1
|
Bapat A, Lucey O, Eckersley M, Ciesielczuk H, Ranasinghe S, Lambourne J. Invasive Aggregatibacter infection: shedding light on a rare pathogen in a retrospective cohort analysis. J Med Microbiol 2022; 71. [PMID: 36748613 DOI: 10.1099/jmm.0.001612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Introduction. Aggregatibacter are Gram-negative, facultatively anaerobic rods or coccobacilli that are infrequently encountered as pathogens causing infection.Hypothesis/Gap Statement. The range of invasive infection that Aggregatibacter cause is poorly described. The pathogenicity of species such as Aggregatibacter segnis is debated.Aim. To identify invasive infection due to Aggregatibacter species in a large healthcare organization and to characterize clinical syndromes, co-morbidities and risk factors.Methodology. All microbiological samples positive for Aggregatibacter species were identified by conventional culture or 16S rRNA PCR between October 2017 and March 2021. Electronic records for all patients with positive samples were reviewed and the infection syndrome classified for patients with invasive disease.Results. Twenty-seven patients with invasive infection were identified, with a statistically significant difference in species-specific patterns of invasive infection (P=0.02) and a statistically significant association with residence in the 30 % most deprived households in the UK by postcode (P<0.01). The three most common co-morbidities were periodontitis or recent dental work (29.6%), cardiovascular disease (25.9%) and diabetes (18.5 %).Conclusion. We describe a novel association of Aggregatibacter segnis with skin and soft tissue infection. The propensity of the Aggregatibacter species to cause invasive infection at different body sites and be associated with deprivation is reported. Aggregatibacter actinomycetemcomitans bacteraemia was associated with infective endocarditis, and Aggregatibacter aphrophilus was implicated in severe appendicitis and noted to cause brain abscess. Areas warranting future research include exploring the risk-factors required for invasive infection and those that may determine the species-specific differences in patterns of invasive disease.
Collapse
Affiliation(s)
- Anjaneya Bapat
- Centre for Immunobiology, Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Division of Infection, Barts Health NHS Trust, London, UK
| | - Olivia Lucey
- Division of Infection, Barts Health NHS Trust, London, UK
| | | | | | | | | |
Collapse
|
2
|
Claesson R, Chiang HM, Lindholm M, Höglund Åberg C, Haubek D, Johansson A, Oscarsson J. Characterization of Aggregatibacter actinomycetemcomitans Serotype b Strains with Five Different, Including Two Novel, Leukotoxin Promoter Structures. Vaccines (Basel) 2020; 8:vaccines8030398. [PMID: 32698444 PMCID: PMC7563764 DOI: 10.3390/vaccines8030398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/15/2020] [Accepted: 07/16/2020] [Indexed: 01/23/2023] Open
Abstract
The JP2 genotype of A. actinomycetemcomitans, serotype b has attracted much interest during the past three decades due to its close association with periodontitis in young individuals and the enhanced expression of a leukotoxin (LtxA). A typical feature of this genotype is a 530-base pair (bp) deletion in the ltxCABD promoter region controlling leukotoxin expression. In the present work, we have characterized serotype b strains with four additional promoter types. Two novel types have been recognized, that is, one with a 230-bp deletion and one with a 172-bp duplication. Moreover, a strain with a 640-bp deletion and three strains with a full-length promoter, including the type strain Y4, were included in the present study. The seven strains were characterized by multi locus sequence typing (MLST) and arbitrarily primed polymerase chain reaction (PCR) and assessed for LtxA production. MLST showed that the strains with the non-JP2-like deletions represented distinct monophyletic groups, whereas the JP2 strain, HK1651, represented a separate branch. LtxA production was high in all three strains with a promoter deletion, whereas the other four strains showed significantly lower levels. It can be concluded that the genetic characterization and determination of LtxA production of A. actinomycetemcomitans isolates from individuals with periodontitis can contribute to the identification of novel virulent genotypes of this bacterium.
Collapse
Affiliation(s)
- Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
- Correspondence:
| | - Huei-Min Chiang
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Mark Lindholm
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
| | - Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Dorte Haubek
- Section for Paediatric Dentistry, Department of Dentistry and Oral Health, Aarhus University, 8000 Aarhus, Denmark;
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (H.-M.C.); (C.H.Å.); (A.J.)
| | - Jan Oscarsson
- Division of Oral Microbiology, Department of Odontology, Umeå University, S-90187 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
3
|
Krueger E, Brown AC. Aggregatibacter actinomycetemcomitans leukotoxin: From mechanism to targeted anti-toxin therapeutics. Mol Oral Microbiol 2020; 35:85-105. [PMID: 32061022 PMCID: PMC7359886 DOI: 10.1111/omi.12284] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/12/2020] [Accepted: 02/13/2020] [Indexed: 12/13/2022]
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium associated with localized aggressive periodontitis, as well as other systemic diseases. This organism produces a number of virulence factors, all of which provide some advantage to the bacterium. Several studies have demonstrated that clinical isolates from diseased patients, particularly those of African descent, frequently belong to specific clones of A. actinomycetemcomitans that produce significantly higher amounts of a protein exotoxin belonging to the repeats-in-toxin (RTX) family, leukotoxin (LtxA), whereas isolates from healthy patients harbor minimally leukotoxic strains. This finding suggests that LtxA might play a key role in A. actinomycetemcomitans pathogenicity. Because of this correlation, much work over the past 30 years has been focused on understanding the mechanisms by which LtxA interacts with and kills host cells. In this article, we review those findings, highlight the remaining open questions, and demonstrate how knowledge of these mechanisms, particularly the toxin's interactions with lymphocyte function-associated antigen-1 (LFA-1) and cholesterol, enables the design of targeted anti-LtxA strategies to prevent/treat disease.
Collapse
Affiliation(s)
- Eric Krueger
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Angela C. Brown
- Department of Chemical and Biomolecular Engineering, Lehigh University, Bethlehem, PA 18015, USA
| |
Collapse
|
4
|
Nørskov-Lauritsen N, Claesson R, Jensen AB, Åberg CH, Haubek D. Aggregatibacter Actinomycetemcomitans: Clinical Significance of a Pathobiont Subjected to Ample Changes in Classification and Nomenclature. Pathogens 2019; 8:E243. [PMID: 31752205 PMCID: PMC6963667 DOI: 10.3390/pathogens8040243] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/10/2019] [Accepted: 11/13/2019] [Indexed: 12/13/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative bacterium that is part of the oral microbiota. The aggregative nature of this pathogen or pathobiont is crucial to its involvement in human disease. It has been cultured from non-oral infections for more than a century, while its portrayal as an aetiological agent in periodontitis has emerged more recently. A. actinomycetemcomitans is one species among a plethora of microorganisms that constitute the oral microbiota. Although A. actinomycetemcomitans encodes several putative toxins, the complex interplay with other partners of the oral microbiota and the suppression of host response may be central for inflammation and infection in the oral cavity. The aim of this review is to provide a comprehensive update on the clinical significance, classification, and characterisation of A. actinomycetemcomitans, which has exclusive or predominant host specificity for humans.
Collapse
Affiliation(s)
| | - Rolf Claesson
- Department of Odontology, Division of Oral Microbiology, Umeå University, S-901 87 Umeå, Sweden;
| | - Anne Birkeholm Jensen
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| | - Carola Höglund Åberg
- Department of Odontology, Division of Molecular Periodontology, Umeå University, S-901 87 Umeå, Sweden
| | - Dorte Haubek
- Department of Dentistry and Oral Health, Aarhus University, DK-8000 Aarhus C, Denmark;
| |
Collapse
|
5
|
Belibasakis GN, Maula T, Bao K, Lindholm M, Bostanci N, Oscarsson J, Ihalin R, Johansson A. Virulence and Pathogenicity Properties of Aggregatibacter actinomycetemcomitans. Pathogens 2019; 8:E222. [PMID: 31698835 PMCID: PMC6963787 DOI: 10.3390/pathogens8040222] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 02/06/2023] Open
Abstract
Aggregatibacter actinomycetemcomitans is a periodontal pathogen colonizing the oral cavity of a large proportion of the human population. It is equipped with several potent virulence factors that can cause cell death and induce or evade inflammation. Because of the large genetic diversity within the species, both harmless and highly virulent genotypes of the bacterium have emerged. The oral condition and age, as well as the geographic origin of the individual, influence the risk to be colonized by a virulent genotype of the bacterium. In the present review, the virulence and pathogenicity properties of A. actinomycetemcomitans will be addressed.
Collapse
Affiliation(s)
- Georgios N. Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Terhi Maula
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Kai Bao
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Mark Lindholm
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Nagihan Bostanci
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institutet, S-141 04 Huddinge, Sweden; (G.N.B.); (K.B.); (N.B.)
| | - Jan Oscarsson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| | - Riikka Ihalin
- Department of Biochemistry, University of Turku, FI-20014 Turku, Finland; (T.M.); (R.I.)
| | - Anders Johansson
- Department of Odontology, Umeå University, S-901 87 Umeå, Sweden; (M.L.); (J.O.)
| |
Collapse
|
6
|
Mahalakshmi K, Krishnan P, Chandrasekaran SC. Detection of Aggregatibacter actinomycetemcomitans leukotoxin and fimbria-associated protein gene genotypes among periodontitis patients and healthy controls: A case-control study. Dent Res J (Isfahan) 2018; 15:185-190. [PMID: 29922337 PMCID: PMC5958535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans has been reported in higher proportions in subgingival microbiota of individuals with aggressive periodontitis (AgP) compared with those with chronic periodontitis (ChP) and healthy controls. The major virulence factors are the ones that help in colonization and evasion of host's defenses. Hence, this study was aimed to assess the prevalence of A. actinomycetemcomitans 16S rRNA and its virulent genotypes (leukotoxin [lktA] and fimbria-associated protein [fap]). MATERIALS AND METHODS In this case- control study We performed periodontal examination and measured probing depth and clinical attachment level (CAL). Subgingival plaque samples from 200 (ChP: n = 128 and AgP: n = 72) periodontitis patients and 200 healthy controls were screened for the presence of A. actinomycetemcomitans 16S rRNA, lktA, and fap genotypes by polymerase chain reaction. The prevalence of genotypes between periodontitis patients and healthy controls was compared with Pearson's Chi-square test. P < 0.05 was considered statistically significant. RESULTS Mean pocket probing depth and CAL were high as compared to the healthy controls. The prevalence of A. actinomycetemcomitans in ChP (n = 128), AgP (n = 72), and healthy individuals (n = 200) was 32.0%, 61.1%, and 2.5%, respectively. A. actinomycetemcomitans lktA genotype prevalence was 71.8% among periodontitis patients, while A. actinomycetemcomitans fap genotype showed 31.8% prevalence. The prevalence of these genotypes was insignificant in healthy controls. CONCLUSION The high odds ratio for A. actinomycetemcomitans prevalence suggests its strong link to periodontitis. Detection of A. actinomycetemcomitans lktA + genotype may be a useful marker for AgP as its prevalence was found to be high in AgP.
