biology, Georgia State University, Atlanta, GA
| | - Xin Cui
- Department of Biology, Georgia State University, Atlanta, GA
| | | | - Qiang Cao
- Department of Biology, Georgia State University, Atlanta, GA
| | - Jia Jing
- Department of Biology, Georgia State University, Atlanta, GA
| | - Felipe C. Silva
- Department of Biology, Georgia State University, Atlanta, GA
| | - Shirong Wang
- Department of Biology, Georgia State University, Atlanta, GA
| | - Jeffrey M. Zigman
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX
| | - Yuxiang Sun
- Department of Nutrition, Texas A & M University, College Station, TX
| | - Hang Shi
- Department of Biology, Georgia State University, Atlanta, GA
| | - Bingzhong Xue
- Department of Biology, Georgia State University, Atlanta, GA
| |
Collapse
|
4
|
Jaggi U, Wang S, Mott KR, Ghiasi H. Binding of herpesvirus entry mediator (HVEM) and HSV-1 gD affect reactivation but not latency levels. PLoS Pathog 2023; 19:e1011693. [PMID: 37738264 PMCID: PMC10550154 DOI: 10.1371/journal.ppat.1011693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/04/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023] Open
Abstract
Previously we reported that the HSV-1 latency associated transcript (LAT) specifically upregulates the cellular herpesvirus entry mediator (HVEM) but no other known HSV-1 receptors. HSV-1 glycoprotein D (gD) binds to HVEM but the effect of this interaction on latency-reactivation is not known. We found that the levels of latent viral genomes were not affected by the absence of gD binding to HVEM. However, reactivation of latent virus in trigeminal ganglia explant cultures was blocked in the absence of gD binding to HVEM. Neither differential HSV-1 replication and spread in the eye nor levels of latency influenced reactivation. Despite similar levels of latency, reactivation in the absence of gD binding to HVEM correlated with reduced T cell exhaustion. Our results indicate that HVEM-gD signaling plays a significant role in HSV-1 reactivation but not in ocular virus replication or levels of latency. The results presented here identify gD binding to HVEM as an important target that influences reactivation and survival of ganglion resident T cells but not levels of latency. This concept may also apply to other herpesviruses that engages HVEM.
Collapse
Affiliation(s)
- Ujjaldeep Jaggi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Shaohui Wang
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Kevin R. Mott
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology and Vaccine Development, Department of Surgery, CSMC - SSB3, Los Angeles, California, United States of America
| |
Collapse
|
5
|
Fischer KB, Collins HK, Pang Y, Roy DS, Zhang Y, Feng G, Li SJ, Kepecs A, Callaway EM. Monosynaptic restriction of the anterograde herpes simplex virus strain H129 for neural circuit tracing. J Comp Neurol 2023; 531:584-595. [PMID: 36606699 PMCID: PMC10040246 DOI: 10.1002/cne.25451] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 11/09/2022] [Accepted: 12/13/2022] [Indexed: 01/07/2023]
Abstract
Identification of synaptic partners is a fundamental task for systems neuroscience. To date, few reliable techniques exist for whole brain labeling of downstream synaptic partners in a cell-type-dependent and monosynaptic manner. Herein, we describe a novel monosynaptic anterograde tracing system based on the deletion of the gene UL6 from the genome of a cre-dependent version of the anterograde Herpes Simplex Virus 1 strain H129. Given that this knockout blocks viral genome packaging and thus viral spread, we reasoned that co-infection of a HSV H129 ΔUL6 virus with a recombinant adeno-associated virus expressing UL6 in a cre-dependent manner would result in monosynaptic spread from target cre-expressing neuronal populations. Application of this system to five nonreciprocal neural circuits resulted in labeling of neurons in expected projection areas. While some caveats may preclude certain applications, this system provides a reliable method to label postsynaptic partners in a brain-wide fashion.
Collapse
Affiliation(s)
- Kyle B Fischer
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Hannah K Collins
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Yan Pang
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| | - Dheeraj S Roy
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ying Zhang
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Guoping Feng
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Brain and Cognitive Sciences, McGovern Institute for Brain Research at MIT, Cambridge, Massachusetts, USA
| | - Shu-Jing Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, USA
| | - Adam Kepecs
- Departments of Neuroscience and Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Edward M Callaway
- Systems Neurobiology Laboratories, Salk Institute for Biological Studies, La Jolla, California, USA
| |
Collapse
|
6
|
Xiao H, Hu H, Guo Y, Li J, Wen L, Zeng WB, Wang M, Luo MH, Hu Z. Construction and characterization of a synthesized herpes simplex virus H129-Syn-G2. Virol Sin 2023:S1995-820X(23)00026-3. [PMID: 36940800 DOI: 10.1016/j.virs.2023.03.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 03/15/2023] [Indexed: 03/23/2023] Open
Abstract
Herpes simplex virus type 1 (HSV-1) causes lifelong infections worldwide, and currently there is no efficient cure or vaccine. HSV-1-derived tools, such as neuronal circuit tracers and oncolytic viruses, have been used extensively; however, further genetic engineering of HSV-1 is hindered by its complex genome structure. In the present study, we designed and constructed a synthetic platform for HSV-1 based on H129-G4. The complete genome was constructed from 10 fragments through 3 rounds of synthesis using transformation-associated recombination (TAR) in yeast, and was named H129-Syn-G2. The H129-Syn-G2 genome contained two copies of the gfp gene and was transfected into cells to rescue the virus. According to growth curve assay and electron microscopy results, the synthetic viruses exhibited more optimized growth properties and similar morphogenesis compared to the parental virus. This synthetic platform will facilitate further manipulation of the HSV-1 genome for the development of neuronal circuit tracers, oncolytic viruses, and vaccines.
Collapse
Affiliation(s)
- Han Xiao
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Hengrui Hu
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Yijia Guo
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiang Li
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Le Wen
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China
| | - Wen-Bo Zeng
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China.
| | - Manli Wang
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Min-Hua Luo
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhihong Hu
- State Key laboratory of Virology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Science, Wuhan, 430071, China.
| |
Collapse
|
7
|
Qiu L, Zhang B, Gao Z. Lighting Up Neural Circuits by Viral Tracing. Neurosci Bull 2022; 38:1383-1396. [PMID: 35578093 PMCID: PMC9672192 DOI: 10.1007/s12264-022-00860-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/23/2022] [Indexed: 12/03/2022] Open
Abstract
Neurons are highly interwoven to form intricate neural circuits that underlie the diverse functions of the brain. Dissecting the anatomical organization of neural circuits is key to deciphering how the brain processes information, produces thoughts, and instructs behaviors. Over the past decades, recombinant viral vectors have become the most commonly used tracing tools to define circuit architecture. In this review, we introduce the current categories of viral tools and their proper application in circuit tracing. We further discuss some advances in viral tracing strategy and prospective innovations of viral tools for future study.
Collapse
Affiliation(s)
- Liyao Qiu
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Bin Zhang
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Zhihua Gao
- Department of Neurobiology and Department of Neurology of the Second Affiliated Hospital, NHC and CAMS Key Laboratory of Medical Neurobiology, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- The MOE Frontier Science Center for Brain Research and Brain-Machine Integration, School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
8
|
O'Dell DE, Smith-Bell CA, Enquist LW, Engel EA, Schreurs BG. Eyeblink tract tracing with two strains of herpes simplex virus 1. Brain Res 2022; 1793:148040. [PMID: 35932812 DOI: 10.1016/j.brainres.2022.148040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/20/2022] [Accepted: 08/01/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND Neuroinvasive herpes simplex-1 (HSV-1) isolates including H129 and McIntyre cross at or near synapses labeling higher-order neurons directly connected to infected cells. H129 spreads predominately in the anterograde direction while McIntyre strains spread only in the retrograde direction. However, it is unknown if neurons are functional once infected with derivatives of H129 or McIntyre. NEW METHOD We describe a previously unpublished HSV-1 recombinant derived from H129 (HSV-373) expressing mCherry fluorescent reporters and one new McIntyre recombinant (HSV-780) expressing the mCherry fluorophore and demonstrate how infections affect neuron viability. RESULTS AND COMPARISON WITH EXISTING METHODS Each recombinant virus behaved similarly and spread to the target 4 days post-infection. We tested H129 recombinant infected neurons for neurodegeneration using Fluoro-jade C and found them to be necrotic as a result of viral infection. We performed dual inoculations with both HSV-772 and HSV-780 to identify cells comprising both the anterograde pathway and the retrograde pathway, respectively, of our circuit of study. We examined the presence of postsynaptic marker PSD-95, which plays a role in synaptic plasticity, in HSV-772 infected and in dual-infected rats (HSV-772 and HSV-780). PSD-95 reactivity decreased in HSV-772-infected neurons and dual-infected tissue had no PSD-95 reactivity. CONCLUSIONS Infection by these new recombinant viruses traced the circuit of interest but functional studies of the cells comprising the pathway were not possible because viral-infected neurons died as a result of necrosis or were stripped of PSD-95 by the time the viral labels reached the target.
Collapse
Affiliation(s)
- Deidre E O'Dell
- Department of Neuroscience, Rockefeller Neuroscience Institute, United States; West Virginia University, Morgantown, WV 26505, United States.
| | - Carrie A Smith-Bell
- Department of Neuroscience, Rockefeller Neuroscience Institute, United States; West Virginia University, Morgantown, WV 26505, United States
| | - Lynn W Enquist
- Department of Molecular Biology, United States; Princeton Neuroscience Institute, United States; Princeton University, Princeton, NJ 08544, United States
| | - Esteban A Engel
- Princeton Neuroscience Institute, United States; Princeton University, Princeton, NJ 08544, United States
| | - Bernard G Schreurs
- Department of Neuroscience, Rockefeller Neuroscience Institute, United States; West Virginia University, Morgantown, WV 26505, United States.
| |
Collapse
|
9
|
Wang S, Jaggi U, Ghiasi H. Knockout of signal peptide peptidase in the eye reduces HSV-1 replication and eye disease in ocularly infected mice. PLoS Pathog 2022; 18:e1010898. [PMID: 36215312 PMCID: PMC9584536 DOI: 10.1371/journal.ppat.1010898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/20/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022] Open
Abstract
We previously reported that knocking out signal peptide peptidase (SPP), a glycoprotein K (gK) binding partner, in mouse peripheral sensory neurons reduced latency-reactivation in infected mice without affecting primary virus replication or eye disease. Since virus replication in the eye plays an essential role in eye disease, we generated a conditional knockout mouse lacking SPP expression in the eye by crossing Pax6 (paired box 6)-Cre mice that have intact Pax6 expression with SPPflox/flox mice. Significantly less SPP protein expression was detected in the eyes of Pax6-SPP-/- mice than in WT control mice. HSV-1 replication in the eyes of Pax6-SPP-/- mice was significantly lower than in WT control mice. Levels of gB, gK, and ICP0 transcripts in corneas, but not trigeminal ganglia (TG), of Pax6-SPP-/- infected mice were also significantly lower than in WT mice. Corneal scarring and angiogenesis were significantly lower in Pax6-SPP-/- mice than in WT control mice, while corneal sensitivity was significantly higher in Pax6-SPP-/- mice compared with WT control mice. During acute viral infection, absence of SPP in the eye did not affect CD4 expression but did affect CD8α and IFNγ expression in the eye. However, in the absence of SPP, latency-reactivation was similar in Pax6-SPP-/- and WT control groups. Overall, our results showed that deleting SPP expression in the eyes reduced primary virus replication in the eyes, reduced CD8α and IFNγ mRNA expression, reduced eye disease and reduced angiogenesis but did not alter corneal sensitivity or latency reactivation to HSV-1 infection. Thus, blocking gK binding to SPP in the eye may have therapeutic potential by reducing both virus replication in the eye and eye disease associated with virus replication.
