1
|
Balmuri SR, Phandanouvong-Lozano V, House SD, Yang JC, Niepa TH. Mucoid Coating Provides a Growth Advantage to Pseudomonas aeruginosa at Oil–Water Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:1868-1878. [DOI: 10.1021/acsabm.1c01198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
2
|
Metabolism and Pathogenicity of Pseudomonas aeruginosa Infections in the Lungs of Individuals with Cystic Fibrosis. Microbiol Spectr 2016; 3. [PMID: 26350318 DOI: 10.1128/microbiolspec.mbp-0003-2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Individuals with the genetic disease cystic fibrosis (CF) accumulate mucus or sputum in their lungs. This sputum is a potent growth substrate for a range of potential pathogens, and the opportunistic bacterium Pseudomonas aeruginosa is generally most difficult of these to eradicate. As a result, P. aeruginosa infections are frequently maintained in the CF lung throughout life, and are the leading cause of death for these individuals. While great effort has been expended to better understand and treat these devastating infections, only recently have researchers begun to rigorously examine the roles played by specific nutrients in CF sputum to cue P. aeruginosa pathogenicity. This chapter summarizes the current state of knowledge regarding how P. aeruginosa metabolism in CF sputum affects initiation and maintenance of these infections. It contains an overview of CF lung disease and the mechanisms of P. aeruginosa pathogenicity. Several model systems used to study these infections are described with emphasis on the challenge of replicating the chronic infections observed in humans with CF. Nutrients present in CF sputum are surveyed, and the impacts of these nutrients on the infection are discussed. The chapter concludes by addressing the future of this line of research including the use of next-generation technologies and the potential for metabolism-based therapeutics.
Collapse
|
3
|
Nguyen SH, Webb HK. Sensitive Detection of Deliquescent Bacterial Capsules through Nanomechanical Analysis. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:11311-11317. [PMID: 26425936 DOI: 10.1021/acs.langmuir.5b02546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Encapsulated bacteria usually exhibit strong resistance to a wide range of sterilization methods, and are often virulent. Early detection of encapsulation can be crucial in microbial pathology. This work demonstrates a fast and sensitive method for the detection of encapsulated bacterial cells. Nanoindentation force measurements were used to confirm the presence of deliquescent bacterial capsules surrounding bacterial cells. Force/distance approach curves contained characteristic linear-nonlinear-linear domains, indicating cocompression of the capsular layer and cell, indentation of the capsule, and compression of the cell alone. This is a sensitive method for the detection and verification of the encapsulation status of bacterial cells. Given that this method was successful in detecting the nanomechanical properties of two different layers of cell material, i.e. distinguishing between the capsule and the remainder of the cell, further development may potentially lead to the ability to analyze even thinner cellular layers, e.g. lipid bilayers.
Collapse
Affiliation(s)
- Song Ha Nguyen
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , P.O. Box 218, Hawthorn 3122, Victoria, Australia
| | - Hayden K Webb
- Faculty of Science, Engineering and Technology, Swinburne University of Technology , P.O. Box 218, Hawthorn 3122, Victoria, Australia
| |
Collapse
|
4
|
Kang Y, Zarzycki-Siek J, Walton CB, Norris MH, Hoang TT. Multiple FadD acyl-CoA synthetases contribute to differential fatty acid degradation and virulence in Pseudomonas aeruginosa. PLoS One 2010; 5:e13557. [PMID: 21042406 PMCID: PMC2958839 DOI: 10.1371/journal.pone.0013557] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2010] [Accepted: 09/28/2010] [Indexed: 12/28/2022] Open
Abstract
A close interconnection between nutrient metabolism and virulence factor expression contributes to the pathophysiology of Pseudomonas aeruginosa as a successful pathogen. P. aeruginosa fatty acid (FA) degradation is complicated with multiple acyl-CoA synthetase homologs (FadDs) expressed in vivo in lung tissue during cystic fibrosis infections. The promoters of two genetically linked P. aeruginosa fadD genes (fadD1 and fadD2) were mapped and northern blot analysis indicated they could exist on two different transcripts. These FadDs contain ATP/AMP signature and FA-binding motifs highly homologous to those of the Escherichia coli FadD. Upon introduction into an E. coli fadD-/fadR- double mutant, both P. aeruginosa fadDs functionally complemented the E. coli fadD-/fadR- mutant, allowing degradation of different chain-length FAs. Chromosomal mutagenesis, growth analysis, induction studies, and determination of kinetic parameters suggested that FadD1 has a substrate preference for long-chain FAs while FadD2 prefers shorter-chain FAs. When compared to the wild type strain, the fadD2 mutant exhibited decreased production of lipase, protease, rhamnolipid and phospholipase, and retardation of both swimming and swarming motilities. Interestingly, fadD1 mutant showed only increased swarming motility. Growth analysis of the fadD mutants showed noticeable deficiencies in utilizing FAs and phosphatidylcholine (major components of lung surfactant) as the sole carbon source. This defect translated into decreased in vivo fitness of P. aeruginosa in a BALB/c mouse lung infection model, supporting the role of lipids as a significant nutrient source for this bacterium in vivo.