Collapse
Affiliation(s)
- Krishnan Mahalakshmi
- Department of Microbiology and Research Lab for Oral-Systemic Health, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| | - Padma Krishnan
- Department of Microbiology, Dr. ALM PGIBMS, University of Madras, Chennai, Tamil Nadu, India,Address for correspondence: Dr. Padma Krishnan, Department of Microbiology Dr. ALM PGIBMS, University of Madras, Chennai - 600 113, Tamil Nadu, India. E-mail:
| | - S. C. Chandrasekaran
- Department of Periodontics and Implantology, Sree Balaji Dental College and Hospital, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, India
| |
Collapse
|
7
|
Suprith SS, Setty S, Bhat K, Thakur S. Serotypes of Aggregatibacter actinomycetemcomitans in relation to periodontal status and assessment of leukotoxin in periodontal disease: A clinico-microbiological study. J Indian Soc Periodontol 2018; 22:201-208. [PMID: 29962698 PMCID: PMC6009160 DOI: 10.4103/jisp.jisp_36_18] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Context: Aggregatibacter actinomycetemcomitans (A.a) serotypes may add some important information of the pathogenetic background of periodontal infections. A.a leukotoxin is an important virulence factor in the pathogenesis of periodontal disease and its rate of progression. When compared to minimally leukotoxic strains, variants of A.a highly leukotoxic strains produce 10–20 times more leukotoxin. Aims: The aim of the present study was to detect serotypes a, b, c, d, and e of A.a its leukotoxin and find its correlation with periodontal status. Settings and Design: Microbiological analysis and cross-sectional study. Materials and Methods: A total of 80 subjects (40 chronic periodontitis and 40 aggressive periodontitis) in the age range of 14–55 years were selected. Subgingival plaque samples were collected and checked for the presence of A.a. Following isolation of the organism, detection of the serotypes and leukotoxin assessment was done. Statistical Analysis Used: The proportions of A.a were calculated using descriptive statistics in terms of percentage. Chi-square test was used to find association between serotype, leukotoxin, and periodontal disease in individual group. Results: Out of 80 plaque samples, 45% tested positive for A.a. serotype b was detected in 33.33%, whereas serotype e in 8.33% samples and serotype c in 2.77% samples. Serotypes a and d were not detected in any of the samples. A combination of serotypes was seen in 47.22% of the sites. Of these 76.47% showed a combination of 2 serotypes, while 23.52%showed a combination of 3 serotypes. 8.33% showed untypable serotype. All samples had low-toxic variants of A.a. Conclusions: Serotype b and serotype e were predominant in chronic periodontitis, and serotype b was predominant in aggressive periodontitis. An association could be present between serotype and periodontal disease.
Collapse
Affiliation(s)
| | - Swati Setty
- Department of Periodontics, SDM College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| | - Kishore Bhat
- Department of Microbiology, Maratha Mandals Nathajirao G. Halgekar Institute of Dental Sciences and Research Centre, Belagavi, Karnataka, India
| | - Srinath Thakur
- Department of Periodontics, SDM College of Dental Sciences and Hospital, Dharwad, Karnataka, India
| |
Collapse
|
8
|
Herbert BA, Steinkamp HM, Gaestel M, Kirkwood KL. Mitogen-Activated Protein Kinase 2 Signaling Shapes Macrophage Plasticity in Aggregatibacter actinomycetemcomitans-Induced Bone Loss. Infect Immun 2017; 85:e00552-16. [PMID: 27795356 PMCID: PMC5203644 DOI: 10.1128/iai.00552-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/07/2016] [Indexed: 11/20/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans is associated with aggressive periodontal disease, which is characterized by inflammation-driven alveolar bone loss. A. actinomycetemcomitans activates the p38 mitogen-activated protein kinase (MAPK) and MAPK-activated protein kinase 2 (MK2) stress pathways in macrophages that are involved in host responses. During the inflammatory process in periodontal disease, chemokines are upregulated to promote recruitment of inflammatory cells. The objective of this study was to determine the role of MK2 signaling in chemokine regulation during A. actinomycetemcomitans pathogenesis. Utilizing a murine calvarial model, Mk2+/+ and Mk2-/- mice were treated with live A. actinomycetemcomitans bacteria at the midsagittal suture. MK2 positively regulated the following macrophage RNA: Emr1 (F4/80), Itgam (CD11b), Csf1r (M-CSF Receptor), Itgal (CD11a), Tnf, and Nos2 Additionally, RNA analysis revealed that MK2 signaling regulated chemokines CCL3 and CCL4 in murine calvarial tissue. Utilizing the chimeric murine air pouch model, MK2 signaling differentially regulated CCL3 and CCL4 in the hematopoietic and nonhematopoietic compartments. Bone resorption pits in calvaria, observed by micro-computed tomography, and osteoclast formation were decreased in Mk2-/- mice compared to Mk2+/+ mice after A. actinomycetemcomitans treatment. In conclusion, these data suggest that MK2 in macrophages contributes to regulation of chemokine signaling during A. actinomycetemcomitans-induced inflammation and bone loss.
Collapse
Affiliation(s)
- Bethany A Herbert
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Heidi M Steinkamp
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany
| | - Keith L Kirkwood
- Department of Oral Health Sciences and the Center for Oral Health Research, Medical University of South Carolina, Charleston, South Carolina, USA
- Department of Microbiology and Immunology, Medical University of South Carolina, Charleston, South Carolina, USA
| |
Collapse
|
9
|
Differential transcriptional regulation of Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons by integration host factor protein. J Bacteriol 2014; 196:1597-607. [PMID: 24532769 DOI: 10.1128/jb.00006-14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We previously showed that the Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons are regulated by LsrR and cyclic AMP receptor protein (CRP) and that proper regulation of the lsr locus is required for optimal biofilm growth by A. actinomycetemcomitans. Here, we identified sequences that reside immediately upstream from both the lsrA and lsrR start codons that closely resemble the consensus recognition sequence of Escherichia coli integration host factor (IHF) protein. A. actinomycetemcomitans IHFα and IHFβ were expressed and purified as hexahistidine fusion proteins, and using electrophoretic mobility shift assays (EMSAs), the IHFα-IHFβ protein complex was shown to bind to probes containing the putative IHF recognition sequences. In addition, single-copy chromosomal insertions of lsrR promoter-lacZ and lsrA promoter-lacZ transcriptional fusions in wild-type A. actinomycetemcomitans and ΔihfA and ΔihfB mutant strains showed that IHF differentially regulates the lsr locus and functions as a negative regulator of lsrRK and a positive regulator of lsrACDBFG. Deletion of ihfA or ihfB also reduced biofilm formation and altered biofilm architecture relative to the wild-type strain, and these phenotypes were partially complemented by a plasmid-borne copy of ihfA or ihfB. Finally, using 5' rapid amplification of cDNA ends (RACE), two transcriptional start sites (TSSs) and two putative promoters were identified for lsrRK and three TSSs and putative promoters were identified for lsrACDBFG. The function of the two lsrRK promoters and the positive regulatory role of IHF in regulating lsrACDBFG expression were confirmed with a series of lacZ transcriptional fusion constructs. Together, our results highlight the complex transcriptional regulation of the lsrACDBFG and lsrRK operons and suggest that multiple promoters and the architecture of the lsrACDBFG-lsrRK intergenic region may control the expression of these operons.
Collapse
|
10
|
Stevens RH, Moura Martins Lobo dos Santos CD, Zuanazzi D, Accioly Mattos MBD, Ferreira DF, Kachlany SC, Tinoco EM. Prophage induction in lysogenic Aggregatibacter actinomycetemcomitans cells co-cultured with human gingival fibroblasts, and its effect on leukotoxin release. Microb Pathog 2013; 54:54-9. [DOI: 10.1016/j.micpath.2012.09.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 09/12/2012] [Accepted: 09/13/2012] [Indexed: 10/27/2022]
|
11
|
Azithromycin kills invasive Aggregatibacter actinomycetemcomitans in gingival epithelial cells. Antimicrob Agents Chemother 2012; 57:1347-51. [PMID: 23274657 DOI: 10.1128/aac.02558-12] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans invades periodontal pocket epithelium and is therefore difficult to eliminate by periodontal scaling and root planing. It is susceptible to azithromycin, which is taken up by many types of mammalian cells. This led us to hypothesize that azithromycin accumulation by gingival epithelium could enhance the killing of intraepithelial A. actinomycetemcomitans. [(3)H]azithromycin transport by Smulow-Glickman gingival epithelial cells and SCC-25 oral epithelial cells was characterized. To test our hypothesis, we infected cultured Smulow-Glickman cell monolayers with A. actinomycetemcomitans (Y4 or SUNY 465 strain) for 2 h, treated them with gentamicin to eliminate extracellular bacteria, and then incubated them with azithromycin for 1 to 4 h. Viable intracellular bacteria were released, plated, and enumerated. Azithromycin transport by both cell lines exhibited Michaelis-Menten kinetics and was competitively inhibited by l-carnitine and several other organic cations. Cell incubation in medium containing 5 μg/ml azithromycin yielded steady-state intracellular concentrations of 144 μg/ml in SCC-25 cells and 118 μg/ml in Smulow-Glickman cells. Azithromycin induced dose- and time-dependent intraepithelial killing of both A. actinomycetemcomitans strains. Treatment of infected Smulow-Glickman cells with 0.125 μg/ml azithromycin killed approximately 29% of the intraepithelial CFU of both strains within 4 h, while treatment with 8 μg/ml azithromycin killed ≥82% of the CFU of both strains (P < 0.05). Addition of carnitine inhibited the killing of intracellular bacteria by azithromycin (P < 0.05). Thus, human gingival epithelial cells actively accumulate azithromycin through a transport system that facilitates the killing of intraepithelial A. actinomycetemcomitans and is shared with organic cations.