Collapse
Affiliation(s)
- Shaohui Wang
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Ujjaldeep Jaggi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| | - Homayon Ghiasi
- Center for Neurobiology & Vaccine Development, Ophthalmology Research, Department of Surgery, Cedars-Sinai Medical Center, Los Angeles, California, United States of America
| |
Collapse
|
10
|
Dweikat SN, Renner DW, Bowen CD, Szpara ML. Multi-phenotype analysis for enhanced classification of 11 herpes simplex virus 1 strains. J Gen Virol 2022; 103:001780. [PMID: 36264606 PMCID: PMC10019087 DOI: 10.1099/jgv.0.001780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Herpes simplex virus 1 (HSV1) is best known for causing oral lesions and mild clinical symptoms, but it can produce a significant range of disease severities and rates of reactivation. To better understand this phenotypic variation, we characterized 11 HSV1 strains that were isolated from individuals with diverse infection outcomes. We provide new data on genomic and in vitro plaque phenotype analysis for these isolates and compare these data to previously reported quantitation of the disease phenotype of each strain in a murine animal model. We show that integration of these three types of data permitted clustering of these HSV1 strains into four groups that were not distinguishable by any single dataset alone, highlighting the benefits of combinatorial multi-parameter phenotyping. Two strains (group 1) produced a partially or largely syncytial plaque phenotype and attenuated disease phenotypes in mice. Three strains of intermediate plaque size, causing severe disease in mice, were genetically clustered to a second group (group 2). Six strains with the smallest average plaque sizes were separated into two subgroups (groups 3 and 4) based on their different genetic clustering and disease severity in mice. Comparative genomics and network graph analysis suggested a separation of HSV1 isolates with attenuated vs. virulent phenotypes. These observations imply that virulence phenotypes of these strains may be traceable to genetic variation within the HSV1 population.
Collapse
Affiliation(s)
- Sarah N Dweikat
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Daniel W Renner
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Christopher D Bowen
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA
| | - Moriah L Szpara
- Department of Biology, University Park, USA.,Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, USA.,Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, USA
| |
Collapse
|
11
|
Swanson JL, Chin PS, Romero JM, Srivastava S, Ortiz-Guzman J, Hunt PJ, Arenkiel BR. Advancements in the Quest to Map, Monitor, and Manipulate Neural Circuitry. Front Neural Circuits 2022; 16:886302. [PMID: 35719420 PMCID: PMC9204427 DOI: 10.3389/fncir.2022.886302] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/27/2022] [Indexed: 01/27/2023] Open
Abstract
Neural circuits and the cells that comprise them represent the functional units of the brain. Circuits relay and process sensory information, maintain homeostasis, drive behaviors, and facilitate cognitive functions such as learning and memory. Creating a functionally-precise map of the mammalian brain requires anatomically tracing neural circuits, monitoring their activity patterns, and manipulating their activity to infer function. Advancements in cell-type-specific genetic tools allow interrogation of neural circuits with increased precision. This review provides a broad overview of recombination-based and activity-driven genetic targeting approaches, contemporary viral tracing strategies, electrophysiological recording methods, newly developed calcium, and voltage indicators, and neurotransmitter/neuropeptide biosensors currently being used to investigate circuit architecture and function. Finally, it discusses methods for acute or chronic manipulation of neural activity, including genetically-targeted cellular ablation, optogenetics, chemogenetics, and over-expression of ion channels. With this ever-evolving genetic toolbox, scientists are continuing to probe neural circuits with increasing resolution, elucidating the structure and function of the incredibly complex mammalian brain.
Collapse
Affiliation(s)
- Jessica L. Swanson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Pey-Shyuan Chin
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
| | - Juan M. Romero
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
| | - Patrick J. Hunt
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, United States
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX, United States
- Department of Neuroscience, Baylor College of Medicine, Houston, TX, United States
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX, United States
| |
Collapse
|
12
|
Anterograde transneuronal tracing and genetic control with engineered yellow fever vaccine YFV-17D. Nat Methods 2021; 18:1542-1551. [PMID: 34824475 PMCID: PMC8665090 DOI: 10.1038/s41592-021-01319-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 10/08/2021] [Indexed: 11/09/2022]
Abstract
Transneuronal viruses are powerful tools for tracing neuronal circuits or delivering genes to specific neurons in the brain. While there are multiple retrograde viruses, few anterograde viruses are available. Further, available anterograde viruses often have limitations such as retrograde transport, high neuronal toxicity or weak signals. We developed an anterograde viral system based on a live attenuated vaccine for yellow fever-YFV-17D. Replication- or packaging-deficient mutants of YFV-17D can be reconstituted in the brain, leading to efficient synapse-specific and anterograde-only transneuronal spreading, which can be controlled to achieve either monosynaptic or polysynaptic tracing. Moreover, inducible transient replication of YFV-17D mutant is sufficient to induce permanent transneuronal genetic modifications without causing neuronal toxicity. The engineered YFV-17D systems can be used to express fluorescent markers, sensors or effectors in downstream neurons, thus providing versatile tools for mapping and functionally controlling neuronal circuits.
Collapse
|
13
|
Shan T, Ye J, Jia J, Wang Z, Jiang Y, Wang Y, Wang Y, Zheng K, Ren Z. Viral UL8 Is Involved in the Antiviral Activity of Oleanolic Acid Against HSV-1 Infection. Front Microbiol 2021; 12:689607. [PMID: 34354687 PMCID: PMC8329587 DOI: 10.3389/fmicb.2021.689607] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) is highly prevalent in humans and can cause severe diseases, especially in immunocompromised adults and newborns, such as keratitis and herpes simplex encephalitis. At present, the clinical therapeutic drug against HSV-1 infection is acyclovir (ACV), and its extensive usage has led to the emergence of ACV-resistant strains. Therefore, it is urgent to explore novel therapeutic targets and anti-HSV-1 drugs. This study demonstrated that Oleanolic acid, a pentacyclic triterpenoid widely existing in natural product, had strong antiviral activity against both ACV-sensitive and -resistant HSV-1 strains in different cells. Mechanism studies showed that Oleanolic acid exerted its anti-HSV-1 activity in the immediate early stage of infection, which involved the dysregulation of viral UL8, a component of viral helicase-primase complex critical for viral replication. In addition, Oleanolic acid significantly ameliorated the skin lesions in an HSV-1 infection mediated zosteriform model. Together, our study suggested that Oleanolic acid could be a potential candidate for clinical therapy of HSV-1 infection-related diseases.
Collapse
Affiliation(s)
- Tianhao Shan
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Ju Ye
- Key Laboratory of Plant Chemistry in Qinghai-Tibet Plateau, Qinghai University for Nationalities, Xining, China
| | - Jiaoyan Jia
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Zhaoyang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yuzhou Jiang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yiliang Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Yifei Wang
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Kai Zheng
- School of Pharmaceutical Sciences, Health Science Center, Shenzhen University, Shenzhen, China
| | - Zhe Ren
- Institute of Biomedicine, College of Life Science and Technology, Jinan University, Guangzhou, China.,Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China.,Key Laboratory of Bioengineering Medicine of Guangdong Province, Jinan University, Guangzhou, China.,Department of Cell Biology, College of Life Science and Technology, Jinan University, Guangzhou, China.,Guangdong Provincial Biotechnology Drug and Engineering Technology Research Center, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, College of Life Science and Technology, Jinan University, Guangzhou, China
| |
Collapse
|
14
|
Koujah L, Allaham M, Patil CD, Ames JM, Suryawanshi RK, Yadavalli T, Agelidis A, Mun C, Surenkhuu B, Jain S, Shukla D. Entry receptor bias in evolutionarily distant HSV-1 clinical strains drives divergent ocular and nervous system pathologies. Ocul Surf 2021; 21:238-249. [PMID: 33766740 DOI: 10.1016/j.jtos.2021.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/13/2023]
Abstract
PURPOSE Herpes simplex virus-1 (HSV-1) infection leads to varying pathologies including the development of ocular lesions, stromal keratitis and encephalitis. While the role for host immunity in disease progression is well understood, the contribution of genetic variances in generating preferential viral entry receptor usage and resulting immunopathogenesis in humans are not known. METHODS Ocular cultures were obtained from patients presenting distinct pathologies of herpes simplex keratitis (HSK). Next-generation sequencing and subsequent analysis characterized genetic variances among the strains and estimated evolutionary divergence. Murine model of ocular infection was used to assess phenotypic contributions of strain variances on damage to the ocular surface and propagation of innate immunity. Flow cytometry of eye tissue identified differential recruitment of immune cell populations, cytokine array probed for programming of local immune response in the draining lymph node and histology was used to assess inflammation of the trigeminal ganglion (TG). Ex-vivo corneal cultures and in-vitro studies elucidated the role of genetic variances in altering host-pathogen interactions, leading to divergent host responses. RESULTS Phylogenetic analysis of the clinical isolates suggests evolutionary divergence among currently circulating HSV-1 strains. Mutations causing alterations in functional host interactions were identified, particularly in viral entry glycoproteins which generated a receptor bias to herpesvirus entry mediator, an immune modulator involved in immunopathogenic diseases like HSK, leading to exacerbated ocular surface pathologies and heightened viral burden in the TG and brainstem. CONCLUSIONS Our data suggests receptor bias resulting from genetic variances in clinical strains may dictate disease severity and treatment outcome.
Collapse
Affiliation(s)
- Lulia Koujah
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Mowafak Allaham
- Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Chandrashekhar D Patil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Joshua M Ames
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Rahul K Suryawanshi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Tejabhiram Yadavalli
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Alex Agelidis
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Christine Mun
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Bayasgalan Surenkhuu
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sandeep Jain
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Deepak Shukla
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA; Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
15
|
Renner DW, Parsons L, Shreve JT, Engel EA, Kuny CV, Enquist L, Neumann D, Mangold C, Szpara ML. Genome Sequence of the Virulent Model Herpes Simplex Virus 1 Strain McKrae Demonstrates the Presence of at Least Two Widely Used Variant Strains. Microbiol Resour Announc 2021; 10:e01146-19. [PMID: 33766904 PMCID: PMC7996463 DOI: 10.1128/mra.01146-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/03/2021] [Indexed: 02/07/2023] Open
Abstract
Herpes simplex virus 1 (HSV-1) strain McKrae was isolated in 1965 and has been utilized by many laboratories. Three HSV-1 strain McKrae stocks have been sequenced previously, revealing discrepancies in key genes. We sequenced the genome of HSV-1 strain McKrae from the laboratory of James M. Hill to better understand the genetic differences between isolates.
Collapse
Affiliation(s)
- Daniel W Renner
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lance Parsons
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | - Jacob T Shreve
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Esteban A Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Chad V Kuny
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Lynn Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Donna Neumann
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Colleen Mangold
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Moriah L Szpara
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
16
|
Mangold CA, Rathbun MM, Renner DW, Kuny CV, Szpara ML. Viral infection of human neurons triggers strain-specific differences in host neuronal and viral transcriptomes. PLoS Pathog 2021; 17:e1009441. [PMID: 33750985 PMCID: PMC8016332 DOI: 10.1371/journal.ppat.1009441] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/01/2021] [Accepted: 03/01/2021] [Indexed: 12/11/2022] Open
Abstract
Infection with herpes simplex virus 1 (HSV-1) occurs in over half the global population, causing recurrent orofacial and/or genital lesions. Individual strains of HSV-1 demonstrate differences in neurovirulence in vivo, suggesting that viral genetic differences may impact phenotype. Here differentiated SH-SY5Y human neuronal cells were infected with one of three HSV-1 strains known to differ in neurovirulence in vivo. Host and viral RNA were sequenced simultaneously, revealing strain-specific differences in both viral and host transcription in infected neurons. Neuronal morphology and immunofluorescence data highlight the pathological changes in neuronal cytoarchitecture induced by HSV-1 infection, which may reflect host transcriptional changes in pathways associated with adherens junctions, integrin signaling, and others. Comparison of viral protein levels in neurons and epithelial cells demonstrated that a number of differences were neuron-specific, suggesting that strain-to-strain variations in host and virus transcription are cell type-dependent. Together, these data demonstrate the importance of studying virus strain- and cell-type-specific factors that may contribute to neurovirulence in vivo, and highlight the specificity of HSV-1-host interactions.