Collapse
Affiliation(s)
- Yun Kang
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Jan Zarzycki-Siek
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Chad B. Walton
- Department of Medicine, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Michael H. Norris
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
| | - Tung T. Hoang
- Department of Microbiology, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, United States of America
- * E-mail:
| |
Collapse
|
5
|
Alavi MR, Shukla HD, Whitaker B, Arnold J, Shahamat M. Attachment and Biofilm Formation of Mycobacterium marinum on a Hydrophobic Surface at the Air Interface. World J Microbiol Biotechnol 2006. [DOI: 10.1007/s11274-006-9198-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
6
|
Meyer KC, Sharma A, Brown R, Weatherly M, Moya FR, Lewandoski J, Zimmerman JJ. Function and composition of pulmonary surfactant and surfactant-derived fatty acid profiles are altered in young adults with cystic fibrosis. Chest 2000; 118:164-74. [PMID: 10893374 DOI: 10.1378/chest.118.1.164] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
STUDY OBJECTIVES To determine whether chronic lung inflammation in young adult patients with cystic fibrosis (CF) alters the composition and function of surfactant and surfactant components in bronchoalveolar secretions. DESIGN A prospective, descriptive study. SETTING An adult CF center in a tertiary health-care center. PARTICIPANTS Thirteen normal volunteer (NV) subjects recruited via local advertising and 15 CF patients recruited from the CF center. INTERVENTIONS None. MEASUREMENTS AND RESULTS We performed BAL and measured surfactant-associated protein A (SP-A) via enzyme-linked immunosorbent assay in BAL fluid (BALF), and quantitated total phospholipid, phospholipid subclass, and fatty acid subclass content of extracted BALF. We also determined the protein and phospholipid content, SP-A content, and functional characteristics of surfactant isolated from BALF via high-speed centrifugation. The phospholipid-to-protein ratio (milligram/milligram) of surfactant isolated by centrifugation (mean +/- SEM) was 1.01 +/- 0.07 for NV subjects and 2.62 +/- 0.42 for CF patients (p = 0.0001). Minimal surface tension was < 1 dyne.s.cm(-5) in all samples from NV subjects, but 21.9 +/- 0.73 dyne.s.cm(-5) for surfactant from CF patients. Immunoblotting of isolated surfactant revealed a marked decrease in SP-A for CF patients, compared to NV subjects. However, mean concentrations of SP-A in BALF that had not been subjected to high-speed centrifugation to isolate surfactant were not significantly different for CF patients (4.7 +/- 0.8 microgram/mL) vs NV subjects (4.6 +/- 0.2 microgram/mL). Additionally, phospholipid-to-protein ratios (0.32 +/- 0.04 for NV subjects vs 0.10 +/- 0.02 for CF patients; p < 0.0001) in extracted uncentrifuged BALF, and SP-A-to-protein ratios (microgram/milligram) in BALF were significantly depressed (74 +/- 8 for NV subjects vs 16 +/- 3 for CF patients; p < 0.0001). The phospholipid and fatty acid subclass profiles of extracted CF BALF vs NV BALF revealed a decreased mean phosphatidylcholine-to-sphingomyelin ratio (20.7 +/- 10.0 vs 55.2 +/- 8.7; p = 0.002), increased oleic acid content (12.1 +/- 2.3 nmol/mL vs 3.2 +/- 0.9 nmol/mL; p < 0.01), and increased arachidonic acid content (2.2 +/- 0.5 nmol/mL vs 0.6 +/- 0.3 nmol/mL; p < 0.05) for CF patients. CONCLUSIONS Altered phospholipid-to-protein ratios and phospholipid subclasses, altered surfactant-derived fatty acid profiles, high minimal surface tension, and decreased association of SP-A with lipid components of isolated surfactant indicate that surfactant components are considerably altered and dysfunctional in lower respiratory tract secretions of CF patients. Surfactant composition and function are altered in CF, and the pattern of phospholipid and surfactant-derived fatty acid subclass alterations in CF are characteristic of ongoing lung injury and may depress surfactant function.