Collapse
|
12
|
Transcriptional regulation of Aggregatibacter actinomycetemcomitans lsrACDBFG and lsrRK operons and their role in biofilm formation. J Bacteriol 2012; 195:56-65. [PMID: 23104800 DOI: 10.1128/jb.01476-12] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Autoinducer-2 (AI-2) is required for biofilm formation and virulence of the oral pathogen Aggregatibacter actinomycetemcomitans, and we previously showed that lsrB codes for a receptor for AI-2. The lsrB gene is expressed as part of the lsrACDBFG operon, which is divergently transcribed from an adjacent lsrRK operon. In Escherichia coli, lsrRK encodes a repressor and AI-2 kinase that function to regulate lsrACDBFG. To determine if lsrRK controls lsrACDBFG expression and influences biofilm growth of A. actinomycetemcomitans, we first defined the promoters for each operon. Transcriptional reporter plasmids containing the 255-bp lsrACDBFG-lsrRK intergenic region (IGR) fused to lacZ showed that essential elements of lsrR promoter reside 89 to 255 bp upstream from the lsrR start codon. Two inverted repeat sequences that represent potential binding sites for LsrR and two sequences resembling the consensus cyclic AMP receptor protein (CRP) binding site were identified in this region. Using electrophoretic mobility shift assay (EMSA), purified LsrR and CRP proteins were shown to bind probes containing these sequences. Surprisingly, the 255-bp IGR did not contain the lsrA promoter. Instead, a fragment encompassing nucleotides +1 to +159 of lsrA together with the 255-bp IGR was required to promote lsrA transcription. This suggests that a region within the lsrA coding sequence influences transcription, or alternatively that the start codon of A. actinomycetemcomitans lsrA has been incorrectly annotated. Transformation of ΔlsrR, ΔlsrK, ΔlsrRK, and Δcrp deletion mutants with lacZ reporters containing the lsrA or lsrR promoter showed that LsrR negatively regulates and CRP positively regulates both lsrACDBFG and lsrRK. However, in contrast to what occurs in E. coli, deletion of lsrK had no effect on the transcriptional activity of the lsrA or lsrR promoters, suggesting that another kinase may be capable of phosphorylating AI-2 in A. actinomycetemcomitans. Finally, biofilm formation of the ΔlsrR, ΔlsrRK, and Δcrp mutants was significantly reduced relative to that of the wild type, indicating that proper regulation of the lsr locus is required for optimal biofilm growth by A. actinomycetemcomitans.
Collapse
|
13
|
Asif K, Kothiwale SV. Phagocytic activity of peripheral blood and crevicular phagocytes in health and periodontal disease. J Indian Soc Periodontol 2011; 14:8-11. [PMID: 20922072 PMCID: PMC2933522 DOI: 10.4103/0972-124x.65427] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Accepted: 11/14/2009] [Indexed: 11/30/2022] Open
Abstract
Background: Neutrophils constitute the main phagocytic cell system in mammalian host defense against an infecting agent. Abnormalities in leukocyte number and function are associated with increased susceptibility to periodontal diseases. The purpose of this study is to evaluate the in vitro phagocytic properties of crevicular and peripheral blood neutrophils in healthy and periodontitis subjects. Patients and Methods: A total of 30 subjects, that is, 10 patients in each of the following three groups: healthy controls, chronic periodontitis (CP), and localized aggressive periodontitis (LAP), were included in the study. The neutrophils were isolated from the peripheral blood and gingival crevice and tested for phagocytosis of Candida albicans. The percentage of leukocytes with ingested C. albicans was determined by light microscopy. Results: A significant reduction in the phagocytic activity of crevicular fluid polymorphonuclear neutrophils (CF-PMN) of LAP subjects (mean: 54.3±7)(P<0.001) was observed, compared to healthy controls (mean: 74.2±9) and chronic periodontitis subjects (mean: 69±9)(P=0.352). The mean percentage of peripheral blood polymorphonuclear neutrophils (PMNs) with phagocytosis of opsonized C. albicans in LAP patients was significantly reduced (mean: 74.9±5)(P<0.0068) compared to the phagocytic activity of neutrophils from controls (mean:82.1±3) and chronic periodontitis subjects (mean: 82.0±5)(P=0.970). There was no significant reduction in the phagocytic activity of CF PMNs (mean: 69±9) (P=0.35) and peripheral blood PMNs (mean: 82.5)(P=0.97) in the chronic periodontitis group when compared to the control group. Conclusion: The phagocytic activity of both crevicular and peripheral neutrophils in subjects with periodontitis is altered, increasing the susceptibility to periodontitis. Thus individual susceptibility may be an additional and important modifying factor in the pathogenesis of periodontal disease.
Collapse
Affiliation(s)
- K Asif
- Department of Periodontics and Oral Implantology, K.L.E.S's Institute of Dental Sciences, Belgaum - 590 010, India
| | | |
Collapse
|
14
|
Iskandar I, Walters JD. Clarithromycin accumulation by phagocytes and its effect on killing of Aggregatibacter actinomycetemcomitans. J Periodontol 2010; 82:497-504. [PMID: 20932153 DOI: 10.1902/jop.2010.100221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Clarithromycin inhibits several periodontal pathogens and is concentrated inside gingival fibroblasts and epithelial cells by an active transporter. We hypothesized that polymorphonuclear leukocytes (PMNs) and less mature myeloid cells possess a similar transporter for clarithromycin. It is feasible that clarithromycin accumulation inside PMNs could enhance their ability to kill Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans). METHODS To test the first hypothesis, purified PMNs and cultured HL-60 cells were incubated with [(3)H]-clarithromycin. Clarithromycin transport was assayed by measuring changes in cell-associated radioactivity over time. The second hypothesis was examined with PMNs loaded by incubation with clarithromycin (5 μg/ml). Opsonized bacteria were incubated at 37°C with control and clarithromycin-loaded PMNs. RESULTS Mature human PMNs, HL-60 cells differentiated into granulocytes, and undifferentiated HL-60 cells all took up clarithromycin in a saturable manner. The kinetics of uptake by all yielded linear Lineweaver-Burk plots. HL-60 granulocytes transported clarithromycin with a K(m) of ≈250 μg/ml and a V(max) of 473 ng/min/10(6) cells, which were not significantly different from the values obtained with PMNs. At steady state, clarithromycin levels inside HL-60 granulocytes and PMNs were 28- to 71-fold higher than extracellular levels. Clarithromycin-loaded PMNs killed significantly more A. actinomycetemcomitans and achieved shorter half-times for killing than control PMNs when assayed at a bacteria-to-PMN ratio of 100:1 (P <0.04). At a ratio of 30:1, these differences were not consistently significant. CONCLUSIONS PMNs and less mature myeloid cells possess a transporter that takes up and concentrates clarithromycin. This system could help PMNs cope with an overwhelming infection by A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Irma Iskandar
- Division of Periodontology, College of Dentistry, The Ohio State University Health Sciences Center, Columbus, OH 43210, USA
| | | |
Collapse
|
15
|
HAUBEK DORTE. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS 2010:1-53. [DOI: 10.1111/j.1600-0463.2010.02665.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
Autoinducer-2 and QseC control biofilm formation and in vivo virulence of Aggregatibacter actinomycetemcomitans. Infect Immun 2010; 78:2919-26. [PMID: 20404080 DOI: 10.1128/iai.01376-09] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Biofilm formation by the periodontal pathogen Aggregatibacter actinomycetemcomitans is dependent upon autoinducer-2 (AI-2)-mediated quorum sensing. However, the components that link the detection of the AI-2 signal to downstream gene expression have not been determined. One potential regulator is the QseBC two-component system, which is part of the AI-2-dependent response pathway that controls biofilm formation in Escherichia coli. Here we show that the expression of QseBC in A. actinomycetemcomitans is induced by AI-2 and that induction requires the AI-2 receptors, LsrB and/or RbsB. Additionally, inactivation of qseC resulted in reduced biofilm growth. Since the ability to grow in biofilms is essential for A. actinomycetemcomitans virulence, strains that were deficient in QseC or the AI-2 receptors were examined in an in vivo mouse model of periodontitis. The DeltaqseC mutant induced significantly less alveolar bone resorption than the wild-type strain (P < 0.02). Bone loss in animals infected with the DeltaqseC strain was similar to that in sham-infected animals. The DeltalsrB, DeltarbsB, and DeltalsrB DeltarbsB strains also induced significantly less alveolar bone resorption than the wild type (P < 0.03, P < 0.02, and P < 0.01, respectively). However, bone loss induced by a DeltaluxS strain was indistinguishable from that induced by the wild type, suggesting that AI-2 produced by indigenous microflora in the murine oral cavity may complement the DeltaluxS mutation. Together, these results suggest that the QseBC two-component system is part of the AI-2 regulon and may link the detection of AI-2 to the regulation of downstream cellular processes that are involved in biofilm formation and virulence of A. actinomycetemcomitans.
