1
|
Meyer MD, Coelho RMI, Rangel-Coelho JP, Costa BC, Teixeira LN, Martinez EF, Casarin RCV, Santamaria MP, França FMG, Nociti-Jr FH, Lisboa-Filho PN, Kantovitz KR. Titanium dioxide nanotubes incorporated into conventional glass ionomer cement alter the biological behavior of pre-odontoblastic cells. Colloids Surf B Biointerfaces 2025; 246:114389. [PMID: 39591848 DOI: 10.1016/j.colsurfb.2024.114389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024]
Abstract
The objective was to address the repercussion of adding titanium dioxide nanotubes (TiO2-nt) into high-viscosity conventional glass ionomer cement (GIC) on the biological properties of pre-odontoblastic cells (MDPC-23) challenged by lipopolysaccharides (LPS - 2 μg/mL). TiO2-nt was added to Ketac Molar EasyMix at 3, 5, 7 %, whereas unblended GIC served as control. Analyses included proliferation (n=6; 24, 48, 72 h), metabolism (MTT; n=6; 24, 48, 72 h); morphology laser microscopy (n=3; 24, 48, 72 h); proteome assessments IL-1β, IL-6, IL-10, VEGF, TNF-α (n=3; 12, 18 h); mRNA levels (RT-PCR) of Il-1β, Il-6, Il-10, VEGF, TNF-α (n=3; 12, 18 h) and DSPP (n=3; 24, 72, 120 h). Data analysis included Shapiro-Wilk, Levene, and generalized linear models (α=0.05). Results demonstrated that cell proliferation increased over time for all groups, and was not impacted by TiO2-nt (p>0.05). GIC groups displayed lower MTT values compared to cells cultured without GIC discs (p=0.019); disregarding the presence of TiO2. Remarkably, TiO2-nt reversed the effect of GIC, reducing the levels of selected biomarkers. LPS treatment modified the expression of the immune-inflammatory markers by MDPC-23 cells (p<0.0001). Morphological analysis did not reveal distinctions for any of the studied. TiO2-nt modulated immune-inflammatory and dentin marker expression by MDPC-23 cells cultured on conventional GIC discs, and did not affect cell morphology/viability, regardless LPS exposure. In conclusion, TiO2-nt may become a reliable clinical strategy to encourage pulp tissue repair.
Collapse
Affiliation(s)
- Maria Davoli Meyer
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil.
| | | | - João Pedro Rangel-Coelho
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil.
| | - Bruna Carolina Costa
- School of Science, State University Júlio de Mesquita (UNESP), Av. Engenheiro Luís Edmundo Carrijo Coube 2085, Bauru, SP 17033-360, Brazil.
| | - Lucas Novaes Teixeira
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil.
| | - Elizabeth Ferreira Martinez
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil.
| | - Renato Corrêa Viana Casarin
- Piracicaba Dental School, State University of Campinas (FOP-UNICAMP), Av. Limeira 901, Areião, Piracicaba, SP 13414-903, Brazil.
| | | | | | - Francisco Humberto Nociti-Jr
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil; American Dental Association, Science & Research Institute, 100 Bureau Dr., Gaithersburg, MD 20899, USA.
| | - Paulo Noronha Lisboa-Filho
- School of Science, State University Júlio de Mesquita (UNESP), Av. Engenheiro Luís Edmundo Carrijo Coube 2085, Bauru, SP 17033-360, Brazil.
| | - Kamila Rosamilia Kantovitz
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP 13045-755, Brazil; Department of Comprehensive Dentistry, University of Maryland, School of Dentistry, 650 W Baltimore St., Baltimore, MD 21201, USA.
| |
Collapse
|
2
|
Rangel-Coelho JP, Gogolla PV, Meyer MD, Simão LC, Costa BC, Casarin RCV, Santamaria MP, Teixeira LN, Peruzzo DC, Lisboa-Filho PN, Nociti-Jr FH, Kantovitz KR. Titanium dioxide nanotubes applied to conventional glass ionomer cement influence the expression of immunoinflammatory markers: An in vitro study. Heliyon 2024; 10:e30834. [PMID: 38784540 PMCID: PMC11112319 DOI: 10.1016/j.heliyon.2024.e30834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/03/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024] Open
Abstract
Objectives To assess the impact of different concentrations TiO2-nt incorporated into a glass ionomer cement on the proliferation, mitochondrial metabolism, morphology, and pro- and anti-inflammatory cytokine production of cultured fibroblasts (NIH/3T3), whether or not stimulated by lipopolysaccharides (LPS-2 μg/mL, 24 h). Methods TiO2-nt was added to KM (Ketac Molar EasyMix™, 3 %, 5 %, 7 % in weight); unblended KM was used as the control. The analyses included: Cell proliferation assay (n = 6; 24/48/72h); Mitochondrial metabolism assay (n = 6; 24/48/72h); Confocal laser microscopy (n = 3; 24/48/72h); Determination of biomarkers (IL-1β/IL-6/IL-10/VEGF/TNF) by using both multiplex technology (n = 6; 12/18 h) and the quantitative real-time PCR assay (q-PCR) (n = 3, 24/72/120 h). The data underwent analysis using both the Shapiro-Wilk and Levene tests, and by generalized linear models (α = 0.05). Results It demonstrated that cell proliferation increased over time, regardless of the presence of TiO2-nt or LPS, and displayed a significant increase at 72 h; mitochondrial metabolism increased (p < 0.05), irrespective of exposure to LPS (p = 0.937); no cell morphology changes were observed; TiO2-nt reverted the impact of KM on the secreted levels of the evaluated proteins and the gene expressions in the presence of LPS (p < 0.0001). Conclusions TiO2-nt did not adversely affect the biological behavior of fibroblastic cells cultured on GIC discs.
Collapse
Affiliation(s)
- João Pedro Rangel-Coelho
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Pedro Viel Gogolla
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Maria Davoli Meyer
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Lucas Carvalho Simão
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Bruna Carolina Costa
- Department of Physics, School of Science, State University Júlio de Mesquita (UNESP), Av. Engenheiro Luís Edmundo Carrijo Coube 2085, Bauru, SP, 17033-360, Brazil
| | - Renato Côrrea Viana Casarin
- Department of Prosthodontics and Periodontics, Division of Periodontics, Piracicaba Dental School, State University of Campinas (FOP-UNICAMP), Av. Limeira 901, Areião, Piracicaba, SP, 13414-903, Brazil
| | | | - Lucas Novaes Teixeira
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Daiane Cristina Peruzzo
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| | - Paulo Noronha Lisboa-Filho
- Department of Physics, School of Science, State University Júlio de Mesquita (UNESP), Av. Engenheiro Luís Edmundo Carrijo Coube 2085, Bauru, SP, 17033-360, Brazil
| | - Francisco Humberto Nociti-Jr
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
- American Dental Association Science and Research Institute - ADASRI, Cellular and Molecular Biology Research Group, Innovation and Technology Research, 100 Bureau Dr, Gaithersburg, MD, 20899, USA
| | - Kamila Rosamilia Kantovitz
- Faculdade São Leopoldo Mandic (SLMANDIC), Rua José Rocha Junqueira 13, Swift, Campinas, SP, 13045-755, Brazil
| |
Collapse
|
3
|
Ranjit DK, Moye ZD, Rocha FG, Ottenberg G, Nichols FC, Kim HM, Walker AR, Gibson FC, Davey ME. Characterization of a Bacterial Kinase That Phosphorylates Dihydrosphingosine to Form dhS1P. Microbiol Spectr 2022; 10:e0000222. [PMID: 35286133 PMCID: PMC9045371 DOI: 10.1128/spectrum.00002-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Accepted: 02/17/2022] [Indexed: 11/29/2022] Open
Abstract
Like other members of the phylum Bacteroidetes, the oral anaerobe Porphyromonas gingivalis synthesizes a variety of sphingolipids, similar to its human host. Studies have shown that synthesis of these lipids (dihydroceramides [DHCs]) is involved in oxidative stress resistance, the survival of P. gingivalis during stationary phase, and immune modulation. Here, we constructed a deletion mutant of P. gingivalis strain W83 with a deletion of the gene encoding DhSphK1, a protein that shows high similarity to a eukaryotic sphingosine kinase, an enzyme that phosphorylates sphingosine to form sphingosine-1-phosphate. Our data show that deletion of the dhSphK1 gene results in a shift in the sphingolipid composition of P. gingivalis cells; specifically, the mutant synthesizes higher levels of phosphoglycerol DHCs (PG-DHCs) than the parent strain W83. Although PG1348 shows high similarity to the eukaryotic sphingosine kinase, we discovered that the PG1348 enzyme is unique, since it preferentially phosphorylates dihydrosphingosine, not sphingosine. Besides changes in lipid composition, the W83 ΔPG1348 mutant displayed a defect in cell division, the biogenesis of outer membrane vesicles (OMVs), and the amount of K antigen capsule. Taken together, we have identified the first bacterial dihydrosphingosine kinase whose activity regulates the lipid profile of P. gingivalis and underlies a regulatory mechanism of immune modulation. IMPORTANCE Sphingoid base phosphates, such as sphingosine-1-phosphate (S1P) and dihydrosphingosine-1-phosphate (dhS1P), act as ligands for S1P receptors, and this interaction is known to play a central role in mediating angiogenesis, vascular stability and permeability, and immune cell migration to sites of inflammation. Studies suggest that a shift in ratio to higher levels of dhS1P in relation to S1P alters downstream signaling cascades due to differential binding and activation of the various S1P receptor isoforms. Specifically, higher levels of dhS1P are thought to be anti-inflammatory. Here, we report on the characterization of a novel kinase in Porphyromonas gingivalis that phosphorylates dihydrosphingosine to form dhS1P.
Collapse
Affiliation(s)
- Dev K. Ranjit
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Zachary D. Moye
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Fernanda G. Rocha
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Gregory Ottenberg
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Nichols
- Division of Periodontology, University of Connecticut School of Dental Medicine, Farmington, Connecticut, USA
| | - Hey-Min Kim
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Frank C. Gibson
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| | - Mary E. Davey
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
4
|
Debrie AS, Mielcarek N, Lecher S, Roux X, Sirard JC, Locht C. Early Protection against Pertussis Induced by Live AttenuatedBordetella pertussisBPZE1 Depends on TLR4. THE JOURNAL OF IMMUNOLOGY 2019; 203:3293-3300. [DOI: 10.4049/jimmunol.1901102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 10/18/2019] [Indexed: 11/19/2022]
|
5
|
Zhang H, Liu L, Jiang C, Pan K, Deng J, Wan C. MMP9 protects against LPS-induced inflammation in osteoblasts. Innate Immun 2019; 26:259-269. [PMID: 31726909 PMCID: PMC7251795 DOI: 10.1177/1753425919887236] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The matrix metalloproteinase (MMP) family is widely involved in the destruction
of the pulp and apical tissues in the inflammatory process. MMP9 is closely
related to oral inflammation. Nevertheless, the specific function of MMP9 during
oral inflammation, as well as its mechanism, is not well understood. Our
previous studies found that in experimentally induced apical periodontitis, more
severe inflammation occurred in MMP9 knockout mice compared with the wild type
mice. Moreover, the pathology phenomenon of alveolar bone destruction was even
more evident in MMP9 knockout mice compared with the wild type mice. We proposed
that MMP9 has “anti-inflammatory” properties. We aimed to study the effects of
MMP9 on inflammatory response as well as on bone formation and bone destruction.