Collapse
Affiliation(s)
- Colleen A. Mangold
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
- Department of Entomology, College of Agricultural Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Molly M. Rathbun
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Daniel W. Renner
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Chad V. Kuny
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Moriah L. Szpara
- Departments of Biology, Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
17
|
Moein HR, Sendra VG, Jamali A, Kheirkhah A, Harris DL, Hamrah P. Herpes simplex virus-1 KOS-63 strain is virulent and causes titer-dependent corneal nerve damage and keratitis. Sci Rep 2021; 11:4267. [PMID: 33608598 PMCID: PMC7895966 DOI: 10.1038/s41598-021-83412-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 01/27/2021] [Indexed: 01/31/2023] Open
Abstract
To investigate the acute clinical, immunological, and corneal nerve changes following corneal HSV-1 KOS-63 strain inoculation. Corneas of C57BL/6 mice were inoculated with either low dose (Ld) or high dose (Hd) HSV-1 KOS-63 or culture medium. Clinical evaluation was conducted up to 7 days post inoculation (dpi). Viral titers were assessed by standard plaque assay. Excised corneas were stained for CD45 and beta-III tubulin. Corneal flow cytometry was performed to assess changes in leukocyte subpopulations. Corneal sensation was measured using a Cochet-Bonnet esthesiometer. Naïve, sham-infected (post scarification), and McKrae-infected C57BL/6 corneas served as two negative and positive controls, respectively. Compared to Ld infected mice, Hd HSV-1 KOS-63 demonstrated higher incidence of corneal opacity (1.5 ×) and neovascularization (2.6 × ; p < 0.05). At 7 dpi Hd infected mice showed more severe corneal opacity (2.23 vs. 0.87; p = 0.0003), neovascularization (6.00 vs. 0.75; p < 0.0001), and blepharitis (3.11 vs. 2.06; p = 0.001) compared to the Ld group. At 3 dpi epitheliopathy was significantly larger in the Hd group (23.59% vs. 3.44%; p = 0.001). Similarly, corneal opacity was significantly higher in Hd McKrae-infected corneas as compared with Ld McKrae-infected corneas at 3 and 5 dpi. No significant corneal opacity, neovascularization, blepharitis, and epitheliopathy were observed in naïve or sham-infected mice. Higher viral titers were detected in corneas (1 and 3 dpi) and trigeminal ganglia (TG) (3 and 5 dpi) in Hd versus Ld KOS-63 groups (p < 0.05). Leukocyte density showed a gradual increase over time from 1 to 7 dpi in both KOS-63 and McKrae-infected corneas. Corneal flow cytometric analysis (3 dpi) demonstrated a higher percentage of Gr-1 + (71.6 vs. 26.3) and CD11b + (90.6 vs. 41.1) cells in Hd versus Ld KOS-63 groups. Corneal nerve density significantly decreased in both Hd KOS-63 and Hd McKrae infected corneas in comparison with naïve and sham-infected corneas. At 3 dpi corneal nerve density was lower in the Hd versus Ld KOS-63 groups (16.79 vs. 57.41 mm/mm2; p = 0.004). Corneal sensation decreased accordingly at 5 and 7 dpi in both Ld and Hd KOS-63-infected mice. Corneal inoculation with HSV-1 KOS-63 strain shows acute keratitis and nerve degeneration in a dose-dependent fashion, demonstrating virulence of this strain.
Collapse
Affiliation(s)
- Hamid-Reza Moein
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Victor G. Sendra
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Arsia Jamali
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Ahmad Kheirkhah
- grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Deshea L. Harris
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA
| | - Pedram Hamrah
- grid.67033.310000 0000 8934 4045Department of Ophthalmology, Center for Translational Ocular Immunology, Tufts Medical Center, Tufts University School of Medicine, Boston, MA 02111 USA ,grid.38142.3c000000041936754XDepartment of Ophthalmology, Schepens Eye Research Institute/Massachusetts Eye and Ear, Harvard Medical School, Boston, MA USA ,grid.67033.310000 0000 8934 4045Cornea Service, New England Eye Center, Tufts Medical Center, Tufts University School of Medicine, Boston, MA USA
| |
Collapse
|
18
|
Upgrading the Physiological Relevance of Human Brain Organoids. Neuron 2020; 107:1014-1028. [PMID: 32970996 PMCID: PMC10042151 DOI: 10.1016/j.neuron.2020.08.029] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/17/2020] [Accepted: 08/27/2020] [Indexed: 02/06/2023]
Abstract
The recent advent of human pluripotent stem cell (PSC)-derived 3D brain organoids has opened a window into aspects of human brain development that were not accessible before, allowing tractable monitoring and assessment of early developmental processes. However, their broad and effective use for modeling later stages of human brain development and disease is hampered by the lack of a stereotypic anatomical organization, which limits maturation processes dependent upon formation of unique cellular interactions and short- and long-range network connectivity. Emerging methods and technologies aimed at tighter regulatory control through bioengineering approaches, along with newer unbiased organoid analysis readouts, should resolve several of the current limitations. Here, we review recent advances in brain organoid generation and characterization with a focus on highlighting future directions utilizing interdisciplinary strategies that will be important for improving the physiological relevance of this model system.
Collapse
|
19
|
Li D, Yang H, Xiong F, Xu X, Zeng WB, Zhao F, Luo MH. Anterograde Neuronal Circuit Tracers Derived from Herpes Simplex Virus 1: Development, Application, and Perspectives. Int J Mol Sci 2020; 21:E5937. [PMID: 32824837 PMCID: PMC7460661 DOI: 10.3390/ijms21165937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/19/2022] Open
Abstract
Herpes simplex virus type 1 (HSV-1) has great potential to be applied as a viral tool for gene delivery or oncolysis. The broad infection tropism of HSV-1 makes it a suitable tool for targeting many different cell types, and its 150 kb double-stranded DNA genome provides great capacity for exogenous genes. Moreover, the features of neuron infection and neuron-to-neuron spread also offer special value to neuroscience. HSV-1 strain H129, with its predominant anterograde transneuronal transmission, represents one of the most promising anterograde neuronal circuit tracers to map output neuronal pathways. Decades of development have greatly expanded the H129-derived anterograde tracing toolbox, including polysynaptic and monosynaptic tracers with various fluorescent protein labeling. These tracers have been applied to neuroanatomical studies, and have contributed to revealing multiple important neuronal circuits. However, current H129-derived tracers retain intrinsic drawbacks that limit their broad application, such as yet-to-be improved labeling intensity, potential nonspecific retrograde labeling, and high toxicity. The biological complexity of HSV-1 and its insufficiently characterized virological properties have caused difficulties in its improvement and optimization as a viral tool. In this review, we focus on the current H129-derived viral tracers and highlight strategies in which future technological development can advance its use as a tool.
Collapse
Affiliation(s)
- Dong Li
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Yang
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feng Xiong
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, CA 92697-1275, USA;
| | - Wen-Bo Zeng
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Min-Hua Luo
- State Key Laboratory of Virology, CAS Center for Excellence in Brain Science and Intelligence Technology, Center for Biosafety Mega-Science, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China; (D.L.); (H.Y.); (F.X.); (W.-B.Z.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Xu X, Holmes TC, Luo MH, Beier KT, Horwitz GD, Zhao F, Zeng W, Hui M, Semler BL, Sandri-Goldin RM. Viral Vectors for Neural Circuit Mapping and Recent Advances in Trans-synaptic Anterograde Tracers. Neuron 2020; 107:1029-1047. [PMID: 32755550 DOI: 10.1016/j.neuron.2020.07.010] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/23/2020] [Accepted: 07/12/2020] [Indexed: 12/17/2022]
Abstract
Viral tracers are important tools for neuroanatomical mapping and genetic payload delivery. Genetically modified viruses allow for cell-type-specific targeting and overcome many limitations of non-viral tracers. Here, we summarize the viruses that have been developed for neural circuit mapping, and we provide a primer on currently applied anterograde and retrograde viral tracers with practical guidance on experimental uses. We also discuss and highlight key technical and conceptual considerations for developing new safer and more effective anterograde trans-synaptic viral vectors for neural circuit analysis in multiple species.
Collapse
Affiliation(s)
- Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, Irvine, CA 92697-1275, USA; Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; Department of Biomedical Engineering, University of California, Irvine, Irvine, CA 92697-2715, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA.
| | - Todd C Holmes
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Min-Hua Luo
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin T Beier
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Gregory D Horwitz
- The Washington National Primate Research Center, University of Washington, Seattle, WA 98195, USA; Department of Physiology & Biophysics, University of Washington, Seattle, WA 98195, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Fei Zhao
- School of Basic Medical Sciences, Capital Medical University, Beijing 102206, China; Chinese Institute for Brain Research (CIBR), Beijing 102206, China
| | - Wenbo Zeng
- State Key Laboratory of Virology, Wuhan Institute of Virology, CAS Center for Excellence in Brain Science, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan 430071, China
| | - May Hui
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697-4560, USA
| | - Bert L Semler
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| | - Rozanne M Sandri-Goldin
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, Irvine, CA 92697-4025, USA; The Center for Neural Circuit Mapping, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
21
|
Su P, Ying M, Han Z, Xia J, Jin S, Li Y, Wang H, Xu F. High-brightness anterograde transneuronal HSV1 H129 tracer modified using a Trojan horse-like strategy. Mol Brain 2020; 13:5. [PMID: 31931837 PMCID: PMC6958791 DOI: 10.1186/s13041-020-0544-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 01/05/2020] [Indexed: 08/24/2023] Open
Abstract
Neurotropic viral transsynaptic tracing is an increasingly powerful technique for dissecting the structure and function of neural circuits. Herpes simplex virus type 1 strain H129 has been widely used as an anterograde tracer. However, HSV tracers still have several shortcomings, including high toxicity, low sensitivity and non-specific retrograde labeling. Here, we aimed to construct high-brightness HSV anterograde tracers by increasing the expression of exogenous genes carried by H129 viruses. Using a Trojan horse-like strategy, a HSV/AAV (adeno-associated virus) chimaera termed H8 was generated to enhance the expression of a fluorescent marker. In vitro and in vivo assays showed that the exogenous gene was efficiently replicated and amplified by the synergism of the HSV vector and introduced AAV replication system. H8 reporting fluorescence was brighter than that of currently available H129 tracers, and H8 could be used for fast and effective anterograde tracing without additional immunostaining. These results indicated that foreign gene expression in HSV tracers could be enhanced by integrating HSV with AAV replication system. This approach may be useful as a general enhanced expression strategy for HSV-based tracing tools or gene delivery vectors.
Collapse
Affiliation(s)
- Peng Su
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China.,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Ying
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zengpeng Han
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinjin Xia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Sen Jin
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China.,Huazhong University of Science and Technology (HUST)-Suzhou Institute for Brainsmatics, JITRI Institute for Brainsmatics, Suzhou, 215125, China
| | - Yingli Li
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huadong Wang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China. .,Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China. .,University of Chinese Academy of Sciences, Beijing, 100049, China. .,Shenzhen Key Lab of Neuropsychiatric Modulation, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Key Laboratory of Brain Connectome and Manipulation, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences; Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China. .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
22
|
Persistent Infection with Herpes Simplex Virus 1 and Alzheimer's Disease-A Call to Study How Variability in Both Virus and Host may Impact Disease. Viruses 2019; 11:v11100966. [PMID: 31635156 PMCID: PMC6833100 DOI: 10.3390/v11100966] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/14/2019] [Accepted: 10/14/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing attention has focused on the contributions of persistent microbial infections with the manifestation of disease later in life, including neurodegenerative conditions such as Alzheimer’s disease (AD). Current data has shown the presence of herpes simplex virus 1 (HSV-1) in regions of the brain that are impacted by AD in elderly individuals. Additionally, neuronal infection with HSV-1 triggers the accumulation of amyloid beta deposits and hyperphosphorylated tau, and results in oxidative stress and synaptic dysfunction. All of these factors are implicated in the development of AD. These data highlight the fact that persistent viral infection is likely a contributing factor, rather than a sole cause of disease. Details of the correlations between HSV-1 infection and AD development are still just beginning to emerge. Future research should investigate the relative impacts of virus strain- and host-specific factors on the induction of neurodegenerative processes over time, using models such as infected neurons in vitro, and animal models in vivo, to begin to understand their relationship with cognitive dysfunction.