Collapse
|
17
|
Takashima E, Yamada H, Yajima A, Shiomi K, Ōmura S, Kiyoshi K. A quinol peroxidase inhibitor prevents secretion of a leukotoxin fromAggregatibacter actinomycetemcomitans. J Periodontal Res 2010; 45:123-8. [DOI: 10.1111/j.1600-0765.2009.01211.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Paul-Satyaseela M, Karched M, Bian Z, Ihalin R, Borén T, Arnqvist A, Chen C, Asikainen S. Immunoproteomics of Actinobacillus actinomycetemcomitans outer-membrane proteins reveal a highly immunoreactive peptidoglycan-associated lipoprotein. J Med Microbiol 2006; 55:931-942. [PMID: 16772422 DOI: 10.1099/jmm.0.46470-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In a search for novel bioactive cell surface structures of periodontal pathogens, it was found that sera from two patients with Actinobacillus actinomycetemcomitans-associated infections reacted strongly at 17 kDa on immunoblots of A. actinomycetemcomitans outer-membrane protein (OMP) preparations. The 17 kDa antigen was also recognized by anti-CsgA (Escherichia coli curli major subunit) antibody. The 17 kDa A. actinomycetemcomitans protein was identified as peptidoglycan-associated lipoprotein (PAL; AaPAL) by two-dimensional immunoblotting and subsequent sequence analysis by mass spectrometry and bioinformatics tools. AaPAL was an OMP and a lipoprotein, and it had an OmpA-like domain. In a group of middle-aged subjects (n = 26), serum reactivity to AaPAL was associated with the presence of periodontitis but not with the oral detection of A. actinomycetemcomitans. Both human sera and rabbit antisera against three different types of antigens, the gel-purified AaPAL, A. actinomycetemcomitans whole-cell antigens, and CsgA, recognized putative PALs of oral haemophili in addition to AaPAL. The results demonstrated that the novel AaPAL is a conserved bacterial lipoprotein. It is expressed in vivo and is strongly immunoreactive. The antigenic cross-reactivity found between AaPAL and oral haemophili may enhance local and systemic immuno-inflammatory reactions in periodontitis.
Collapse
Affiliation(s)
| | - Maribasappa Karched
- Oral Microbiology, Institute of Dentistry, Umeå University, SE-90187 Umeå, Sweden
| | - Zhao Bian
- Microbiology and Tumor Biology Center, Karolinska Hospital, Stockholm, Sweden
| | - Riikka Ihalin
- Oral Microbiology, Institute of Dentistry, Umeå University, SE-90187 Umeå, Sweden
| | - Thomas Borén
- Oral Microbiology, Institute of Dentistry, Umeå University, SE-90187 Umeå, Sweden
| | - Anna Arnqvist
- Oral Microbiology, Institute of Dentistry, Umeå University, SE-90187 Umeå, Sweden
| | - Casey Chen
- University of Southern California School of Dentistry, Los Angeles, CA 90089, USA
| | - Sirkka Asikainen
- Oral Microbiology, Institute of Dentistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
19
|
Kasai H, Yamamoto K, Koseki T, Yokota M, Nishihara T. Involvement of caspase activation through release of cytochrome c from mitochondria in apoptotic cell death of macrophages infected with Actinobacillus actinomycetemcomitans. FEMS Microbiol Lett 2004; 233:29-35. [PMID: 15043866 DOI: 10.1016/j.femsle.2004.01.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2003] [Revised: 11/19/2003] [Accepted: 01/20/2004] [Indexed: 11/26/2022] Open
Abstract
We previously reported that infection with the periodontopathic bacterium Actinobacillus actinomycetemcomitans induced apoptosis in a mouse macrophage cell line J774.1. In the present study, we examined the involvement of cytochrome c and caspases in the induction of apoptosis in A. actinomycetemcomitans-infected J774.1 cells. Following infection, the expression levels of cytochrome c, and cleaved forms of caspase-3 and caspase-9 in the cells were examined using immunoblot analysis. Cytochrome c was released from mitochondria into the cytoplasm after A. actinomycetemcomitans-infected J774.1 cells were cultured for 6 h, and caspase-3 and caspase-9 were found to be cleaved forms in the cells. Further, caspase-9 activity was markedly increased, and phosphorylated p53 was detected in the cells 30 h following infection. These results suggest that apoptosis in A. actinomycetemcomitans-infected J774.1 cells is regulated by the release of cytochrome c from mitochondria into cytoplasm and the subsequent activation of caspases through phosphorylation of p53.
Collapse
Affiliation(s)
- Hironori Kasai
- Department of Oral Microbiology, Kyushu Dental College, 2-6-1 Manazuru, Kokurakita-ku, Kitakyushu 803-8580, Japan
| | | | | | | | | |
Collapse
|
20
|
O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004; 35:101-34. [PMID: 15107060 DOI: 10.1111/j.0906-6713.2004.003559.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Neil M O'Brien-Simpson
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
21
|
Yamaguchi N, Kubo C, Masuhiro Y, Lally ET, Koga T, Hanazawa S. Tumor necrosis factor alpha enhances Actinobacillus actinomycetemcomitans leukotoxin-induced HL-60 cell apoptosis by stimulating lymphocyte function-associated antigen 1 expression. Infect Immun 2004; 72:269-76. [PMID: 14688105 PMCID: PMC343981 DOI: 10.1128/iai.72.1.269-276.2004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We demonstrated previously that Actinobacillus actinomycetemcomitans leukotoxin (Ltx) is greatly able to induce apoptotic signaling in cells that are positive for lymphocyte function-associated antigen 1 (LFA-1), a cell receptor of Ltx. We investigated in this study whether inflammatory cytokines can regulate apoptosis of human leukemic HL-60 cells induced by Ltx. Of the cytokines tested, tumor necrosis factor alpha (TNF-alpha) significantly enhanced the Ltx-induced cell apoptosis. Northern and Western blotting analyses showed that TNF-alpha enhanced the expression of CD11a in the cells at both the mRNA and protein levels but did not do so for CD18 expression. TNF-alpha also enhanced the binding of Ltx to the cells. We also observed by measuring the mitochondrial transmembrane potential and the generation of superoxide anion that the cytokine enhanced Ltx-induced apoptosis in HL-60 cells. In addition, interleukin-1beta significantly enhanced Ltx-induced cell apoptosis, although the enhancing activity was lower than that of TNF-alpha. These stimulatory effects of both cytokines were also observed for human polymorphonuclear leukocytes. The ability of TNF-alpha to increase cell susceptibility to Ltx could be inhibited by preincubation of the cells with a monoclonal antibody against TNF receptor 1 but not by preincubation of the cells with a monoclonal antibody against anti-TNF receptor 2. Furthermore, the results of an assay of caspase 3 intracellular activity (PhiPhiLuxG1D2) showed that Ltx-induced caspase 3 activation was completely neutralized by CD18 antibody treatment, although significant neutralization was also observed with anti-CD11a antibody. Taken together, the results of the present study indicate that TNF-alpha acts as a potent stimulator of Ltx-induced HL-60 cell apoptosis via TNF receptor 1-mediated upregulation of LFA-1 expression.
Collapse
Affiliation(s)
- Noboru Yamaguchi
- Department of Preventive Dentistry, Kyushu University Faculty of Dental Science, Fukuoka 812-8582, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Mombelli A, Casagni F, Madianos PN. Can presence or absence of periodontal pathogens distinguish between subjects with chronic and aggressive periodontitis? A systematic review. J Clin Periodontol 2003; 29 Suppl 3:10-21; discussion 37-8. [PMID: 12787203 DOI: 10.1034/j.1600-051x.29.s3.1.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES The purpose of this study was to determine to what extent the presence or absence of periodontal pathogens can distinguish between subjects with chronic and aggressive periodontitis. MATERIAL AND METHODS A systematic review of cross sectional and longitudinal studies providing microbiological data both from patients with chronic periodontitis (ChP) and aggressive periodontitis (AgP) at a subject level. Strict inclusion criteria were applied. The presence or absence of five microorganisms was selected as primary study parameters: Actinobacillus actinomycetemcomitans (AA), Porphyromonas gingivalis (PG), Prevotella intermedia (PI), Bacteroides forsythus (BF), and Campylobacter rectus (CR). RESULTS The presence or absence of AA could be evaluated in 11 papers. In seven papers the presence or absence of PG could be analysed. Subject specific data on PI were available from six studies. Two studies could be used regarding the presence or absence of BF, and two regarding CR. Sensitivity and specificity of every microbiological test were individually calculated for each selected study, assuming that the clinical diagnosis of AgP or ChP was the true status the tests attempted to detect. AgP was considered to be the condition of interest and ChP was considered equivalent to 'non-AgP'. Receiver Operator Characteristic (ROC) diagrams were constructed using these data. ROC diagrams indicated the limited discriminatory ability of all of the test parameters to identify subjects with AgP. An additional assessment showed that the highly leukotoxic variant of AA was uniquely associated with patients suffering from aggressive periodontitis. However, in a high proportion of patients diagnosed with AgP the presence of this variant could not be detected. CONCLUSION The presence or absence of AA, PG, PI, BF or CR could not discriminate between subjects with AgP from those with ChP.