Collapse
Affiliation(s)
- K C Meyer
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, University of Wisconsin Medical School, Madison, WI, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
Govan JR, Deretic V. Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia. Microbiol Rev 1996; 60:539-74. [PMID: 8840786 PMCID: PMC239456 DOI: 10.1128/mr.60.3.539-574.1996] [Citation(s) in RCA: 845] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Respiratory infections with Pseudomonas aeruginosa and Burkholderia cepacia play a major role in the pathogenesis of cystic fibrosis (CF). This review summarizes the latest advances in understanding host-pathogen interactions in CF with an emphasis on the role and control of conversion to mucoidy in P. aeruginosa, a phenomenon epitomizing the adaptation of this opportunistic pathogen to the chronic chourse of infection in CF, and on the innate resistance to antibiotics of B. cepacia, person-to-person spread, and sometimes rapidly fatal disease caused by this organism. While understanding the mechanism of conversion to mucoidy in P. aeruginosa has progressed to the point where this phenomenon has evolved into a model system for studying bacterial stress response in microbial pathogenesis, the more recent challenge with B. cepacia, which has emerged as a potent bona fide CF pathogen, is discussed in the context of clinical issues, taxonomy, transmission, and potential modes of pathogenicity.
Collapse
Affiliation(s)
- J R Govan
- Department of Medical Microbiology, University of Edinburgh Medical School, Scotland
| | | |
Collapse
|
8
|
Mrsny RJ, Daugherty AL, Short SM, Widmer R, Siegel MW, Keller GA. Distribution of DNA and alginate in purulent cystic fibrosis sputum: implications to pulmonary targeting strategies. J Drug Target 1996; 4:233-43. [PMID: 9010813 DOI: 10.3109/10611869608995625] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cystic fibrosis (CF) patients frequently experience recurring airway infections characterized by thick, viscous sputum. The consistency and nature of these purulent secretions may produce a significant barrier to the successful delivery of drugs and gene therapy vectors designed to treat CF. We have carried out a series of in vitro studies to determine the distribution of two macromolecular components typically present in purulent sputum, bacterial alginate and neutrophil-derived DNA. Sputum samples were obtained from hospitalized CF patients. DNA and alginate were disrupted, respectively, by the in vitro additions of human recombinant deoxyribonuclease I (rhDNase) or alginate lyase prepared from a mucoid strain of Pseudomonas aeruginosa. N-acetyl-L-cysteine (acetylcysteine) was similarly used to collapse the mucin matrix of these samples for comparison. Using a centrifugation-based rheological method known as the compaction assay, a greater maximal response was observed for rhDNase compared to alginate lyase treatment. A simultaneous addition of these enzymes to purulent sputum produced an additive compaction response. Electron microscopy was used to identify alginate and DNA components within the mucin matrix of sputa and to evaluate changes following treatment with high concentrations of alginate lyase or rhDNase. DNA was more widely distributed throughout purulent samples than alginate. Differences in the distribution of DNA and alginate may explain, at least in part, the larger compaction response to rhDNase versus alginate lyase treatment. An improved understanding of DNA and alginate distribution within purulent CF sputum may lead to improvements in drug and vector delivery to airway epithelial cells.
Collapse
Affiliation(s)
- R J Mrsny
- Department of Pharmaceutical Research and Development, Genentech Inc., South San Francisco, CA 94080-4990, USA
| | | | | | | | | | | |
Collapse
|
9
|
D'Souza-Ault MR, Smith LT, Smith GM. Roles of N-acetylglutaminylglutamine amide and glycine betaine in adaptation of Pseudomonas aeruginosa to osmotic stress. Appl Environ Microbiol 1993; 59:473-8. [PMID: 8434912 PMCID: PMC202129 DOI: 10.1128/aem.59.2.473-478.1993] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The mechanism of osmotic stress adaptation in Pseudomonas aeruginosa PAO1 was investigated. By using natural abundance 13C nuclear magnetic resonance spectroscopy, osmotically stressed cultures were found to accumulate glutamate, trehalose, and N-acetylglutaminylglutamine amide, an unusual dipeptide previously reported only in osmotically stressed Rhizobium meliloti and Pseudomonas fluorescens. The intracellular levels of these osmolytes were dependent on the chemical composition and the osmolality of the growth medium. It was also demonstrated that glycine betaine, a powerful osmotic stress protectant, participates in osmoregulation in this organism. When glycine betaine or its precursors, phosphorylcholine or choline, were added to the growth medium, growth rates of cultures in 0.7 M NaCl were increased more than threefold. Furthermore, enhancement of growth could be observed with as little as 10 microM glycine betaine or precursor added to the medium. Finally, the mechanism of osmotic stress adaptation of two clinical isolates of P. aeruginosa was found to be nearly identical to that of the laboratory strain PAO1 in all aspects studied.