We found a specific relationship between MMP9 and inflammation. qRT-PCR and
Western blot revealed that the production of IL-1β, TNF-α, RANK, RANKL, TLR2,
and TLR4 was reduced by MMP9 in LPS-stimulated MC3T3-E1 cells. Meanwhile, the
expressions of OPG and OCN were increased by MMP9 in LPS-stimulated cells. MMP9
plays a protective role in LPS-induced inflammation, thereby providing new clues
to the prevention and treatment of apical periodontitis.
Collapse
Affiliation(s)
- Hongzhe Zhang
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Lingshuang Liu
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Chunmiao Jiang
- Department of Orthodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Keqing Pan
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Jing Deng
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| | - Chunyan Wan
- Department of Endodontics, The Affiliated Hospital and School of Stomatology of Qingdao University, China
| |
Collapse
|
6
|
Qu L, Yu Y, Qiu L, Yang D, Yan L, Guo J, Jahan R. Sirtuin 1 regulates matrix metalloproteinase-13 expression induced by Porphyromonas endodontalis lipopolysaccharide via targeting nuclear factor-κB in osteoblasts. J Oral Microbiol 2017; 9:1317578. [PMID: 28473882 PMCID: PMC5405711 DOI: 10.1080/20002297.2017.1317578] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/05/2017] [Indexed: 01/20/2023] Open
Abstract
Porphyromonas endodontalis lipopolysaccharide (P.e LPS) is an important initiating factor for periapical inflammation and bone destruction. Matrix metalloproteinase-13 (MMP-13) has been shown to participate in the formation and diffusion of periapical bone lesion in chronic apical periodontitis. Sirtuin 1 (SIRT1) is a key regulator of inflammation in mammalian cells which suppresses the release of inflammatory mediators. This study aimed to explore the role of SIRT1 in regulating MMP-13 expression induced by P.e LPS in osteoblasts. P.e LPS stimulated MMP-13 expression in MC3T3-E1 cells. Knockdown of SIRT1 reinforced the increase of MMP-13mRNA expression induced by P.e LPS. SIRT1 activator resveratrol significantly reduced the expression of MMP-13 and SIRT1 inhibitor EX-527 enhanced the expression of MMP-13. Moreover, SIRT1 activation with resveratrol inhibited acetylation of NF-κB p65 and NF-κB transcriptional activity, which were enhanced by P.e LPS. In addition, NF-κB p65 was involved in P.e LPS-induced MMP-13 expression via directly binding to the MMP-13 promoter. However, SIRT1 activation significantly interfered with this binding. These findings strongly suggest that P.e LPS induces MMP-13 expression in osteoblasts, and SIRT1 suppresses this expression of MMP-13 through targeting NF-κB p65. This provides new insights into understanding the actions of SIRT1 on anti-inflammatory and anti-bone resorption activity.
Collapse
Affiliation(s)
- Liu Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Yaqiong Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lihong Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Di Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Lu Yan
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - Jiajie Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | | |
Collapse
|
7
|
Di Niro R, Lee SJ, Vander Heiden JA, Elsner RA, Trivedi N, Bannock JM, Gupta NT, Kleinstein SH, Vigneault F, Gilbert TJ, Meffre E, McSorley SJ, Shlomchik MJ. Salmonella Infection Drives Promiscuous B Cell Activation Followed by Extrafollicular Affinity Maturation. Immunity 2015; 43:120-31. [PMID: 26187411 PMCID: PMC4523395 DOI: 10.1016/j.immuni.2015.06.013] [Citation(s) in RCA: 164] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 03/25/2015] [Accepted: 06/16/2015] [Indexed: 12/25/2022]
Abstract
The B cell response to Salmonella typhimurium (STm) occurs massively at extrafollicular sites, without notable germinal centers (GCs). Little is known in terms of its specificity. To expand the knowledge of antigen targets, we screened plasmablast (PB)-derived monoclonal antibodies (mAbs) for Salmonella specificity, using ELISA, flow cytometry, and antigen microarray. Only a small fraction (0.5%-2%) of the response appeared to be Salmonella-specific. Yet, infection of mice with limited B cell receptor (BCR) repertoires impaired the response, suggesting that BCR specificity was important. We showed, using laser microdissection, that somatic hypermutation (SHM) occurred efficiently at extrafollicular sites leading to affinity maturation that in turn led to detectable STm Ag-binding. These results suggest a revised vision of how clonal selection and affinity maturation operate in response to Salmonella. Clonal selection initially is promiscuous, activating cells with virtually undetectable affinity, yet SHM and selection occur during the extrafollicular response yielding higher affinity, detectable antibodies.
Collapse
MESH Headings
- Animals
- Antibodies, Monoclonal/immunology
- B-Lymphocytes/immunology
- Clonal Selection, Antigen-Mediated/genetics
- Clonal Selection, Antigen-Mediated/immunology
- Germinal Center/immunology
- Immunoglobulin G/biosynthesis
- Immunoglobulin G/immunology
- Lymphocyte Activation/immunology
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Mice, Knockout
- Receptors, Antigen, B-Cell/genetics
- Receptors, Antigen, B-Cell/immunology
- Salmonella Infections/immunology
- Salmonella Infections/microbiology
- Salmonella typhimurium/immunology
- Somatic Hypermutation, Immunoglobulin/genetics
- Somatic Hypermutation, Immunoglobulin/immunology
- Spleen/cytology
- Spleen/immunology
Collapse
Affiliation(s)
- Roberto Di Niro
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Seung-Joo Lee
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA
| | - Jason A Vander Heiden
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Rebecca A Elsner
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Nikita Trivedi
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jason M Bannock
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Namita T Gupta
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA
| | - Steven H Kleinstein
- Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Pathology, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | | - Eric Meffre
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Stephen J McSorley
- Center for Comparative Medicine, University of California, Davis, CA 95616, USA
| | - Mark J Shlomchik
- Department of Immunology, University of Pittsburgh, Pittsburgh, PA 15261, USA; Department of Laboratory Medicine and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
8
|
Yu Y, Qiu L, Guo J, Yang D, Qu L, Yu J, Zhan F, Xue M, Zhong M. TRIB3 mediates the expression of Wnt5a and activation of nuclear factor-κB in Porphyromonas endodontalis lipopolysaccharide-treated osteoblasts. Mol Oral Microbiol 2015; 30:295-306. [PMID: 25601649 DOI: 10.1111/omi.12094] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/13/2015] [Indexed: 12/25/2022]
Abstract
Porphyromonas endodontalis lipopolysaccharide (LPS) is considered to be correlated with the progression of bone resorption in periodontal and periapical diseases. Wnt5a has recently been implicated in inflammatory processes, but its role is unclear as a P. endodontalis LPS-induced mediator in osteoblasts. Tribbles homolog 3 (TRIB3) encodes a pseudokinase and has been linked to inflammation in certain situations. Here, we found that P. endodontalis LPS induced Wnt5a expression in a dose- and time-dependent manner and it also upregulated translocation, phosphorylation and transcriptional activity of nuclear factor-κB (NF-κB) in MC3T3-E1 cells. Bay 11-7082 blocked the translocation of NF-κB and Wnt5a expression induced by P. endodontalis LPS. Chromatin immunoprecipitation assay further established that induction of Wnt5a by P. endodontalis LPS was mediated through the NF-κB p65 subunit. Additionally, P. endodontalis LPS increased expression of TRIB3 in osteoblasts after 10 h simulated time. Overexpression of TRIB3 enhanced NF-κB phosphorylation and Wnt5a induction, whereas knockdown of TRIB3 inhibited NF-κB phosphorylation and Wnt5a expression in P. endodontalis LPS-stimulated osteoblasts. These results suggest that P. endodontalis LPS has the ability to promote the expression of Wnt5a in mouse osteoblasts, and this induction is mainly mediated by NF-κB pathway. TRIB3 seems to modulate the sustained expression of Wnt5a in osteoblasts stimulated by P. endodontalis LPS, as well as regulating NF-κB phosphorylation.
Collapse
Affiliation(s)
- Y Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - L Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - J Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - D Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - L Qu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - J Yu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - F Zhan
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - M Xue
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang, China
| | - M Zhong
- Department of Oral Pathology, Central Laboratory, School of Stomatology, China Medical University, Shenyang, China
| |
Collapse
|
9
|
Guo J, Yang D, Okamura H, Teramachi J, Ochiai K, Qiu L, Haneji T. Calcium Hydroxide Suppresses Porphyromonas endodontalis Lipopolysaccharide–induced Bone Destruction. J Dent Res 2014; 93:508-13. [DOI: 10.1177/0022034514526886] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas endodontalis and its main virulence factor, lipopolysaccharide (LPS), are associated with the development of periapical diseases and alveolar bone loss. Calcium hydroxide is commonly used for endodontic therapy. However, the effects of calcium hydroxide on the virulence of P. endodontalis LPS and the mechanism of P. endodontalis LPS–induced bone destruction are not clear. Calcium hydroxide rescued the P. endodontalis LPS–suppressed viability of MC3T3-E1 cells and activity of nuclear factor-κB (NF-κB) in these cells, resulting in the reduced expression of interleukin-6 and tumor necrosis factor-α. In addition, calcium hydroxide inhibited P. endodontalis LPS–induced osteoclastogenesis by decreasing the activities of NF-κB, p38, and ERK1/2 and the expression of nuclear factor of activated T-cell cytoplasmic 1 in RAW264.7 cells. Calcium hydroxide also rescued the P. endodontalis LPS–induced osteoclastogenesis and bone destruction in mouse calvaria. Taken together, our present results indicate that calcium hydroxide suppressed bone destruction by attenuating the virulence of P. endodontalis LPS on bone cells.