Collapse
Affiliation(s)
- Andrea Mombelli
- School of Dental Medicine, University of Geneva, Switzerland.
| | | | | |
Collapse
|
23
|
Hirosue M, Kokeguchi S, Maeda H, Nishimura F, Takashiba S, Murayama Y. Characterization of two genes encoding ferritin-like protein in Actinobacillus actinomycetemcomitans. Microbiol Immunol 2002; 45:721-7. [PMID: 11762755 DOI: 10.1111/j.1348-0421.2001.tb01307.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Two genes encoding ferritin-like protein, designated afnA and afnB, were identified in the upstream region of actX on the Actinobacillus actinomycetemcomitans chromosomal DNA. The actX has been reported to be a regulatory gene homologous to the Escherichia coli fnr, which controls the growth and virulence of A. actinomycetemcomitans under anaerobic conditions. The afnB located 340 bp-upstream from the actX, and the afnA located just 15 bp-upstream from afnB. The afnA and afnB encoded 161 and 165 amino acid residues, respectively, which were similar to ferritin-like proteins of other microorganisms. Western immunoblotting using rabbit antiserum against E. coli ferritin showed these two proteins, which are reactive with the serum with 19-kDa molecular masses, are produced from A. actinomycetemcomitans. The N-terminal amino acid sequences of the two proteins were consequent with those deduced from afnA and afnB. Northern hybridization revealed that the afnA and afnB constituted a bicistronic operon and the accumulation of afnA and afnB mRNA was upregulated under aerobic conditions. These findings suggested that the operon was regulated by the presence of oxygen. The two ferritin-like proteins may have important roles in the adaptation of A. actinomycetemcomitans to oxidative environmental changes.
Collapse
Affiliation(s)
- M Hirosue
- Department of Patho-physiology, Division of Periodontal Science, Okayama University Graduate School of Medicine and Dentistry, Japan
| | | | | | | | | | | |
Collapse
|
24
|
Fukunaga M, Tsuruda K. Actinobacillus actinomycetemcomitans induces lethal effects on the macrophage-like human cell line U937. ORAL MICROBIOLOGY AND IMMUNOLOGY 2001; 16:284-9. [PMID: 11555305 DOI: 10.1034/j.1399-302x.2001.016005284.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We examined the cytotoxicity in culture medium of Actinobacillus actinomycetemcomitans against the human monocyte-macrophage-like cell line U937 using the trypan blue exclusion test and WST-1 test. We found that A. actinomycetemcomitans Y4 showed the highest cytotoxic activity among the three different serotype strains and the cytotoxic effects of both bacterial cells and culture supernatants in A. actinomycetemcomitans Y4 were stronger on phorbol-12-myristate 13-acetate (PMA)-induced U937 cells than uninduced U937 cells. Morphological changes in PMA-induced U937 cells treated with culture supernatants differed from those treated with leukotoxin, and a difference in the susceptibility to 56 degrees C heat treatment was found between culture supernatants and leukotoxin. The cytotoxic activity by WST-1 was determined more rapidly and strongly than that by trypan blue assay. These findings suggested that the cytotoxic effect of A. actinomycetemcomitans was influenced by the differentiation of U937 cells and may be more potent on the respiratory chain than the cell membrane.
Collapse
Affiliation(s)
- M Fukunaga
- Department of Preventive Dentistry, Hiroshima University, School of Dentistry, Japan
| | | |
Collapse
|
25
|
Haubek D, Ennibi OK, Poulsen K, Poulsen S, Benzarti N, Kilian M. Early-onset periodontitis in Morocco is associated with the highly leukotoxic clone of Actinobacillus actinomycetemcomitans. J Dent Res 2001; 80:1580-3. [PMID: 11499517 DOI: 10.1177/00220345010800062001] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A particular clone (JP2) of Actinobacillus actinomycetemcomitans with increased leukotoxin production has been isolated from individuals with early-onset periodontitis (EOP). The aim of this study was to determine the frequency of carriers of this clone and its association with EOP in Moroccan schoolchildren. Of 217 plaque samples, 131 (60.4%) were culture-positive for A. actinomycetemcomitans. A total of 19 of these isolates had a 530-bp deletion in the leukotoxin promoter region characteristic of the JP2 clone. A strong association between the presence of A. actinomycetemcomitans with the 530-bp deletion and EOP was found (adjusted OR = 29.4; 95% Cl = 8.3 - 104.4; p < 0.0005), while no association could be demonstrated between the presence of A. actinomycetemcomitans without the deletion and EOP (adjusted OR = 1.3; 95% CI = 0.5 -2.9; p = 0.750). The study demonstrates that the endemic presence, in a human population, of the highly leukotoxic JP2 clone may result in an unusually high prevalence of EOP.
Collapse
Affiliation(s)
- D Haubek
- Department of Community Oral Health and Pediatric Dentistry, Dental School, Faculty of Health Sciences, University of Aarhus, Denmark.
| | | | | | | | | | | |
Collapse
|
26
|
NAKAGAWA RI, GUAZELI-AMIN VH, HIDALGO MM, TREVISAN Jr. W, ITANO EN. Anticorpos antileucotoxina contra Actinobacillus actinomycetemcomitans em amostras de soro e saliva de pacientes com periodontite juvenil localizada. ACTA ACUST UNITED AC 2001. [DOI: 10.1590/s1517-74912001000100002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A leucotoxina de Actinobacillus actinomycetemcomitans é considerada seu principal fator de virulência com potencial de causar agressão às defesas do hospedeiro. No presente trabalho, foram analisados os níveis séricos e salivares de anticorpos antileucotoxina de A. actinomycetemcomitans em soros e salivas de pacientes com periodontite juvenil localizada (PJL) e controles saudáveis. Adicionalmente, foi realizada a análise de complexo imune (CI) nas amostras de saliva. Foram utilizados os métodos ELISA clássico com a leucotoxina obtida por gel filtração em Sephadex G-200 e ELISA de captura utilizando IgG de coelho anti-A. actinomycetemcomitans FDC Y4 leucotóxico adsorvido com uma cepa da mesma espécie, porém, não leucotóxica. Os resultados obtidos demonstraram níveis séricos de IgG significativamente mais elevados em pacientes com PJL em relação aos controles sadios, tanto por ELISA clássico como por ELISA de captura (p < 0,05). No entanto, não foram observadas diferenças entre os níveis de IgG, IgA-S e CI nas salivas dos indivíduos examinados. Estes resultados sugerem que, embora A. actinomycetemcomitans apresente vários fatores de virulência que afetam a resposta imune do hospedeiro, ocorre resposta imune à leucotoxina nos pacientes com PJL. Esse aumento de IgG na circulação sangüínea pode contribuir na defesa do hospedeiro, limitando a lesão nas regiões periodontais amplamente colonizadas por A. actinomycetemcomitans.
Collapse
|
27
|
Kachlany SC, Fine DH, Figurski DH. Secretion of RTX leukotoxin by Actinobacillus actinomycetemcomitans. Infect Immun 2000; 68:6094-100. [PMID: 11035711 PMCID: PMC97685 DOI: 10.1128/iai.68.11.6094-6100.2000] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Actinobacillus actinomycetemcomitans, the etiologic agent for localized juvenile periodontitis and certain other human infections, such as endocarditis, expresses a leukotoxin that acts on polymorphonuclear leukocytes and macrophages. Leukotoxin is a member of the highly conserved repeat toxin (RTX) family of bacterial toxins expressed by a variety of pathogenic bacteria. While the RTX toxins of other bacterial species are secreted, the leukotoxin of A. actinomycetemcomitans is thought to remain associated with the bacterial cell. We have examined leukotoxin production and localization in rough (adherent) and smooth (nonadherent) strains of A. actinomycetemcomitans. We found that leukotoxin expressed by the rough, adherent, clinical isolate CU1000N is indeed cell associated, as expected. However, we were surprised to find that smooth, nonadherent strains of A. actinomycetemcomitans, including Y4, JP2 (a strain expressing a high level of toxin), and CU1060N (an isogenic smooth variant of CU1000N), secrete an abundance of leukotoxin into the culture supernatants during early stages of growth. After longer times of incubation, leukotoxin disappears from the supernatants, and its loss is accompanied by the appearance of a number of low-molecular-weight polypeptides. The secreted leukotoxin is active, as evidenced by its ability to kill HL-60 cells in vitro. We found that the growth phase and initial pH of the growth medium significantly affect the abundance of secreted leukotoxin, and we have developed a rapid (<2 h) method to partially purify large amounts of leukotoxin. Remarkably, mutations in the tad genes, which are required for tight nonspecific adherence of A. actinomycetemcomitans to surfaces, cause leukotoxin to be released from the bacterial cell. These studies show that A. actinomycetemcomitans has the potential to secrete abundant leukotoxin. It is therefore appropriate to consider a possible role for leukotoxin secretion in the pathogenesis of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- S C Kachlany
- Department of Microbiology, College of Physicians and Surgeons, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
28
|
Abstract
In 1993, the 1st European Workshop on Periodontology explicitly recognized that there was insufficient knowledge to differentiate truly different forms of periodontal disease from differences in the presentation/severity of the same disease. In spite of recent progress in our understanding of periodontal diseases, the issue is far from having been resolved. Classification of periodontal diseases, therefore, remains based upon the definition of specific clinical syndromes. Early-onset periodontitis (EOP) is one such syndrome and comprises a group of pathological conditions leading to loss of periodontal tissues early in life. The notion that classifies periodontitis syndromes as "early-onset" or "adult" is primarily epidemiological in nature and is based on the observation that periodontitis is rather infrequent in children and young adults. Nevertheless, considerable epidemiological evidence indicates that periodontitis does affect children and young adults to a level of severity that may lead to premature exfoliation of primary and/or permanent teeth. Clinical presentation of periodontitis early in the life of an individual is thought to indicate that the etiologic agents have been able to cause considerable tissue damage over a relatively short period of time. It also implies either infection with highly virulent bacteria and/or a highly susceptible subject. The purpose of this review is to discuss the criteria generally utilized to classify EOP, provide the rationale to designate EOP as a distinct disease entity, and to review the evidence justifying a subclassification into particular subgroups of EOP.