Collapse
|
23
|
Li J, Liu T, Dong Y, Kondoh K, Lu Z. Trans-synaptic Neural Circuit-Tracing with Neurotropic Viruses. Neurosci Bull 2019; 35:909-920. [PMID: 31004271 PMCID: PMC6754522 DOI: 10.1007/s12264-019-00374-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 12/15/2018] [Indexed: 12/19/2022] Open
Abstract
A central objective in deciphering the nervous system in health and disease is to define the connections of neurons. The propensity of neurotropic viruses to spread among synaptically-linked neurons makes them ideal for mapping neural circuits. So far, several classes of viral neuronal tracers have become available and provide a powerful toolbox for delineating neural networks. In this paper, we review the recent developments of neurotropic viral tracers and highlight their unique properties in revealing patterns of neuronal connections.
Collapse
Affiliation(s)
- Jiamin Li
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Taian Liu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yun Dong
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Kunio Kondoh
- Division of Endocrinology and Metabolism, Department of Homeostatic Regulation, National Institute for Physiological Sciences, National Institute of Natural Sciences, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
- Japan Science and Technology Agency, PRESTO, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
| | - Zhonghua Lu
- Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, The Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| |
Collapse
|
24
|
Blackmon AM, Como CN, Bubak AN, Mescher T, Jones D, Nagel MA. Varicella Zoster Virus Alters Expression of Cell Adhesion Proteins in Human Perineurial Cells via Interleukin 6. J Infect Dis 2019; 220:1453-1461. [PMID: 30835269 PMCID: PMC6761973 DOI: 10.1093/infdis/jiz095] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 03/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND In temporal arteries (TAs) from patients with giant cell arteritis, varicella zoster virus (VZV) is seen in perineurial cells that surround adventitial nerve bundles and form the peripheral nerve-extrafascicular tissue barrier (perineurium). We hypothesized that during VZV reactivation from ganglia, virus travels transaxonally and disrupts the perineurium to infect surrounding cells. METHODS Mock- and VZV-infected primary human perineurial cells (HPNCs) were examined for alterations in claudin-1, E-cadherin, and N-cadherin. Conditioned supernatant was analyzed for a soluble factor(s) mediating these alterations and for the ability to increase cell migration. To corroborate in vitro findings, a VZV-infected TA was examined. RESULTS In VZV-infected HPNCs, claudin-1 redistributed to the nucleus; E-cadherin was lost and N-cadherin gained, with similar changes seen in VZV-infected perineurial cells in a TA. VZV-conditioned supernatant contained increased interleukin 6 (IL-6) that induced E-cadherin loss and N-cadherin gain and increased cell migration when added to uninfected HPNCs; anti-IL-6 receptor antibody prevented these changes. CONCLUSIONS IL-6 secreted from VZV-infected HPNCs facilitated changes in E- and N-cadherin expression and cell migration, reminiscent of an epithelial-to-mesenchymal cell transition, potentially contributing to loss of perineurial cell barrier integrity and viral spread. Importantly, an anti-IL-6 receptor antibody prevented virus-induced perineurial cell disruption.
Collapse
Affiliation(s)
- Anna M Blackmon
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Christina N Como
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Andrew N Bubak
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Teresa Mescher
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Dallas Jones
- Department of Neurology, University of Colorado School of Medicine, Aurora
| | - Maria A Nagel
- Department of Neurology, University of Colorado School of Medicine, Aurora
- Department of Ophthalmology, University of Colorado School of Medicine, Aurora
| |
Collapse
|
25
|
Beier KT. Hitchhiking on the neuronal highway: Mechanisms of transsynaptic specificity. J Chem Neuroanat 2019; 99:9-17. [PMID: 31075318 PMCID: PMC6701464 DOI: 10.1016/j.jchemneu.2019.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/20/2019] [Accepted: 05/06/2019] [Indexed: 01/28/2023]
Abstract
Transsynaptic viral tracers are an invaluable neuroanatomical tool to define neuronal circuit connectivity across single or multiple synapses. There are variants that label either inputs or outputs of defined starter populations, most of which are based on the herpes and rabies viruses. However, we still have an incomplete understanding of the factors influencing specificity of neuron-neuron transmission and labeling of inputs vs. outputs. This article will touch on three topics: First, how specific are the directional transmission patterns of these viruses? Second, what are the properties that confer synaptic specificity of viral transmission? Lastly, what can we learn from this specificity, and can we use it to devise better transsynaptic tracers?
Collapse
Affiliation(s)
- Kevin T Beier
- Department of Physiology and Biophysics, Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, 92697, United States.
| |
Collapse
|
26
|
Saleeba C, Dempsey B, Le S, Goodchild A, McMullan S. A Student's Guide to Neural Circuit Tracing. Front Neurosci 2019; 13:897. [PMID: 31507369 PMCID: PMC6718611 DOI: 10.3389/fnins.2019.00897] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
The mammalian nervous system is comprised of a seemingly infinitely complex network of specialized synaptic connections that coordinate the flow of information through it. The field of connectomics seeks to map the structure that underlies brain function at resolutions that range from the ultrastructural, which examines the organization of individual synapses that impinge upon a neuron, to the macroscopic, which examines gross connectivity between large brain regions. At the mesoscopic level, distant and local connections between neuronal populations are identified, providing insights into circuit-level architecture. Although neural tract tracing techniques have been available to experimental neuroscientists for many decades, considerable methodological advances have been made in the last 20 years due to synergies between the fields of molecular biology, virology, microscopy, computer science and genetics. As a consequence, investigators now enjoy an unprecedented toolbox of reagents that can be directed against selected subpopulations of neurons to identify their efferent and afferent connectomes. Unfortunately, the intersectional nature of this progress presents newcomers to the field with a daunting array of technologies that have emerged from disciplines they may not be familiar with. This review outlines the current state of mesoscale connectomic approaches, from data collection to analysis, written for the novice to this field. A brief history of neuroanatomy is followed by an assessment of the techniques used by contemporary neuroscientists to resolve mesoscale organization, such as conventional and viral tracers, and methods of selecting for sub-populations of neurons. We consider some weaknesses and bottlenecks of the most widely used approaches for the analysis and dissemination of tracing data and explore the trajectories that rapidly developing neuroanatomy technologies are likely to take.
Collapse
Affiliation(s)
- Christine Saleeba
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
- The School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, United Kingdom
| | - Bowen Dempsey
- CNRS, Hindbrain Integrative Neurobiology Laboratory, Neuroscience Paris-Saclay Institute (Neuro-PSI), Université Paris-Saclay, Gif-sur-Yvette, France
| | - Sheng Le
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ann Goodchild
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Simon McMullan
- Neurobiology of Vital Systems Node, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
27
|
Su P, Wang H, Xia J, Zhong X, Hu L, Li Y, Li Y, Ying M, Xu F. Evaluation of retrograde labeling profiles of HSV1 H129 anterograde tracer. J Chem Neuroanat 2019; 100:101662. [PMID: 31348990 DOI: 10.1016/j.jchemneu.2019.101662] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 01/02/2023]
Abstract
Herpes simplex virus type 1 H129 strain has been widely used as a useful anterograde neuronal circuit tracing tool. However, whether H129 is a rigorous anterograde tracer and undergoes anterograde-only spreading are questions of significant interest. In the present study, we evaluated the retrograde labeling efficiency of H129 using a TK and ICP34.5 dual deleted H129 recombinant (named as H306) which was replication-deficient in non-dividing postmitotic neurons. The novel tracer was tested in vitro and in vivo for evaluating its invasion properties and tracing capacities. The results demonstrated that H306 could efficiently label the neurons following intracerebral injection. Notably, H306 could also efficiently infect upstream innervating neurons through axon terminal uptake and displayed obvious retrograde labeling phenotype, regardless of 3 days or 10 days of tracing. The data implied that replication-competent, trans-multisynaptic H129 tracing results might be a mixed neural networks from two types of starter cells, because the retrogradely infected neurons would also replicate H129 and spread virus anterogradely through their axon collaterals (ectopic starter sites), as the local infected neurons in the injection site (true starter site). Therefore, the interpretation of the anterogradely tracing neural networks by current H129 tools at longer post-inoculation intervals need to be cautious, and effective modification strategies are needed to avoid or block the axon terminal invasion process of H129, which is important for rigorous anterograde H129 tracer.
Collapse
Affiliation(s)
- Peng Su
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China; Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Huadong Wang
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China.
| | - Jinjin Xia
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Xin Zhong
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Liang Hu
- School of Ophthalmology & Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yingli Li
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Yanqiu Li
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Min Ying
- Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Fuqiang Xu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China; Center for Brain Science, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
28
|
Coulon PG, Dhanushkodi N, Prakash S, Srivastava R, Roy S, Alomari NI, Nguyen AM, Warsi WR, Ye C, Carlos-Cruz EA, Mai UT, Cruel AC, Ekmekciyan KM, Pearlman E, BenMohamed L. NLRP3, NLRP12, and IFI16 Inflammasomes Induction and Caspase-1 Activation Triggered by Virulent HSV-1 Strains Are Associated With Severe Corneal Inflammatory Herpetic Disease. Front Immunol 2019; 10:1631. [PMID: 31367214 PMCID: PMC6644090 DOI: 10.3389/fimmu.2019.01631] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 07/01/2019] [Indexed: 12/15/2022] Open
Abstract
The crosstalk between the host's inflammasome system and the invading virulent/less-virulent viruses determines the outcome of the ensuing inflammatory response. An appropriate activation of inflammasomes triggers antiviral inflammatory responses that clear the virus and heal the inflamed tissue. However, an aberrant activation of inflammasomes can result in a harmful and overwhelming inflammation that could damage the infected tissue. The underlying host's immune mechanisms and the viral virulent factors that impact severe clinical inflammatory disease remain to be fully elucidated. In this study, we used herpes simplex virus type 1 (HSV-1), the causative agent of corneal inflammatory herpetic disease, as a model pathogen to determine: (i) Whether and how the virulence of a virus affects the type and the activation level of the inflammasomes; and (ii) How triggering specific inflammasomes translates into protective or damaging inflammatory response. We showed that, in contrast to the less-virulent HSV-1 strains (RE, F, KOS, and KOS63), corneal infection of B6 mice with the virulent HSV-1 strains (McKrae, 17 or KOS79): (i) Induced simultaneous expression of the NLRP3, NLRP12, and IFI16 inflammasomes; (ii) Increased production of the biologically active Caspase-1 and pro-inflammatory cytokines IL-1β and IL-18; (iii) Heightened recruitment into the inflamed cornea of CD45highLy6C+Ly6G-F4/80+CD11b+CD11c- inflammatory monocytes and CD45highCD11b+F4/80-Ly6GhiLy6Cmed neutrophils; and (iv) This intensified inflammatory response was associated with a severe corneal herpetic disease, irrespective of the level of virus replication in the cornea. Similarly, in vitro infection of human corneal epithelial cells and human monocytic THP-1 cells with the virulent HSV-1 strains triggered a synchronized early expression of NLRP3, NLRP12 and IFI16, 2 h post-infection, associated with formation of single and dense specks of the adapter molecule ASC in HSV(+) cells, but not in the neighboring bystander HSV(-) cells. This was associated with increased cleavages of Caspase-1, IL-1β, and IL-18. These findings suggest a previously unappreciated role of viral virulence in a synchronized early induction of the NLRP3, NLRP12, and IFI16 inflammasomes that lead to a damaging inflammatory response. A potential role of common virus virulent factors that stimulate this harmful inflammatory corneal disease is currently under investigation.