Collapse
Affiliation(s)
- J. Guo
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - D. Yang
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - H. Okamura
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - J. Teramachi
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| | - K. Ochiai
- Department of Basic Science, School of Veterinary Nursing and Technology, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan, Musashino, Tokyo 180-8602, Japan
| | - L. Qiu
- Department of Endodontics, School of Stomatology, China Medical University, Shenyang 110002, China
| | - T. Haneji
- Department of Histology and Oral Histology, Institute of Health Biosciences, The University of Tokushima Graduate School, Kuramoto, Tokushima 770-8504, Japan
| |
Collapse
|
10
|
Sipert CR, Morandini ACDF, Modena KCDS, Dionísio TJ, Machado MAAM, Oliveira SHPD, Campanelli AP, Santos CF. CCL3 and CXCL12 production in vitro by dental pulp fibroblasts from permanent and deciduous teeth stimulated by Porphyromonas gingivalis LPS. J Appl Oral Sci 2013; 21:99-105. [PMID: 23739851 PMCID: PMC3881878 DOI: 10.1590/1678-7757201300004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 03/06/2013] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE The aim of this study was to compare the production of the chemokines CCL3 and CXCL12 by cultured dental pulp fibroblasts from permanent (PDPF) and deciduous (DDPF) teeth under stimulation by Porphyromonas gingivalis LPS (PgLPS). MATERIAL AND METHODS Primary culture of fibroblasts from permanent (n=3) and deciduous (n=2) teeth were established using an explant technique. After the fourth passage, fibroblasts were stimulated by increasing concentrations of PgLPS (0-10 µg/mL) at 1, 6 and 24 h. The cells were tested for viability through MTT assay, and production of the chemokines CCL3 and CXCL12 was determined through ELISA. Comparisons among samples were performed using One-way ANOVA for MTT assay and Two-way ANOVA for ELISA results. RESULTS Cell viability was not affected by the antigen after 24 h of stimulation. PgLPS induced the production of CCL3 by dental pulp fibroblasts at similar levels for both permanent and deciduous pulp fibroblasts. Production of CXCL12, however, was significantly higher for PDPF than DDPF at 1 and 6 h. PgLPS, in turn, downregulated the production of CXCL12 by PDPF but not by DDPF. CONCLUSION These data suggest that dental pulp fibroblasts from permanent and deciduous teeth may present a differential behavior under PgLPS stimulation.
Collapse
Affiliation(s)
- Carla Renata Sipert
- Department of Biological Sciences, Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Mizutani H, Ishihara Y, Izawa A, Fujihara Y, Kobayashi S, Gotou H, Okabe E, Takeda H, Ozawa Y, Kamiya Y, Kamei H, Kikuchi T, Yamamoto G, Mitani A, Nishihara T, Noguchi T. Lipopolysaccharide of Aggregatibacter actinomycetemcomitans up-regulates inflammatory cytokines, prostaglandin E2 synthesis and osteoclast formation in interleukin-1 receptor antagonist-deficient mice. J Periodontal Res 2013; 48:748-56. [PMID: 23586622 DOI: 10.1111/jre.12065] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Abstract
BACKGROUND AND OBJECTIVE The interleukin (IL)-1 receptor antagonist (Ra) binds to IL-1 receptors and inhibits IL-1 activity. However, it is unclear whether the IL-1Ra plays a protective role in periodontal disease. The purpose of this study was to compare IL-1Ra knockout (KO) and wild-type (WT) mice in regard to proinflammatory cytokine production, osteoclast formation and bone resorption in response to periodontal bacterial lipopolysaccharide (LPS). MATERIAL AND METHODS Peritoneal macrophages (Mφs) were obtained from 13-wk-old IL-1Ra KO and WT mice. Peritoneal Mφs were cultured with or without 10 μg/mL of Aggregatibacter actinomycetemcomitans LPS for 24 h. The levels of IL-1alpha (IL-1α), IL-1beta (IL-1β), tumor necrosis factor-α (TNF-α) and IL-6 were measured in periotoneal Mφs supernatant fluid (PM-SF) using an ELISA. Bone marrow cells were obtained from the mice and stimulated with PM-SF for 9 d, then stained with TRAP. The frequency of TRAP-positive multinucleated giant cell formation was calculated based on a fusion index. PM-SF-stimulated calvarial bone resorption was analyzed using micro-computed tomography, and calvarial histological analysis was performed using hematoxylin and eosin and TRAP staining. The expression of cyclooxygenase-2 (Cox2), prostanoid receptor EP4 (Ep4) and Rank mRNAs in bone marrow cells were measured using real-time quantitative PCR, while prostaglandin E2 (PGE2 ) production was determined by ELISA. RESULTS The levels of IL-1α, IL-1β, TNF-α and IL-6 in IL-1Ra KO mice PM-SF stimulated with A. actinomycetemcomitans LPS were significantly increased by approximately 4- (p < 0.05), 5- (p < 0.05), 1.3- (p < 0.05) and 6- (p < 0.05) fold, respectively, compared with the levels in WT mice. Moreover, osteoclast formation, expression of Rank, Ep4 and Cox2 mRNAs and production of PGE2 were significantly increased by approximately 2- (p < 0.05), 1.6- (p < 0.05), 2.5- (p < 0.05), 1.6- (p < 0.05) and 1.9- (p < 0.05) fold, respectively, in IL-1Ra KO mice stimulated with A. actinomycetemcomitans LPS compared with WT mice. CONCLUSION IL-1Ra regulates IL-1 activity and appears to reduce the levels of other inflammatory cytokines, including TNF-α and IL-6, while it also reduces expression of the EP4 receptor related to prostanoid sensitivity and osteoclast formation. These results suggest that IL-1Ra is an important molecule for inhibition of inflammatory periodontal bone resorption.
Collapse
Affiliation(s)
- H Mizutani
- Department of Periodontology, School of Dentistry, Aichi Gakuin University, Nagoya, Aichi, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Jia R, Kurita-Ochiai T, Oguchi S, Yamamoto M. Periodontal pathogen accelerates lipid peroxidation and atherosclerosis. J Dent Res 2013; 92:247-52. [PMID: 23355524 DOI: 10.1177/0022034513475625] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Recent studies have shown an association between periodontal disease and cardiovascular disease. We previously reported that intravenous challenge with Aggregatibacter actinomycetemcomitans (Aa) accelerated atherosclerosis in apolipoprotein E-deficient spontaneously hyperlipidemic (Apoe(shl)) mice. In this study, we investigated whether live cells were required for atherosclerosis induction or whether lipopolysaccharide (LPS) alone was sufficient to increase atherosclerotic damage. Mice were injected intravenously with live Aa HK1651, heat-killed (H.K.) Aa, or Aa LPS 3 times a week for 3 weeks and were sacrificed at 15 weeks of age. The areas of the aortic sinus that were covered with atherosclerotic plaques were significantly larger in mice treated with live Aa, H.K. Aa, or Aa LPS compared with vehicle-challenged mice. The order of the extent of atherosclerosis was live Aa > H.K. Aa > Aa LPS > sham. Toll and nucleotide oligomerization domain (NOD)-like receptor mRNA expression significantly increased in the live Aa, H.K. Aa, and Aa LPS treatment groups. Aa challenge markedly promoted the oxidation of LDL through oxidative stress involving NADPH oxidase- and myeloperoxidase-derived reactive oxygen species. These results suggested that Aa promoted innate immune signaling and low-density lipoprotein (LDL) oxidation and may facilitate atheroma development.
Collapse
Affiliation(s)
- R Jia
- Nihon University School of Dentistry at Matsudo, 2-870-1 Sakaecho-nishi, Matsudo, Chiba 271-8587, Japan
| | | | | | | |
Collapse
|
13
|
Li Y. Aggregatibacter Actinomycetemcomitans reduced GNAS Gene Expression in Human Trophoblasts. J HARD TISSUE BIOL 2013. [DOI: 10.2485/jhtb.22.35] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
14
|
Luo W, Wang CY, Jin L. Baicalin downregulates Porphyromonas gingivalis lipopolysaccharide-upregulated IL-6 and IL-8 expression in human oral keratinocytes by negative regulation of TLR signaling. PLoS One 2012; 7:e51008. [PMID: 23239998 PMCID: PMC3519831 DOI: 10.1371/journal.pone.0051008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 10/31/2012] [Indexed: 11/18/2022] Open
Abstract
Periodontal (gum) disease is one of the main global oral health burdens and severe periodontal disease (periodontitis) is a leading cause of tooth loss in adults globally. It also increases the risk of cardiovascular disease and diabetes mellitus. Porphyromonas gingivalis lipopolysaccharide (LPS) is a key virulent attribute that significantly contributes to periodontal pathogenesis. Baicalin is a flavonoid from Scutellaria radix, an herb commonly used in traditional Chinese medicine for treating inflammatory diseases. The present study examined the modulatory effect of baicalin on P. gingivalis LPS-induced expression of IL-6 and IL-8 in human oral keratinocytes (HOKs). Cells were pre-treated with baicalin (0–80 µM) for 24 h, and subsequently treated with P. gingivalis LPS at 10 µg/ml with or without baicalin for 3 h. IL-6 and IL-8 transcripts and proteins were detected by real-time polymerase chain reaction and enzyme-linked immunosorbent assay, respectively. The expression of nuclear factor-κB (NF-κB), p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) proteins was analyzed by western blot. A panel of genes related to toll-like receptor (TLR) signaling was examined by PCR array. We found that baicalin significantly downregulated P. gingivalis LPS-stimulated expression of IL-6 and IL-8, and inhibited P. gingivalis LPS-activated NF-κB, p38 MAPK and JNK. Furthermore, baicalin markedly downregulated P. gingivalis LPS-induced expression of genes associated with TLR signaling. In conclusion, the present study shows that baicalin may significantly downregulate P. gingivalis LPS-upregulated expression of IL-6 and IL-8 in HOKs via negative regulation of TLR signaling.
Collapse
Affiliation(s)
- Wei Luo
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Cun-Yu Wang
- University of California Los Angeles, School of Dentistry, Los Angeles, California, United States of America
| | - Lijian Jin
- Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
15
|
Li X, Zhou L, Takai H, Sasaki Y, Mezawa M, Li Z, Wang Z, Yang L, Wang S, Matsumura H, Kaneko T, Yoshimura A, Ogata Y. Aggregatibacter actinomycetemcomitans lipopolysaccharide regulates bone sialoprotein gene transcription. J Cell Biochem 2012; 113:2822-34. [DOI: 10.1002/jcb.24157] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
16
|
Jones DD, DeIulio GA, Winslow GM. Antigen-driven induction of polyreactive IgM during intracellular bacterial infection. THE JOURNAL OF IMMUNOLOGY 2012; 189:1440-7. [PMID: 22730531 DOI: 10.4049/jimmunol.1200878] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Polyreactivity is well known as a property of natural IgM produced by B-1 cells. We demonstrate that polyreactive IgM is also generated during infection of mice with Ehrlichia muris, a tick-borne intracellular bacterial pathogen. The polyreactive IgM bound self and foreign Ags, including single-stranded and double-stranded DNA, insulin, thyroglobulin, LPS, influenza virus, and Borrelia burgdorferi. Production of polyreactive IgM during infection was Ag driven, not due to polyclonal B cell activation, as the majority of polyreactive IgM recognized ehrlichial Ag(s), including an immunodominant outer membrane protein. Monoclonal polyreactive IgM derived from T cell-independent spleen plasmablasts, which was germline-encoded, also bound cytoplasmic and nuclear Ags in HEp-2 cells. Polyreactive IgM protected immunocompromised mice against lethal bacterial challenge infection. Serum from human ehrlichiosis patients also contained polyreactive and self-reactive IgM. We propose that polyreactivity increases IgM efficacy during infection but may also exacerbate or mollify the response to foreign and self Ags.