Collapse
Affiliation(s)
- M S Tonetti
- Department of Periodontology, Eastman Dental Institute and Hospital, University College, London, United Kingdom.
| | | |
Collapse
|
29
|
Jiang Y, Graves DT. Periodontal pathogens stimulate CC-chemokine production by mononuclear and bone-derived cells. J Periodontol 1999; 70:1472-8. [PMID: 10632523 DOI: 10.1902/jop.1999.70.12.1472] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Chemokines are chemotactic cytokines that stimulate recruitment of leukocytes. Monocyte chemoattractant protein-1, macrophage inflammatory protein-1alpha, and RANTES (regulated on activation, normal T cell expressed, and secreted) are 3 well-characterized CC-chemokines that regulate mononuclear cell recruitment. The recruitment of inflammatory cells is of particular importance in the oral cavity because of the likelihood that cells will be challenged with bacteria either during acute infection or following surgical procedures. Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans are putative periodontal pathogens that may be harbored in subgingival and supragingival plaque. The capacity of the host to respond to these bacteria by the elaboration of chemoattractants may represent an important defense mechanism. METHODS In the present study, we examined CC-chemokine production by human mononuclear cells and bone-derived cells in response to P. gingivalis, A. actinomycetemcomitans and lipopolysaccharides (LPS) stimulation in vitro. The chemokines produced were measured by ELISA. RESULTS The results demonstrate that P. gingivalis and A. actinomycetemcomitans induce high levels of MIP-1alpha in mononuclear cells. P. gingivalis and A. actinomycetemcomitans stimulated high levels of MCP-1 in bone-derived cells and induced moderate levels of RANTES production in both mononuclear and osteoblastic cells. In mononuclear cells, LPS induced high levels of MIP-1alpha and RANTES and moderate levels of MCP-1; in osteoblasts LPS only induced MCP-1. CONCLUSIONS The capacity of bacteria to induce a given chemokine depends upon the cell type stimulated. That different cell types would exhibit differences in the CC-chemokines produced under the same stimulus provides a mechanism to explain tissue-specific recruitment of leukocytes.
Collapse
Affiliation(s)
- Y Jiang
- Department of Endodontics, Boston University School of Dental Medicine, MA, USA.
| | | |
Collapse
|
30
|
Fives-Taylor PM, Meyer DH, Mintz KP, Brissette C. Virulence factors of Actinobacillus actinomycetemcomitans. Periodontol 2000 1999; 20:136-67. [PMID: 10522226 DOI: 10.1111/j.1600-0757.1999.tb00161.x] [Citation(s) in RCA: 214] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A. actinomycetemcomitans has clearly adapted well to its environs; its armamentarium of virulence factors (Table 2) ensures its survival in the oral cavity and enables it to promote disease. Factors that promote A. actinomycetemcomitans colonization and persistence in the oral cavity include adhesins, bacteriocins, invasins and antibiotic resistance. It can interact with and adhere to all components of the oral cavity (the tooth surface, other oral bacteria, epithelial cells or the extracellular matrix). The adherence is mediated by a number of distinct adhesins that are elements of the cell surface (outer membrane proteins, vesicles, fimbriae or amorphous material). A. actinomycetemcomitans enhances its chance of colonization by producing actinobacillin, an antibiotic that is active against both streptococci and Actinomyces, primary colonizers of the tooth surface. The fact that A. actinomycetemcomitans resistance to tetracyclines, a drug often used in the treatment of periodontal disease, is on the rise is an added weapon. Periodontal pathogens or their pathogenic products must be able to pass through the epithelial cell barrier in order to reach and cause destruction to underlying tissues (the gingiva, cementum, periodontal ligament and alveolar bone). A. actinomycetemcomitans is able to elicit its own uptake into epithelial cells and its spread to adjacent cells by usurping normal epithelial cell function. A. actinomycetemcomitans may utilize these remarkable mechanisms for host cell infection and migration to deeper tissues. A. actinomycetemcomitans also orchestrates its own survival by elaborating factors that interfere with the host's defense system (such as factors that kill phagocytes and impair lymphocyte activity, inhibit phagocytosis and phagocyte chemotaxis or interfere with antibody production). Once the organisms are firmly established in the gingiva, the host responds to the bacterial onslaught, especially to the bacterial lipopolysaccharide, by a marked and continual inflammatory response, which results in the destruction of the periodontal tissues. A. actinomycetemcomitans has at least three individual factors that cause bone resorption (lipopolysaccharide, proteolysis-sensitive factor and GroEL), as well as a number of activities (collagenase, fibroblast cytotoxin, etc.) that elicit detrimental effects on connective tissue and the extracellular matrix. It is of considerable interest to know that A. actinomycetemcomitans possesses so many virulence factors but unfortunate that only a few have been extensively studied. If we hope to understand and eradicate this pathogen, it is critical that in-depth investigations into the biochemistry, genetic expression, regulation and mechanisms of action of these factors be initiated.
Collapse
Affiliation(s)
- P M Fives-Taylor
- Department of Microbiology & Molecular Genetics, University of Vermont, Burlington, USA
| | | | | | | |
Collapse
|
31
|
Slots J, Ting M. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in human periodontal disease: occurrence and treatment. Periodontol 2000 1999; 20:82-121. [PMID: 10522224 DOI: 10.1111/j.1600-0757.1999.tb00159.x] [Citation(s) in RCA: 353] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- J Slots
- Department of Periodontology, School of Dentistry, University of Southern California, Los Angeles, USA
| | | |
Collapse
|
32
|
Ohguchi M, Ishisaki A, Okahashi N, Koide M, Koseki T, Yamato K, Noguchi T, Nishihara T. Actinobacillus actinomycetemcomitans toxin induces both cell cycle arrest in the G2/M phase and apoptosis. Infect Immun 1998; 66:5980-7. [PMID: 9826381 PMCID: PMC108757 DOI: 10.1128/iai.66.12.5980-5987.1998] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found that the culture supernatant of the periodontopathic bacterium Actinobacillus actinomycetemcomitans had a cytotoxic effect on several cell lines. In this study, we purified the toxin from the culture supernatant of A. actinomycetemcomitans Y4 by a four-step procedure: ammonium sulfate precipitation, POROS HQ/M column chromatography, polymyxin B matrix column chromatography, and Mono-Q column chromatography. The purified toxin gave two major bands of protein with molecular masses of 80 and 85 kDa upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The mechanism of cell death of the B-cell hybridoma cell line HS-72 was examined by observing changes in nuclear morphology, an increase in the proportion of fragmented DNA, and the typical ladder pattern of degraded chromosomal DNA, indicating the induction of apoptosis. Overexpression of human Bcl-2 suppressed apoptosis in HS-72 cells, indicating that the toxin from A. actinomycetemcomitans induces apoptosis by a Bcl-2-inhibitable mechanism. Flow cytometric analysis revealed that the toxin caused cell cycle arrest in the G2/M phase and apoptosis in HS-72 cells. In addition, aurintricarboxylic acid, a DNA endonuclease inhibitor, markedly decreased the percentage of apoptotic cells but had no effect on cell cycle arrest in the G2/M phase. Taken together, these findings suggest that the toxin from A. actinomycetemcomitans could mediate the development of periodontal diseases through cell cycle arrest in the G2/M phase and apoptosis in B lymphocytes of periodontal tissue.
Collapse
Affiliation(s)
- M Ohguchi
- Department of Oral Science, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Stanley P, Koronakis V, Hughes C. Acylation of Escherichia coli hemolysin: a unique protein lipidation mechanism underlying toxin function. Microbiol Mol Biol Rev 1998; 62:309-33. [PMID: 9618444 PMCID: PMC98917 DOI: 10.1128/mmbr.62.2.309-333.1998] [Citation(s) in RCA: 156] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The pore-forming hemolysin (HlyA) of Escherichia coli represents a unique class of bacterial toxins that require a posttranslational modification for activity. The inactive protoxin pro-HlyA is activated intracellularly by amide linkage of fatty acids to two internal lysine residues 126 amino acids apart, directed by the cosynthesized HlyC protein with acyl carrier protein as the fatty acid donor. This action distinguishes HlyC from all bacterial acyltransferases such as the lipid A, lux-specific, and nodulation acyltransferases, and from eukaryotic transferases such as N-myristoyl transferases, prenyltransferases, and thioester palmitoyltransferases. Most lipids directly attached to proteins may be classed as N-terminal amide-linked and internal ester-linked acyl groups and C-terminal ether-linked isoprenoid groups. The acylation of HlyA and related toxins does not equate to these but does appear related to a small number of eukaryotic proteins that include inflammatory cytokines and mitogenic and cholinergic receptors. While the location and structure of lipid moieties on proteins vary, there are common effects on membrane affinity and/or protein-protein interactions. Despite being acylated at two residues, HlyA does not possess a "double-anchor" motif and does not have an electrostatic switch, although its dependence on calcium binding for activity suggests that the calcium-myristoyl switch may have relevance. The acyl chains on HlyA may provide anchorage points onto the surface of the host cell lipid bilayer. These could then enhance protein-protein interactions either between HlyA and components of a host signal transduction pathway to influence cytokine production or between HlyA monomers to bring about oligomerization during pore formation.
Collapse
Affiliation(s)
- P Stanley
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom.
| | | | | |
Collapse
|
34
|
Abstract
The codon usage patterns of 21 genes encompassing 5800 codons from Actinobacillus actinomycetemcomitans were analyzed. A. actinomycetemcomitans genes could be divided into two groups based on their function and G + C content. One group included those genes encoding basic cellular functions. This group displayed an average G + C content of 48%. A second group comprised genes encoding the leukotoxin determinant, an insertion sequence and a plasmid. This group displayed an average G + C content of 36%. These findings suggest that portions of the A. actinomycetemcomitans genome may have been acquired by horizontal gene transfer from one or more distantly related species. We present a table of A. actinomycetemcomitans codon usage. These data may be used to establish standards for computer programs that predict A. actinomycetemcomitans protein coding regions and may be useful in designing degenerate oligonucleotide probes.