Collapse
Affiliation(s)
- Pierre-Gregoire Coulon
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Nisha Dhanushkodi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Swayam Prakash
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Ruchi Srivastava
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Soumyabrata Roy
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Nuha I. Alomari
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Angela M. Nguyen
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Wasay R. Warsi
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Caitlin Ye
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Edgar A. Carlos-Cruz
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Uyen T. Mai
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Audrey C. Cruel
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Keysi M. Ekmekciyan
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
| | - Eric Pearlman
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
- School of Medicine, Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, School of Medicine, Gavin Herbert Eye Institute, University of California, Irvine, Irvine, CA, United States
- School of Medicine, Institute for Immunology, University of California, Irvine, Irvine, CA, United States
- Department of Molecular Biology and Biochemistry, School of Medicine, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
29
|
Kumar D, Sehrawat S. Divergent Effects of a Transient Corticosteroid Therapy on Virus-Specific Quiescent and Effector CD8 + T Cells. Front Immunol 2019; 10:1521. [PMID: 31354707 PMCID: PMC6639716 DOI: 10.3389/fimmu.2019.01521] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 06/18/2019] [Indexed: 11/13/2022] Open
Abstract
We investigated the influence of a transient treatment of corticosteroid on CD8+ T cells during herpesvirus infection. Dexamethasone, a synthetic corticosteroid, induced apoptosis of naïve and memory CD8+ T cells but virus-specific effector cells were spared. CD8+ T cell susceptibility was directly correlated with the expression of nr3c1. Both α-(HSV1) and γ-(MHV68) herpesvirus infection expanded CD8+ T cells down regulated nr3c1 indicating corticosteroid-mediated effects were not limited to one pathogen or the specific clonotype. Dexamethasone compromised anti-viral immunity to subsequent infections, likely through reductions in the naïve cell pool. Dexamethasone augmented the function and inflammatory tissue homing potential of effector cells via upregulation of CXCR3. Accordingly, an antibody neutralization of CXCR3 diminished dexamethasone-induced migration of CD8+ T cells to tissues resulting in increased virus burden. Our study therefore suggests that even a transient corticosteroid therapy influences both ongoing CD8+ T cell responses as well as the size of the naïve and memory repertoire.
Collapse
Affiliation(s)
| | - Sharvan Sehrawat
- Department of Biological Sciences, Indian Institute of Science Education and Research Mohali, Mohali, India
| |
Collapse
|
30
|
Schneider SM, Pritchard SM, Wudiri GA, Trammell CE, Nicola AV. Early Steps in Herpes Simplex Virus Infection Blocked by a Proteasome Inhibitor. mBio 2019; 10:e00732-19. [PMID: 31088925 PMCID: PMC6520451 DOI: 10.1128/mbio.00732-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 04/08/2019] [Indexed: 12/17/2022] Open
Abstract
Viruses commandeer host cell 26S proteasome activity to promote viral entry, gene expression, replication, assembly, and egress. Proteasomal degradation activity is critical for herpes simplex virus (HSV) infection. The proteasome inhibitor bortezomib (also known as Velcade and PS-341) is a clinically effective antineoplastic drug that is FDA approved for treatment of hematologic malignancies such as multiple myeloma and mantle cell lymphoma. Low nanomolar concentrations of bortezomib inhibited infection by HSV-1, HSV-2, and acyclovir-resistant strains. Inhibition coincided with minimal cytotoxicity. Bortezomib did not affect attachment of HSV to cells or inactivate the virus directly. Bortezomib acted early in HSV infection by perturbing two distinct proteasome-dependent steps that occur within the initial hours of infection: the transport of incoming viral nucleocapsids to the nucleus and the virus-induced disruption of host nuclear domain 10 (ND10) structures. The combination of bortezomib with acyclovir demonstrated synergistic inhibitory effects on HSV infection. Thus, bortezomib is a novel potential therapeutic for HSV with a defined mechanism of action.IMPORTANCE Viruses usurp host cell functions to advance their replicative agenda. HSV relies on cellular proteasome activity for successful infection. Proteasome inhibitors, such as MG132, block HSV infection at multiple stages of the infectious cycle. Targeting host cell processes for antiviral intervention is an unconventional approach that might limit antiviral resistance. Here we demonstrated that the proteasome inhibitor bortezomib, which is a clinically effective cancer drug, has the in vitro features of a promising anti-HSV therapeutic. Bortezomib inhibited HSV infection during the first hours of infection at nanomolar concentrations that were minimally cytotoxic. The mechanism of bortezomib's inhibition of early HSV infection was to halt nucleocapsid transport to the nucleus and to stabilize the ND10 cellular defense complex. Bortezomib and acyclovir acted synergistically to inhibit HSV infection. Overall, we present evidence for the repurposing of bortezomib as a novel antiherpesviral agent and describe specific mechanisms of action.
Collapse
Affiliation(s)
- Seth M Schneider
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Suzanne M Pritchard
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - George A Wudiri
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Chasity E Trammell
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Anthony V Nicola
- Department of Veterinary Microbiology and Pathology, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| |
Collapse
|
31
|
Marzulli M, Mazzacurati L, Zhang M, Goins WF, Hatley ME, Glorioso JC, Cohen JB. A Novel Oncolytic Herpes Simplex Virus Design based on the Common Overexpression of microRNA-21 in Tumors. ACTA ACUST UNITED AC 2018; 3. [PMID: 30465046 PMCID: PMC6241327 DOI: 10.13188/2381-3326.1000007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recognition sequences for microRNAs (miRs) that are down-regulated in tumor cells have recently been used to render lytic viruses tumor-specific. Since different tumor types down-regulate different miRs, this strategy requires virus customization to the target tumor. We have explored a feature that is shared by many tumor types, the up-regulation of miR-21, as a means to generate an oncolytic herpes simplex virus (HSV) that is applicable to a broad range of cancers. Methods We assembled an expression construct for a dominant-negative (dn) form of the essential HSV replication factor UL9 and inserted tandem copies of the miR-21 recognition sequence (T21) in the 3' untranslated region. Bacterial Artificial Chromosome (BAC) recombineering was used to introduce the dnUL9 construct with or without T21 into the HSV genome. Virus was produced by transfection and replication was assessed in different tumor and control cell lines. Results Virus production was conditional on the presence of the T21 sequence. The dnUL9-T21 virus replicated efficiently in tumor cell lines, less efficiently in cells that contained reduced miR-21 activity, and not at all in the absence of miR-21. Conclusion miR-21-sensitive expression of a dominant-negative inhibitor of HSV replication allows preferential destruction of tumor cells in vitro. This observation provides a basis for further development of a widely applicable oncolytic HSV.
Collapse
Affiliation(s)
- M Marzulli
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - L Mazzacurati
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - M Zhang
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - W F Goins
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - M E Hatley
- Department of Oncology, St. Jude Children's Research Hospital, USA
| | - J C Glorioso
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| | - J B Cohen
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh
| |
Collapse
|
32
|
Shipley MM, Renner DW, Ott M, Bloom DC, Koelle DM, Johnston C, Szpara ML. Genome-Wide Surveillance of Genital Herpes Simplex Virus Type 1 From Multiple Anatomic Sites Over Time. J Infect Dis 2018; 218:595-605. [PMID: 29920588 PMCID: PMC6047417 DOI: 10.1093/infdis/jiy216] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 04/26/2018] [Indexed: 12/12/2022] Open
Abstract
Here we present genomic and in vitro analyses of temporally separated episodes of herpes simplex virus type 1 (HSV-1) shedding by an HSV-1-seropositive and human immunodeficiency virus (HIV)/HSV-2-seronegative individual who has frequent recurrences of genital HSV-1. Using oligonucleotide enrichment, we compared viral genomes from uncultured swab specimens collected on different days and from distinct genital sites. We found that viral genomes from 7 swab specimens and 3 cultured specimens collected over a 4-month period from the same individual were 98.5% identical. We observed a >2-fold difference in the number of minority variants between swab specimens from lesions, swab specimens from nonlesion sites, and cultured specimens. This virus appeared distinct in its phylogenetic relationship to other strains, and it contained novel coding variations in 21 viral proteins. This included a truncation in the UL11 tegument protein, which is involved in viral egress and spread. Normal immune responses were identified, suggesting that unique viral genomic features may contribute to the recurrent genital infection that this participant experiences.
Collapse
Affiliation(s)
- Mackenzie M Shipley
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| | - Mariliis Ott
- Department of Medicine, University of Washington, Seattle, Washington
| | - David C Bloom
- Department of Molecular Genetics and Microbiology, University of Florida College of Medicine, Gainesville
| | - David M Koelle
- Department of Medicine, University of Washington, Seattle, Washington
- Department of Laboratory Medicine, University of Washington, Seattle, Washington
- Department of Global Health, University of Washington, Seattle, Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
- Benaroya Research Institute, Seattle, Washington
| | - Christine Johnston
- Department of Medicine, University of Washington, Seattle, Washington
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park
| |
Collapse
|
33
|
Antifungal drug ciclopirox olamine reduces HSV-1 replication and disease in mice. Antiviral Res 2018; 156:102-106. [PMID: 29908958 DOI: 10.1016/j.antiviral.2018.06.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/12/2018] [Indexed: 01/04/2023]
Abstract
Herpes simplex virus (HSV)-1 and HSV-2 cause painful blisters and shallow ulcers in exposed skin and mucosae during primary or recurrent infection. In addition, recurrent and potentially blinding HSV-1 infections of the eye afflict nearly half a million persons in the U.S. Current clinical therapies rely on nucleoside analog drugs such as acyclovir (ACV) or ganciclovir to ameliorate primary infections and reduce the frequency and duration of reactivations. However, these treatments do not fully suppress viral shedding and drug-resistant mutants develop in the eye and in vulnerable, immunosuppressed patients. Herpesvirus DNA replication requires several enzymes in the nucleotidyl transferase superfamily (NTS) that have recombinase and nuclease activities. We previously found that compounds which block NTS enzymes efficiently inhibit replication of HSV-1 and HSV-2 by up to 1 million-fold in Vero and human foreskin fibroblasts. Among the compounds with potent suppressive effects in culture is the anti-fungal drug ciclopirox. Here we report that topical application of ciclopirox olamine to the eyes of mice infected with HSV-1 reduced virus shed from the corneal epithelium compared with saline control, and reduced development of blepharitis to the level of mice treated with ACV. Results were dose-dependent. In addition, treatment with ciclopirox olamine significantly reduced acute and latent HSV-1 infection of the peripheral nervous system. These results support further development of ciclopirox olamine as a repurposed topical agent for HSV infections.
Collapse
|
34
|
Impacts of Genome-Wide Analyses on Our Understanding of Human Herpesvirus Diversity and Evolution. J Virol 2017; 92:JVI.00908-17. [PMID: 29046445 PMCID: PMC5730764 DOI: 10.1128/jvi.00908-17] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Until fairly recently, genome-wide evolutionary dynamics and within-host diversity were more commonly examined in the context of small viruses than in the context of large double-stranded DNA viruses such as herpesviruses. The high mutation rates and more compact genomes of RNA viruses have inspired the investigation of population dynamics for these species, and recent data now suggest that herpesviruses might also be considered candidates for population modeling. High-throughput sequencing (HTS) and bioinformatics have expanded our understanding of herpesviruses through genome-wide comparisons of sequence diversity, recombination, allele frequency, and selective pressures. Here we discuss recent data on the mechanisms that generate herpesvirus genomic diversity and underlie the evolution of these virus families. We focus on human herpesviruses, with key insights drawn from veterinary herpesviruses and other large DNA virus families. We consider the impacts of cell culture on herpesvirus genomes and how to accurately describe the viral populations under study. The need for a strong foundation of high-quality genomes is also discussed, since it underlies all secondary genomic analyses such as RNA sequencing (RNA-Seq), chromatin immunoprecipitation, and ribosome profiling. Areas where we foresee future progress, such as the linking of viral genetic differences to phenotypic or clinical outcomes, are highlighted as well.