Collapse
Affiliation(s)
- Derek D Jones
- Department of Biomedical Sciences, University at Albany, Albany, NY 12201, USA
| | | | | |
Collapse
|
17
|
Tateishi F, Hasegawa-Nakamura K, Nakamura T, Oogai Y, Komatsuzawa H, Kawamata K, Douchi T, Hatae M, Noguchi K. Detection of Fusobacterium nucleatum in chorionic tissues of high-risk pregnant women. J Clin Periodontol 2012; 39:417-24. [PMID: 22304677 DOI: 10.1111/j.1600-051x.2012.01855.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/25/2011] [Indexed: 10/14/2022]
Abstract
AIM This study was undertaken to investigate the existence of a periodontopathic bacterium, Fusobacterium nucleatum, in chorionic tissues of pregnant women, and the effects of F. nucleatum on human chorion-derived cells. MATERIALS AND METHODS Oral and chorionic tissue samples were collected from 24 high-risk pregnant women and 15 normal pregnant women. The presence of F. nucleatum in the samples was detected using polymerase chain reaction. Chorion-derived cells and Toll-like receptor (TLR)-2 or TLR-4 gene-silenced chorion-derived cells were stimulated with F. nucleatum lipopolysaccharide (LPS). Interleukin (IL)-6 and corticotrophin-releasing hormone (CRH) levels in the culture supernatants were measured using ELISA. RESULTS F. nucleatum was detected in all oral samples and seven chorionic tissues from the high-risk pregnant women, but was not detected in chorionic tissues from the normal pregnant women. F. nucleatum LPS significantly increased IL-6 and CRH secretion by chorion-derived cells. The F. nucleatum LPS-induced IL-6 and CRH levels were significantly reduced in TLR-2 or TLR-4 gene-silenced chorion-derived cells. CONCLUSIONS We suggest that F. nucleatum is detected in chorionic tissues of high-risk pregnant women, but not in chorionic tissues of normal pregnant women, and that F. nucleatum induces IL-6 and CRH production via both TLR-2 and TLR-4 in chorion-derived cells.
Collapse
Affiliation(s)
- Fumi Tateishi
- Department of Periodontology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
|
19
|
Li Y, Shibata Y, Zhang L, Kuboyama N, Abiko Y. Periodontal pathogen Aggregatibacter actinomycetemcomitans LPS induces mitochondria-dependent-apoptosis in human placental trophoblasts. Placenta 2010; 32:11-9. [PMID: 21074850 DOI: 10.1016/j.placenta.2010.10.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 09/22/2010] [Accepted: 10/07/2010] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Increasing evidence suggests an association between periodontal disease and low birthweight (LBW); however the underlying molecular mechanisms are yet to be fully elucidated. In this study, we performed a microarray analysis to observe the human placental trophoblast-like BeWo cells response to lipopolysaccharide (LPS) from periodontopathogen Aggregatibacter actinomycetemcomitans (Aa), in order to investigate the molecular basis of mechanisms for periodontitis-associated LBW. In vivo pregnant rats were also used to confirm the in vitro results. STUDY DESIGN The effects of Aa-LPS on cultured human placental trophoblast-like BeWo cells were studied using a DNA microarray, Ingenuity Pathway Analysis, real-time PCR and poly-caspase staining. The in vivo effects of Aa-LPS in pregnant rats were examined using TUNEL assays. RESULTS In BeWo cells, Aa-LPS increased levels of cytochrome c, caspase 2, caspase 3, caspase 9 and BCL2-antagonist/killer 1 mRNA, decreased those of B-cell CLL/lymphoma 2, BCL2-like 1 and catalase mRNA and increased poly-caspase activity, all of which are consistent with activation of the mitochondria-dependent apoptotic pathway. TUNEL assays confirmed the increased incidence of apoptosis in placentas of Aa-LPS-treated rats (p < 0.001). CONCLUSION Aa-LPS induces apoptosis in human trophoblasts via the mitochondria-dependent pathway, and this effect may contribute to the pathogenesis of periodontitis-associated LBW.
Collapse
Affiliation(s)
- Y Li
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, 2-870-1, Sakaecho-Nishi, Matsudo, Chiba 271-8587, Japan.
| | | | | | | | | |
Collapse
|
20
|
Hijiya T, Shibata Y, Hayakawa M, Abiko Y. A monoclonal antibody against fimA type II Porphyromonas gingivalis inhibits IL-8 production in human gingival fibroblasts. Hybridoma (Larchmt) 2010; 29:201-4. [PMID: 20568993 DOI: 10.1089/hyb.2009.0109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The periodontal pathogen Porphyromans gingivalis is classified into six groups (types I-V and Ib) based on the genotype of the fimbriae A (fimA) gene. Among genotypes, fimA type II strains are thought to be most strongly related to advanced periodontitis. The present study was undertaken to develop passive immunotherapy monoclonal antibodies (MAbs) against periodontitis, which are capable of inhibiting virulency and were constructed through the immunization of outer membrane vesicles (OMV) fraction of fimAII strain, TDC60, using mouse hybridoma technology. MAbs that recognized OMV by ELISA assay were identified, and 28 clones were screened by Western blot analysis. After purifying these MAbs using protein G column, the effect of the MAb on IL-8 production from human gingival fibroblasts by OMV was examined. We selected MAb TDC4-33H, which strongly inhibited the IL-8 production with a higher MAb production rate. Since the MAb showed an individual ladder-like profile against OMV by Western blotting, we further examined the reactivity against lipopolysaccharides (LPS) from TDC60, W83 (fimAIV), and ATCC33277 (fimAI). As a result, MAb TDC4-33H recognized all LPSs. Moreover, MAb TDC4-33H significantly inhibited the LPS-stimulated IL-8 production in human gingival fibroblasts. These findings suggest that MAb TDC4-33H reacts with LPS and may be useful for passive immunotherapy through neutralizing IL-8 production in gingival fibroblasts by P. gingivalis LPS.
Collapse
Affiliation(s)
- Takahiro Hijiya
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Matsudo, Chiba, Japan
| | | | | | | |
Collapse
|
21
|
Zdařilová A, Svobodová AR, Chytilová K, Šimánek V, Ulrichová J. Polyphenolic fraction of Lonicera caerulea L. fruits reduces oxidative stress and inflammatory markers induced by lipopolysaccharide in gingival fibroblasts. Food Chem Toxicol 2010; 48:1555-61. [DOI: 10.1016/j.fct.2010.03.024] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 02/23/2010] [Accepted: 03/17/2010] [Indexed: 11/26/2022]
|
22
|
Tsutsumi T, Takeshi T, Nakashima K, Keisuke N, Isoda T, Takaaki I, Yokota M, Makoto Y, Nishihara T, Tatsuji N. Involvement of adhesion molecule in in vitro plaque-like formation of macrophages stimulated with Aggregatibacter actinomycetemcomitans lipopolysaccharide. J Periodontal Res 2010; 45:550-6. [PMID: 20412415 DOI: 10.1111/j.1600-0765.2010.01270.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND AND OBJECTIVE Inflammatory agents, such as lipopolysaccharide (LPS), in periodontal pockets may promote atherogenesis by activating leukocytes. In our previous study, we developed a microchannel chip to observe the cell adhesion process in a fluid system. The objective of this investigation was to examine the mechanism by which periodontopathic bacterial LPS enhances plaque-like formation on a microchannel chip. MATERIAL AND METHODS To evaluate the effect of Aggregatibacter actinomycetemcomitans LPS on the expression of adhesion molecules, e.g. intercellular adhesion molecule 1 (ICAM-1), lymphocyte function-associated antigen 1 (LFA-1) and L-selectin, on the surface of murine macrophage RAW264.7 cells, the expression of each adhesion molecule was examined by flow cytometry and western blot analysis. Moreover, a flow test on the microchannel chip involving anti-adhesion molecule antibodies was conducted to clarify which adhesion molecule is related to plaque-like formation of RAW264.7 cells. RESULTS The expressions of ICAM-1 and LFA-1 on the surface of RAW 264.7 cells increased following 12 h culture with LPS; L-selectin expression was unaffected. An increase in ICAM-1 expression was also confirmed by western blot analysis. The flow test revealed that anti-ICAM-1 antibody inhibited plaque-like formation of LPS-stimulated macrophages on the micropillars of the microchannel chip. CONCLUSION These findings indicate that ICAM-1 plays an important role in plaque-like formation of LPS-stimulated macrophages. Our microchannel chip is a suitable tool for the investigation of etiological factors of atherosclerosis, including periodontitis, in vitro.
Collapse
Affiliation(s)
- T Tsutsumi
- Division of Periodontology, Department of Cardiology and Periodontology, Kyushu Dental College, Kitakyushu, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Maruyama M, Hayakawa M, Zhang L, Shibata Y, Abiko Y. Monoclonal antibodies produced against lipopolysaccharide from fimA Type II Porphyromonas gingivalis. Hybridoma (Larchmt) 2010; 28:431-4. [PMID: 20025502 DOI: 10.1089/hyb.2009.0055] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
An important periodontal pathogen, Porphyromans gingivalis strains are classified into six genotypes (types I-V and Ib), based on the genotype of the fimbriae A (fimA). Among the genotypes, fimA type II strains are thought to be most strongly related to advanced periodontitis. To develop passive immunotherapy, over 300 hybridoma clones were constructed through immunization of cell extracts of fimA type II strain P. gingivalis TDC60 using hybridoma technology. Among these clones, 15 MAbs recognized TDC60 lipopolysaccharide (LPS) with an individual ladder-like structure by Western blot analysis. Further Western blotting of the 15 MAbs against LPS from TDC60, FDC381 (fimA type I), and W83 (fimA type IV) of P. gingivalis and Escherichia coli was carried out. None of these MAbs recognized E. coli LPS, and divided into at least three different Western blot patterns. To confirm the specificity to LPS, three clones were selected and competition assays were carried out using TDC60 LPS. All three MAbs reduced the reactivity against TDC60 LPS after absorption of the LPS in a dose-dependent manner. These findings suggest that MAbs recognizing different epitopes of P. gingivalis LPS were successfully constructed, and these MAbs may be useful in neutralizing P. gingivalis infection.