Collapse
Affiliation(s)
- J B Kaplan
- Department of Oral Pathology and Biology, New Jersey Dental School, University of Medicine and Dentistry of New Jersey, Newark 07103, USA
| | | |
Collapse
|
35
|
He T, Hayashi J, Yamamoto M, Ishikawa I. Genotypic characterization of Actinobacillus actinomycetemcomitans isolated from periodontitis patients by arbitrarily primed polymerase chain reaction. J Periodontol 1998; 69:69-75. [PMID: 9527564 DOI: 10.1902/jop.1998.69.1.69] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Actinobacillus actinomycetemcomitans is one of the most suspected pathogens in the initiation and progression of juvenile periodontitis and severe adult periodontitis. The aim of the present study was to investigate the genotypic characterization of A. actinomycetemcomitans using arbitrarily primed polymerase chain reaction (AP-PCR). AP-PCR was applied to 143 A. actinomycetemcomitans strains, including 8 reference strains and 135 clinical strains isolated from 43 unrelated Japanese periodontitis patients. The DNA fragment patterns obtained using a single 10-mer primer with random sequence (OPA-07) for these strains allowed the recognition of 10 distinct AP-PCR groups that correlated to some extent with serotypes. AP-PCR group VIII was significantly (P < 0.05) observed in deep (> 5 mm) periodontal pockets. Group II was exclusively detected in deep pockets. However, a clear relationship was not observed between AP-PCR genotypes and various periodontal status. Only one genotype was found within individual oral cavity/single-infected site, except one case in which the patient harbored two AP-PCR genotypes. The AP-PCR patterns of the A. actinomycetemcomitans isolates recovered from the site after periodontal treatment remained identical. These results demonstrate genetic diversity among the investigated population and a clonal nature in a periodontal patient of A. actinomycetemcomitans by AP-PCR. Furthermore, it could be inferred that a certain AP-PCR genotype(s) of A. actinomycetemcomitans is more important in the pathogenesis of periodontal diseases.
Collapse
Affiliation(s)
- T He
- Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
| | | | | | | |
Collapse
|
36
|
Okuda K, Kigure T, Yamada S, Kaneko T, Ishihara K, Miura T, Kato T, Takazoe I. Role for the S-layer of Campylobacter rectus ATCC33238 in complement mediated killing and phagocytic killing by leukocytes from guinea pig and human peripheral blood. Oral Dis 1997; 3:113-20. [PMID: 9467352 DOI: 10.1111/j.1601-0825.1997.tb00022.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
OBJECTIVE The role of the S-layer of Campylobacter rectus ATCC 33238 in complement-mediated killing and interaction with leukocytes of the intraperitoneal cavity from guinea pigs and human peripheral blood was studied in vitro. MATERIALS AND METHODS Rabbit polyclonal anti-serum to whole C. rectus cells, a monoclonal antibody which recognizes 150 KDa S-layer protein antigen and a monoclonal antibody against lipopolysaccharide (LPS) were prepared. Sensitivities of C. rectus cells against complement mediated killing and phagocytic killing by peritoneal leukocytes of guinea pig and human peripheral leukocytes were examined in the presence or absence of a specific antibody. RESULTS C. rectus ATCC 33238 cells were moderately sensitive to complement mediated killing in the presence of rabbit polyclonal antibody against whole cells, and slightly sensitive in the presence of monoclonal antibody against S-layer. Ingestion and phagocytic killing of C. rectus cells by leukocytes were enhanced by the rabbit anti-serum and monoclonal antibody against S-layer, but not by the monoclonal antibody against LPS, pre-immune rabbit serum or control ascites. Viability of leukocytes was dependent on the number of ingested C. rectus cells. CONCLUSIONS The present study demonstrates that S-layer possessing C. rectus cells are resistant to complement mediated killing and phagocytic killing by leukocytes in the absence of specific antibody.
Collapse
Affiliation(s)
- K Okuda
- Department of Microbiology, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Affiliation(s)
- J J Zambon
- Department of Periodontology, State University of New York, School of Dental Medicine, Buffalo, USA
| |
Collapse
|
38
|
Jiang Y, Russell TR, Graves DT, Cheng H, Nong SH, Levitz SM. Monocyte chemoattractant protein 1 and interleukin-8 production in mononuclear cells stimulated by oral microorganisms. Infect Immun 1996; 64:4450-5. [PMID: 8890191 PMCID: PMC174397 DOI: 10.1128/iai.64.11.4450-4455.1996] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chemokines are a family of low-molecular-weight proinflammatory cytokines that stimulate recruitment of leukocytes. The chemokines interleukin-8 (IL-8) and monocyte chemoattractant protein 1 (MCP-1) are relatively specific chemoattractants for neutrophils and monocytes, respectively. Chemokine expression contributes to the presence of different leukocyte populations observed in normal and pathologic states. In the present studies, peripheral blood mononuclear cells (PBMC) were stimulated by microbes (Candida albicans, Streptococcus mutans, Porphyromonas gingivalis, and Actinobacillus actinomycetemcomitans) selected based upon their importance as oral pathogens. IL-8 and MCP-1 gene expression and protein release were determined by Northern blot (RNA blot) analysis and enzyme-linked immunosorbent assay. C. albicans, P. gingivalis, and A. actinomycetemcomitans induced high levels of production of both MCP-1 and IL-8. S. mutans was a strong inducer of MCP-1, but it did not stimulate significant production of IL-8. C. albicans, S. mutans, and A. actinomycetemcomitans were 500 to 5,000 times more potent than P. gingivalis in terms of MCP-1 production. In general, the microbe-to-PBMC ratios required for maximum gene expression of MCP-1 were lower than those for IL-8. However, for actual protein release of MCP-1 versus IL-8, differences in the effects of various microbe concentrations were observed only for A. actinomycetemcomitans. These results demonstrate that different oral pathogens induce specific dose-dependent patterns of chemokine gene expression and release. Such patterns may help explain the immunopathology of oral infections, particularly with regard to inflammatory leukocyte recruitment.
Collapse
Affiliation(s)
- Y Jiang
- The Evans Memorial Department of Clinical Research and the Department of Medicine, Boston University Medical Center Hospital and Boston City Hospital, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
39
|
Kolodrubetz D, Spitznagel J, Wang B, Phillips LH, Jacobs C, Kraig E. cis Elements and trans factors are both important in strain-specific regulation of the leukotoxin gene in Actinobacillus actinomycetemcomitans. Infect Immun 1996; 64:3451-60. [PMID: 8751884 PMCID: PMC174248 DOI: 10.1128/iai.64.9.3451-3460.1996] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Actinobacillus actinomycetemcomitans, the etiologic agent of localized juvenile periodontitis, produces a potent leukotoxin that kills human neutrophils. The production of leukotoxin RNA can vary more than 50-fold among isolates of A. actinomycetemcomitans, and strains expressing high levels of leukotoxin RNA are most often found at sites of periodontal disease. To assess the relative contributions of transcription factors and promoter sequences in setting the disparate levels of leukotoxin RNA found, we have undertaken classical cis/trans analyses. First, the leukotoxin promoter regions from moderately leukotoxic (Y4) and minimally leukotoxic (ATCC 33384) strains of A. actinomycetemcomitans were cloned, sequenced, and compared with the previously sequences leukotoxin promoter region of the high-producer strain JP2. The Y4 and ATCC 33384 promoter regions each contain a 528-bp segment that is absent from JP2. Interestingly, the analysis of various deletion constructs in A. actinomycetemcomitans indicated that Y4, despite the large insertion, initiates leukotoxin RNA synthesis at the same promoter as JP2 does. To perform cis/trans analyses, these three leukotoxin promoter regions were cloned into a plasmid upstream of the reporter gene beta-galactosidase. Each plasmid was transformed into JP2, Y4, and ATCC 33384, and the beta-galactosidase levels were determined. The results indicated that the sequences responsible for down-regulating leukotoxin RNA levels in Y4 relative to JP2 are found within the transcribed region of the Y4 leukotoxin operon. Importantly, in ATCC 33384, strain-specific trans factors and promoter sequence differences are equally significant in determining the lower levels of leukotoxin RNA. We hypothesize that either strain ATCC 33384 has a negative regulatory protein (which is missing or mutated in JP2/Y4) or that JP2 and Y4 carry an activator that is missing or mutated in ATCC 33384.
Collapse
Affiliation(s)
- D Kolodrubetz
- Department of Microbiology, University of Texas Health Science Center at San Antonio 78284, USA
| | | | | | | | | | | |
Collapse
|
40
|
Baehni PC, Guggenheim B. Potential of diagnostic microbiology for treatment and prognosis of dental caries and periodontal diseases. CRITICAL REVIEWS IN ORAL BIOLOGY AND MEDICINE : AN OFFICIAL PUBLICATION OF THE AMERICAN ASSOCIATION OF ORAL BIOLOGISTS 1996; 7:259-77. [PMID: 8909881 DOI: 10.1177/10454411960070030401] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Most evidence suggests that only a finite number of bacteria are responsible for dental caries and periodontal diseases. This knowledge led to the development of microbial tests which can identify suspected pathogens. Current evaluation of the diagnostic power of microbial tests has shown that they have a low sensitivity and a low prognostic value. Despite these shortcomings, there are valid indications for microbiological-based diagnosis. Salivary microbial tests for the detection of mutans streptococci and lactobacilli may be useful, for example, in young children, oligosialic patients, and orthodontic patients. These tests can be used to monitor the success of chemopreventive measures or compliance with dietary recommendations. Microbial diagnosis, may also be valuable in the treatment of early-onset periodontitis or in subjects who respond poorly to periodontal therapy. The use of microbial tests to monitor the efficacy of chemotherapy or mechanical treatment is of particular interest.