Collapse
|
35
|
Aravantinou M, Mizenina O, Calenda G, Kenney J, Frank I, Lifson JD, Szpara M, Jing L, Koelle DM, Teleshova N, Grasperge B, Blanchard J, Gettie A, Martinelli E, Derby N. Experimental Oral Herpes Simplex Virus-1 (HSV-1) Co-infection in Simian Immunodeficiency Virus (SIV)-Infected Rhesus Macaques. Front Microbiol 2017; 8:2342. [PMID: 29259582 PMCID: PMC5723348 DOI: 10.3389/fmicb.2017.02342] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 11/14/2017] [Indexed: 01/27/2023] Open
Abstract
Herpes simplex virus 1 and 2 (HSV-1/2) similarly initiate infection in mucosal epithelia and establish lifelong neuronal latency. Anogenital HSV-2 infection augments the risk for sexual human immunodeficiency virus (HIV) transmission and is associated with higher HIV viral loads. However, whether oral HSV-1 infection contributes to oral HIV susceptibility, viremia, or oral complications of HIV infection is unknown. Appropriate non-human primate (NHP) models would facilitate this investigation, yet there are no published studies of HSV-1/SIV co-infection in NHPs. Thus, we performed a pilot study for an oral HSV-1 infection model in SIV-infected rhesus macaques to describe the feasibility of the modeling and resultant immunological changes. Three SIV-infected, clinically healthy macaques became HSV-1-infected by inoculation with 4 × 108 pfu HSV-1 McKrae on buccal, tongue, gingiva, and tonsils after gentle abrasion. HSV-1 DNA was shed in oral swabs for up to 21 days, and shedding recurred in association with intra-oral lesions after periods of no shedding during 56 days of follow up. HSV-1 DNA was detected in explant cultures of trigeminal ganglia collected at euthanasia on day 56. In the macaque with lowest baseline SIV viremia, SIV plasma RNA increased following HSV-1 infection. One macaque exhibited an acute pro-inflammatory response, and all three animals experienced T cell activation and mobilization in blood. However, T cell and antibody responses to HSV-1 were low and atypical. Through rigorous assessesments, this study finds that the virulent HSV-1 strain McKrae resulted in a low level HSV-1 infection that elicited modest immune responses and transiently modulated SIV infection.
Collapse
Affiliation(s)
- Meropi Aravantinou
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Olga Mizenina
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Giulia Calenda
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jessica Kenney
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Ines Frank
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Jeffrey D. Lifson
- AIDS and Cancer Virus Program, Leidos Biomedical Research, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, United States
| | - Moriah Szpara
- Departments of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, United States
| | - Lichen Jing
- Department of Medicine, University of Washington, Seattle, WA, United States
| | - David M. Koelle
- Department of Medicine, University of Washington, Seattle, WA, United States
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, United States
- Department of Laboratory Medicine, University of Washington, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Benaroya Research Institute, Seattle, WA, United States
| | - Natalia Teleshova
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Brooke Grasperge
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - James Blanchard
- Tulane National Primate Research Center, Tulane University Health Sciences Center, Covington, LA, United States
| | - Agegnehu Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, NY, United States
| | - Elena Martinelli
- Center for Biomedical Research, Population Council, New York, NY, United States
| | - Nina Derby
- Center for Biomedical Research, Population Council, New York, NY, United States
| |
Collapse
|
36
|
Pourchet A, Copin R, Mulvey MC, Shopsin B, Mohr I, Wilson AC. Shared ancestry of herpes simplex virus 1 strain Patton with recent clinical isolates from Asia and with strain KOS63. Virology 2017; 512:124-131. [PMID: 28957690 PMCID: PMC5653468 DOI: 10.1016/j.virol.2017.09.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/16/2017] [Accepted: 09/18/2017] [Indexed: 12/18/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a widespread pathogen that persists for life, replicating in surface tissues and establishing latency in peripheral ganglia. Increasingly, molecular studies of latency use cultured neuron models developed using recombinant viruses such as HSV-1 GFP-US11, a derivative of strain Patton expressing green fluorescent protein (GFP) fused to the viral US11 protein. Visible fluorescence follows viral DNA replication, providing a real time indicator of productive infection and reactivation. Patton was isolated in Houston, Texas, prior to 1973, and distributed to many laboratories. Although used extensively, the genomic structure and phylogenetic relationship to other strains is poorly known. We report that wild type Patton and the GFP-US11 recombinant contain the full complement of HSV-1 genes and differ within the unique regions at only eight nucleotides, changing only two amino acids. Although isolated in North America, Patton is most closely related to Asian viruses, including KOS63.
Collapse
Affiliation(s)
- Aldo Pourchet
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Richard Copin
- Department of Medicine, New York University School of Medicine, New York, NY, USA
| | | | - Bo Shopsin
- Department of Microbiology, New York University School of Medicine, New York, NY, USA; Department of Medicine, New York University School of Medicine, New York, NY, USA
| | - Ian Mohr
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Angus C Wilson
- Department of Microbiology, New York University School of Medicine, New York, NY, USA.
| |
Collapse
|
37
|
Differentiated Human SH-SY5Y Cells Provide a Reductionist Model of Herpes Simplex Virus 1 Neurotropism. J Virol 2017; 91:JVI.00958-17. [PMID: 28956768 DOI: 10.1128/jvi.00958-17] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Accepted: 09/19/2017] [Indexed: 12/13/2022] Open
Abstract
Neuron-virus interactions that occur during herpes simplex virus (HSV) infection are not fully understood. Neurons are the site of lifelong latency and are a crucial target for long-term suppressive therapy or viral clearance. A reproducible neuronal model of human origin would facilitate studies of HSV and other neurotropic viruses. Current neuronal models in the herpesvirus field vary widely and have caveats, including incomplete differentiation, nonhuman origins, or the use of dividing cells that have neuropotential but lack neuronal morphology. In this study, we used a robust approach to differentiate human SH-SY5Y neuroblastoma cells over 2.5 weeks, producing a uniform population of mature human neuronal cells. We demonstrate that terminally differentiated SH-SY5Y cells have neuronal morphology and express proteins with subcellular localization indicative of mature neurons. These neuronal cells are able to support a productive HSV-1 infection, with kinetics and overall titers similar to those seen in undifferentiated SH-SY5Y cells and the related SK-N-SH cell line. However, terminally differentiated, neuronal SH-SY5Y cells release significantly less extracellular HSV-1 by 24 h postinfection (hpi), suggesting a unique neuronal response to viral infection. With this model, we are able to distinguish differences in neuronal spread between two strains of HSV-1. We also show expression of the antiviral protein cyclic GMP-AMP synthase (cGAS) in neuronal SH-SY5Y cells, which is the first demonstration of the presence of this protein in nonepithelial cells. These data provide a model for studying neuron-virus interactions at the single-cell level as well as via bulk biochemistry and will be advantageous for the study of neurotropic viruses in vitroIMPORTANCE Herpes simplex virus (HSV) affects millions of people worldwide, causing painful oral and genital lesions, in addition to a multitude of more severe symptoms such as eye disease, neonatal infection, and, in rare cases, encephalitis. Presently, there is no cure available to treat those infected or prevent future transmission. Due to the ability of HSV to cause a persistent, lifelong infection in the peripheral nervous system, the virus remains within the host for life. To better understand the basis of virus-neuron interactions that allow HSV to persist within the host peripheral nervous system, improved neuronal models are required. Here we describe a cost-effective and scalable human neuronal model system that can be used to study many neurotropic viruses, such as HSV, Zika virus, dengue virus, and rabies virus.
Collapse
|
38
|
Pandey U, Renner DW, Thompson RL, Szpara ML, Sawtell NM. Inferred father-to-son transmission of herpes simplex virus results in near-perfect preservation of viral genome identity and in vivo phenotypes. Sci Rep 2017; 7:13666. [PMID: 29057909 PMCID: PMC5654476 DOI: 10.1038/s41598-017-13936-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 10/02/2017] [Indexed: 12/23/2022] Open
Abstract
High throughout sequencing has provided an unprecedented view of the circulating diversity of all classes of human herpesviruses. For herpes simplex virus 1 (HSV-1), we and others have previously published data demonstrating sequence diversity between hosts. However the extent of variation during transmission events, or in one host over years of chronic infection, remain unknown. Here we present an initial example of full characterization of viruses isolated from a father to son transmission event. The likely occasion of transmission occurred 17 years before the strains were isolated, enabling a first view of the degree of virus conservation after decades of recurrences, including transmission and adaptation to a new host. We have characterized the pathogenicity of these strains in a mouse ocular model of infection, and sequenced the full viral genomes. Surprisingly, we find that these two viruses have preserved their phenotype and genotype nearly perfectly during inferred transmission from father to son, and during nearly two decades of episodes of recurrent disease in each human host. Given the close genetic relationship of these two hosts, it remains to be seen whether or not this conservation of sequence will occur during non-familial transmission events.
Collapse
Affiliation(s)
- Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Daniel W Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA
| | - Richard L Thompson
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, Cincinnati, Ohio, 45229, USA
| | - Moriah L Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, 16802, USA.
| | - Nancy M Sawtell
- Division of Infectious Diseases, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, 45229, USA
| |
Collapse
|
39
|
Aravantinou M, Frank I, Arrode-Bruses G, Szpara ML, Grasperge B, Blanchard J, Gettie A, Derby N, Martinelli E. A model of genital herpes simplex virus Type 1 infection in Rhesus Macaques. J Med Primatol 2017; 46:121-128. [PMID: 28748667 PMCID: PMC5553447 DOI: 10.1111/jmp.12293] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND Although HSV-2 is the major cause of genital lesions, HSV-1 accounts for half of new cases in developed countries. METHODS Three healthy SHIV-SF162P3-infected Indian rhesus macaques were inoculated with 4×108 pfu of HSV-1 twice, with the second inoculation performed after the vaginal mucosa was gently abraded with a cytobrush. RESULTS HSV-1 DNA was detected in vaginal swabs 5 days after the second but not the first inoculation in all three macaques. An increase in inflammatory cytokines was detected in the vaginal fluids of the animals with no or intermittent shedding. Higher frequency of blood α4 β7high CD4+ T cells was measured in the animals with consistent and intermitted shedding, while a decrease in the frequency of CD69+ CD4+ T cells was present in all animals. CONCLUSIONS This macaque model of genital HSV-1 could be useful to study the impact of the growing epidemic of genital HSV-1 on HIV infection.