Collapse
Affiliation(s)
- Mitsuhiro Maruyama
- Department of Biochemistry and Molecular Biology, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | | | | | |
Collapse
|
24
|
Magnadottir B, Gudmundsdottir S, Gudmundsdottir BK, Helgason S. Natural antibodies of cod (Gadus morhua L.): Specificity, activity and affinity. Comp Biochem Physiol B Biochem Mol Biol 2009; 154:309-16. [DOI: 10.1016/j.cbpb.2009.07.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 07/02/2009] [Accepted: 07/09/2009] [Indexed: 02/01/2023]
|
25
|
Zeituni AE, Jotwani R, Carrion J, Cutler CW. Targeting of DC-SIGN on human dendritic cells by minor fimbriated Porphyromonas gingivalis strains elicits a distinct effector T cell response. THE JOURNAL OF IMMUNOLOGY 2009; 183:5694-704. [PMID: 19828628 DOI: 10.4049/jimmunol.0901030] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The oral mucosal pathogen Porphyromonas gingivalis expresses at least two adhesins: the 67-kDa mfa-1 (minor) fimbriae and the 41-kDa fimA (major) fimbriae. In periodontal disease, P. gingivalis associates in situ with dermal dendritic cells (DCs), many of which express DC-SIGN (DC-specific ICAM-3 grabbing nonintegrin; CD209). The cellular receptors present on DCs that are involved in the uptake of minor/major fimbriated P. gingivalis, along with the effector immune response induced, are presently unclear. In this study, stably transfected human DC-SIGN(+/-) Raji cell lines and monocyte-derived DCs (MoDCs) were pulsed with whole, live, wild-type Pg381 or isogenic major (DPG-3)-, minor (MFI)-, or double fimbriae (MFB)-deficient mutant P. gingivalis strains. The influence of blocking Abs, carbohydrates, full-length glycosylated HIV-1 gp120 envelope protein, and cytochalasin D on the uptake of strains and on the immune responses was determined in vitro. We show that the binding of minor fimbriated P. gingivalis strains to Raji cells and MoDCs is dependent on DC-SIGN, whereas the double fimbriae mutant strain does not bind. Binding to DC-SIGN on MoDCs is followed by the internalization of P. gingivalis into DC-SIGN-rich intracellular compartments, and MoDCs secrete low levels of inflammatory cytokines and remain relatively immature. Blocking DC-SIGN with HIV-1 gp120 prevents the uptake of minor fimbriated strains and deregulates the expression of inflammatory cytokines. Moreover, MoDCs promote a Th2 or Th1 effector response, depending on whether they are pulsed with minor or major fimbriated P. gingivalis strains, respectively, suggesting distinct immunomodulatory roles for the two adhesins of P. gingivalis.
Collapse
Affiliation(s)
- Amir E Zeituni
- Department of Periodontics and Implantology, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794, USA
| | | | | | | |
Collapse
|
26
|
Shimizu M, Miyamoto Y, Takaku H, Matsuo M, Nakabayashi M, Masuno H, Udagawa N, DeLuca HF, Ikura T, Ito N. 2-Substituted-16-ene-22-thia-1alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D3 analogs: Synthesis, biological evaluation, and crystal structure. Bioorg Med Chem 2008; 16:6949-64. [PMID: 18539034 DOI: 10.1016/j.bmc.2008.05.043] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2008] [Accepted: 05/21/2008] [Indexed: 10/22/2022]
Abstract
Recently, we have found that 16-ene-22-thia-26,27-dimethyl-19-norvitamin D(3) analogs 1a (n=2, 3) are 20 times more active than the natural hormone 1alpha,25-dihydroxyvitamin D(3) in terms of transcriptional activity. To further investigate the effects of the A-ring modification of 1a, b on the biological activity profile, novel 22-thia-19-norvitamin D analogs 2-11 bearing a hydroxyethoxy-, hydroxyethylidene- or methyl group at C-2 in combination with 20S- and 20R-isomers were prepared and tested for their in vitro biological activities. All of the synthesized analogs showed 0.5-140% of the activity of the natural hormone in binding to the vitamin D receptor (VDR). When compared with the transcriptional activity of C-2 or C-20 isomeric pairs of the 22-thia analogs, the 20S-isomers 2-11a were more potent than the 20R-isomers 2, 3, 8-11b, and the 2beta-hydroxyethoxy, 2E-hydroxyethylidene, and 2alpha-methyl-2beta-hydroxy-22-thia isomers showed higher potency than their corresponding counterparts. In particular, 3a exhibited an extremely higher level of potency (210-fold) than the natural hormone. To elucidate the action mode of superagonist 3a at the molecular level, we determined the crystal structures of the rat VDR-ligand-binding domain complexed with 3a or 3b in the presence of peptide containing a nuclear box motif (LxxLL) at 1.9-2.0A resolution. The crystal structures demonstrated that the 1alpha-OH, 3beta-OH, and 25-OH groups of the natural hormone and 3a were anchored by the same amino acid residues in the ligand-binding pocket, and the terminal OH moiety of the substituent at C-2 formed hydrogen bonds with Arg270 and a water molecule to create a tight water molecule network. Moreover, the methyl groups at C-26a and C-27a make additional contact with hydrophobic residues such as Leu223, Ala227, Val230, and Ala299. These hydrophilic and hydrophobic interactions in 3a may underlie the induction of superagonistic activity.
Collapse
Affiliation(s)
- Masato Shimizu
- Laboratory of Medicinal Chemistry, School of Biomedical Science, Tokyo Medical and Dental University, 2-3-10 Kanda-Surugadai, Chiyoda-ku, Tokyo 101-0062, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Kumada H, Haishima Y, Watanabe K, Hasegawa C, Tsuchiya T, Tanamoto K, Umemoto T. Biological properties of the native and synthetic lipid A of Porphyromonas gingivalis lipopolysaccharide. ACTA ACUST UNITED AC 2008; 23:60-9. [PMID: 18173800 DOI: 10.1111/j.1399-302x.2007.00392.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION AND METHODS A pentaacyl and diphosphoryl lipid A molecule found in the lipid A isolated from Porphyromonas gingivalis lipopolysaccharide (LPS) was chemically synthesized, and its characteristics were evaluated to reconfirm its interesting bioactivities including low endotoxicity and activity against LPS-unresponsive C3H/HeJ mouse cells. RESULTS The synthesized P. gingivalis lipid A (synthetic Pg-LA) exhibited strong activities almost equivalent to those of Escherichia coli-type synthetic lipid A (compound 506) in all assays on LPS-responsive mice, and cells. LPS and native lipid A of P. gingivalis displayed overall endotoxic activities, but its potency was reduced in comparison to the synthetic analogs. In the assays using C3H/HeJ mouse cells, the LPS and native lipid A significantly stimulated splenocytes to cause mitosis, and peritoneal macrophages to induce tumor necrosis factor-alpha and interleukin-6 production. However, synthetic Pg-LA and compound 506 showed no activity on the LPS-unresponsive cells. Inhibition assays using some inhibitors including anti-human Toll-like receptor 2 (TLR2) and TLR4/MD-2 complex monoclonal antibodies showed that the biological activity of synthetic Pg-LA was mediated only through the TLR4 signaling pathway, which might act as a receptor for LPS, whereas TLR2, possibly together with CD14, was associated with the signaling cascade for LPS and native lipid A of P. gingivalis, in addition to the TLR4 pathway. CONCLUSION These results suggested that the moderated and reduced biological activity of P. gingivalis LPS and native lipid A, including their activity on C3H/HeJ mouse cells via the TLR2-mediated pathway, may be mediated by bioactive contaminants or low acylated molecules present in the native preparations having multiple lipid A moieties.
Collapse
Affiliation(s)
- H Kumada
- Department of Oral Microbiology, Kanagawa Dental College, Yokosuka, Kanagawa, Japan.
| | | | | | | | | | | | | |
Collapse
|
28
|
Ohno T, Okahashi N, Morisaki I, Amano A. Signaling pathways in osteoblast proinflammatory responses to infection by Porphyromonas gingivalis. ACTA ACUST UNITED AC 2008; 23:96-104. [DOI: 10.1111/j.1399-302x.2007.00393.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
29
|
Montes CL, Acosta-Rodríguez EV, Merino MC, Bermejo DA, Gruppi A. Polyclonal B cell activation in infections: infectious agents' devilry or defense mechanism of the host? J Leukoc Biol 2007; 82:1027-32. [PMID: 17615380 DOI: 10.1189/jlb.0407214] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Polyclonal B cell activation is not a peculiar characteristic to a particular infection, as many viruses, bacteria, and parasites induce a strong polyclonal B cell response resulting in hyper-gamma-globulinemia. Here, we discuss the different roles proposed for polyclonal B cell activation, which can be crucial for early host defense against rapidly dividing microorganisms by contributing antibodies specific for a spectrum of conserved structures present in the pathogens. In addition, polyclonal B cell activation can be responsible for maintenance of memory B cell responses because of the continuous, unrestricted stimulation of memory B cells whose antibody production may be sustained in the absence of the antigens binding-specific BCR. Conversely, polyclonal activation can be triggered by microorganisms to avoid the host-specific, immune response by activating B cell clones, which produce nonmicroorganism-specific antibodies. Finally, some reports suggest a deleterious role for polyclonal activation, arguing that it could potentially turn on anti-self-responses and lead to autoimmune manifestations during chronic infections.
Collapse
Affiliation(s)
- Carolina L Montes
- Department of Clinical Biochemistry, School of Chemical Science, National University of Córdoba, Córdoba, Argentina
| | | | | | | | | |
Collapse
|
30
|
Abstract
The mucosal lining of the respiratory and digestive systems contains the largest and most complex immune system in the body, but surprisingly little is known of the immune system that serves the oral mucosa. This review focuses on dendritic cells, particularly powerful arbiters of immunity, in response to antigens of microbial or tumor origin, but also of tolerance to self-antigens and commensal microbes. Although first discovered in 1868, the epidermal dendritic Langerhans cells remained enigmatic for over a century, until they were identified as the most peripheral outpost of the immune system. Investigators' ability to isolate, enrich, and culture dendritic cells has led to an explosion in the field. Presented herein is a review of dendritic cell history, ontogeny, function, and phenotype, and the role of different dendritic cell subsets in the oral mucosa and its diseases. Particular emphasis is placed on the mechanisms of recognition and capture of microbes by dendritic cells. Also emphasized is how dendritic cells may regulate immunity/tolerance in response to oral microbes.
Collapse
Affiliation(s)
- C W Cutler
- Department of Periodontics, 110 Rockland Hall, School of Dental Medicine, Stony Brook University, Stony Brook, NY 11794-8703, USA.
| | | |
Collapse
|
31
|
Shimazaki M, Miyamoto Y, Yamamoto K, Yamada S, Takami M, Shinki T, Udagawa N, Shimizu M. Analogs of 1α,25-dihydroxyvitamin D3 with high potency in induction of osteoclastogenesis and prevention of dendritic cell differentiation: Synthesis and biological evaluation of 2-substituted 19-norvitamin D analogs. Bioorg Med Chem 2006; 14:4645-56. [PMID: 16513359 DOI: 10.1016/j.bmc.2006.02.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2006] [Revised: 02/06/2006] [Accepted: 02/07/2006] [Indexed: 11/17/2022]
Abstract
In our previous papers, we found that introduction of a substituent at C(2) into 1alpha,25-dihydroxy-19-norvitamin D(3) (2a) caused dramatic changes in binding affinity for the vitamin D receptor (VDR) and in transcriptional activity compared with the parent compound. To investigate the broad biological activity of 2-substituted 19-norvitamin D analogs, we synthesized two new (20S)-2-hydroxyethylidene-19-norvitamin D derivatives (3b and 4b) and a total of 16 A-ring-modified analogs including 3b and 4b were tested for the following in vitro and in vivo biological activities: (1) affinity for the VDR, (2) transcriptional activity, (3) osteoclast formation, (4) bone calcium mobilization in rats, and (5) effects on differentiation of dendritic cells (DCs). The biological effects of the analogs were compared with those of 1alpha,25-dihydroxyvitamin D(3) (1a) and 2MD, which is being developed for the treatment of osteoporosis. The efficacy of the (20S)-19-norvitamin D analogs with 2-hydroxyethylidene, 2-hydroxyethoxy, and 2-methyl moieties (3b, 5b, 6b, and 9b) was more than 10-fold stronger than that of 1a with respect to transcriptional activity, ability to induce osteoclast formation, and ability to inhibit CD86 expression, a marker of mature DCs, and was similar to that of 2MD. The (20S)-2beta-hydroxyethoxy derivative 6b was 2 orders of magnitude more active than 1a and approximately twice as potent as 2MD in preventing CD86 production. The 2-epoxy derivatives 7 and 8 were relatively poor ligands for the VDR and exhibited activity lower than that of the natural hormone 1a.