Collapse
Affiliation(s)
- P C Baehni
- Department of Preventive Dentistry, School of Dental Medicine, Faculty of Medicine, University of Geneva, Switzerland
| | | |
Collapse
|
41
|
Zambon JJ, Haraszthy VI, Hariharan G, Lally ET, Demuth DR. The Microbiology of Early-Onset Periodontitis: Association of Highly ToxicActinobacillus actinomycetemcomitansStrains With Localized Juvenile Periodontitis. J Periodontol 1996. [DOI: 10.1902/jop.1996.67.3s.282] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Wilson M, Henderson B. Virulence factors of Actinobacillus actinomycetemcomitans relevant to the pathogenesis of inflammatory periodontal diseases. FEMS Microbiol Rev 1995; 17:365-79. [PMID: 8845187 DOI: 10.1111/j.1574-6976.1995.tb00220.x] [Citation(s) in RCA: 91] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
There is strong evidence implicating Actinobacillus actinomycetemcomitans as the causative agent of localised juvenile periodontitis (LJP), a disease characterised by rapid destruction of the tooth-supporting tissues. This organism possesses a large number of virulence factors with a wide range of activities which enable it to colonise the oral cavity, invade periodontal tissues, evade host defences, initiate connective tissue destruction and interfere with tissue repair. Adhesion to epithelial and tooth surfaces is dependent on the presence of surface proteins and structures such as microvesicles and fimbriae. Invasion has been demonstrated in vivo and in vitro although the mechanisms involved are poorly understood. The organism has a number of means of evading host defences which include: (i) inhibiting poloymorphonuclear leukocyte (PMN) chemotaxis; (ii) killing PMNs and monocytes; (iii) producing immunosuppressive factors; (iv) secreting proteases capable of cleaving IgG; and (v) producing Fc-binding proteins. Surface components of A. actinomycetemcomitans are potent stimulators of bone resorption and can induce the release of a range of cytokines which can initiate tissue destruction. A number of surface components can also inhibit the proliferation of fibroblasts and their production of components of the extracellular matrix. Little is known, however, regarding the way in which these factors operate in vivo to produce the pathological features of the disease.
Collapse
Affiliation(s)
- M Wilson
- Department of Microbiology Eastman Dental Institute for Oral Health Care Sciences, University of London, UK
| | | |
Collapse
|
43
|
Kolodrubetz D, Phillips LH, Ezzo PJ, Kraig E. Directed genomic integration in Actinobacillus actinomycetemcomitans: generation of defined leukotoxin-negative mutants. Infect Immun 1995; 63:2780-4. [PMID: 7790100 PMCID: PMC173374 DOI: 10.1128/iai.63.7.2780-2784.1995] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
To develop targeted gene integration in the periodontal pathogen Actinobacillus actinomycetemcomitans, a ColE1-based, spectinomycin-resistant plasmid containing a segment of the leukotoxin gene was electroporated into strain JP2. In all of the stable spectinomycin-resistant transformants that arose, the plasmid had recombined into the genomic leukotoxin locus since ColE1-based vectors cannot replicate extrachromosomally in A. actinomycetemcomitans. Directed genomic integration was then used to construct a leukotoxin-negative strain by transforming the leukotoxin-producing strain JP2 with a ColE1-based plasmid containing an internal fragment of the leukotoxin gene. Cytotoxicity assays proved that these transformants had < 0.1% of the leukotoxin activity of the parental strain. These results demonstrate that integration-based approaches can be used for generating isogenic mutants in specific virulence genes in A. actinomycetemcomitans.
Collapse
Affiliation(s)
- D Kolodrubetz
- Department of Microbiology, University of Texas Health Science Center at Science Center at San Antonio 78284, USA
| | | | | | | |
Collapse
|
44
|
Lally ET, Golub EE, Kieba IR. Identification and immunological characterization of the domain of Actinobacillus actinomycetemcomitans leukotoxin that determines its specificity for human target cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47421-2] [Citation(s) in RCA: 58] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
45
|
Affiliation(s)
- A D Haffajee
- Department of Periodontology, Forsyth Dental Center, Boston, Massachusetts, USA
| | | |
Collapse
|
46
|
Abstract
There are several hypotheses proposed for the etiologic mechanisms causing periodontal diseases. These include a paradigm in which all individuals are equally susceptible to one or several pathogenic bacteria; a second paradigm that holds that all bacteria are equally virulent and that host susceptibility determines onset of disease; or a combination of the above. In this review, we analyze the role of neutrophil dysfunction as a risk factor for the onset of periodontitis. Both intrinsic or genetically inherited abnormalities of neutrophils and acquired neutrophil abnormalities are considered. While a large body of data implicates neutrophil dysfunction, either intrinsic or acquired (bacterially or extrinsically induced), as a significant risk factor for the periodontal diseases, clear, prospective, longitudinal epidemiologic studies to evaluate this association remain to be performed.
Collapse
Affiliation(s)
- T C Hart
- Department of Periodontology, Eastman Dental Center, Rochester, NY
| | | | | |
Collapse
|
47
|
Slots J, Liu YB, DiRienzo JM, Chen C. Evaluating two methods for fingerprinting genomes of Actinobacillus actinomycetemcomitans. ORAL MICROBIOLOGY AND IMMUNOLOGY 1993; 8:337-43. [PMID: 7908736 PMCID: PMC3534794 DOI: 10.1111/j.1399-302x.1993.tb00608.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The arbitrary primer polymerase chain reaction (AP-PCR) and Southern blot restriction fragment length polymorphism (RFLP) were used to genotype the periodontal pathogen A. actinomycetemcomitans. Total genomic DNA from 73 strains was extracted by conventional methods. Three random-sequence 10-base oligonucleotide primers were chosen for AP-PCR. The amplified DNA products were separated electrophoretically in a 1% agarose gel containing ethidium bromide and the banding patterns were compared among different strains. For RFLP analysis, DNA was digested with EcoRI, separated on a 0.8% agarose gel and transferred to a nylon membrane. The membrane was probed with a previously characterized 5.2 kilobases (kb) DNA fragment cloned from A. actinomycetemcomitans strain Y4. The probe was labeled with digoxigenin, and hybridized fragments were detected with anti-digoxigenin antibody. AP-PCR produced 4-10 DNA bands in the 0.5-5 kb regions and distinguished 9, 13 or 17 genotypes, depending on the specific primer used. Southern blot RFLP analysis revealed 12 hybridization patterns consisting of 1 or 2 DNA fragments (2-23 kb). The addition of the Southern blot analysis to the AP-PCR analysis gave rise to a total of 30 DNA profiles among the 73 A. actinomycetemcomitans study strains. The results indicate that both AP-PCR and Southern blot analysis are useful in clonal analysis of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- J Slots
- Department of Periodontology, University of Southern California, School of Dentistry, Los Angeles
| | | | | | | |
Collapse
|
48
|
Saito S, Hayakawa M, Takiguchi H, Abiko Y. Suppression of proliferation of a human B-cell leukaemic cell line derived from acute lymphoblastic leukaemia by soluble factor(s) from Campylobacter rectus. Arch Oral Biol 1993; 38:449-55. [PMID: 8343067 DOI: 10.1016/0003-9969(93)90180-t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Soluble sonic extracts of several strains were examined for their ability to alter proliferation of a cell line derived from acute lymphoblastic leukaemia (BALL-1). Extracts of all strains tested caused dose-dependent suppression of proliferation when assessed by DNA (tritiated thymidine incorporation), RNA (tritiated uridine incorporation) and protein (tritiated leucine incorporation) synthesis. There was no effect on the viability of BALL-1 as measured by either trypan-blue exclusion or extracellular release of the cytoplasmic enzyme lactate dehydrogenase. The suppressive factor(s) was separated in a well-defined peak by high-pressure liquid DEAE ion-exchange chromatography, which revealed a single active peak with a molecular mass of 48 kDa. Characterization of the peak indicated that the suppressive factor(s) was heat labile (activity destroyed at 80 degrees C) and sensitive to the proteolytic enzyme pronase P. The soluble suppressive factor(s) from Campylobacter rectus thus has protein-like properties and no cytotoxicity to a human B-cell leukaemic cell line.
Collapse
Affiliation(s)
- S Saito
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|
49
|
Saito A, Hosaka Y, Nakagawa T, Seida K, Yamada S, Takazoe I, Okuda K. Significance of serum antibody against surface antigens of Actinobacillus actinomycetemcomitans in patients with adult periodontitis. ORAL MICROBIOLOGY AND IMMUNOLOGY 1993; 8:146-53. [PMID: 7901829 DOI: 10.1111/j.1399-302x.1993.tb00657.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study was undertaken to examine the prevalence of Actinobacillus actinomycetemcomitans, its serotype distribution and the serum immune responses against its surface antigens in 41 Japanese patients with adult periodontitis. The dominant A. actinomycetemcomitans serotype isolated was serotype c. Immunoblot analysis of 3 serotypes of A. actinomycetemcomitans-sonicated antigens and the patient sera revealed that the reactivities with serotype c were the most frequent and that heat-stable surface serotype-specific antigen appeared to be immunodominant. Elevated serum immunoglobulin G titers to extracted lipopolysaccharide and fimbriae antigen of A. actinomycetemcomitans were noted for the patient sera by enzyme-linked immunosorbent assay. High serum immunoglobulin G titers to the fimbriae antigen detected in patients without cultivable A. actinomycetemcomitans suggested the possibility that the elicited antibody to the antigen played a role in eliminating A. actinomycetemcomitans from the periodontal lesions.
Collapse
Affiliation(s)
- A Saito
- Department of Periodontics, Tokyo Dental College, Chiba, Japan
| | | | | | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- S H Dougherty
- Department of Surgery, Texas Tech University School of Medicine, El Paso
| | | |
Collapse
|