Collapse
Affiliation(s)
- M Aravantinou
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - I Frank
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - G Arrode-Bruses
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - ML Szpara
- The Pennsylvania State University, University Park, Pennsylvania, USA
| | - B Grasperge
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - J Blanchard
- Tulane National Primate Research Center, Tulane University, Covington, Louisiana, USA
| | - A Gettie
- Aaron Diamond AIDS Research Center, Rockefeller University, New York, New York, USA
| | - N Derby
- Center for Biomedical Research, Population Council, New York, New York, USA
| | - E Martinelli
- Center for Biomedical Research, Population Council, New York, New York, USA
| |
Collapse
|
40
|
Menendez CM, Carr DJJ. Herpes simplex virus-1 infects the olfactory bulb shortly following ocular infection and exhibits a long-term inflammatory profile in the form of effector and HSV-1-specific T cells. J Neuroinflammation 2017; 14:124. [PMID: 28645309 PMCID: PMC5481928 DOI: 10.1186/s12974-017-0903-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 06/15/2017] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Herpes simplex virus 1 (HSV-1) infection can result in a life-threatening condition known as herpes simplex encephalitis (HSE). Trafficking patterns by which the virus reaches the central nervous system (CNS) following ocular infection are unresolved. We evaluated early viral dissemination pathways following ocular infection that involve trafficking to the olfactory bulb (OB). Additionally, we have characterized the capacity of HSV-1 to establish latency within OB tissue and profiled the local T lymphocyte response over the course of the acute infection into latency. METHODS Scarified corneas of C57BL/6 or reporter-inducible Rosa mice (RosaTd/Tm) were inoculated with HSV-1 and assessed for viral dissemination into the peripheral nervous system (PNS) and CNS by RT-PCR and confocal microscopy. T cells and the resident microglia activation signatures were analyzed by flow cytometry. T cell effector function in the form of IFN-γ secretion was measured by T cells isolated from OB in comparison to T cells from other nervous system sites known to harbor HSV-1-specific memory T cells. RESULTS Following ocular infection, HSV-1 viral titers from nasal secretions were detected as early as 48 h through 8 days post infection (8 DPI). HSV-1 gene expression was expressed as early as 2 days following ocular infection in the OB and was consistent with an enhanced expression in the ophthalmic, maxillary, and mandibular branch of the trigeminal nerve ganglia (TG). Rosa fluorescence protein expression (RFP+) representing HSV-1-infected cells from RosaTd/Tm mice was detected in the OB before other areas of the CNS (2 DPI). Additionally, during acute infection, most infected cells appeared to be anatomically distributed within the OB rather than other regions of the CNS. During latency (i.e., 30 DPI and beyond) despite no detectable infectious virus or lytic gene expression and low levels of latency associated transcripts, total effector (CD44+ CD62-) CD4+ T, CD8+ T, HSV-1-specific CD8+ T cells, and MHC class II positive resident microglia numbers continued to increase. CD4+ and CD8+ T cell populations isolated from the OB during latency were capable of responding to PMA/ionomycin in the production of IFN-γ similar to T cells from other tissue that possess latent virus including the TG and brain stem. CONCLUSIONS It is currently understood that HSV-1 traffics to the TG following ocular infection. We have identified a second conduit by which HSV-1 can directly access the CNS bypassing the brain stem. We have also recognized that the OB is unique in that during HSV-1 latency, latency-associated transcripts levels were marginally above uninfected controls. Despite these findings, the local immune response mimicked the phenotype of an active infection during latency.
Collapse
Affiliation(s)
| | - Daniel J. J. Carr
- Departments of Microbiology, Immunology, Oklahoma City, OK USA
- Department of Ophthalmology, University of Oklahoma Health Sciences Center, DMEI #415A, 608 Stanton L. Young Blvd, Oklahoma City, OK 73104 USA
| |
Collapse
|
41
|
Kawakami Y, Ando T, Lee JR, Kim G, Kawakami Y, Nakasaki T, Nakasaki M, Matsumoto K, Choi YS, Kawakami T. Defective natural killer cell activity in a mouse model of eczema herpeticum. J Allergy Clin Immunol 2017; 139:997-1006.e10. [PMID: 27476888 PMCID: PMC5276800 DOI: 10.1016/j.jaci.2016.06.034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 05/06/2016] [Accepted: 06/07/2016] [Indexed: 11/30/2022]
Abstract
BACKGROUND Patients with atopic dermatitis (AD) are susceptible to several viruses, including herpes simplex virus (HSV). Some patients experience 1 or more episodes of a severe skin infection caused by HSV termed eczema herpeticum (EH). There are numerous mouse models of AD, but no established model exists for EH. OBJECTIVE We sought to establish and characterize a mouse model of EH. METHODS We infected AD-like skin lesions with HSV1 to induce severe skin lesions in a dermatitis-prone mouse strain of NC/Nga. Gene expression was investigated by using a microarray and quantitative PCR; antibody titers were measured by means of ELISA; and natural killer (NK) cell, cytotoxic T-cell, regulatory T-cell, and follicular helper T-cell populations were evaluated by using flow cytometry. The role of NK cells in HSV1-induced development of severe skin lesions was examined by means of depletion and adoptive transfer. RESULTS Inoculation of HSV1 induced severe erosive skin lesions in eczematous mice, which had an impaired skin barrier, but milder lesions in small numbers of normal mice. Eczematous mice exhibited lower NK cell activity but similar cytotoxic T-cell activity and humoral immune responses compared with normal mice. The role of NK cells in controlling HSV1-induced skin lesions was demonstrated by experiments depleting or transferring NK cells. CONCLUSION A murine model of EH with an impaired skin barrier was established in this study. We demonstrated a critical role of defective NK activities in the development of HSV1-induced severe skin lesions in eczematous mice.
Collapse
Affiliation(s)
- Yuko Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Tomoaki Ando
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, Calif; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan
| | - Jong-Rok Lee
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Gisen Kim
- Division of Developmental Immunology, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Yu Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Tae Nakasaki
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Manando Nakasaki
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Kenji Matsumoto
- Department of Allergy and Clinical Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Youn Soo Choi
- Division of Vaccine Development and Center for Infectious Disease, La Jolla Institute for Allergy and Immunology, La Jolla, Calif
| | - Toshiaki Kawakami
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, Calif; Laboratory for Allergic Disease, RIKEN Center for Integrative Medical Sciences (IMS), Yokohama, Japan.
| |
Collapse
|
42
|
Sjulson L, Cassataro D, DasGupta S, Miesenböck G. Cell-Specific Targeting of Genetically Encoded Tools for Neuroscience. Annu Rev Genet 2016; 50:571-594. [PMID: 27732792 DOI: 10.1146/annurev-genet-120215-035011] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genetically encoded tools for visualizing and manipulating neurons in vivo have led to significant advances in neuroscience, in large part because of the ability to target expression to specific cell populations of interest. Current methods enable targeting based on marker gene expression, development, anatomical projection pattern, synaptic connectivity, and recent activity as well as combinations of these factors. Here, we review these methods, focusing on issues of practical implementation as well as areas for future improvement.
Collapse
Affiliation(s)
- Lucas Sjulson
- Department of Psychiatry, New York University School of Medicine, New York, NY 10016; .,Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Daniela Cassataro
- Department of Neuroscience and Physiology, Smilow Neuroscience Program, and New York University Neuroscience Institute, New York, NY 10016
| | - Shamik DasGupta
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom; .,Present address: Tata Institute of Fundamental Research, Mumbai, 400005, India
| | - Gero Miesenböck
- Centre for Neural Circuits and Behaviour, University of Oxford, Oxford, OX1 3SR, United Kingdom;
| |
Collapse
|
43
|
Interrelationship of Primary Virus Replication, Level of Latency, and Time to Reactivation in the Trigeminal Ganglia of Latently Infected Mice. J Virol 2016; 90:9533-42. [PMID: 27512072 DOI: 10.1128/jvi.01373-16] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 08/04/2016] [Indexed: 01/13/2023] Open
Abstract
UNLABELLED We sought to determine the possibility of an interrelationship between primary virus replication in the eye, the level of viral DNA in the trigeminal ganglia (TG) during latency, and the amount of virus reactivation following ocular herpes simplex virus type 1 (HSV-1) infection. Mice were infected with virulent (McKrae) or avirulent (KOS and RE) strains of HSV-1, and virus titers in the eyes and TG during primary infection, level of viral gB DNA in TG on day 28 postinfection (p.i.), and virus reactivation on day 28 p.i. as measured by explant reactivation were calculated. Our results suggest that the avirulent strains of HSV-1, even after corneal scarification, had lower virus titers in the eye, had less latency in the TG, and took a longer time to reactivate than virulent strains of HSV-1. The time to explant reactivation of avirulent strains of HSV-1 was similar to that of the virulent LAT((-)) McKrae-derived mutant. The viral dose with the McKrae strain of HSV-1 affected the level of viral DNA and time to explant reactivation. Overall, our results suggest that there is no absolute correlation between primary virus titer in the eye and TG and the level of viral DNA in latent TG and time to reactivation. IMPORTANCE Very little is known regarding the interrelationship between primary virus replication in the eye, the level of latency in TG, and the time to reactivate in the mouse model. This study was designed to answer these questions. Our results point to the absence of any correlation between the level of primary virus replication and the level of viral DNA during latency, and neither was an indicator of how rapidly the virus reactivated following explant TG-induced reactivation.
Collapse
|
44
|
Pandey U, Bell AS, Renner DW, Kennedy DA, Shreve JT, Cairns CL, Jones MJ, Dunn PA, Read AF, Szpara ML. DNA from Dust: Comparative Genomics of Large DNA Viruses in Field Surveillance Samples. mSphere 2016; 1:e00132-16. [PMID: 27747299 PMCID: PMC5064450 DOI: 10.1128/msphere.00132-16] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/25/2016] [Indexed: 12/12/2022] Open
Abstract
The intensification of the poultry industry over the last 60 years facilitated the evolution of increased virulence and vaccine breaks in Marek's disease virus (MDV-1). Full-genome sequences are essential for understanding why and how this evolution occurred, but what is known about genome-wide variation in MDV comes from laboratory culture. To rectify this, we developed methods for obtaining high-quality genome sequences directly from field samples without the need for sequence-based enrichment strategies prior to sequencing. We applied this to the first characterization of MDV-1 genomes from the field, without prior culture. These viruses were collected from vaccinated hosts that acquired naturally circulating field strains of MDV-1, in the absence of a disease outbreak. This reflects the current issue afflicting the poultry industry, where virulent field strains continue to circulate despite vaccination and can remain undetected due to the lack of overt disease symptoms. We found that viral genomes from adjacent field sites had high levels of overall DNA identity, and despite strong evidence of purifying selection, had coding variations in proteins associated with virulence and manipulation of host immunity. Our methods empower ecological field surveillance, make it possible to determine the basis of viral virulence and vaccine breaks, and can be used to obtain full genomes from clinical samples of other large DNA viruses, known and unknown. IMPORTANCE Despite both clinical and laboratory data that show increased virulence in field isolates of MDV-1 over the last half century, we do not yet understand the genetic basis of its pathogenicity. Our knowledge of genome-wide variation between strains of this virus comes exclusively from isolates that have been cultured in the laboratory. MDV-1 isolates tend to lose virulence during repeated cycles of replication in the laboratory, raising concerns about the ability of cultured isolates to accurately reflect virus in the field. The ability to directly sequence and compare field isolates of this virus is critical to understanding the genetic basis of rising virulence in the wild. Our approaches remove the prior requirement for cell culture and allow direct measurement of viral genomic variation within and between hosts, over time, and during adaptation to changing conditions.