Collapse
|
10
|
|
11
|
Friedl P, König B, König W. Effects of mucoid and non-mucoid Pseudomonas aeruginosa isolates from cystic fibrosis patients on inflammatory mediator release from human polymorphonuclear granulocytes and rat mast cells. Immunol Suppl 1992; 76:86-94. [PMID: 1321094 PMCID: PMC1421756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Mucoid Pseudomonas aeruginosa causing chronic bronchopulmonary infection in cystic fibrosis (CF) patients may interfere with host defence mechanisms. We investigated 13 P. aeruginosa strains isolated from sputa of CF patients with regard to the induction or modulation of inflammatory mediator release from human neutrophils (PMN) and rat mast cells. The effects of mucoid as compared to non-mucoid bacteria were studied using a mucoid strain and its non-mucoid revertant. The release of leukotrienes (LT) and histamine in response to the majority of the CF strains was insignificant. However, preincubation of PMN with P. aeruginosa caused a dose-dependent decrease (50-95%) of LTB4 and LTC4 generation and LTB4 metabolism induced by the Ca(2+)-ionophore A23187 or opsonized zymosan (ZX) (P less than 0.001). The mucoid strains caused a three- to 10-fold higher impairment of LTB4 release (P less than 0.05) and a concomitant down-regulation of LTB4 receptors on neutrophils. Inhibitory effects were also obtained for mucoid and non-mucoid bacteria when the phorbol-ester or the Ca(2+)-ionophore induced luminol enhanced chemiluminescence response (P less than 0.001) or the histamine release from rat peritoneal mast cells (P less than 0.01) was studied. The bacteria-cell contact with non-mucoid strains was associated with an increased Ca2+ influx into PMN, whereas mucoid bacteria had no effect. In addition, a protein kinase C-dependent decrease of the C3bi receptor was suppressed by the mucoid--and less effectively--by the non-mucoid strain. The results suggest that the impairment of the phagocytic and inflammatory system may contribute to the pathogenesis and persistence of mucoid P. aeruginosa infection in CF.
Collapse
Affiliation(s)
- P Friedl
- Institute of Microbiology and Immunology, Ruhr University, Bochum, Germany
| | | | | |
Collapse
|
12
|
Terry JM, Piña SE, Mattingly SJ. Role of energy metabolism in conversion of nonmucoid Pseudomonas aeruginosa to the mucoid phenotype. Infect Immun 1992; 60:1329-35. [PMID: 1372292 PMCID: PMC257000 DOI: 10.1128/iai.60.4.1329-1335.1992] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Phosphatidylcholine, the major component of lung surfactant, when supplied as the sole source of phosphate for Pseudomonas aeruginosa PAO1, resulted in conversion of as much as 2% of the population to the mucoid phenotype under continuous culture conditions over a 24-day culture period. In addition, growth in phosphatidylcholine resulted in the highest yields of extracellular alginate compared with other environmental conditions. Iron limitation, another environmental condition relevant to the lungs of patients with cystic fibrosis, also resulted in conversion to mucoid. Since both conditions suggested the likelihood of an energy-deprived growth environment as a common variable, the effect of direct inhibition of energy generation by N,N'-dicyclohexylcarbodiimide or gramicidin on the conversion of nonmucoid P. aeruginosa to the mucoid phenotype was examined. Both inhibitors resulted in mucoid subpopulations (0.5 and 0.8%, respectively). Severe energy stress imposed by the combination of phosphate limitation and N,N'-dicyclohexylcarbodiimide treatment resulted in conversion of 55% of the population to mucoidy during a 7-day growth period. A growth advantage of the mucoid over the nonmucoid phenotype was observed under severe nutrient deprivation by growth on unsupplemented Noble agar or in a 1/2,500 dilution of a chemically defined medium. These results clearly demonstrate a significant role for the energy state of the cell in conversion to mucoid and in selection for the mucoid phenotype.