Collapse
Affiliation(s)
- Mika Shimazaki
- Institute of Biomaterials and Bioengineering Tokyo Medical and Dental University, Chiyoda-ku, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Ohno T, Okahashi N, Kawai S, Kato T, Inaba H, Shibata Y, Morisaki I, Abiko Y, Amano A. Proinflammatory gene expression in mouse ST2 cell line in response to infection by Porphyromonas gingivalis. Microbes Infect 2006; 8:1025-34. [PMID: 16476562 DOI: 10.1016/j.micinf.2005.10.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2005] [Accepted: 10/23/2005] [Indexed: 11/17/2022]
Abstract
Porphyromonas gingivalis is a predominant periodontal pathogen, whose infection causes inflammatory responses in periodontal tissue and alveolar bone resorption. Various virulence factors of this pathogen modulate host innate immune responses. It has been reported that gingipains degrade a wide variety of host cell proteins, and fimbriae are involved in bacterial adhesion to and invasion of host cells. In the present study, we profiled ST2 stromal cell gene expression following infection with the viable P. gingivalis strain ATCC33277 as well as with its gingipain- and fimbriae-deficient mutants, using microarray technology and quantitative real-time polymerase chain reaction. Using a mouse array of about 20,000 genes, we found that infection with the wild strain elicited a significant upregulation (greater than 2-fold) of expression of about 360 genes in ST2 cells, which included the chemokines CCL2, CCL5, and CXCL10, and other proinflammatory proteins such as interleukin-6 (IL-6) and matrix metalloproteinase-13 (MMP-13). Further, infection with the gingipain-deficient mutant elicited a reduced expression of the CXCL10, IL-6 and MMP-13 genes, suggesting that gingipains play an important role in inducing the expression of those genes following P. gingivalis infection. On the other hand, the pattern of global gene expression induced by the fimbriae-deficient mutant was similar to that by the wild strain. These results suggest that P. gingivalis infection induces gene expression of a wide variety of proinflammatory proteins in stromal cells/osteoblasts, and gingipains may be involved in inducing several of the proinflammatory factors.
Collapse
Affiliation(s)
- Takashi Ohno
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita-Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Magnadottir B, Gudmundsdottir BK, Lange S, Steinarsson A, Oddgeirsson M, Bowden T, Bricknell I, Dalmo RA, Gudmundsdottir S. Immunostimulation of larvae and juveniles of cod, Gadus morhua L. JOURNAL OF FISH DISEASES 2006; 29:147-55. [PMID: 16533300 DOI: 10.1111/j.1365-2761.2006.00701.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Cod larval culture is currently hampered by high mortalities in the first 2-3 weeks after hatching, often due to infectious diseases. The immune system of cod is not fully competent until 2-3 months after hatching. Conventional vaccination is, therefore, not of value before this time, and the larvae are wholly reliant on non-specific parameters for their defence against infection. A range of substances, generally derived from bacterial, fungal or plant origin, can activate these non-specific parameters. During three hatching seasons, 2001-2003, at the Marine Institute's Experimental Station, Stadur, Grindavik, Iceland, the effects of several immunostimulants on survival and disease resistance of cod larvae and juveniles were examined. Both bathing treatments and administration in the feed were used. One of these substances, lipopolysaccharide (LPS), isolated from the bacterium Aeromonas salmonicida (ssp. salmonicida or achromogenes), appeared in some instances to improve survival and have a beneficial effect on disease resistance. Other substances tested had limited effects. The results emphasize the need for further work in this field.
Collapse
Affiliation(s)
- B Magnadottir
- Institute for Experimental Pathology, University of Iceland, Reykjavìk, Iceland.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Andrian E, Grenier D, Rouabhia M. Porphyromonas gingivalis lipopolysaccharide induces shedding of syndecan-1 expressed by gingival epithelial cells. J Cell Physiol 2005; 204:178-83. [PMID: 15648090 DOI: 10.1002/jcp.20287] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Syndecans are constitutively shed from growing epithelial cells as the part of normal cell surface turnover. However, increased serum levels of the soluble syndecan ectodomain have been reported to occur during bacterial infections. The aim of this study was to evaluate the potential of lipopolysaccharide (LPS) from the periodontopathogen Porphyromonas gingivalis to induce the shedding of syndecan-1 expressed by human gingival epithelial cells. We showed that the syndecan-1 ectodomain is constitutively shed from the cell surface of human gingival epithelial cells. This constitutive shedding corresponding to the basal level of soluble syndecan-1 ectodomain was significantly increased when cells were stimulated with P. gingivalis LPS and reached a level comparable to that caused by phorbol myristic acid (PMA), an activator of protein kinase C (PKC) which is well known as a shedding agonist. The syndecan-1 shedding was paralleled by pro-inflammatory cytokine interleukin-1 beta (IL-1beta), IL-6, IL-8, and tumor necrosis factor alpha (TNF-alpha) release. Indeed, secretion of IL-1beta and TNF-alpha increased following stimulation by P. gingivalis LPS and PMA, respectively. When recombinant forms of these proteins were added to the cell culture, they induced a concentration-dependent increase in syndecan-1 ectodomain shedding. A treatment with IL-1beta converting enzyme (ICE) specific inhibitor prevented IL-1beta secretion by epithelial cells stimulated by P. gingivalis LPS and decreased the levels of shed syndecan-1 ectodomain. We also observed that PMA and TNF-alpha stimulated matrix metalloproteinase-9 secretion, whereas IL-1beta and P. gingivalis LPS did not. Our results demonstrated that P. gingivalis LPS stimulated syndecan-1 shedding, a phenomenon that may be mediated in part by IL-1beta, leading to an activation of intracellular signaling pathways different from those involved in PMA stimulation.
Collapse
Affiliation(s)
- Elisoa Andrian
- Groupe de Recherche en Ecologie Buccale, Faculté de Médecine Dentaire, Université Laval, Quebec City, Quebec, Canada
| | | | | |
Collapse
|
35
|
Kasamatsu A, Uzawa K, Shimada K, Shiiba M, Otsuka Y, Seki N, Abiko Y, Tanzawa H. Elevation of galectin-9 as an inflammatory response in the periodontal ligament cells exposed to Porphylomonas gingivalis lipopolysaccharide in vitro and in vivo. Int J Biochem Cell Biol 2005; 37:397-408. [PMID: 15474984 DOI: 10.1016/j.biocel.2004.07.014] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2004] [Revised: 07/06/2004] [Accepted: 07/13/2004] [Indexed: 11/19/2022]
Abstract
Considerable evidence suggests that periodontal disease not only is caused by bacterial infection but also is associated with host susceptibility. Using in-house cDNA microarray analysis, we attempted to identify gene expression changes in human periodontal ligament (PDL)-derived cells with and without treatment with lipopolysaccharide (LPS) extracted from Porphylomonas gingivalis (P. gingivalis LPS). Of the five up-regulated genes in the PDLs treated with P. gingivalis LPS, galectin-9, which was reported to have eosinophil chemoattraction, was selected for further analyses. By semiquantitative reverse transcriptase-polymerase chain reaction (sqRT-PCR), real-time quantitative RT-PCR, and Western blot analyses, elevated galectin-9 gene expression was detected in LPS-treated PDL-derived cells. Consequently, it was confirmed that the LPS enhances the expression level of galectin-9 mRNA and protein in a time-dependent manner together with interleukin-8. In addition, strong immunoreaction for galectin-9 was detected in the PDL consisting of the periodontal pocket of a patient with severe periodontal disease. Furthermore, significant up-regulation of galectin-9 mRNA expression was detected in the mRNA from PDLs of patients with periodontal disease when compared with healthy donors (P < 0.05). These results suggest that galectin-9 expression is associated with inflammatory reactions in the PDL.
Collapse
Affiliation(s)
- Atsushi Kasamatsu
- Department of Clinical Molecular Biology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | |
Collapse
|
36
|
O'Brien-Simpson NM, Veith PD, Dashper SG, Reynolds EC. Antigens of bacteria associated with periodontitis. Periodontol 2000 2004; 35:101-34. [PMID: 15107060 DOI: 10.1111/j.0906-6713.2004.003559.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Neil M O'Brien-Simpson
- Centre for Oral Health Science, School of Dental Science, The University of Melbourne, Victoria, Australia
| | | | | | | |
Collapse
|
37
|
Kusumoto Y, Hirano H, Saitoh K, Yamada S, Takedachi M, Nozaki T, Ozawa Y, Nakahira Y, Saho T, Ogo H, Shimabukuro Y, Okada H, Murakami S. Human gingival epithelial cells produce chemotactic factors interleukin-8 and monocyte chemoattractant protein-1 after stimulation with Porphyromonas gingivalis via toll-like receptor 2. J Periodontol 2004; 75:370-9. [PMID: 15088874 DOI: 10.1902/jop.2004.75.3.370] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The mechanism of stimulation of human gingival epithelial cells (HGEC) by Porphyromonas gingivalis (Pg) has not been fully clarified yet. In order to investigate the possible activation of HGEC by Pg through Toll-like receptors (TLRs), we analyzed the production of chemotactic factors and the activated nuclear factor-kappa B (NF-kappaB). METHODS The mRNA expression of TLRs and the protein expression of TLR2 and TLR4 in HGEC and gingival tissue were assessed using reverse transcription-polymerase chain reaction (RT-PCR) assay and immunohistochemical staining. Primary cultured HGEC (nHGEC) and HGEC transformed by simian virus 40 T antigen (OBA-9) were activated by a sonic extract (SE) of Pg to examine cytokine production and NF-kappaB activation using enzyme-linked immunosorbant assay (ELISA). In addition, Pg mediated activation of NF-kappaB in a TLR2-transfectant was also investigated. RESULTS RT-PCR results revealed that HGEC expressed mRNA of TLR2, TLR4, TLR5, and TLR9, although the expression profiles of each cell line were slightly different. In addition, immunostaining revealed the prominent expression of TLR2 not only in nHGEC, but also in the gingival epithelium of the tissue specimen. Interestingly, nHGEC and OBA-9 secreted IL-8 and monocyte chemoattractant protein (MCP)-1 upon stimulation with Pg SE more efficiently than LPS and fimbriae of Pg. Furthermore, Pg SE increased the activated NF-kappaB not only in OBA-9, but also in 293T cells transfected with the human TLR2 gene. CONCLUSION TLR2 participates, at least partly, in the signaling pathway to induce chemokine production in gingival epithelium as a reaction against Pg component(s), probably other than lipopolysaccharide and fimbriae.