Collapse
Affiliation(s)
- Utsav Pandey
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew S. Bell
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Daniel W. Renner
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A. Kennedy
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Jacob T. Shreve
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Chris L. Cairns
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Matthew J. Jones
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Patricia A. Dunn
- Department of Veterinary and Biomedical Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Andrew F. Read
- Center for Infectious Disease Dynamics, Departments of Biology and Entomology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Moriah L. Szpara
- Department of Biochemistry and Molecular Biology, Center for Infectious Disease Dynamics, and the Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, Pennsylvania, USA
| |
Collapse
|
45
|
Mapping Murine Corneal Neovascularization and Weight Loss Virulence Determinants in the Herpes Simplex Virus 1 Genome and the Detection of an Epistatic Interaction between the UL and IRS/US Regions. J Virol 2016; 90:8115-31. [PMID: 27384650 PMCID: PMC5008079 DOI: 10.1128/jvi.00821-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 06/22/2016] [Indexed: 01/14/2023] Open
Abstract
UNLABELLED Herpes simplex virus 1 (HSV-1) most commonly causes recrudescent labial ulcers; however, it is also the leading cause of infectious blindness in developed countries. Previous research in animal models has demonstrated that the severity of HSV-1 ocular disease is influenced by three main factors: host innate immunity, host immune response, and viral strain. We have previously shown that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) results in recombinants with a wide range of ocular disease phenotype severity. Recently, we developed a quantitative trait locus (QTL)-based computational approach (vQTLmap) to identify viral single nucleotide polymorphisms (SNPs) predicted to influence the severity of the ocular disease phenotypes. We have now applied vQTLmap to identify HSV-1 SNPs associated with corneal neovascularization and mean peak percentage weight loss (MPWL) using 65 HSV-1 OD4-CJ994 recombinants. The vQTLmap analysis using Random Forest for neovascularization identified phenotypically meaningful nonsynonymous SNPs in the ICP4, UL41 (VHS), UL42, UL46 (VP11/12), UL47 (VP13/14), UL48 (VP22), US3, US4 (gG), US6 (gD), and US7 (gI) coding regions. The ICP4 gene was previously identified as a corneal neovascularization determinant, validating the vQTLmap method. Further analysis detected an epistatic interaction for neovascularization between a segment of the unique long (UL) region and a segment of the inverted repeat short (IRS)/unique short (US) region. Ridge regression was used to identify MPWL-associated nonsynonymous SNPs in the UL1 (gL), UL2, UL4, UL49 (VP22), UL50, and ICP4 coding regions. The data provide additional insights into virulence gene and epistatic interaction discovery in HSV-1. IMPORTANCE Herpes simplex virus 1 (HSV-1) typically causes recurrent cold sores; however, it is also the leading source of infectious blindness in developed countries. Corneal neovascularization is critical for the progression of blinding ocular disease, and weight loss is a measure of infection severity. Previous HSV-1 animal virulence studies have shown that the severity of ocular disease is partially due to the viral strain. In the current study, we used a recently described computational quantitative trait locus (QTL) approach in conjunction with 65 HSV-1 recombinants to identify viral single nucleotide polymorphisms (SNPs) involved in neovascularization and weight loss. Neovascularization SNPs were identified in the ICP4, VHS, UL42, VP11/12, VP13/14, VP22, gG, US3, gD, and gI genes. Further analysis revealed an epistatic interaction between the UL and US regions. MPWL-associated SNPs were detected in the UL1 (gL), UL2, UL4, VP22, UL50, and ICP4 genes. This approach will facilitate future HSV virulence studies.
Collapse
|
46
|
Roles of Us8A and Its Phosphorylation Mediated by Us3 in Herpes Simplex Virus 1 Pathogenesis. J Virol 2016; 90:5622-5635. [PMID: 27030266 DOI: 10.1128/jvi.00446-16] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 03/24/2016] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The herpes simplex virus 1 (HSV-1) Us8A gene overlaps the gene that encodes glycoprotein E (gE). Previous studies have investigated the roles of Us8A in HSV-1 infection using null mutations in Us8A and gE; therefore, the role of Us8A remains to be elucidated. In this study, we investigated the function of Us8A and its phosphorylation at serine 61 (Ser-61), which we recently identified as a phosphorylation site by mass spectrometry-based phosphoproteomic analysis of HSV-1-infected cells, in HSV-1 pathogenesis. We observed that (i) the phosphorylation of Us8A Ser-61 in infected cells was dependent on the activity of the virus-encoded Us3 protein kinase; (ii) the Us8A null mutant virus exhibited a 10-fold increase in the 50% lethal dose for virulence in the central nervous system (CNS) of mice following intracranial infection compared with a repaired virus; (iii) replacement of Ser-61 with alanine (S61A) in Us8A had little effect on virulence in the CNS of mice following intracranial infection, whereas it significantly reduced the mortality of mice following ocular infection to levels similar to the Us8A null mutant virus; (iv) the Us8A S61A mutation also significantly reduced viral yields in mice following ocular infection, mainly in the trigeminal ganglia and brains; and (v) a phosphomimetic mutation at Us8A Ser-61 restored wild-type viral yields and virulence. Collectively, these results indicate that Us8A is a novel HSV-1 virulence factor and suggest that the Us3-mediated phosphorylation of Us8A Ser-61 regulates Us8A function for viral invasion into the CNS from peripheral sites. IMPORTANCE The DNA genomes of viruses within the subfamily Alphaherpesvirinae are divided into unique long (UL) and unique short (Us) regions. Us regions contain alphaherpesvirus-specific genes. Recently, high-throughput sequencing of ocular isolates of HSV-1 showed that Us8A was the most highly conserved of 13 herpes simplex virus 1 (HSV-1) genes mapped to the Us region, suggesting Us8A may have an important role in the HSV-1 life cycle. However, the specific role of Us8A in HSV-1 infection remains to be elucidated. Here, we show that Us8A is a virulence factor for HSV-1 infection in mice, and the function of Us8A for viral invasion into the central nervous system from peripheral sites is regulated by Us3-mediated phosphorylation of the protein at Ser-61. This is the first study to report the significance of Us8A and its regulation in HSV-1 infection.
Collapse
|
47
|
Viral forensic genomics reveals the relatedness of classic herpes simplex virus strains KOS, KOS63, and KOS79. Virology 2016; 492:179-86. [PMID: 26950505 DOI: 10.1016/j.virol.2016.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/05/2016] [Accepted: 02/15/2016] [Indexed: 12/22/2022]
Abstract
Herpes simplex virus 1 (HSV-1) is a widespread global pathogen, of which the strain KOS is one of the most extensively studied. Previous sequence studies revealed that KOS does not cluster with other strains of North American geographic origin, but instead clustered with Asian strains. We sequenced a historical isolate of the original KOS strain, called KOS63, along with a separately isolated strain attributed to the same source individual, termed KOS79. Genomic analyses revealed that KOS63 closely resembled other recently sequenced isolates of KOS and was of Asian origin, but that KOS79 was a genetically unrelated strain that clustered in genetic distance analyses with HSV-1 strains of North American/European origin. These data suggest that the human source of KOS63 and KOS79 could have been infected with two genetically unrelated strains of disparate geographic origins. A PCR RFLP test was developed for rapid identification of these strains.
Collapse
|
48
|
Kolb AW, Lee K, Larsen I, Craven M, Brandt CR. Quantitative Trait Locus Based Virulence Determinant Mapping of the HSV-1 Genome in Murine Ocular Infection: Genes Involved in Viral Regulatory and Innate Immune Networks Contribute to Virulence. PLoS Pathog 2016; 12:e1005499. [PMID: 26962864 PMCID: PMC4786273 DOI: 10.1371/journal.ppat.1005499] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 02/18/2016] [Indexed: 12/23/2022] Open
Abstract
Herpes simplex virus type 1 causes mucocutaneous lesions, and is the leading cause of infectious blindness in the United States. Animal studies have shown that the severity of HSV-1 ocular disease is influenced by three main factors; innate immunity, host immune response and viral strain. We previously showed that mixed infection with two avirulent HSV-1 strains (OD4 and CJ994) resulted in recombinants that exhibit a range of disease phenotypes from severe to avirulent, suggesting epistatic interactions were involved. The goal of this study was to develop a quantitative trait locus (QTL) analysis of HSV-1 ocular virulence determinants and to identify virulence associated SNPs. Blepharitis and stromal keratitis quantitative scores were characterized for 40 OD4:CJ994 recombinants. Viral titers in the eye were also measured. Virulence quantitative trait locus mapping (vQTLmap) was performed using the Lasso, Random Forest, and Ridge regression methods to identify significant phenotypically meaningful regions for each ocular disease parameter. The most predictive Ridge regression model identified several phenotypically meaningful SNPs for blepharitis and stromal keratitis. Notably, phenotypically meaningful nonsynonymous variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Network analysis revealed that many of these variations were in HSV-1 regulatory networks and viral genes that affect innate immunity. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. Several novel polymorphisms were also identified in these genes. This approach provides a framework that will be useful for identifying virulence genes in other pathogenic viruses, as well as epistatic effects that affect HSV-1 ocular virulence. In addition to causing recurrent labial lesions, herpes simplex virus type 1 (HSV-1) is also the primary source of infectious blindness in the United States. Animal studies have shown that the severity of infection is influenced by several factors, including viral strain. Conventional studies investigating the genetics of viral virulence have focused on characterizing a naturally occurring strain, and engineering mutations into viruses. The purpose of this study was to develop a quantitative trait locus (QTL) computational analysis of HSV-1 genome to identify ocular virulence determinants and associated viral SNPs. Notably, phenotypically meaningful variations were detected in the UL24, UL29 (ICP8), UL41 (VHS), UL53 (gK), UL54 (ICP27), UL56, ICP4, US1 (ICP22), US3 and gG genes. Several genes previously implicated in virulence were identified, validating this approach, while other genes were novel. This is the first time a QTL based approach has been applied to a herpesvirus and it will also be valuable in future virulence, epistasis, and protein-protein interaction studies.
Collapse
Affiliation(s)
- Aaron W. Kolb
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Kyubin Lee
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Inna Larsen
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Mark Craven
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Biostatistics and Medical Informatics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Curtis R. Brandt
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
49
|
Marin M, Leunda M, Verna A, Morán P, Odeón A, Pérez S. Distribution of bovine herpesvirus type 1 in the nervous system of experimentally infected calves. Vet J 2016; 209:82-6. [DOI: 10.1016/j.tvjl.2015.10.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 05/16/2015] [Accepted: 10/10/2015] [Indexed: 10/22/2022]
|
50
|
The Basic Domain of Herpes Simplex Virus 1 pUS9 Recruits Kinesin-1 To Facilitate Egress from Neurons. J Virol 2015; 90:2102-11. [PMID: 26656703 DOI: 10.1128/jvi.03041-15] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 12/21/2022] Open
Abstract
UNLABELLED The alphaherpesviral envelope protein pUS9 has been shown to play a role in the anterograde axonal transport of herpes simplex virus 1 (HSV-1), yet the molecular mechanism is unknown. To address this, we used an in vitro pulldown assay to define a series of five arginine residues within the conserved pUS9 basic domain that were essential for binding the molecular motor kinesin-1. The mutation of these pUS9 arginine residues to asparagine blocked the binding of both recombinant and native kinesin-1. We next generated HSV-1 with the same pUS9 arginine residues mutated to asparagine (HSV-1pUS9KBDM) and then restored them being to arginine (HSV-1pUS9KBDR). The two mutated viruses were analyzed initially in a zosteriform model of recurrent cutaneous infection. The primary skin lesion scores were identical in severity and kinetics, and there were no differences in viral load at dorsal root ganglionic (DRG) neurons at day 4 postinfection (p.i.) for both viruses. In contrast, HSV-1pUS9KBDM showed a partial reduction in secondary skin lesions at day 8 p.i. compared to the level for HSV-1pUS9KBDR. The use of rat DRG neuronal cultures in a microfluidic chamber system showed both a reduction in anterograde axonal transport and spread from axons to nonneuronal cells for HSV-1pUS9KBDM. Therefore, the basic domain of pUS9 contributes to anterograde axonal transport and spread of HSV-1 from neurons to the skin through recruitment of kinesin-1. IMPORTANCE Herpes simplex virus 1 and 2 cause genital herpes, blindness, encephalitis, and occasionally neonatal deaths. There is also increasing evidence that sexually transmitted genital herpes increases HIV acquisition, and the reactivation of HSV increases HIV replication and transmission. New antiviral strategies are required to control resistant viruses and to block HSV spread, thereby reducing HIV acquisition and transmission. These aims will be facilitated through understanding how HSV is transported down nerves and into skin. In this study, we have defined how a key viral protein plays a role in both axonal transport and spread of the virus from nerve cells to the skin.
Collapse
|