Collapse
Affiliation(s)
- J M Terry
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284
| | | | | |
Collapse
|
13
|
Affiliation(s)
- K Grimwood
- Department of Paediatrics, Royal Children's Hospital, Parkville, Victoria, Australia
| |
Collapse
|
14
|
Terry JM, Piña SE, Mattingly SJ. Environmental conditions which influence mucoid conversion Pseudomonas aeruginosa PAO1. Infect Immun 1991; 59:471-7. [PMID: 1898904 PMCID: PMC257774 DOI: 10.1128/iai.59.2.471-477.1991] [Citation(s) in RCA: 87] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Growth and conversion to the mucoid phenotype by nonmucoid Pseudomonas aeruginosa PAO1 was studied in a chemostat system under conditions designed to reflect those likely to be present during chronic infection in the lung in cystic fibrosis patients. Mucoid variants were consistently isolated during continuous culture in the presence of 0.3 M NaCl or 5 or 10% glycerol. Mucoid subpopulations were also detected under conditions of carbon, nitrogen, or phosphate limitation. During carbon or nitrogen limitation, mucoid conversion was dependent upon the choice of substrate. Phosphate-limited cultures exhibited an inverse relationship between culture growth rate and number of mucoid organisms detected. Mucoid variants were not detected when dilution rates (D) exceeded 0.173 h-1. Conversely, at a D of 0.044 h-1, 40% of the population expressed the mucoid phenotype. Phosphorylcholine, a product of phospholipase C activity on the major lung surfactant phosphatidylcholine, was also used as a growth substrate in nutrient limitation studies. Under all conditions, growth of PAO1 supplied with phosphorylcholine resulted in isolation of mucoid variants, indicating that the lung may provide at least one nutrient source conducive to mucoid conversion. Continuous culture also resulted in detection of a phage associated with strain PAO1. High titers of phage were present under all conditions, including those which yielded no mucoid organisms, suggesting that environmental conditions rather than the phage regulated the appearance of mucoid variants.
Collapse
Affiliation(s)
- J M Terry
- Department of Microbiology, University of Texas Health Science Center, San Antonio 78284
| | | | | |
Collapse
|
15
|
Krieg DP, Helmke RJ, German VF, Mangos JA. Resistance of mucoid Pseudomonas aeruginosa to nonopsonic phagocytosis by alveolar macrophages in vitro. Infect Immun 1988; 56:3173-9. [PMID: 3141284 PMCID: PMC259720 DOI: 10.1128/iai.56.12.3173-3179.1988] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
A unique, recently described rat alveolar macrophage cell line (NR8383) was used to study the interaction of the pulmonary immune system with a mucoid cystic fibrosis isolate of Pseudomonas aeruginosa (SRM-3), its nonmucoid revertant (SRM-3R), and a non-cystic fibrosis isolate (PAO-1). Strain SRM-3 was cultivated in a chemostat system to allow maintenance of an entirely mucoid population. The alveolar macrophage response to the mucoid and nonmucoid strains of P. aeruginosa was determined by visually quantitating phagocytosis in acridine orange-stained monolayers and measuring the induction of an oxidative burst as indicated by chemiluminescence and H2O2 production. In all experiments, fewer than 2% of the NR8383 cells engulfed the mucoid SRM-3 isolate, while SRM-3R and PAO-1 were phagocytized by 15 and 41%, respectively. Opsonization by normal serum (complement) provided minimal phagocytic enhancement of these strains, whereas specific anti-P. aeruginosa antibody slightly elevated phagocytic responses to strains with nonmucoid phenotypes while providing a sevenfold increase in uptake of SRM-3. Chemiluminescent and H2O2 responses were comparable with the levels of phagocytosis observed, with very little or no response to the mucoid strain SRM-3. The data indicate that the strains with mucoid phenotypes are refractile to ingestion and that studies which describe ingestion of mucoid strains were likely measuring ingestion of revertants. Alginic acid (2 mg/ml) was found to inhibit stimulation of macrophage response to the opsonized and unopsonized nonmucoid strain PAO-1.
Collapse
Affiliation(s)
- D P Krieg
- Department of Microbiology and Immunology, University of Colorado Health Science Center, Denver 80262
| | | | | | | |
Collapse
|