Collapse
Affiliation(s)
- Yutaka Kusumoto
- Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Li X, Udagawa N, Takami M, Sato N, Kobayashi Y, Takahashi N. p38 Mitogen-activated protein kinase is crucially involved in osteoclast differentiation but not in cytokine production, phagocytosis, or dendritic cell differentiation of bone marrow macrophages. Endocrinology 2003; 144:4999-5005. [PMID: 12960069 DOI: 10.1210/en.2003-0166] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We previously reported that p38 MAPK signaling is required for osteoclast differentiation but not osteoclast function. Here we further investigated the role of p38 MAPK in the function and differentiation of mouse bone marrow macrophages (BMM phi), common precursors of osteoclasts and dendritic cells. Lipopolysaccharide (LPS) activated the p38 MAPK signaling pathway in BMM phi by sequential phosphorylation of MAPK kinase 3/6, p38 MAPK, and activating transcription factor-2. Treatment of BMM phi with SB203580, a p38 MAPK inhibitor, suppressed LPS-induced phosphorylation of activating transcription factor-2. LPS stimulated production of IL-1 beta, TNF alpha, and IL-6 in BMM phi, and SB203580 failed to inhibit the LPS-induced cytokine production. BMM phi incorporated latex beads via phagocytosis, and SB203580 had no effect on this phagocytosis. BMM phi differentiated into dendritic cells when treated with granulocyte macrophage colony-stimulating factor together with CD40 ligand, TNF alpha, or LPS, and SB203580 failed to inhibit this differentiation. Thus, p38 MAPK-mediated signals are not involved in either BMM phi function or BMM phi differentiation into dendritic cells. The differentiation of BMM phi into osteoclasts in response to receptor activator of nuclear factor-kappa B ligand or TNF alpha was strongly inhibited by SB203580. These findings emphasize the crucial roles of p38 MAPK-mediated signaling in osteoclast differentiation.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute for Oral Science, Matsumoto Dental University, Shiojiri, Nagano 399-0781, Japan
| | | | | | | | | | | |
Collapse
|
39
|
Itoh K, Udagawa N, Kobayashi K, Suda K, Li X, Takami M, Okahashi N, Nishihara T, Takahashi N. Lipopolysaccharide promotes the survival of osteoclasts via Toll-like receptor 4, but cytokine production of osteoclasts in response to lipopolysaccharide is different from that of macrophages. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:3688-95. [PMID: 12646634 DOI: 10.4049/jimmunol.170.7.3688] [Citation(s) in RCA: 147] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lipopolysaccharide is a pathogen that causes inflammatory bone loss. Monocytes and macrophages produce proinflammatory cytokines such as IL-1, TNF-alpha, and IL-6 in response to LPS. We examined the effects of LPS on the function of osteoclasts formed in vitro in comparison with its effect on bone marrow macrophages, osteoclast precursors. Both osteoclasts and bone marrow macrophages expressed mRNA of Toll-like receptor 4 (TLR4) and CD14, components of the LPS receptor system. LPS induced rapid degradation of I-kappaB in osteoclasts, and stimulated the survival of osteoclasts. LPS failed to support the survival of osteoclasts derived from C3H/HeJ mice, which possess a missense mutation in the TLR4 gene. The LPS-promoted survival of osteoclasts was not mediated by any of the cytokines known to prolong the survival of osteoclasts, such as IL-1beta, TNF-alpha, and receptor activator of NF-kappaB ligand. LPS stimulated the production of proinflammatory cytokines such as IL-1beta, TNF-alpha, and IL-6 in bone marrow macrophages and peritoneal macrophages, but not in osteoclasts. These results indicate that osteoclasts respond to LPS through TLR4, but the characteristics of osteoclasts are quite different from those of their precursors, macrophages, in terms of proinflammatory cytokine production in response to LPS.
Collapse
Affiliation(s)
- Kanami Itoh
- Department of Biochemistry, School of Dentistry, Showa University, Tokyo, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Ko HJ, Lim SS. Production of macrophage inflammatory protein (MIP)-1alpha and MIP-1beta by human polymorphonuclear neutrophils stimulated with Porphyromonas endodontalis lipopolysaccharide. J Endod 2002; 28:754-7. [PMID: 12470018 DOI: 10.1097/00004770-200211000-00002] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This study was undertaken to investigate the capacity of polymorphonuclear neutrophils (PMNs) to secrete Macrophage Inflammatory Protein (MIP)-1alpha and MIP-1beta after stimulation with Porphyromonas endodontalis lipopolysaccharide (LPS). Escherichia coli LPS was used as a positive control. Venous blood was collected and PMNs were isolated from healthy volunteers. Cells were cultured with various concentrations of LPS for different periods of time. Cell supernatants were assayed by enzyme-linked immunosorbent assay. The levels of chemokine secretion in PMNs stimulated with each LPS were found to be significantly higher than in the unstimulated control cells (p < 0.05), and this expression occurred in a time- and dose-dependent manner. E. coli LPS induced higher levels of cytokines than P. endodontalis LPS. These findings demonstrated that P. endodontalis LPS is capable of stimulating PMNs to produce chemotactic cytokines and suggested that PMNs stimulated with P. endodontalis LPS may play a crucial role in the inflammatory and immunopathological reactions of pulpal and periapical diseases.
Collapse
Affiliation(s)
- Hyun Jung Ko
- Department of Conservative Dentistry, College of Dentistry, Seoul National University, Korea
| | | |
Collapse
|
41
|
Li X, Udagawa N, Itoh K, Suda K, Murase Y, Nishihara T, Suda T, Takahashi N. p38 MAPK-mediated signals are required for inducing osteoclast differentiation but not for osteoclast function. Endocrinology 2002; 143:3105-13. [PMID: 12130576 DOI: 10.1210/endo.143.8.8954] [Citation(s) in RCA: 202] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Receptor activator of nuclear factor-kappaB ligand (RANKL)-induced signals play critical roles in osteoclast differentiation and function. SB203580, an inhibitor of p38 MAPK, blocked osteoclast formation induced by 1alpha,25-dihydroxyvitamin D(3) and prostaglandin E(2) in cocultures of mouse osteoblasts and bone marrow cells. Nevertheless, SB203580 showed no inhibitory effect on RANKL expression in osteoblasts treated with 1alpha,25-dihydroxyvitamin D(3) and prostaglandin E(2). RANKL-induced osteoclastogenesis in bone marrow cultures was inhibited by SB203580, suggesting a direct effect of SB203580 on osteoclast precursors, but not on osteoblasts, in osteoclast differentiation. However, SB203580 inhibited neither the survival nor dentine-resorption activity of osteoclasts induced by RANKL. Lipopolysaccharide (LPS), IL-1, and TNFalpha all stimulated the survival of osteoclasts, which was not inhibited by SB203580. Phosphorylation of p38 MAPK was induced by RANKL, IL-1, TNFalpha, and LPS in osteoclast precursors but not in osteoclasts. LPS stimulated phosphorylation of MAPK kinase 3/6 and ATF2, upstream and downstream signals of p38 MAPK, respectively, in osteoclast precursors but not in osteoclasts. Nevertheless, LPS induced degradation of IkappaB and phosphorylation of ERK in osteoclasts as well as in osteoclast precursors. These results suggest that osteoclast function is induced through a mechanism independent of p38 MAPK-mediated signaling.
Collapse
Affiliation(s)
- Xiaotong Li
- Institute for Oral Science, Department of Biochemistry, Matsumoto Dental University, 1780 Gobara, Hirooka, Shiojiri, Nagano 399-0781, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Otsuka Y, Ito M, Yamaguchi M, Saito S, Uesu K, Kasai K, Abiko Y, Mega J. Enhancement of lipopolysaccharide-stimulated cyclooxygenase-2 mRNA expression and prostaglandin E2 production in gingival fibroblasts from individuals with Down syndrome. Mech Ageing Dev 2002; 123:663-74. [PMID: 11850029 DOI: 10.1016/s0047-6374(01)00413-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It is well known that Down syndrome (DS) is a premature ageing syndrome. Periodontal disease in individuals with DS develops rapidly and extensively in a relatively younger age bracket compared with that in healthy controls. The mechanisms involved in the periodontal inflammatory processes in DS patients are not fully understood. In the present study, the non-inflamed gingival fibroblasts isolated from seven patients with DS (DGF) and seven healthy controls (NDGF) were stimulated with lipopolysaccharide (LPS) derived from Actinobacillus actinomycetemcomitans (A. a.). We measured the level of prostaglandin E2 (PGE2) production by DGF and NDGF by radioimmunoassay, and also measured the mRNA expression of cyclooxygenase-1 (COX-1) and cyclooxygenase-2 (COX-2) by using the real-time PCR method. We found the higher levels of LPS-stimulated COX-2 mRNA expression and PGE2 production in DGF when compared with those in NDGF. This study may indicate that overexpression of LPS-stimulated COX-2 induced a greater ability of DGF to produce PGE2, and that these phenomena may be responsible for the severer periodontal disease in DS patients.
Collapse
Affiliation(s)
- Yoko Otsuka
- Department of Dentistry for the Disabled, Nihon University School of Dentistry at Matsudo, 870-1, Sakaecho-Nishi 2, Matsudo, 271-8587, Chiba, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Yoshimura A, Kaneko T, Kato Y, Golenbock DT, Hara Y. Lipopolysaccharides from periodontopathic bacteria Porphyromonas gingivalis and Capnocytophaga ochracea are antagonists for human toll-like receptor 4. Infect Immun 2002; 70:218-25. [PMID: 11748186 PMCID: PMC127593 DOI: 10.1128/iai.70.1.218-225.2002] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Toll-like receptors (TLRs) 2 and 4 have recently been identified as possible signal transducers for various bacterial ligands. To investigate the roles of TLRs in the recognition of periodontopathic bacteria by the innate immune system, a Chinese hamster ovary (CHO) nuclear factor-kappaB (NF-kappaB)-dependent reporter cell line, 7.7, which is defective in both TLR2- and TLR4-dependent signaling pathways was transfected with human CD14 and TLRs. When the transfectants were exposed to freeze-dried periodontopathic bacteria, Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Capnocytophaga ochracea, and Fusobacterium nucleatum, and a non-oral bacterium, Escherichia coli, all species of the bacteria induced NF-kappaB-dependent CD25 expression in 7.7/huTLR2 cells. Although freeze-dried A. actinomycetemcomitans, F. nucleatum, and E. coli also induced CD25 expression in 7.7/huTLR4 cells, freeze-dried P. gingivalis did not. Similarly, lipopolysaccharides (LPS) extracted from A. actinomycetemcomitans, F. nucleatum, and E. coli induced CD25 expression in 7.7/huTLR4 cells, but LPS from P. gingivalis and C. ochracea did not. Furthermore, LPS from P. gingivalis and C. ochracea attenuated CD25 expression in 7.7/huTLR4 cells induced by repurified LPS from E. coli. LPS from P. gingivalis and C. ochracea also inhibited the secretion of interleukin-6 (IL-6) from U373 cells, the secretion of IL-1beta from human peripheral blood mononuclear cells, and ICAM-1 expression in human gingival fibroblasts induced by repurified LPS from E. coli. These findings indicated that LPS from P. gingivalis and C. ochracea worked as antagonists for human TLR4. The antagonistic activity of LPS from these periodontopathic bacteria may be associated with the etiology of periodontal diseases.
Collapse
Affiliation(s)
- Atsutoshi Yoshimura
- Department of Periodontology, Nagasaki University School of Dentistry, 1-7-1 Sakamoto, Nagasaki 852-8588, Japan.
| | | | | | | | | |
Collapse
|
44
|
Sugawara S, Yang S, Iki K, Hatakeyama J, Tamai R, Takeuchi O, Akashi S, Espevik T, Akira S, Takada H. Monocytic cell activation by Nonendotoxic glycoprotein from Prevotella intermedia ATCC 25611 is mediated by toll-like receptor 2. Infect Immun 2001; 69:4951-7. [PMID: 11447173 PMCID: PMC98587 DOI: 10.1128/iai.69.8.4951-4957.2001] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipopolysaccharide (LPS) preparations from gram-negative black-pigmented bacteria such as Porphyromonas gingivalis and Prevotella intermedia activate cells from non-LPS-responsive C3H/HeJ mice, but it is still unclear whether this activity is due to the unique structure of LPS or to a minor component(s) responsible for the activity in the preparation. A nonendotoxic glycoprotein with bioactivity against cells from C3H/HeJ mice was purified from a hot phenol-water extract of P. intermedia ATCC 25611 and designated Prevotella glycoprotein (PGP). Treatment of human monocytic THP-1 cells with 22-oxyacalcitriol (OCT) induced maturation and marked expression of CD14 on the cells, but the cells constitutively expressed Toll-like receptor 2 (TLR2) and TLR4 on the cells irrespective of the treatment. PGP induced a high level of interleukin-8 production at doses of 100 ng/ml and higher in OCT-treated THP-1 cells compared with Salmonella LPS, and the production was significantly inhibited by anti-CD14 and anti-TLR2 but not anti-TLR4 antibodies. Consistent with this, TLR2-deficient murine macrophages did not respond to PGP. It was also shown that PGP activity on the THP-1 cells was LPS-binding protein dependent and was inhibited by a synthetic lipid A precursor IV(A). These results indicate that PGP activates monocytic cells in a CD14- and TLR2-dependent manner.
Collapse
Affiliation(s)
- S Sugawara
- Department of Microbiology and Immunology, Tohoku University School of Dentistry, Sendai 980-8575, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Arai M, Hamada N, Umemoto T. Purification and characterization of a novel secondary fimbrial protein from Porphyromonas gingivalis strain 381. FEMS Microbiol Lett 2000; 193:75-81. [PMID: 11094282 DOI: 10.1111/j.1574-6968.2000.tb09405.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
We previously reported the existence of two different kinds of fimbriae expressed by Porphyromonas gingivalis ATCC 33277. In this study, we isolated and characterized a secondary fimbrial protein from strain FPG41, a fimA-inactivated mutant of P. gingivalis 381. FPG41 was constructed by a homologous recombination technique using a mobilizable suicide vector, and failed to express the long fimbriae (41-kDa fimbriae) that were produced on the cell surface of P. gingivalis 381. However, short fimbrial structures were observed on the cell surface of FPG41 by electron microscopy. The fimbrial protein was purified from FPG41 by DEAE-Sepharose CL-6B column chromatography. The secondary fimbrial protein was eluted at 0.15 M NaCl, and the molecular mass of this protein was approximately 53 kDa as estimated by SDS-PAGE. An antibody against the 53-kDa fimbrial protein reacted with the short fimbriae of the FPG41 and the wild-type strain. However, the 41-kDa long fimbriae of the wild-type strain and the 67-kDa fimbriae of ATCC 33277 did not react with the same antibody. Moreover, the N-terminal amino acid sequence of the 53-kDa fimbrial protein showed only 2 of 15 residues that were identical to those of the 41-kDa fimbrial protein. These results show that the properties of the 53-kDa fimbriae are different from those of the 67-kDa fimbriae of ATCC 33277 as well as those of the 41-kDa fimbriae.
Collapse
Affiliation(s)
- M Arai
- Department of Oral Microbiology, Kanagawa Dental College, 82 Inaoka-cho, 238-8580, Yokosuka, Japan
| | | | | |
Collapse
|
46
|
Noguchi K, Yanai M, Shitashige M, Nishihara T, Ishikawa I. Cyclooxygenase-2-dependent prostaglandin production by peripheral blood monocytes stimulated with lipopolysaccharides isolated from periodontopathogenic bacteria. J Periodontol 2000; 71:1575-82. [PMID: 11063390 DOI: 10.1902/jop.2000.71.10.1575] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Prostaglandin E2 (PGE2) plays important roles in the pathogenesis of periodontal disease. Recent studies have revealed the existence of 2 isozymes of cyclooxygenase (COX), called COX-1 and COX-2. The purpose of the present study was to investigate the contribution of COX-1 and COX-2 to PGE2 production by human peripheral blood monocytes that are stimulated with lipopolysaccharides (LPS) from periodontopathogenic bacteria. METHODS LPS were isolated from Actinobacillus actinomycetemcomitans (A. actinomycetemcomitans) and Porphyromonas gingivalis (P. gingivalis) by the phenol-water method. Peripheral blood monocytes were stimulated with LPS for the indicated periods, and the levels of PGE2 or interleukin (IL)-1 beta in the culture media were measured by enzyme-linked immunosorbent assay. Expression of COX-1 and -2 proteins was studied by immunocytochemical staining, and COX-2 mRNA expression was examined by Northern blot analysis. RESULTS Peripheral blood monocytes stimulated with A. actinomycetemcomitans- or P. gingivalis-LPS produced PGE2 in a time- and dose-dependent manner. Indomethacin, a non-selective COX-1/COX-2 inhibitor, and NS-398, a specific COX-2 inhibitor, completely inhibited PGE2 production. Immunocytochemical staining of COX-1 and COX-2 proteins showed that expression of COX-2 protein was increased in monocytes that were stimulated with A. actinomycetemcomitans- or P. gingivalis-LPS, compared with that in unstimulated monocytes, whereas expression of COX-1 protein was not altered. Northern blot analysis showed that monocytes stimulated with A. actinomycetemcomitans- or P. gingivalis-LPS expressed COX-2 mRNA, while COX-2 mRNA was not detectable in unstimulated cells. Treatment of A. actinomycetemcomitans-LPS-stimulated monocytes with NS-398 induced a significant increase of IL-1 beta production to the same extent as treatment with indomethacin. CONCLUSIONS These results suggest that COX-2 is induced in monocytes stimulated with LPS derived from A. actinomycetemcomitans and P. gingivalis and that the COX-2 is primarily responsible for PGE2 production. COX-2 may be pivotal in PGE2 production in periodontal lesions and may be involved in inflammatory responses.
Collapse
Affiliation(s)
- K Noguchi
- Department of Periodontology, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
| | | | | | | | | |
Collapse
|
47
|
Koga T. The road to preventive dentistry--the personal scientific experience of a Japanese dentist. J Dent Res 2000; 79:7-12. [PMID: 10690654 DOI: 10.1177/00220345000790011201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- T Koga
- Department of Preventive Dentistry, Kyushu University, Faculty of Dentistry, Fukuoka, Japan.
| |
Collapse
|
48
|
Mochizuki K, Yamaguchi M, Abiko Y. Enhancement of LPS-stimulated plasminogen activator production in aged gingival fibroblasts. J Periodontal Res 1999; 34:251-60. [PMID: 10567948 DOI: 10.1111/j.1600-0765.1999.tb02251.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Plasminogen activator (PA) converts plasminogen to plasmin, and plasmin activates the kinin cascade and latent methalloproteases. It is known that the alteration of the PA-plasmin system affects the progression of periodontal disease. We have reported previously that LPS from Campylobacter rectus, which is associated with adult periodontitis, increased PA production in human gingival fibroblasts (hGF). The effects of in vitro- and in vivo-cellular ageing on PA production from human and rat gingival fibroblasts (rGF) were studied. In vitro cellular aged hGF were prepared by subcultivations of hGF, and in vivo aged rGF was cultured primarily from the gingival tissue of aged rats. The cells were challenged with LPS and PA released into the cultured medium was measured as PA activity. Both in vitro and in vivo cellular aged GFs produced a significantly higher PA activity by LPS compared with young GFs cell. In RT-PCR experiments, tissue type PA (tPA) mRNA levels in both aged hGF and rGF were higher than in young cells, whereas plasminogen activator inhibitor 1 (PAI-1) mRNA remained unchanged and urotype PA (uPA) mRNA was not detected. Since LPS-stimulated PA activity from gingival fibroblasts was stimulated in aged cells using both in vitro- and in vivo-experimental models, the ageing of gingival fibroblasts may have an effect on the severity of inflammation and degradation of the extracellular matrix of gingival tissues by producing a large amount of PA in response to LPS.
Collapse
Affiliation(s)
- K Mochizuki
- Department of Biochemistry, Nihon University School of Dentistry at Matsudo, Chiba, Japan
| | | | | |
Collapse
|
49
|
Affiliation(s)
- S C Holt
- Department of Microbiology, University of Texas Health Science Center at San Antonio, Graduate School of Biomedical Sciences, USA
| | | | | | | |
Collapse
|
50
|
Haight-Ponce E, Endo H, Horiuchi H. Endotoxin activity measured by limulus assay. ENDODONTICS & DENTAL TRAUMATOLOGY 1999; 15:109-12. [PMID: 10530152 DOI: 10.1111/j.1600-9657.1999.tb00765.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The binding activity of endotoxin (Escherichia coli 0111) to dentin powder pre-treated with 10% sodium hypochlorite and with 3% hydrogen peroxide was investigated. This was carried out for periods of 30, 10 and 1 min. The endotoxin was diluted into 100 ng/ml solutions. Dentin powder suspended in a 34 micrograms/ml protein concentration was used in the study. The limulus amoebocyte lysate test was used to determine the amount of endotoxin binding, which was measured by the microtiter plate reader. The binding activity level of that concentration of endotoxin was significantly lower in dentin powder treated with 10% sodium hypochlorite than in that treated with 3% hydrogen peroxide at 1 and 10 min. Endotoxin binding activity measured the lowest in the 30 min test period.
Collapse
Affiliation(s)
- E Haight-Ponce
- Department of Endodontics and Periodontics, Tohoku University School of Dentistry, Sendai, Japan.
| | | | | |
Collapse
|